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Abstract. The general post-critical characteristics of a discrete structural system
with independent loading parameters are studied. Attention is restricted to elastic
conservative systems which satisfy certain analytical symmetry conditions and which
lose their initial stability at a 'symmetric special' critical point. The results are compared
with Koiter's 'stable symmetric' and 'unstable symmetric' bifurcation points, and
three theorems are established.

A shallow circular arch under the action of a set of external loads which can be
represented by two independent parameters is analysed to illustrate some aspects of
the theory.

1. Introduction. In the development of the general theory of elastic stability, the
problem of combined loading has not received much attention. Thus Poincar6 [1],
Koiter [2], Thompson [3] and others who have developed the basic nonlinear concepts
of the elastic stability, normally restricted attention to situations in which the external
loading of a structure could be represented by a single variable parameter.

It has recently been observed [4] that the buckling and post-buckling behaviour of
structures under combined loading cannot be described adequately by the two well-known
critical points, the limit and bifurcation points, and a reclassification of the critical
conditions characterizing the buckling behaviour more aptly has been presented [4],
Thus, under combined loading, mainly two types of critical point arise, 'general' and
'special' critical points. The former is normally associated with a limit point at which
the equilibrium surface (defined [4] in the load-deflection space as the entirety of the
equilibrium points) is continuous; it is, however, shown [4] that under some circumstances
the same point can also be regarded as a point of bifurcation. The latter, on the other
hand, is a genuine bifurcation point at which a simple extremum is definitely ruled out.

The loss of stability at 'general' critical points and the associated problems have
recently been discussed by the author [5] in detail. In the field of elastic stability, however,
there exist a considerable number of stability problems associated with 'special' critical
points. Frames and plates subjected to certain combinations of axial compression, shear,
etc., for instance, will always lose their stability at 'special' critical points. It is, therefore,
the aim of this paper to examine the initial post-critical characteristics of such systems
in an effort to establish general results valid for the class of systems under consideration.
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The investigation will be restricted to discrete symmetric systems, symmetry being
introduced by imposing certain analytical conditions on the potential energy function.
Thus, we separate the generalized coordinates into two distinct groups and assume that
the potential energy function is symmetric in one of the groups [6], Such a system will,
then, exhibit symmetry in buckling and post-buckling behaviour. A similar investigation
concerning more general systems (not necessarily symmetric) is reported in [7].

In view of the increasing demands of weight economy, the significance of the post-
critical behaviour of structures is clear, and it is felt that the assessment of the general
post-critical characteristics under combined loading will provide an insight into many
particular problems of this nature which are inherently nonlinear and complex.

Only elastic, conservative systems are considered.
2. Structural system. Consider a discrete conservative structural system charac-

terized by a total potential energy function
V = V(Q, , , Ak) (1)

which depends on the generalized coordinates

Q, (i = 1,2, ■ ■ ■ , N), z,- 0' = 1, 2, • • • , K),
and the loading parameters Ak (k = 1, 2, ■ • • , M), and is assumed to be single-valued
and well behaved at least in the region of interest. The division of the generalized co-
ordinates into the two distinct groups, the Q, and z,- , enables us to introduce the analytic
symmetry conditions conveniently, and will consequently simplify the analysis. Thus
we assume that the function V is symmetric in the generalized coordinates z, in the
sense that

V(Q< , z, , A*) = V(Qi , -z, , A*) (2)

where the z,- change sign as a set and i = 1, 2, • • • , N; j = 1,2, ■ ■ ■ , K and k = 1,
2, • • • , M. Hence in the expansion of the potential energy function about a point on
the fundamental surface, terms such as

2; , Z; , • ■ • , QiZi ■ ■ ■ , akZj , ■■■ (3)

cannot appear.
It can readily be shown (by expanding (2) into Taylor series) that the N K equi-

librium equations dV/dQi = dV/<3z,- = 0 can be solved simultaneously to yield a funda-
mental surface in the form

Qi = Q-(A'), zf = 0, (4)
which indicates that the system initially deflects in the Q, subspace without involving
the z{ coordinates. In analogy with [7], we shall now assume that this fundamental
surface is single-valued at least in the region of interest so that the correspondence
between a set of Q1] and a set of A' is unique. We can, then, refer the potential energy
to the fundamental surface by setting

Q< = Q*(A') + q, . (5)
Two further changes of coordinates by means of the linear, nonsingular and orthogonal

transformations

q{ = , Zi = /^.(A*)^, (6)



(8)

(9)
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will be introduced to diagonalize the quadratic forms of the energy in g,- and z,- respec-
tively. Introducing (5) and (6) into the energy function (1) we get a new function

TiUi , Vi , A*) b F[Q1(A') + oiij(Ak)Ui , 0 + pMVi , A*], (7)

with the properties

Tui(0, 0, A*) = TU0, 0, A1) = Tl*(0, 0, A1) = • • • = 0,

Tu\0, 0, A*) = TttO, 0, A*) = ■■■ =0,
and

0, 0, A') = Tliui(0, 0, A!) = • ■ • =0, for i j,
TyiVi(0, 0, A4) = TkUilll(0, 0, A!) = • • • =0, for i ^ j,

which follow immediately from the fact that w, = f/, = 0 define the fundamental surface,
and the quadratic forms of the energy are diagonalized at every point of this surface.
Here and in the remainder of this paper suffix symbols on the T's indicate partial dif-
ferentiation (e.g. TkiUI = (d3T/dUi dy,- dAk)).

It can further be shown that the symmetry properties (3) are now replaced by

T._„ = TViViVl = ■ • • = TUIVI = ■■■ = Tkyi = ■ • ■ =0. (10)

Considering the N + K stability coefficients of the system, Tuiui(0, 0, A*) and
^»,i/i(0, 0, A'), we focus attention on a discrete critical point, F, at which one of the
latter coefficients, say TVtUt , vanish. We now introduce a point transformation of the
A' coordinates which will provide a canonical representation of the linear form corre-
sponding to 0, 0, *Ap) of the function T. Thus we choose a certain linear, non-
singular and orthogonal transformation

A1' = 7"$' (11)

so that when this is substituted for A* in the function T, the resulting function
*(«< , Vi , $') - T(v,i , y, , ykl$>•■) (12)

will have the following properties:

*L,(0, o, *$*) * 0, *;t,.(0, o, *$>£) = 0 (13)
where m ^ 1, and are the critical values of <E>' at the point F.

It can readily be shown that the properties (8), (9) and (10) are now replaced by

*ui(0, 0, 4>*) = <(0, 0, $*) = • • • =0, (14)
MV(0, 0, 4>k) = ¥^(0, 0, **) = • ■ ■ =0,

*„,ui(0, 0, $*) = <„,.(0, 0, $*) = • • • =0, for i * j,

*.,.,(0, o, $*) = ^<tl(0, 0, $*) = • • • =0, for i * j,
and

= %<v„k = ■■■ = ■ = *£< = • • • =0 (16)

respectively.
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We shall use the new function , yt , $*), the only necessary properties of which
are given by (13), (14), (15) and (16), to explore the neighbourhood of the critical point F
at which

*„»((), 0, *$>;) = 0, ¥,.,.(0, 0, *$;) * 0 for all s ^ 1

and

¥U|«i(0, o, *$;) * 0.

3. The post-buckling equilibrium surface. In analogy with [7], instead of describing
the N + K equilibrium equations in parametric form, we start by choosing the inde-
pendent variables as yx and <t>m (m ^ 1) and have the functions in the form

Ui = Ui(yi , $"), y, = y,(yi<t>m), & = $'(2/1 , $m), (17)

which define the post-buckling equilibrium surface.
Substituting these functions back into the equilibrium equations = 0 we

have the identities

VuAujiyi , $"), y.(yi , $"), 4>'(j/i , $m), yi , $"] = 0 (18a)

and
VvAuiiyi, &"), y.(yi, $m), $'(2/1, $m), Vi, <^>"*] = 0. (18b)

Differentiating (18a) once with respect to yt and once with respect to (m = 2,3, • • • , m)
we get

+ ^uiv,y,.u, + ¥1,$^ + = 0,

¥U(U,m™ + ¥,4„.2/7 + = 0.

Here and elsewhere in the paper, summation convention is adopted.
Evaluating these equations at the critical point F (where ut = 2/,- = 0, $>' = *$/)

we have

uiiVx = 0 and u™ = 0. (20)

Differentiating (18b) once with respect to t/j and once with respect to <£m we get

*,<«,= o, ^
+ *ViV.y: + = o.

Upon evaluation we obtain
y.,„ = 0, ym, = 0. (22)

Differentiating (18a) with respect to t/i for a second time we get

[•"']«/,». + + [■ ■ ■]</..», + Vly,,Vl +

+ ■«/.,. + = 0, (23)
which on evaluation yields

. (24)
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Differentiation of (18b) with respect to yx for a second time yields on evaluation

= 0, = 0. (25)

We now differentiate (18a) first with respect to yi and for a second time with respect
to <J>m to get

[• ■ + [• • •] + ^uiv.yl.vi + [• ■ ■]$!, +

+ = 0, (26)
which gives on evaluation

= 0. (27)

Similarly the differentiation of (18a) and (18b) with respect to certain independent
variables twice yields

*1,m = 0, y7,Vi = 0, (28)

uT = 0, (29)

yT = 0. (30)
Proceeding in the same manner the third perturbation of the equations (18a) and (18b)

yields the following derivatives of the post-buckling equilibrium surface:

, = 1_
3*;.,^1/.!/, o,T,l 1 VlVlViVl '

7^1 ^U,u, .

h1''"" = _^'"n Afc1
v * V\Vi/ x V\Vi )

.yT,", = 0, $J;"' = 0,
l

U a.v.UiUi
\I>

»T.   Q «1 VsV I 1 U\U 1 V 1
^ V »U iV\Vl ^

(31)

J/",,= 0, y'T = 0,
mn r\ mnr n

ui, v, =0, Ut = 0.

We are now in a position to construct the asymptotic relationships <f>' = $'(wi , <£m),
u, = us(iii , $m) and u{ = u,(ui , <3?m). Thus using the derivatives (20), (22), (24), (25),
(27), (28), (29), (30) and (31) together with the translation <p = — *3^ we have

1
* = ~mlV\V\

*, - 3 e
\j^mn
x 1/iVi rn n—J  <P <P

(>\I/
V \ V \

= ay] + 6-VV, (32)
w, = , (33)

and

1 1
y. = - 3!*„

\T/ 1
„T, O «< v B V 1 * U »' 1/ 1 J/1 . .3- 3    2/i

^UiU,- J
(34)

which define the post-buckling equilibrium surface in the vicinity of the critical point F.
Suppose we take a ray defined by <p' = Z*| where ll ^ 0; then the Eq. (32) takes
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the form

£ = (a/ll)y\ , (35)

which indicates a "symmetric point of bifurcation" (as Koiter [2] and Thompson [9]
define it) on a plot of £ against t/j . Figs, la and 2a are drawn for a/l1 > 0 and a/ll < 0
respectively. Here, the V are the direction cosines and £ is a variable loading parameter.

On the other hand if we specify 11 = 0, (32) yields

ay\ + bmnlmn2 = 0, (36)

which defines either the point i/i = £ = 0 or two intersecting straight lines depending
on the signs of the coefficients. We cannot now consider the critical point Fasa "sym-
metric point of bifurcation" due to the fact that post-buckling paths now have a finite
slope; it should, therefore, be regarded (in Koiter's terminology) as a asymmetric point
of bifurcation. Figs. 1 and 2 illustrate these phenomena and various equilibrium paths
in the vicinity of the critical point F. We observe that the system exhibits symmetry,
with regard to the post-buckling behaviour, and the special critical point F can, therefore,
be termed as 'symmetric'.

It is thus demonstrated that although a 'symmetric special' critical point is normally
associated with Koiter's 'symmetric bifurcation' point, under some circumstances the
post-buckling paths can have a finite slope at the same critical point, this being dependent
on the shape of the post-buckling surface. We shall return to this point later for a full
discussion of stability of the equilibrium paths involved.

4. Stability boundary. Since we are dealing with a special critical point (whether
it is symmetric or asymmetric), the stability boundary of the system can be obtained by
setting Ui = y/ =0 in the equilibrium equations (32), (33) and (34) as was shown in [7].
Thus

V = /2*J11(1)VnV (37)

defines the stability boundary in the vicinity of the critical point F provided F is primary
(i.e. = 0, > 0 for all s ^ 1, and <&UIUi > 0). If F is not primary, then (37)
becomes the equation of a critical surface not associated with an initial loss of stability.

The condition ensuring that the stability boundary is synclastic is the positive
(negative) definiteness of the matrix

5. Stability of equilibrium. Assuming that the critical point F is primary, we shall
now examine the stability of the neighbouring equilibrium states. Following the same
procedure as in [7], we introduce the stability determinant

Afai , y, , <p) = |*.,(«, , yt , v)I , (38)
where the unspecified subscripts on ^ denote partial differentiation with respect to u<
and/or yf .

Differentiating this determinant by rows once with respect to u, and once with
respect to <p', and evaluating at the critical point F we have

N K

a., = n n (39)
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and
N K

A1 = *!.„ n II • (40)
t-1 8=2

Differentiating (38) once with respect to y> (i = 1,2, ■ • • , K) and once with respect
to <pm (m = 2, 3, • • • , M) and evaluating at the critical point, we see that A„, = A™ = 0.
A second differentiation yields on evaluation

a- = II II ,
1 2

a.,„ =  n n , (4i)
A™ = 0.

Using the Taylor's expansion and these derivatives we get

a = [*. u, + ^ ov + ^ y^\

+ ^i (•••) + • (42)
1 2 o !

Evaluating the stability determinant (42) at an arbitrary state on the fundamental
surface (i.e. setting n, = ?/,■ = 0) we have to a first approximation

a = (*i„y + i*;r„*v) n *.,«< IT , (43)
1 2

which yields the following stability criterion:

> 0 for stable equilibrium,
+ *;:>V = 0 for critical equilibrium, (44)

< 0 for unstable equilibrium.

Considering an arbitrary point A on the stability boundary, we can examine the
stability of the neighbouring states by keeping (pm = *<p™ = const and giving a small
but finite increment e to *<p] . Thus, for the points defined by

tp = *<Pa + e, <pm = *<Pa > (45)

the stability criterion takes the simple form

(46)
If, for instance, xIr'VlVx < 0, then, e < 0 defines the region of stability and e > 0 the region
o/ instability. It is seen that the stability boundary divides the fundamental surface into
the stable and unstable domains.

In order to examine the stability of the states lying on the post-buckling surface
we evaluate the determinant (42) on this surface which is defined by Eqs. (32), (33)
and (34). Substituting for ut, y, and <p' in the determinant (42) we have to a first approxi-
mation

o L 1 *«<«< J 1 2
(47)
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Evidently, the stability of the neighbouring equilibrium states is not dependent on
the coordinate yi . In fact, the sign of the expression in the brackets determines the
stability of the post-buckling surface as a whole so that if this expression is positive
(negative) the surface is totally stable (unstable).

The stability determinant evaluated on the post-buckling surface can alternatively
be expressed as

a = V) n . (4§)
1 2

in which case the stability of the states defined by (45) can be studied by examining
the sign of the expression — which obviously indicates that the region of stability
can only correspond to an unstable post-buckling surface and vice versa. It can be shown,
however, that if the post-buckling surface is stable (unstable) corresponding to the
points of the region of stability (the region of instability) there exists no post-buckling
equilibrium states. Thus, considering again an arbitrary point A on the stability bound-
ary, the post-buckling states corresponding to (45) can be obtained by substituting
for and <pm in the equilibrium Eq. (32) as

Vl = ±Wa)1/2. (49)

If a > 0 (a < 0), then, only for e > 0 (e < 0) real equilibrium states can exist. Supposing
that < 0, a > 0 will, then, correspond to a stable post-buckling surface, in which
case we clearly see that for « < 0 the post-buckling states are not real. Figs. 1 and 2
show various stable and unstable equilibrium paths in the vicinity of the critical point F.
On the basis of the foregoing theory, the following theorems are proved:

Theorem 1. The initial post-buckling equilibrium surface is either totally stable or
unstable.

Theorem 2. The stability boundary constitutes an existence boundary with regard to
the post-buckling surface so that if this surface is stable (unstable), no post-buckling equi-
librium states can correspond to the points of the region of stability (region of instability).

6. Stability of the critical point F. Finally we shall discuss the stability of the
critical point F itself at which the determinant A vanishes and higher order variations
of the energy are required.

This is simply a problem of finding whether or not the energy function ^(u( , yt)
has a minimum at the point F. It is important to note that, since we are no longer dealing
with a quadratic form, ^(u{ , y,) might not have a minimum even though the partial
second derivatives with respect to and y, , and the fourth derivative with respect
to 2/1 (notice that third derivative is zero due to symmetry) are all positive.

In order to determine whether the energy has a minimum we examine the variation
of the energy function ^(w, , yt) with respect to an arbitrarily chosen path defined by

Ui = Ui(ri), y f = yi(rj), (50)

where 77 is a path parameter, 77 = 0 giving the critical point F. Thus writing

*(7?) = *[«<(»?), 2/<(>?)] (51)

and differentiating this with respect to 77 we get
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d^/di) = (52)
where the subscript j? on the variables denotes differentiation with respect to tj.

Evaluating (52) at the critical point F we get

(d*/dv)\, = 0. (53)
Differentiating (51) for a second time we have

dNr/dv = (*«,„(m, , +^„(+ (54)
giving on evaluation

(d2*/dr,2)\F = (u,.,)2 + ^.„.(2/.,,)2. (55)

(55) indicates that the second variation of the energy is positive for all paths provided
u,,„ ^ 0 and y,,v ^ 0. If

= 2/.., = 0, (56)
the higher-order variations of the energy are required. (56) implies that the only candidate
for t] among the N + K variables is iji , the critical coordinate. In other words, the higher
variations of energy must only be determined for the path which is initially given by

= y..v> = 0. (57)

Differentiating (5) for a third time with respect to t; (= y^), and evaluating at the
critical point, we see that

d^/dy\)\F = 0. (58)

Proceeding in the same manner as before the fourth differentiation yields on evaluation

d 1$?/dyJ — ^VlylVlUt "I- 6VI/Uil/1 lxUitVlVl -f- .vivi) • (59)

We now see that the curvature is unknown and has to be determined. But we
recall from the theory of maxima and minima that the necessary condition for a relative
extremum

.(«,- , Vk) = 0, *„,(«/ , Vt) = 0, (60)
must nlso be satisfied.

Thus, for the path under consideration we can write

i), yt(yi)] = 0, ¥„,[«, (j/0, Vk(yi)] = 0. (61)
Differentiating these functions with respect to yi and evaluating at the critical point,

we have

= 0, y.,Vl = 0. (62)

Differentiating the first of the equations (61) for a second time and evaluating,
we get

= *».,„„/*».». • (63)
Using (63), Eq. (59) yields

^ — 3 V (64)
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which can take positive or negative values even if ^ is positive. Thus for the critical
point F we have the following stability criterion:

w 2 > 0 for stable equilibrium,
$,lfl— 3 = 0 for critical equilibrium, (65)

.-i mui < Q for unstable equilibrium.

If (64) is zero we have to determine the higher order variations of the energy, and this
can readily be done by following the same procedure as before.

It is interesting to note that (64) is exactly the same quantity which determines the
stability of the post-buckling surface (see Eq. 47). Hence the following theorem is proved.

Theorem 3. The initial post-buckling surface is stable or unstable according to
whether the critical point itself is stable or unstable.

7. Example: instability of a shallow circular arch. The buckling and post-buckling
behaviour of an arch has been investigated by several authors [9], [10]. Our interest
here will be focused on the combined loading with a view to illustrating some aspects of
the theory presented in the preceding sections.

Consider a simply supported (pinned) shallow circular arch of radius R and with a cen-
tral angle 290. The arch is subjected to the combined action of five symmetrically located
radial concentrated loads described by two independent parameters A1 and A2 (Fig. 3).
It is assumed that the arch has a constant cross-section with an area A and moment of
intertia I. Using u and co to denote the tangential and radial displacements respectively,
we note that for a shallow arch

u« R, co « R, (cce/R)2 « 1 (66)

where the subscript 0 denotes differentiation with respect to 6. The total potential energy

Fig. 3.
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of the system, nondimensionalized by dividing by EAR, is
j /» + 0o T t*+0ov = IL <2dd+^L*de

Axto' 10—0 A2[co' \e- + e1t/2 ~f~ ̂ ' [e = -fl0/2 *"f~ |e- + 0<>/4 ~J~ w' |a — 0o/i] (67)

where e and x denote the axial strain and change in curvature respectively and A, =
A1 /EA, A2 = A2/EA and w' = u/R.

On the basis of the assumptions (66) the axial strain can be approximately expressed as

e = (1 /R)(ue - co) + (1 /2R2)M2, (68)

and the change in curvature as

X = (1/R2)uee ■ (69)

In the energy expression (67) u appears only in « and can, therefore, readily be
eliminated. Thus, integrating the strain (68) between 8 = —60 and 0 = + 0O we have

""]+0o -| "|+0o ■« f* + 6o -I /» + #o

ef3\ e = RU\ e ~ R J e "d9 + 2R2 i e "e d9 ' ' ' ' (70)

Using the boundary conditions u = 0 at 6 = , Eq. (70) yields

• - 2^ C ("I+ (71)
Substituting for e into the energy function (67) we finally get

V = —
40o

J ( — w' + 5io'2e) do + | J ^ (u'eo)2 — Ajco' — A2[--•] (72)

which is independent of u, and where the generalized deflection corresponding to A2 is
the same as in Eq. (67).

We now assume that the radial displacements are approximately represented by

/ /-i n# .n0co' = Q1 cos — + zx sin — • (73)
Oq C/q

which satisfies the statical as well as the geometrical boundary conditions.
Substituting for a/, performing the integrals and dividing both sides by 0o , we have

V = \[\c2Q\ + 2c2z\ - (4/nX2,]2 + d[^Q\ + 8c4^] - A[Q, - AJ3.26Q, (74)

where V' = V/d0 , c = II/20O , d = \/R2A, A[ = At/6a and A'2 — A2/90 .
We immediately note that the system under consideration is reduced to a two-

degree-of-freedom one, and that odd terms in z, do not appear. In other words the system
satisfies the symmetry conditions introduced in Sec. 2, and should therefore comply with
the theory presented in the preceding sections.

The equilibrium equations F< = 0 can be solved to yield the fundamental equilibrium
surface in the form

«i = °, (75)

M\C2Q\ - (4/n)Q1][c2Q1 - (4/n)] + c*dQt - A{ - 3.26AJ = 0,
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which indicates that the deflections will initially take place in Qx — A' subspace. Assum-
ing that the geometrical properties of the system are so that the initial loss of stability
occurs at special critical points when F,,,, = 0 (it can be shown that the condition for
this is given by 8/11 II2 > c*d) we obtain

Qi« = (4/c2)[(i/n) ± ((l/n2) - C4d)1/2]. (76)

Using this result and the equilibrium equations F, = 0 we get the stability boundary
in the form

A; + 3.26 A^ = b (77)
where b = 4c2d/U + 12c2d(l/II2 — cd)l/2.

Evidently Eq. (77) defines a straight line.

The Post-Critical Behaviour. Eq. (75) shows clearly that the fundamental surface is
a highly nonlinear curved surface. To examine the post-critical characteristics in the
neighbourhood of a special critical point on this surface we now introduce the incremental
variable 5, ,

Ql = Qlcr + 3i > (78)

and linearize the fundamental surface in the vicinity of this point (Fig. 4). Thus, after
simplification, the potential energy takes the form

V = + hcq£ + i! dz\ - A[q, - 3.26A^ (79)
where

F, = 2(3(c4/8)Qlor + (4/n2) - (3/n)c2Qlor + cfc4/2)

and

Ft = 2(8c4 - 16/nc2Q2cr). (80)

It is understood that here higher-order terms in as well as irrelevant terms such
as constants, etc. are ignored.

The equilibrium equations F- = 0 now yield the fundamental surface

z, =0, 9, = (1/F,)(A{ + 3.26 AO (81)
which is in the form of a plane. It must be remarked here that in many other problems

A,

A icr

'icr
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the fundamental surface will be a plane to start with and that the whole step described
by Eqs. (78), (79), etc., will then be unnecessary.

The sliding coordinate q[ can now be introduced,

Si = Qf(Ai) + q[ = (1/F,)(A{ + 3.26AO + q[ , (82)
to obtain the function T = T(ui , yx , A*) as

T = + \[F, + (c/Fi)(Aj' + 3,26Aj')]yJ + icu.y! + (1/4!) dyt (83)
where zt and are directly equated to )/, and Mi respectively, the diagonalizing trans-
formations (6) not being required.

Finally, the canonical representation of the linear form (A( + 3.26 A£) is achieved
by introducing the rotational transformation

A; = 0.293$' - 0.956$2, A£ = 0.956$' + 0.293<i>2, (84)

into the above energy function T which, then, yields the function

¥ = *(«, , y, , $') = \F,u\ + \[F2 + (0/^)3.41$']^ + (l/2!)cul2/2 + (1/4!) dy\ . (85)

We are now in a position to derive the results of the theory directly from this energy
function.

The following derivatives evaluated at an arbitrary critical point $' = $'r and
<J>2 = $2r are immediately obtainable:

— d \I/ = c ^ — F,xV\V\V\ w'} 1 xUi«i *■ 1

= Ft + Y 3.41 X <pl , = 0, = 3.41 ~
r i r 2

(86)

<J>' = <!>'    \ d — 3 —cr * " 3.41(c/F,) L * y\ , ". = -f jrti (87)

which yields, for example, the post-buckling equilibrium surface

c2

6 X SAlic/Fi) L" " FJ
and the stability boundary

*<f>' = or *<p = *$' - = 0. (88)

Similarly, the stability determinant, stability criterion and other results of the
preceding sections can readily be constructed. If numerical data is introduced it will be
seen that normally 32 4>'/d (j/,)2 < 0 and hence the loss of stability will generally be
associated with unstable special points.

It is interesting to note that the post-critical analysis can readily be performed in
the vicinity of any critical point on the stability boundary by simply computing the
value of desired <i>'r through Eqs. (77) and (84).

Discussion and conclusions. An intrinsic nonlinear analysis concerning the post-
buckling characteristics of a symmetric conservative system is presented.

It is demonstrated that a 'symmetric special' critical point is normally associated
with Koiter's 'symmetric point of bifurcation,' but under some circumstances, two
symmetric equilibrium paths with finite slopes are obtained, in which case the critical
point F can no longer be considered as a 'symmetric point of bifurcation' in the terms
of the general theory of Koiter. Even then, however, the critical point F can be stable
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(see Fig. 1) while 'asymmetric points of bifurcation' discussed by Poincar6 [1], Koiter [2]
and Thompson [8] are always unstable. If no such particular phenomena exist, i.e. if no
equilibrium paths with finite slopes are obtainable under any combination of loads,
then the post-buckling equilibrium surface and consequently the stability boundary
are synclastic.

The following theorems concerning the stability of the fundamental and post-buckling
equilibrium surfaces of the system under consideration are established:

Theorem 1. The initial post-buckling equilibrium surface is either totally stable or
unstable.

Theorem 2. The stability boundary constitutes an existence boundary with regard to
the post-buckling equilibrium surface so that if this surface is stable {unstable), no post-
buckling equilibrium states can correspond to the points of the region of stability (region of
instability).

Theorem 3. The initial post-buckling equilibrium surface is stable or unstable accord-
ing to whether the critical point itself is stable or unstable respectively.

The method introduced in Sec. 6 is purely mathematical, and can be used in determin-
ing whether a function of several variables has a minimum or maximum.

Finally, a shallow circular arch under the combined action of two independent sets
of external loads is analysed to illustrate some aspects of the theory. The system is first
reduced to a two-degree-of-freedom one by assuming a certain shape for deflections, and
then the general theory is applied. In spite of the fact that this example exhibits highly
nonlinear pre-buckling as well as post-buckling characteristics, the theory is well illus-
trated. It is understood, however, that the application of the theory would have become
much simpler if the fundamental surface was not nonlinear (as in many other particular
problems). As a matter of fact, it should be once more emphasized that the purpose of
this paper is to establish general results valid for the class of systems under consideration
rather than propose a method of analysis.
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