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The one-texture universe, introduced by Davis in 1987, is a homogeneous mapping of a scalar field with an
S® vacuum into a closed universe. It has long been known to mathematicians that such solutions, although
static, are unstable. We show by explicit construction that there are four degenerate lowest modes which are
unstable, corresponding to collapse of the texture towards a single point, in the case where gravitational back
reaction is neglected. We discuss the instability time scale in both static and expanding space-times; in the
latter case it is of order of the present age of the universe, suggesting that, though unstable, the one-texture
universe could survive to the present. The cosmic microwave background constrains the initial magnitude of
this unstable perturbation to be less than0™ 3. [S0556-282(197)07416-X]

PACS numbgs): 98.80.Hw, 11.27-d, 95.35:+d

I. INTRODUCTION that the one-texture universe was stable. However, this does
not correspond to a complete stability analysis. Shortly after
A texture is a topological defect which arises in scalarwe began looking at this problem, it was pointed out to us by
field theories with a spontaneously broken global symmetryDurrer that in fact the answer was already in the mathematics
when the vacuum manifol¥ has a nontrivial third homo- literature[4], predating even the original Davis paper. The
topy group 3. The simplest such manifold is the three- one-texture universe isnstable Indeed, there is no noncon-
sphereS®. In a spatially flat universe, the texture is known to stant stable map from any compact manifold igf[4].
be unstable to collapse, and indeed this property is crucial for However, the results in the mathematics literature apply,
the texture model of structure formation in the univelsp  strictly speaking, only to a static universe. It is well known
The one-texture univerggvhich predates and has nothing to that the expansion of the universe slows the growth of den-
do with the texture scenario for structure formajiomtro-  sity perturbations and similarly that the expansion of a defla-
duced by Davig2], considers instead a closed universe, it-gration bubble slows the growth of hydrodynamic instabili-
self with S® topology, and arises when one maps the vacuunties in the bubble wal[5]. It is therefore of interest to see
manifold directly onto the configuration space. This gives awhether the growth of instabilities in the one-texture uni-
nontrivial homogeneous solution to the equations of motionyerse are slowed by the expansion of the universe, and to
the scalar field possessing an energy density associated wigvaluate the time scale for instability.
its spatial gradients. This scalar-field configuration has an In this paper, we consider the instability by explicit con-
equation of statgp=—p/3 and gives rise to a term in the struction. We show that there are four degenerate lowest
Friedmann equation which scalesas? with the scale fac- modes which are unstable, and analyze their growth rate in
tor a of the universe. Recently, Kamionkowski and Toumbasboth static and expanding space-times.
[3] showed that a universe with a matter density less than In the next section, we present some preliminaries regard-
unity can be closedand consistent with current observa- ing the closed universe and the scalar field theory. In Sec. I,
tions) with the inclusion of matter withp= —p/3. we first review the texture scalar field configuration. We then
Aware that textures collapse in flat space through shrinkfind an unstable mode and analyze its growth rate in a static
ing, Davis considered a particular shrinking ansatz for theuniverse, in a radiation-, matter-, texture-, and cosmological-
one-texture universe, and showed that it was stable to thisonstant dominated universe, and in a universe with compa-
particular kind of perturbatiofi2]. He concluded from this rable matter and texture energy densities. The growth rate in
an expanding universe is slowed compared with the expo-
nential rate in a static universe, and during inflation, the in-
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zero modes corresponding to rotations and translations. Apperturbation around it. The lowest eigenvalue solution of this
other higher modes are stable and decay in an expandingerturbation equation will turn out to be one of a set of four
universe. We conclude in Sec. V and argue that isotropy oflegenerate unstable modes.

the cosmic microwave background only constrains the mag-

nitude of the initial unstable mode to be less thah0™ 3. IIl. THE ONE-TEXTURE UNIVERSE

AND A PERTURBATION

Il. PRELIMINARIES - . . T
The trivial solution has the symmetry breaking pointing in

The space-time metric for a closed universe can be writthe same directiofsayE =0 = ®=0) at all points of space.

ten as By contrast, the one-texture universe corresponds to the so-
lution [2]
ds?=a?(7)[—d7r?+d&2+sirfE(d %+ sinfad¢?) ],
E=¢( 0=60, d=6¢. (6)
with
That this is a solution is clear once we realize that
o<é<m, 0<6<m, O0<¢<2m, (1) el=gfA=4", wherei and| are spatial indices. Then it
. _ follows that GA8=57'57g', and Eq.(3) becomes the well-
wherer is the conformal time and(7) the scale factor. known geometric identity
We consider a theory of four real scalar fields with an
O(4) global symmetry, spontaneously broken t¢3Dby a 1
suitable potential. The vacuum manifold for the scalar field ——d5(\|G|GBY + '3 GB°=0. (7)
is thereforeS®. If we consider the long-wavelength modes, \/@

the massive degree of freeddie., theg-meson in a linear
o mode) would not be excited, and the dynamics are ap-po
proximately those of a nonlinear sigma model with this tar-
get space. The action is therefore

We now consider a linear perturbation to the radial com-
nent which is a function of only. This is the simplest
guess for an unstable mode, and as we shall see turns out to
be correct. We therefore 1&f = ¢+ 8(¢,7). An equation of
02 motion for §(¢,7) can be found by plugging directly into Eq.
S= 7J d4X\/@GAB(X)5MXA(X)¢9,,XB(X)Q"“V()(), (2) (5. ltis easier to vary the action, which for a perturbation of
this form is

where X* (A=1,2,3) are coordinates on the target space
M, which has metricG 5, andv is the vacuum expectation S“f drdéa’ sl — (9E/97)°+ (9E196)*  (8)
of the scalar field. We will also use polar coordinates for
M, namely 2, ©, ®, so that Gag=diag(1,sifE, +2sirtE cséé]. (9
SirfEsir’®). Their ranges are as with, 6, and ¢, respec-
tively. Doing so, we find
The equations of motion fox” are
d* +2CO§ d +4 )5(5 )
el bty T
0, (\algM XA+ TX)3, X8, xCgr =0, A&7 SInE 0E it
Vgl .
e P e (10
d~2 “adr T

wherel“’gC are the Christoffel symbols of the meti@,g on

M. Solutions to these equations were callettmonic maps where overdot is a derivative with respect to the conformal
by Misner[6]. time 7. As usual, we look for separable solutions

~In our stability analysis we _WiII need to consider the S(&,7)=8(&)F(7). Let us concentrate first on the spatial
eigenmodes of small perturbations around static solutiongigenmodes, which satisfy

XA=fA to these equations, for which we will write
XA=fA+en”. It is possible to define a covariant derivative ( d2  cog d

for n®, by d_g52+2ﬁd_§+4_ Sl_n2§> 8(&)=—w?d(¢). (11

A _ A A CynB ]
N"u= 0,0+ (Tged, )N “ This can in fact be brought into Sclimger equation form

by a change of independent variable wg&) = 5(&)siné,

The equation for linear perturbations arouifdmay then be °Y @
yielding

written
. 2
™+ (Regpd,f €0 1%)n?=0, ) —d—u+_iu=(w2+5)u. (12)
dé?  siré
where R2;, is the Riemann curvature of the sigma model
target spacév. The first two unnormalized eigenmodes aféé) =sir’é and
Before solving the perturbation equation in its generality,uz(g)=sin2§co§, with eigenvalues-1 and 4, respectively.
we describe the one-texture universe and examine a simplEhese form the first two elements of a series
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Un(é)=sirféC? (cos) (n=1), (13

5x1078

whereCM(t) are Gegenbauer polynomials of degred7].
The eigenvalue corresponding to théh eigenfunction is
w’=n(n+2)—4.

The stability (or otherwis¢ now follows from the time

eigenfunctions, which depend on the behavior of the scale T,
factor. They are solutions to the equation z‘%g
¢ +2él d f(r)=—f 14
122 gp | f(D= (), (14

which we mention in passing is precisely the equation for the R N S

amplitude of gravitational-wave modg8], though there the 0 1 2 3 4 5
range of permitted eigenvalues is different. T
A. The static universe FIG. 1. The growth of the unstable perturbation in a one-texture
In this case the time eigenfunctions are simply universe with matter, shown, from top to bottom, f@§=0.1, 1,
and 10.

f(r)cexp ziwT). (15 ) N ) _
as a fraction of the critical densitf);, is a constant. The
The higher spatial eigenmodes, with positivé, are oscilla-  solution to Eq.(14) is of the form
tory. However, the lowest eigenmode has negatife and 5
h d iall ing instabili 1xVl-0"(Q:—1)
ence corresponds to an exponentially growing instability. f(r)xexp Br); B=-—
This provides an explicit confirmation of the mathematical ' VO -1 '
result of Ref.[4].

The instability corresponds to the spatial gradients confor thew?= —1 mode, the solutions are just a growing and
centrating towards one of the pol@shich one depending on 3 decaying exponential. For positive?, the constani3 is
whether the sign of the perturbation is positive or negative complex, with sine and cosine oscillations superimposed on
Presumably by analogy to the spatially flat case, once thgn exponential decay.
winding is sufficiently concentrated the texture will be pulled  The more interesting solution is one where there is still an
away from its vacuum manifold and the topological chargeappreciablenonrelativistio matter density, such as in Ref.
disappears. [3]. Then, denoting present values with the subscript “0,”

the expansion rate is

(18

B. Radiation domination

_ A radiation dominated universe hag 7)o 7. The time a(7) =5 1?";*20 [cosH ad?r)—1], (19
eigenmodes are then 3o ( M.0)
exptiwT where the constant, is given b
f(Toc—p(T ), (16) o 15 GIVER BY
_ 1_QM,O 20
We see that the condition for instability remai@a$<0. AT ot Qo1 20
C. Matter domination where Q) and Q1 are the energy densities in matter and

texture, respectively, in units of the critical density. For a
given choice of}y, o andQ+ o, the present timey is found
from the requiremena(ry)=ay, giving

Herea(7)= 2. The time eigenmodes for positive’ are
now given in terms of spherical Bessel functid®$

jilwT) Yi(wT)
f(r)= + , 1 -
(= ==+ (7 To=ap 1’Zarccos?(r

1—QM,0/2)

O o2 (2D

where a; and a, are constants. For negative? these be- . . . .
come modified spherical Bessel functions; the linearly inde- _ 1h€ corresponding equation for the time evolution of the

pendent mode of the first kind diverges at late times andgi9enmodes does not look promising for analytical solution,
gives the instability. but is easily solved numerically. The solution for the un-

stable mode is shown in Fig. 1, for three valuesrgfand for

a perturbation with zero initial velocity and arbitrarily cho-

sen initial size. The late-time exponential behavior is as
In a texture-dominated closed universe without other matpredicted from the case of total texture-domination

ter, a(7) xexp(r/\Q— 1), where the texture energy density (8= 1+ ay— \ay); the matter-dominated solution applies

D. Texture-dominated universe without back reaction
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at early time, but matter domination does not last longinstead stays fixed; once radiation or matter domination re-

enough for much growth during that phase. starts its growth will begin again, though on a long time
Given Oy o and Q1 , the value off(7o) can be found scale since the period of inflation has stretched it to such a

from Fig. 1. For example, if)y, c=0.3 (as some observa- large physical size. Only once the Hubble length has grown

tions indicatg, then Q;,=1.8 if we impose the(perhaps again to be comparable to the size of the closed universe will

arbitrary) condition of Ref.[3] that the cosmic microwave the instability set in earnest.

backgroundCMB) surface of last scatter be at the antipode.

In this case,q=0.64, 7,=3, andf(7y)/f(0)=2. In gen- IV. GENERAL PERTURBATION ANALYSIS

eral, the time scale of the unwinding of texture is the same as . ) . .

the age of the universe, which is not surprising since it is alsg 1he general solutions to E(5) are in fact quite straight-

the horizon scale. Therefore, in this low-density closed uni—foer""r_d to find, as they turn out to be vector harmonics on

verse, any initial perturbations to the texture would have> Which allows us to plunder the mathematics literature

doubled by today. Note that the radiation-dominated phasBLLl- Once again, we can use the constancy; tf to rewrite

preceding the matter dominance has little effect since th&h€ perturbation equations as an eigenvalue problem for the

matter-radiation transition occurred at redshift10*, where ~ VEctorn, as

a~10 %a,. At that epoch the long wavelength modes had

A ju—_ -2 2 A A CD
not yet entered the horizon, and so the growth of perturba- Nw 3 %0,(a%0,n") +n"e;pG (24)
tions in the texture is negligible. where we use the fact that in the one-texture universe back-
o _ groundg;; = 876G ag. Further simplification arises as the
E. An inflationary universe background is a three-sphere, for which
In all the above cases, the instability associated with the RA. GCD— 2 gh (25
w?=—1 mode diverges at late times. In this final case we CBD T evB )

explore a slightly different outcome. This occurs in the Ca{*ﬁence, when we separate the solution, the equation for the

of perturbations in an |anat|onar3_/ universe, which is doml-Fpatial eigenmodes becomes
nated by vacuum energy or equivalently by a cosmological

constant. We consider power-law inflation which lzastP, N c.pGCP+2nt= — w?nh, (26)
wheret is cosmic time ang>1 is a constant. In conformal o
time we have This is an eigenvalue equation for vector harmonicsSdn
olp-1) whose solutions are knowd 1]. They fall into three classes,
a(r)=(—17) T e<r<0, (22 a,,B,, andC,, which are odd and even parity divergence-

free, and curl-free respectively. The eigenvalues of the La-
placian for the curl-free harmonics afg—n(n+2)], with
n>0, while for the divergence-free harmonics they are
[1-n(n+2)]. Hence our eigenvalue problem also has three
classes of solution classified by their symmetry properties
underS® coordinate transformations, with eigenvalues

where late times correspond t6-0 and where exponential
inflation is recovered in the limip—o. The solution for
positive w?, in terms of fractional-order Bessel functions, is

f()=a (=" (—o1)+a—7)*Y, (-wT1), (23

whereu=p/(p—1) and againy; and «, are constants. For w2=n(n+2)—4, n=1

negativew?, the Bessel functions become modified Bessel 0 ’ ’

functions. In both cases, the solution of the first kind van- w2, =n(n+2)-3, n=1 (27)
ishes at late times, whereas the second kind “freezes out” at =1 ' ’

a constant value. where the subscript 0 denotes the curl-free class,“ahdhe

Here the distinction between stability and instability iS eyven and odd parity divergence-free class. The curl-free
much murkier, because of this characteristic type of behaviof,gdes are those we found in Sec. IlI.
in inflationary universes. The positive? modes, which We can now see why the Gegenbauer polynomials made

come frozen with a displacement away from the stable soluyre just the divergence of the scalar harmonicsSan

tion, while the negative»? mode, that would normally grow

to divergence, also becomes frozen at late times. This inter- Ca(X)=0d,Y"'™(£ 6. &), (28
esting behavior has already been investigated for the case of

gravitational-wave perturbations, which also freeze to a conwhere

stant value, by Allen[10]. He describes this behavior as

“global instability and local stability”; although globally the Y (£, 0, ¢)=Nysin£C{T P (cosH) YI™(6,¢), (29)
de Sitter space becomes more and more distorted as modes
of higher and highew freeze out, the region accessible to —Ismsl<n.

any observer shrinks rapidly during inflation and seems to ) o (im)
become more and more smooth. The same behavior is evittere, Ny is a normalization factor and*™(6,¢) are the

dent here. usual S? spherical harmonick. The relation 5,C™(t)
Nevertheless, effectively the nature of the stability is just=2\C{***)(t) then allows us to find all the=0 harmonics
the same as before. Note in particular thatdife= —1 mode  in the directionang, which amounts to solving fof(¢) in

does not die away during the late stages of inflation, bui&g. (11).
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Thus we see that the only unstable modes are those witlincorrelated to the texture fluctuation, it might happen that
n=1 curl-free vector harmonics. There are four of them, andheir amplitude is much greater than that of the texture, but
the spherical one we analyzed in Sec. lll correspondén this case it is merely a random fluctuation on the space-
| =m=0; there are also three anisotropic modes, which aréime background, and we would expect that they would not
=1, m =0,x1. As they have the same eigenvalue, theaffect the evolution of long wavelength modes of texture.
time eigenfunctions found in Sec. Ill apply to each of them. So, what does this analysis tell us about the requirements
There are also six zero modes in the divergence-free claskr the homogeneity of the initial texture configuration? First
which correspond to rotations and translations of the texturef all, we note that all modes are stable, except for the long
solution. The rest of the modes are stable, and correspond twavelengtm=1 curl-free modes and for the divergence-free

propagating Goldstone bosons. zero modes which correspond to rotations and translations.
From the results in Sec. Ill, the modes witf>0 will de-
V. CONCLUSIONS cay with the expansion of the universe, so one does not re-

) ) ) _ _ __quire stringent constraints on the general homogeneity of the
~ We have investigated in detail the nature of the instabilitynitia| texture. Since the instability time scale for the unstable
in the one-texture universe. We have found that there arg,qdes is comparable to the age of the Universe, the initial
four degenerate unstable modes, and evaluated the growhhomogeneity of the texture should be comparable to or less
rate in a radiation-, matter-, and texture-dominated universgnan the inhomogeneity of the universe today. These inho-
an inflationary universe, and a universe with similar mattefimggeneities can induce perturbations in the metric and fur-
and texture densities. In a static universe, the growth of thener affect the matter distribution, both of which can produce
instability is exponential. As one may have expected, theynisotropy in CMB. The isotropy of the CMB should there-
growth of the instability is slowed during matter, radiation, fore place an upper limit to the acceptable magnitude of this
or texture domination, and it is frozen during an inflationary perturbation in the initial scalar-field configuration. Although
epoch. Since the eigenvalue of the unstable modeslisthe e have not done a complete analysis of CMB anisotropies
time scale for the instability is comparable to the age of thqnduced by this instability, it should give rise to a dipole
universe. For a given texture and matter density, the grom'&nisotropy on the sky. The=1 modes have eithdr=1 or
factor can be obtained explicitly from the curves in Fig. 1. =g Thel=1 modes are obviously dipole. The-0 mode
For the case of a closed universe withy ,=0.3 and a tex- s isotropic to an observer at the origin, but not to other
ture density which puts the CMB surface of last scatter at thehservers. Indeed, if we make a translation of the origin, the
antipode, any initial unstable perturbation would have in-g3 spherical harmonics with sanme but different! will mix.
creased by a factor of 2. _ Thus for a general observer, it appears anisotropic with a

Causality restricts the unstable modes from growing Um"dipole pattern. Given that the CMB dipole is10~3, this
the wavelength—in this case, the curvature radius—comeggnstrains the magnitude of the initiaP=— 1 perturbation
within the horizon. If the texture density is chosen so that thg, pe |ess than roughly this value. If the CMB dipole can
CMB is at the antipode, then the curvature radius today cogonfidently be aligned with the gradient of the local density
!nC|des with the horizon. If so, then the instability time scalefjg|q to, say 10%, then the constraint to the initial magnitude
is comparable to the age of the universe. If, however, they the 2= "— 1 perturbation should be an order of magnitude
texture density is much smaller so that the curvature radiugyjjer.
greatly exceeds the horizon today, then the instability time \ye therefore conclude that except for the?=—1
scale will be much longer than the age of the universe todayysdes, inhomogeneities in the scalar-field configuration will
Strictly speaking, one should also consider the effect ofjecay, so in some sense, the one-texture universe does not
gravitational back reaction. However, for most of the case$equire extraordinarily peculiar initial conditions. One only
we consider here, the text_ure mal_<es a _negllglble contrlbu_tlopequires that the magnitude of the lowest-eigenmode pertur-
to the total energy density, so |r_10IL_JS|on of back reactionystion be less than 10~ 3. Of course, more precise conclu-
should not alter our results qualitatively. For the texturé-gisns regarding the implications for the one-texture universe

dominated case, back reaction may significantly affect thgyjj have to await a more complete theory of its origin.
evolution. However, causality still restricts modes from

growing until their wavelengths come within the horizon.
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