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The one-texture universe, introduced by Davis in 1987, is a homogeneous mapping of a scalar field with an
S3 vacuum into a closed universe. It has long been known to mathematicians that such solutions, although
static, are unstable. We show by explicit construction that there are four degenerate lowest modes which are
unstable, corresponding to collapse of the texture towards a single point, in the case where gravitational back
reaction is neglected. We discuss the instability time scale in both static and expanding space-times; in the
latter case it is of order of the present age of the universe, suggesting that, though unstable, the one-texture
universe could survive to the present. The cosmic microwave background constrains the initial magnitude of
this unstable perturbation to be less than;1023. @S0556-2821~97!07416-X#

PACS number~s!: 98.80.Hw, 11.27.1d, 95.35.1d

I. INTRODUCTION

A texture is a topological defect which arises in scalar
field theories with a spontaneously broken global symmetry,
when the vacuum manifoldM has a nontrivial third homo-
topy group p3. The simplest such manifold is the three-
sphereS3. In a spatially flat universe, the texture is known to
be unstable to collapse, and indeed this property is crucial for
the texture model of structure formation in the universe@1#.
The one-texture universe~which predates and has nothing to
do with the texture scenario for structure formation!, intro-
duced by Davis@2#, considers instead a closed universe, it-
self with S3 topology, and arises when one maps the vacuum
manifold directly onto the configuration space. This gives a
nontrivial homogeneous solution to the equations of motion,
the scalar field possessing an energy density associated with
its spatial gradients. This scalar-field configuration has an
equation of statep52r/3 and gives rise to a term in the
Friedmann equation which scales asa22 with the scale fac-
tor a of the universe. Recently, Kamionkowski and Toumbas
@3# showed that a universe with a matter density less than
unity can be closed~and consistent with current observa-
tions! with the inclusion of matter withp52r/3.

Aware that textures collapse in flat space through shrink-
ing, Davis considered a particular shrinking ansatz for the
one-texture universe, and showed that it was stable to this
particular kind of perturbation@2#. He concluded from this

that the one-texture universe was stable. However, this does
not correspond to a complete stability analysis. Shortly after
we began looking at this problem, it was pointed out to us by
Durrer that in fact the answer was already in the mathematics
literature @4#, predating even the original Davis paper. The
one-texture universe isunstable. Indeed, there is no noncon-
stant stable map from any compact manifold intoS3 @4#.

However, the results in the mathematics literature apply,
strictly speaking, only to a static universe. It is well known
that the expansion of the universe slows the growth of den-
sity perturbations and similarly that the expansion of a defla-
gration bubble slows the growth of hydrodynamic instabili-
ties in the bubble wall@5#. It is therefore of interest to see
whether the growth of instabilities in the one-texture uni-
verse are slowed by the expansion of the universe, and to
evaluate the time scale for instability.

In this paper, we consider the instability by explicit con-
struction. We show that there are four degenerate lowest
modes which are unstable, and analyze their growth rate in
both static and expanding space-times.

In the next section, we present some preliminaries regard-
ing the closed universe and the scalar field theory. In Sec. III,
we first review the texture scalar field configuration. We then
find an unstable mode and analyze its growth rate in a static
universe, in a radiation-, matter-, texture-, and cosmological-
constant dominated universe, and in a universe with compa-
rable matter and texture energy densities. The growth rate in
an expanding universe is slowed compared with the expo-
nential rate in a static universe, and during inflation, the in-
stability is frozen. The instability time scale is comparable to
the age of the universe. In Sec. IV, we perform a general
perturbation analysis and find that there are four degenerate
modes including the one found in Sec. III. There are also six
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zero modes corresponding to rotations and translations. All
other higher modes are stable and decay in an expanding
universe. We conclude in Sec. V and argue that isotropy of
the cosmic microwave background only constrains the mag-
nitude of the initial unstable mode to be less than;1023.

II. PRELIMINARIES

The space-time metric for a closed universe can be writ-
ten as

ds25a2~t!@2dt21dj21sin2j~du21sin2udf2!# ,

with

0<j,p, 0<u,p, 0<f,2p , ~1!

wheret is the conformal time anda(t) the scale factor.
We consider a theory of four real scalar fields with an

O~4! global symmetry, spontaneously broken to O~3! by a
suitable potential. The vacuum manifold for the scalar field
is thereforeS3. If we consider the long-wavelength modes,
the massive degree of freedom~i.e., thes-meson in a linear
s model! would not be excited, and the dynamics are ap-
proximately those of a nonlinear sigma model with this tar-
get space. The action is therefore

S5
v2

2 E d4xAuguGAB~X!]mXA~x!]nXB~x!gmn~x!, ~2!

where XA (A51,2,3) are coordinates on the target space
M , which has metricGAB , andv is the vacuum expectation
of the scalar field. We will also use polar coordinates for
M , namely J, Q, F, so that GAB5diag(1,sin2J,
sin2Jsin2Q). Their ranges are as withj, u, andf, respec-
tively.

The equations of motion forXA are

1

Augu
]m~Augugmn]nXA!1GBC

A ~X!]mXB]nXCgmn~x!50,

~3!

whereGBC
A are the Christoffel symbols of the metricGAB on

M . Solutions to these equations were calledharmonic maps
by Misner @6#.

In our stability analysis we will need to consider the
eigenmodes of small perturbations around static solutions
XA5 f A to these equations, for which we will write
XA5 f A1enA. It is possible to define a covariant derivative
for nA, by

nA
;m5]mnA1~GBC

A ]m f C!nB. ~4!

The equation for linear perturbations aroundf A may then be
written

nA
;m

;m1~RCBD
A ]m f C]m f D!nB50, ~5!

whereRCBD
A is the Riemann curvature of the sigma model

target spaceM .
Before solving the perturbation equation in its generality,

we describe the one-texture universe and examine a simple

perturbation around it. The lowest eigenvalue solution of this
perturbation equation will turn out to be one of a set of four
degenerate unstable modes.

III. THE ONE-TEXTURE UNIVERSE
AND A PERTURBATION

The trivial solution has the symmetry breaking pointing in
the same direction~sayJ5Q5F50) at all points of space.
By contrast, the one-texture universe corresponds to the so-
lution @2#

J5j, Q5u, F5f. ~6!

That this is a solution is clear once we realize that
ei

A[] i f
A5d i

A , where i and j are spatial indices. Then it
follows that GAB5d i

Ad j
Bgi j , and Eq.~3! becomes the well-

known geometric identity

1

AuGu
]B~AuGuGBA!1GBC

A GBC50. ~7!

We now consider a linear perturbation to the radial com-
ponent which is a function ofj only. This is the simplest
guess for an unstable mode, and as we shall see turns out to
be correct. We therefore letJ5j1d(j,t). An equation of
motion ford(j,t) can be found by plugging directly into Eq.
~5!. It is easier to vary the action, which for a perturbation of
this form is

S}E dtdja2 sin2j@2~]J/]t!21~]J/]j!2 ~8!

12sin2Jcsc2j]. ~9!

Doing so, we find

S d2

dj2
12

cosj

sinj

d

dj
142

2

sin2j
D d~j,t!

5S d2

dt2
12

ȧ

a

d

dt D d~j,t! , ~10!

where overdot is a derivative with respect to the conformal
time t. As usual, we look for separable solutions
d(j,t)5d(j) f (t). Let us concentrate first on the spatial
eigenmodes, which satisfy

S d2

dj2
12

cosj

sinj

d

dj
142

2

sin2j
D d~j!52v2d~j!. ~11!

This can in fact be brought into Schro¨dinger equation form
by a change of independent variable tou(j)5d(j)sinj,
yielding

2
d2u

dj2
1

2

sin2j
u5~v215!u. ~12!

The first two unnormalized eigenmodes areu1(j)5sin2j and
u2(j)5sin2jcosj, with eigenvalues21 and 4, respectively.
These form the first two elements of a series

2052 56CHEN, HINDMARSH, KAMIONKOWSKI, AND LIDDLE



un~j!5sin2jCn21
~2! ~cosj! ~n>1!, ~13!

whereCm
(l)(t) are Gegenbauer polynomials of degreem @7#.

The eigenvalue corresponding to thenth eigenfunction is
v25n(n12)24.

The stability ~or otherwise! now follows from the time
eigenfunctions, which depend on the behavior of the scale
factor. They are solutions to the equation

S d2

dt2
12

ȧ

a

d

dt D f ~t!52v2f ~t!, ~14!

which we mention in passing is precisely the equation for the
amplitude of gravitational-wave modes@8#, though there the
range of permitted eigenvalues is different.

A. The static universe

In this case the time eigenfunctions are simply

f ~t!}exp~6 ivt!. ~15!

The higher spatial eigenmodes, with positivev2, are oscilla-
tory. However, the lowest eigenmode has negativev2, and
hence corresponds to an exponentially growing instability.
This provides an explicit confirmation of the mathematical
result of Ref.@4#.

The instability corresponds to the spatial gradients con-
centrating towards one of the poles~which one depending on
whether the sign of the perturbation is positive or negative!.
Presumably by analogy to the spatially flat case, once the
winding is sufficiently concentrated the texture will be pulled
away from its vacuum manifold and the topological charge
disappears.

B. Radiation domination

A radiation dominated universe hasa(t)}t. The time
eigenmodes are then

f ~t!}
exp~6 ivt!

t
. ~16!

We see that the condition for instability remainsv2,0.

C. Matter domination

Herea(t)}t2. The time eigenmodes for positivev2 are
now given in terms of spherical Bessel functions@9#

f ~t!5a1

j 1~vt!

t
1a2

y1~vt!

t
, ~17!

wherea1 and a2 are constants. For negativev2 these be-
come modified spherical Bessel functions; the linearly inde-
pendent mode of the first kind diverges at late times and
gives the instability.

D. Texture-dominated universe without back reaction

In a texture-dominated closed universe without other mat-
ter, a(t)}exp(t /AVT21), where the texture energy density

as a fraction of the critical density,VT , is a constant. The
solution to Eq.~14! is of the form

f ~t!}exp~bt!; b52
16A12v2~VT21!

AVT21
. ~18!

For thev2521 mode, the solutions are just a growing and
a decaying exponential. For positivev2, the constantb is
complex, with sine and cosine oscillations superimposed on
an exponential decay.

The more interesting solution is one where there is still an
appreciable~nonrelativistic! matter density, such as in Ref.
@3#. Then, denoting present values with the subscript ‘‘0,’’
the expansion rate is

a~t!

a0
5

VM ,0

2~12VM ,0!
@cosh~a0

1/2t!21#, ~19!

where the constanta0 is given by

a05
12VM ,0

VM ,01VT,021
, ~20!

where VM and VT are the energy densities in matter and
texture, respectively, in units of the critical density. For a
given choice ofVM ,0 andVT,0 , the present timet0 is found
from the requirementa(t0)[a0, giving

t05a0
21/2arccoshS 12VM ,0/2

VM ,0/2
D . ~21!

The corresponding equation for the time evolution of the
eigenmodes does not look promising for analytical solution,
but is easily solved numerically. The solution for the un-
stable mode is shown in Fig. 1, for three values ofa0 and for
a perturbation with zero initial velocity and arbitrarily cho-
sen initial size. The late-time exponential behavior is as
predicted from the case of total texture-domination
(b5A11a02Aa0); the matter-dominated solution applies

FIG. 1. The growth of the unstable perturbation in a one-texture
universe with matter, shown, from top to bottom, fora050.1, 1,
and 10.
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at early time, but matter domination does not last long
enough for much growth during that phase.

Given VM ,0 and VT,0 , the value off (t0) can be found
from Fig. 1. For example, ifVM ,0.0.3 ~as some observa-
tions indicate!, then VT,0.1.8 if we impose the~perhaps
arbitrary! condition of Ref.@3# that the cosmic microwave
background~CMB! surface of last scatter be at the antipode.
In this case,a0.0.64, t0.3, and f (t0)/ f (0).2. In gen-
eral, the time scale of the unwinding of texture is the same as
the age of the universe, which is not surprising since it is also
the horizon scale. Therefore, in this low-density closed uni-
verse, any initial perturbations to the texture would have
doubled by today. Note that the radiation-dominated phase
preceding the matter dominance has little effect since the
matter-radiation transition occurred at redshiftz;104, where
a;1026a0. At that epoch the long wavelength modes had
not yet entered the horizon, and so the growth of perturba-
tions in the texture is negligible.

E. An inflationary universe

In all the above cases, the instability associated with the
v2521 mode diverges at late times. In this final case we
explore a slightly different outcome. This occurs in the case
of perturbations in an inflationary universe, which is domi-
nated by vacuum energy or equivalently by a cosmological
constant. We consider power-law inflation which hasa}tp,
wheret is cosmic time andp.1 is a constant. In conformal
time we have

a~t!}~2t!2p/~p21!, 2`,t,0, ~22!

where late times correspond tot→0 and where exponential
inflation is recovered in the limitp→`. The solution for
positivev2, in terms of fractional-order Bessel functions, is

f ~t!5a1~2t!mJm~2vt!1a2~2t!mYm~2vt!, ~23!

wherem5p/(p21) and againa1 anda2 are constants. For
negativev2, the Bessel functions become modified Bessel
functions. In both cases, the solution of the first kind van-
ishes at late times, whereas the second kind ‘‘freezes out’’ at
a constant value.

Here the distinction between stability and instability is
much murkier, because of this characteristic type of behavior
in inflationary universes. The positivev2 modes, which
would ordinarily be oscillatory about the stable solution, be-
come frozen with a displacement away from the stable solu-
tion, while the negativev2 mode, that would normally grow
to divergence, also becomes frozen at late times. This inter-
esting behavior has already been investigated for the case of
gravitational-wave perturbations, which also freeze to a con-
stant value, by Allen@10#. He describes this behavior as
‘‘global instability and local stability’’; although globally the
de Sitter space becomes more and more distorted as modes
of higher and higherv freeze out, the region accessible to
any observer shrinks rapidly during inflation and seems to
become more and more smooth. The same behavior is evi-
dent here.

Nevertheless, effectively the nature of the stability is just
the same as before. Note in particular that thev2521 mode
does not die away during the late stages of inflation, but

instead stays fixed; once radiation or matter domination re-
starts its growth will begin again, though on a long time
scale since the period of inflation has stretched it to such a
large physical size. Only once the Hubble length has grown
again to be comparable to the size of the closed universe will
the instability set in earnest.

IV. GENERAL PERTURBATION ANALYSIS

The general solutions to Eq.~5! are in fact quite straight-
forward to find, as they turn out to be vector harmonics on
S3 which allows us to plunder the mathematics literature
@11#. Once again, we can use the constancy of] i f

A to rewrite
the perturbation equations as an eigenvalue problem for the
vectornA, as

nA
;m

;m52a22]t~a2]tn
A!1nA

;C;DGCD, ~24!

where we use the fact that in the one-texture universe back-
ground gi j 5d i

Ad j
BGAB . Further simplification arises as the

background is a three-sphere, for which

RCBD
A GCD52dB

A . ~25!

Hence, when we separate the solution, the equation for the
spatial eigenmodes becomes

nA
;C;DGCD12nA52v2nA. ~26!

This is an eigenvalue equation for vector harmonics onS3,
whose solutions are known@11#. They fall into three classes,
AA , BA , andCA , which are odd and even parity divergence-
free, and curl-free respectively. The eigenvalues of the La-
placian for the curl-free harmonics are@22n(n12)#, with
n.0, while for the divergence-free harmonics they are
@12n(n12)#. Hence our eigenvalue problem also has three
classes of solution classified by their symmetry properties
underS3 coordinate transformations, with eigenvalues

v0
25n~n12!24, n>1,

v61
2 5n~n12!23, n>1, ~27!

where the subscript 0 denotes the curl-free class, and61 the
even and odd parity divergence-free class. The curl-free
modes are those we found in Sec. III.

We can now see why the Gegenbauer polynomials made
their appearance in Eq.~11!. The curl-free vector harmonics
are just the divergence of the scalar harmonics onS3:

CA~X!5]AY~nlm!~j,u,f!, ~28!

where

Y~nlm!~j,u,f!5NnlsinljCn2 l
~ l 11!~cosj!Y~ lm!~u,f!, ~29!

2 l<m< l<n.

@Here,Nnl is a normalization factor andY( lm)(u,f) are the
usual S2 spherical harmonics.# The relation ] tCn

(l)(t)
52lCn21

(l11)(t) then allows us to find all thel 50 harmonics
in the direction]jX

A, which amounts to solving ford(j) in
Eq. ~11!.
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Thus we see that the only unstable modes are those with
n51 curl-free vector harmonics. There are four of them, and
the spherical one we analyzed in Sec. III corresponds
l 5m50; there are also three anisotropic modes, which are
l 51, m 50,61. As they have the same eigenvalue, the
time eigenfunctions found in Sec. III apply to each of them.
There are also six zero modes in the divergence-free class,
which correspond to rotations and translations of the texture
solution. The rest of the modes are stable, and correspond to
propagating Goldstone bosons.

V. CONCLUSIONS

We have investigated in detail the nature of the instability
in the one-texture universe. We have found that there are
four degenerate unstable modes, and evaluated the growth
rate in a radiation-, matter-, and texture-dominated universe,
an inflationary universe, and a universe with similar matter
and texture densities. In a static universe, the growth of the
instability is exponential. As one may have expected, the
growth of the instability is slowed during matter, radiation,
or texture domination, and it is frozen during an inflationary
epoch. Since the eigenvalue of the unstable modes is21, the
time scale for the instability is comparable to the age of the
universe. For a given texture and matter density, the growth
factor can be obtained explicitly from the curves in Fig. 1.
For the case of a closed universe withVM ,050.3 and a tex-
ture density which puts the CMB surface of last scatter at the
antipode, any initial unstable perturbation would have in-
creased by a factor of 2.

Causality restricts the unstable modes from growing until
the wavelength—in this case, the curvature radius—comes
within the horizon. If the texture density is chosen so that the
CMB is at the antipode, then the curvature radius today co-
incides with the horizon. If so, then the instability time scale
is comparable to the age of the universe. If, however, the
texture density is much smaller so that the curvature radius
greatly exceeds the horizon today, then the instability time
scale will be much longer than the age of the universe today.
Strictly speaking, one should also consider the effect of
gravitational back reaction. However, for most of the cases
we consider here, the texture makes a negligible contribution
to the total energy density, so inclusion of back reaction
should not alter our results qualitatively. For the texture-
dominated case, back reaction may significantly affect the
evolution. However, causality still restricts modes from
growing until their wavelengths come within the horizon.
Therefore, we do not expect back reaction to alter our con-
clusions, although it may change the instability time scale by
factors of order unity. Similarly, we neglect the effect of
fluctuations in the matter, since they are coupled to the tex-
ture only via gravitation. If these matter fluctuations are cor-
related or anticorrelated to the fluctuations in the texture field
initially, as is often assumed in the texture scenario of struc-
ture formation@12#, then the amplitude of these fluctuations
should be comparable to those of the texture field, and thus
their effect would be second order. If these fluctuations are

uncorrelated to the texture fluctuation, it might happen that
their amplitude is much greater than that of the texture, but
in this case it is merely a random fluctuation on the space-
time background, and we would expect that they would not
affect the evolution of long wavelength modes of texture.

So, what does this analysis tell us about the requirements
for the homogeneity of the initial texture configuration? First
of all, we note that all modes are stable, except for the long
wavelengthn51 curl-free modes and for the divergence-free
zero modes which correspond to rotations and translations.
From the results in Sec. III, the modes withv2.0 will de-
cay with the expansion of the universe, so one does not re-
quire stringent constraints on the general homogeneity of the
initial texture. Since the instability time scale for the unstable
modes is comparable to the age of the Universe, the initial
inhomogeneity of the texture should be comparable to or less
than the inhomogeneity of the universe today. These inho-
mogeneities can induce perturbations in the metric and fur-
ther affect the matter distribution, both of which can produce
anisotropy in CMB. The isotropy of the CMB should there-
fore place an upper limit to the acceptable magnitude of this
perturbation in the initial scalar-field configuration. Although
we have not done a complete analysis of CMB anisotropies
induced by this instability, it should give rise to a dipole
anisotropy on the sky. Then51 modes have eitherl 51 or
l 50. The l 51 modes are obviously dipole. Thel 50 mode
is isotropic to an observer at the origin, but not to other
observers. Indeed, if we make a translation of the origin, the
S3 spherical harmonics with samen, but differentl will mix.
Thus for a general observer, it appears anisotropic with a
dipole pattern. Given that the CMB dipole is;1023, this
constrains the magnitude of the initialv2521 perturbation
to be less than roughly this value. If the CMB dipole can
confidently be aligned with the gradient of the local density
field to, say 10%, then the constraint to the initial magnitude
of thev2521 perturbation should be an order of magnitude
smaller.

We therefore conclude that except for thev2521
modes, inhomogeneities in the scalar-field configuration will
decay, so in some sense, the one-texture universe does not
require extraordinarily peculiar initial conditions. One only
requires that the magnitude of the lowest-eigenmode pertur-
bation be less than;1023. Of course, more precise conclu-
sions regarding the implications for the one-texture universe
will have to await a more complete theory of its origin.
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