VOLUME 24

Instability of the Thermohaline Circulation with Respect to Mixed Boundary Conditions:

JOURNAL OF PHYSICAL OCEANOGRAPHY

Is It Really a Problem for Realistic Models?*

ELI TZIPERMAN, * J. R. TOGGWEILER, ** Y1ZHAK FELIKS,?® AND KIRK BRYAN**

* Environmental Sciences and Energy Research, The Weizmann Institute of Science, Rehovot, Israel
**Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
@ Department of Mathematics, Israel Institute for Biological Research, Ness-Ziona, Israel

(Manuscript received 22 July 1992, in final form 17 November 1992)

ABSTRACT

A global primitive equations oceanic GCM and a simple four-box model of the meridional circulation are
used to examine and analyze the instability of the thermohaline circulation in an ocean model with realistic
geometry and forcing conditions under mixed boundary conditions. The purpose is to determine whether this
instability should occur in such realistic GCMs.

It is found that the realistic GCM solution is near the stability transition point with respect to mixed boundary
conditions. This proximity to the transition point allows the model to make a transition between the unstable
and stable regimes induced by a relatively minor change in the surface freshwater flux and in the interior
solution. Such a change in the surface flux may be induced, for example, by changing the salinity restoring time
used to obtain the steady model solution under restoring conditions. Thus, the steady solution of the global
GCM under restoring conditions may be either stable or unstable upon transition to mixed boundary conditions,
depending on the magnitude of the salinity restoring time used to obtain this steady solution. The mechanism
by which the salinity restoring time affects the model stability is further confirmed by carefully analyzing the
stability regimes of a simple four-box model. The proximity of the realistic ocean model solution to the stability
transition point is used to deduce that the real ocean may also be near the stability transition point with respect
to the strength of the freshwater forcing.

Finally, it is argued that the use of too short restoring times in realistic models is inconsistent with the level
of errors in the data and in the model dynamics, and that this inconsistency is a possible reason for the existence
of the thermohaline instability in GCMs of realistic geometry and forcing. A consistency criterion for the
magnitude of the restoring times in realistic models is formulated, that should result in steady states that are
also stable under mixed boundary conditions. The results presented here may be relevant to climate studies
that run an ocean model under restoring conditions in order to initialize a coupled ocean-atmosphere model.
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1. Introduction

Ocean models can be run with two alternative for-
mulations of the upper boundary condition (b.c.) for
the heat and salt equations. In the first formulation
(restoring b.c.), the model is driven by air-sea fluxes
of heat and salt that are calculated from the difference
between specified surface temperature and salinity
fields and the surface temperature and salinity that are
calculated by the model. A restoring coeflicient (with
units of one over time) is used to translate this differ-
ence into the heat and salt fluxes driving the model.
The second formulation (flux b.c.) involves specifying
the air-sea fluxes independently of the values of the
surface temperature and salinity.
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Bryan (1986) has demonstrated that the steady-state
thermohaline circulation obtained under restoring
boundary conditions may be unstable upon transition
to mixed boundary conditions (i.e., restoring boundary
condition for temperature and flux boundary condition
for salinity). This instability, and the accompanying
phenomena of multiple steady states under mixed b.c.
have been studied extensively using models of varying
complexities, from box models (Stommel 1961; Rooth
1982; Walin 1985; Marotzke 1989) through interme-
diate complexity models (Marotzke et al. 1988; Quon
and Ghil 1993; Zhang et al. 1993) to primitive equa-
tions oceanic general circulation models (Bryan 1986;
Weaver and Sarachik 1991; Marotzke and Willebrand
1991).

The implications of this instability to climate mod-
eling may be serious, as indicated for example by
Weaver and Sarachik (1991). Climate studies of the
response of the atmosphere-ocean system to the dou-
bling of the atmospheric CO; concentration, for ex-
ample, are often started by running an ocean model
to steady state under restoring conditions using the ob-
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served surface temperature and salinity. Once a steady
state is reached, the oceanic model is coupled to an
atmospheric general circulation model, and both mod-
els are run together so that the ocean model is driven
by the air-sea fluxes calculated by the atmospheric
model. Because of the weak feedback between the
freshwater air-sea flux and the surface salinity, the
oceanic boundary conditions in the coupled system
are similar to using mixed boundary conditions for an
ocean-only model. An instability upon transition to
mixed b.c. may result, upon transition to the coupled
system, in a climate instability that is not a result of
any CO; change and is obviously not desired. Such an
instability obtained using today’s conditions seems un-
physical because the oceanic circulation is known to
be roughly stable for the last few thousand years. How-
ever, the instability with respect to mixed b.c. has so
far been demonstrated only for highly simplified and
idealized geometries. Moreover, both box model studies
(Walin 1985) and GCM experiments (e.g., Weaver et
al. 1991) have shown that an ocean model may be
either stable or unstable with respect to mixed b.c.,
depending on the strength of the freshwater forcing.
The still remaining question is, therefore, whether the
instability with respect to mixed boundary conditions
occurs in models of realistic geometry that are forced
by the observed surface salinity and that are used for
climate studies. If this instability can occur, it is im-
portant to find out if and how it can be avoided, in
order to prevent all the implied difficulties for climate
studies.

In_this study we examine the instability upon tran-
sition from restoring to mixed conditions by using both
a realistic global primitive equations oceanic general
circulation model (PE OGCM ) used for climate stud-
ies, and a simple box model. Our purpose is to dem-
onstrate that while the instability upon transition from
restoring to mixed boundary conditions can occur in
a realistic OGCM under some circumstances, it can be
avoided by a careful and consistent formulation of the
model boundary conditions. It is found that the general
circulation model solution is near the stability transi-
tion point with respect to mixed boundary conditions.
This proximity to the transition point allows the model
to make a transition between the unstable and stable
regimes induced by a relatively minor change in the
surface freshwater flux and in the interior solution.
Such a change in the surface flux may be induced, for
example, by changing the salinity restoring time used
to obtain the steady model solution under restoring
conditions. Thus, the steady solution of the global
GCM under restoring conditions may be either stable
or unstable upon transition to mixed boundary con-
ditions, depending on the magnitude of the salinity
restoring time used to obtain this steady solution. The
restoring time used in the restoring boundary condi-
_tions is, therefore, a crucial parameter determining the
stability of ocean models with respect to mixed bound-
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ary conditions. A consistency condition for choosing
this restoring coefficient is formulated for models of
realistic geometry and surface forcing. Using this con-
sistency criterion in realistic models of today’s ocean
should prevent the undesired and physically unac-
ceptable instability of the present day thermohaline
circulation under mixed boundary conditions.

We first show (section 2) that the steady solution of
the global PE model obtained using restoring b.c. may
become unstable upon transition to mixed boundary
conditions. We thén demonstrate that increasing the
restoring time used for the salinity stabilizes the steady
solution obtained using restoring b.c., so that it remains
stable under mixed b.c. Note that the change in the
salinity restoring coefficient is not accompanied by a
corresponding change to the reference salinity to which
model salinity is restored [the Levitus (1982) salinity
is used as the reference salinity ]. Thus, the change in
restoring coeflicient causes a change in the implied sur-
face water flux, and therefore the interior solution. It
is this change to the surface flux (and to the interior
solution ) that causes the transition between stable and
unstable regimes under mixed boundary conditions.

The instability upon transition from restoring to
mixed boundary conditions is then studied using a
simple four-box model of the meridional circulation.
A detailed linear stability analysis of the four-box model
is used to first analyze the regimes and mechanisms of
instability of a single hemisphere model (section 3)
and then to examine the stabilizing effect of increased
restoring time (section 4). Several regimes of stability
and instability are identified, and it is shown that in-
creasing the salinity restoring time may cause a tran-
sition from an unstable regime to a stable regime.

The stability analysis of the box model also sheds
some light on the linear instability mechanisms of the
thermohaline circulation, refining the mechanism sug-
gested by Walin (1985), providing mainly two new
insights into the process: (i) The relative importance
of the thermal versus saline forcing of the thermohaline
circulation can be measured by the parameter SAS/
oaAT, where AT and AS are the difference in surface
temperature and salinity between the polar and equa-
torial boxes, and « and S are the temperature and sa-
linity expansion coefficients. Walin (1985), and later
Marotzke (1989), have used simple two-box models
to show that the thermohaline circulation is unstable
when the above parameter is larger than one-half. We
show here that for a slightly more complex box model,
instability may arise for smaller values of the salinity
forcing as measured by the above parameter. (ii) While
the main instability mechanism in the upper ocean is
found to be that suggested by Walin (1985), it is shown
that a somewhat different instability mechanism acts
in the deep water.

Motivated by our finding that too short restoring
times used to calculate the steady state result in this
steady state being unstable upon transition to mixed
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b.c., we propose (section 5) that the use of short re-
storing times is in fact inconsistent with the errors in
the observed surface temperature and salinity fields
being specified, as well as errors in the model dynamics.
A consistency criterion for choosing the restoring times
in models of realistic geometry and forcing is formu-
lated. This consistency condition is based on the simple
observation that increased restoring times imply larger
differences between the specified and calculated surface
properties. The criterion states that the rms difference
between the observed and calculated surface fields
should be of the order of the combined error in the
observed surface properties and in the model dynamics.
We show that when this criterion is used to calculate
the salinity restoring time, the steady solution obtained
under restoring conditions is also stable under mixed
boundary conditions.
We conclude in section 6.

2. Is a realistic PE OGCM unstable with respect to
mixed boundary conditions?

Let us first examine if a model of realistic geometry,
driven by the observed surface temperature and salin-
ity, is unstable upon transition from restoring to mixed
boundary conditions. Because of the relevance of the
issues discussed here to coupled ocean-atmosphere
model studies, we have chosen to use a global primitive
equation general circulation model similar to one that
has been utilized in several previous studies in which
it was coupled to an atmospheric model (Stouffer et
al. 1989; Manabe et al. 1991). The model used here
was described in detail by Toggweiler and Samuels
(1993). The main difference between the present model
and that used in the coupled model studies is the hor-
izontal mixing used here versus the isopycnal mixing
used in the coupled model studies. The model is based
on the model described by Bryan (1969) with later
modifications by Semtner (1974) and Cox (1984).

The model was first run using restoring boundary
conditions for both the temperature and salinity, using
restoring coefficients of 1/30 days [see entry (a) in
Table 1], and restoring the surface fields to the Levitus
(1982) annually averaged climatological data. The heat
(H) and freshwater (E — P) fluxes driving the model
are calculated from the observed surface fields (7,
S9) and the model solution at the uppermost level ( 7,
S) using
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H = poCpyrAz (T — T)

E — P = ysAz, (8%~ 8)/So, (1)
where pq is a constant reference density, C, is the water
heat capacity, Az, is the thickness of the uppermost
model level, Sy is a reference salinity, and (v, vs) are
the restoring coefficients for temperature and salinity.

The steady-state meridional circulation streamfunc-
tion for the section of the global model corresponding
to the Atlantic Ocean is shown in Fig. la. Diagnosing
the implied salt flux at steady state (Fig. Ib) and
changing to mixed b.c. (flux b.c. for salinity and re-
storing conditions for temperature ), we find that the
steady solution becomes unstable, as commonly found
in previous studies for models of idealized geometry.
This instability leads to the collapse of the thermohaline
circulation (Bryan 1986) within about 100 years. We
do not wish to elaborate on the description of the model
evolution past the initial instability stage, as it is suf-
ficient for our purpose here to note that the model
solution is unstable under mixed b.c.

Next, we increase the restoring time for the salinity
field from 30 to 120 days [run (b) in Table 1], and
repeat the experiment. The steady meridional circu-
lation streamfunction and the implied salt flux at steady
state are given in Fig. 2. This time the solution seemed
stable upon transition to mixed b.c. The stability of
the solution was examined by running the model under
mixed boundary conditions for about 1000 years. Note
that the instability in the previous case could be ob-
served after a few years run.

To try to understand these findings, we consider in
the following section a highly simplified box model of
the meridional circulation. Once the stability of the
meridional circulation is carefully analyzed for the
simpler model, we return to the global primitive equa-
tion general circulation model results in sections 4
and $S.

3. Instability of a hemispheric box model of the
thermohaline meridional circulation

Our purpose in this section is to first analyze the
linear stability of a simple box model of the meridional
circulation. We then use this stability analysis in section
4 to explain the mechanism by which increasing the
restoring time for salinity results in the stabilization of

TABLE . Summary of GCM runs used in this study. The restoring coefficients used for temperature and salinity are given by v and vs,
and are equal to the inverse of the restoring times. The symbols rms (ASST) and rms (ASSS) refer to the rms difference between model
and data surface temperature and salinity—e.g., rms (ASST) = rms (SSTmoael — SSTdaa). The rms values for temperature and salinity are

given in degrees Celsius and parts per thousand, respectively.

Run 1/vr (days) 1/vs (days) rms (ASST); rms (ASSS) Meridional circulation (Sv) Mixed b.c. Figure
a 30 30 0.54;0.11 18.3 unstable 1
b 30 120 0.51;0.22 22.3 stable 2
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FIG. 1. Solution of the global PE model using restoring times of 30 days for both temperature and salinity.
(a) Meridional circulation streamfunction for the Atlantic Ocean (in Sv). (b) Implied surface freshwater flux (cm yr™!).
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FIG. 2. Solution of the global PE model using a restoring time of 30 days for temperature and 120 days for salinity.

(a) Meridional circulation streamfunction for the Atlantic Ocean (in Sv). (b) Implied surface freshwater flux (cm yr™).
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the model solution upon transition from restoring to
mixed boundary conditions.

The box model is essentially that used by Huang et
al. (1992) with two major differences: (i) we allow for

different sizes of the polar and equatorial boxes; and

(ii) the boundary condition for the salinity involves a
salt flux, ignoring the actual mass flux involved, in order
to follow the procedure used in GCMs.

The model dynamics include a simple frictional
horizontal momentum balance, and are hydrostatic,
mass conserving, and with the advection of temperature
balanced by a surface flux:

1
0=-—pP,-%,

Po Po

|
O0=——PFP.—rv
Po

v, +w. =0
p = poll. — T — To) + B(S — So)]

T+ (), + (wWT): = 0; «T;|zc0=yr(T* = T).

(2)

The salinity equation is used in two alternative forms,
one with restoring boundary conditions, and the second
using flux conditions:

S* -8
St+(vS)y+(WS)z=Oa KSz'z=O= [’YS( )

5.

(3)

In the above equations (y, z) and (v, w) are the (north-
ward, upward) coordinates and velocities; P denotes
the pressure; T, S the model temperature and salinity;
T*, S* the specified surface temperature and salinity;
H, is the surface salt flux; g is the gravitational accel-
eration, py a constant reference density; r is a friction
coefficient; & and 8 are expansion coefficients for the
temperature and salinity; and « is a vertical mixing
coeflicient.

These equations are nondimenstonalized using the
following scales: L and D for the horizontal and vertical
distances; v 7! for time; R* = o T3 — T7) for density,
where T3 and T are the specified temperatures in the
polar and equatorial regions, respectively; DR* g for
pressure; and y+L and y7D for horizontal and vertical
velocities. The thickness ratio between the upper and
lower boxes is denoted by 4, while the width ratio be-
tween the equatorial and polar boxes is denoted by A
(see Fig. 3). Writing the nondimensionalized equations
for the four-box model shown in Fig. 3, we obtain the
following set of equations (Huang et al. 1992)
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p=—aT— To)+ B(S — Sp)
v = [(ps— p3)+ 8(p2— p)]/b

oT, "
5—5 =v6(T3—T,)+6(Ty —T))
T, .
5Aa_[= v6(T1 - Tz) + (S(Tz - T2)
gi—vé(T - T
% 4 3)
T,
A== 08(T, —
o (T, — T4)
Y
68—[1=v5(S3—Sl)+F§
LAY
SA —2 = v3(S, — S,) + F?
ot
as
a_;:UB(S4_S3)
Ay
A _a'f = 8(S; — Su), (4)
where
P Y3(ST — S1) P = Y8(S> — S2)
s = H; ) s = H?
1 poryrL? Ys
= (1 0 rre =22
b 4( +5)(1+A)ng*D Y= (5)

The velocity v is the water velocity between boxes
1 and 2. Note that we have used upwind differencing
assuming a positive (northward ) meridional velocity.
This amounts to examining the temperature-domi-
nated circulation, driven by the cooling and sinking at
the northern box (upper-right box in Fig. 3), and heat-
ing in the south. For negative velocity (salinity dom-

Ti¥S,* T*S*
3D Ty, S, -1 TS,
[
1 i
D T3‘ S3 41— T4, S4
L AL

F1G. 3. Schematic plot of the box model geometry.
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inated circulation ), the finite-difference form changes,
although this is not a concern in this work, because we
are interested in the stability of today’s thermohaline
circulation (e.g., in the North Atlantic Ocean), which
is temperature dominated.

At steady state, the above set of equations may be
used to derive a simple third-order polynomial equa-
tion for the difference T» — T,. This equation can be
easily solved [using routine CO2AGF from Numerical
Algorithm Group (1984)], and its solution can be used
to calculate the temperature and salinity at each box.
Of the three solutions of the polynomial equation, only
one turns out to be physical under restoring conditions,
and two are physical under mixed boundary conditions.
[Physical solutions must be real, and with positive
northward velocity as assumed in the upwind differ-
encing. A fuller discussion of the bifurcation behavior
of model solutions as function of various model pa-
rameters is not needed here and is given by Thual and
McWilliams (1992) and Quon and Ghil (1992). In
addition to the two thermally dominated solutions
found here there is a salinity-dominated solution under
flux conditions (or under restoring conditions with a
long relaxation time for the salinity), as is well known
from previous studies (e.g., Stommel 1961; Marotzke
1989).] Thus, we can solve for all steady-state model
solutions without using time integration, therefore al-
lowing the calculation of both stable and unstable
steady solutions.

a. Stability regimes

Before considering the effect of changing the salinity
restoring time, let us consider the linear stability anal-
ysis of the model. Let T;, S;,i=1, « - -, 4 be a par-
ticular steady solution. Considering an infinitesimal
perturbation T}, S} and linearizing the model equa-
tions (4) about the steady solution using mixed
boundary conditions, we obtain a linear set of equations
for the perturbation, which can be written in matrix

form
(T’ T’
— = A .
als)As)
The stability of the model is determined by the eigen-
values of the matrix A: let

TI
£)-x-

and substitute this in the perturbation equation, to ob-
tain the eigenvalue problem

AX = XX, (8)

where X is an eight vector containing the perturbation
temperature and salinity, and A is an eight by eight
matrix. Clearly, the steady solution is unstable if there
exists an eigenvalue A with positive real part [ see Mar-

(6)

(7)
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otzke (1990) for a similar analysis of the stability of a
box model, with salinity as the perturbed variable].
Similarly, a complex eigenvalue corresponds to an os-
cillatory behavior of the small perturbation about the
steady state.

To identify the different stability regimes of the
model, we specify the salinity flux at the surface, solve
the steady model equations under mixed boundary
conditions to obtain the two physical temperature-
dominated steady solutions, and analyze the stability
of the solutions by solving the above eigenvalue prob-
lem. Following this procedure for different values of
the salt flux, we obtain-a full characterization of the
model stability. There are four types of possible solu-
tions, characterized by the sign and value of the real
and imaginary part of the eigenvalues of A: (i) stable
solutions where small perturbations decay exponen-
tially; (ii) stable solutions where small perturbations
decay exponentially and oscillate as well; (ii1) unstable
solutions where small perturbations oscillate and grow
exponentially; and (iv) unstable solutions where small
perturbations grow exponentially.

The results of the characterization of stability regimes
are given in Figs. 4a-c. The model parameters used to
obtain Fig. 4 are A = 3.0 X 1072, 6 = 1.0, L = 5000
km, D =2 km, a = —1668. X 1077 K™!, 8 = 7.61
X104 ppt™!, T3 — TT =25°C, r=3. X 1073, 47!
= 30 days, and g = 980 cm 572,

It is convenient to examine the solutions as a func-
tion of the strength of the salt flux and the surface
salinity forcing as measured by the parameter § = SAS/
aAT (Walin 1985; Marotzke 1989). (Note that AS'is
known only once the model solution is found; under
restoring conditions using a short relaxation time, AS
is nearly equal to the equator-to-pole salinity difference
of the specified surface salinity.) In all three Figs. 4a—
¢, the possible solutions lie on a curve for which each
salt flux value corresponds to two possible steady tem-
perature-dominated solutions. In Fig. 4a, the four re-
gimes of instability are indicated by different markers
on the curve of possible steady solutions. This figure
was obtained by examining both the number of unsta-
ble eigenvalues of the matrix A, and the number of
complex eigenvalues. Figure 4b shows the number of
unstable eigenvalues for all possible steady solutions,
while Fig. 4¢ shows the number of complex eigenvalues.

As the salinity forcing, measured by & = BAS/aAT,
increases, the model undergoes several transitions.
First, it is stable to infinitesimal perturbations (“+” in
Fig. 4a), then it is oscillatory stable (), then oscillatory
unstable (O), and finally it is unstable ( X).

The location of the transition from stable to unstable
regimes is a crucial factor in the mechanism we propose
below for the stabilizing effects of increased salinity
restoring times. Both Walin (1985) and Marotzke
(1989) found that the model is unstable for & > 0.5.
Note, however, that we obtain a different result here,
where the model becomies unstable for smaller values
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(a) Stability regimes under mixed b.c.
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of . It is in particular important for the later devel-
opments that the transition occurs below the maximal
freshwater flux for which temperature-dominated so-
lutions exist. This allows for a transition from unstable
to stable regimes by a decrease in salinity flux forcing.
This decrease in flux forcing also corresponds to a de-
crease in the salinity forcing measured by & = BAS/
aAT. Note that in a two-box model such as Stommel’s
(1961) model analyzed by Marotzke (1989), the sta-
bility transition point is at the value of the maximum
salt flux for which temperature-dominated solutions
exist. This implies that the stability transition in such
a model is marked by a decrease in the surface salinity
gradient, but not necessarily in the surface salinity flux
forcing. We will see below that the transition from un-
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FI1G. 4. Stability characterization of the box model. (a) Sta-
bility regimes: stable (+), oscillatory stable (*), oscillatory
unstable (O), unstable (X). (b) Number of unstable eigen-
values (+: zero, O: two, *: one). (¢) Number of complex
eigenvectors (+: zero, *: two).

stable to stable regimes in the primitive equation GCM
involve a small reduction in the surface salt flux, as in
our four-box model.

It seems that the difference in the location and char-
acter of the stability transition point between the dif-
ferent box models results from the addition of two
boxes relative to the simpler 2-box models used by
Walin (1985) and Marotzke (1989). It is possible that
adding more boxes will again change the critical value
of &. One expects, thoughi, that as the number of boxes
increases, the critical & will converge to some value
between 0.5 and zero. This dependence of the critical
stability point on the number of boxes is perhaps rem-
iniscent of the bifurcations of box model solutions as
demonstrated by Thual and McWilliams (1992). They
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have shown that as the number of boxes increases, the
catastrophe structure of the box models evolves, and
that one needs some minimal number of boxes to ob-
tain the major characteristics found in a continuous
model.

b. Instability mechanism

The instability of a symmetric thermohaline circu-
lation under flux boundary conditions has been dem-
onstrated by Rooth (1982), using a simple three-box
model. Walin (1985) has described a simple mecha-
nism by which a symmetric thermohaline circulation
is destabilized by an antisymmetric salinity perturba-
tion. Marotzke et al. (1988) and Marotzke (1990) fur-
ther discussed Walin’s mechanism, applied it to other
than symmetric circulations, and used it to interpret
the results of a numerical model.

In this section, the stability analysis of the previous
subsection is continued, this time examining the phys-
ical mechanisms of linear instability for the regions
represented by each of the four boxes of our model. It
is shown that while Walin’s mechanism acts in the up-
per part of the ocean, the linear instability of the deep
water is governed by a different mechanism.

As mentioned in the previous subsection, the model
is unstable to the small perturbation governed by (6)
when the matrix A has eigenvalues with a positive real
part. The eigenvalues of the matrix A were used in the
previous subsection to classify the stability regimes of
the model. But additional useful information may be
extracted from the eigenvectors of A. These may be
interpreted as the temperature and salinity perturba-
tions that grow, oscillate, or decay according to their
corresponding eigenvalues. The eigenvector that cor-
responds to the most unstable eigenvalue, for example,
provides the spatial structure of the most unstable
temperature and salinity perturbation.

Let us now examine the instability mechanism in
each box, by physically interpreting the eigenvector
structure. For this purpose we present the different
terms in the linearized temperature and salinity equa-
tions, as calculated for perturbations that are equal to
the elements of an unstable eigenvector. Let us write,
for example, the linearized temperature and salinity
equations (using mixed boundary conditions) for box
I as

: ‘9{7 = ['8(T5 = T + [88(T% — T1)] — T
= [V(u'T)] + [V(PT")] — 48T’
EAY . _
=, = [V'8(8s = 8] + [36(S5 — S1)]

= [V + [V(BS)]. (9)

Here v'is the perturbation velocity calculated from the
perturbation density, which in turn is calculated from
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the perturbation temperature and salinity given by the
elements of the eigenvector. The factor ¥ is equal to
one in our nondimensional units, but is kept to make
it clear that the source of the term —% T is the restoring
boundary conditions for the temperature. The expres-
sions on the second line in each of the above equations
represent in a symbolic way the effects of the advection
of mean gradients by the perturbation velocity (e.g.,
[V(vT")1), and the advection of the perturbation gra-
dients by the mean velocity (e.g., [V(D7’)]). These are
merely convenient notations for the accurate expres-
sions in the first line of each of these equations.

Using similar notations for the rest of the boxes, the
different terms in the temperature and salinity equa-
tions for an unstable eigenvector (with a vanishing
imaginary part) can be written, and this allows ex-
amining the instability mechanism for both salinity
and temperature, and in all boxes.

We begin (Table 2) with the simplest instability re-
gime, where the instability does not involve oscillations,
and the unstable eigenvalue is real (regime marked X in
Fig. 4a).

The mechanism suggested by Walin (1985), and
further discussed by Marotzke et al. (1988), acts as
follows. The salinity perturbation creates a perturbation
velocity v'. This perturbation velocity advects the mean
salinity gradients, to enhance the salinity perturbation.
The feedback between the growth of the salinity per-
turbation S’ and the perturbation velocity v’ creates
the exponential growth and eventually destroys the
mean flow. This mechanism is clearly based on the
destabilization of the flow by the term V(v'S).

Examining the different terms in the salinity equa-
tion given in Table 2 shows that the dominant term
for the surface boxes (boxes 1 and 2)is indeed V (v'S),
in agreement with the above mechanism. The pertur-
bation in the deeper boxes (boxes 3 and 4), however,
grows using a different mechanism. For these boxes
the mean salinity gradients are zero because the salin-
ities of boxes 2, 3, and 4 are equal at steady state. Here
the stability mechanism relies on the term V(2.5’), that
is, on the advection of the perturbation salinity S’ by
the mean velocity ?. In the ocean, the properties of the
deep water vary very little from the water mass for-
mation sites to the deep water elsewhere, so that it
makes sense that the linear instability mechanism for
the deep water should indeed not be based on the ad-
vection of the mean gradients by the perturbation ve-
locity, but on the opposite mechanism.

Both Walin (1985) and Marotzke (1990) have as-
sumed that the temperature is basically fixed during
the instability process, due the fast restoring times for
the surface temperature field. While this is a convenient
assumption for exploring the basic mechanism of in-
stability, it is obvious that the instability process must
also involve an exponential growth of the temperature
perturbation. This is because the instability modifies
the circulation so that the steady solution for the tem-
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TABLE 2. Stability analysis of an unstable eigenvector of solution in the unstable regime with a single unstable mode.
This solution is the one on the upper branch of Fig. 4a, derived with E — P = 111.5 cm yr™'.

Box
1 2 3 4

T .99955 14892 x 107! .14892 x 107! .14892 x 107!
N 1.4085 -.35937 -.35937 —-.35937

D= 4537 X 1073

v calculated from T, ', and p' = —.3673 X 10~* 6503 X 10~* .6136 x 1073
Y —.45982 X 107! 92854 .70940 X 1072 36772
T —.59021 X 1073 19389 x 107! .14813 x 1073 76786 X 1072
rs 16182 X 107! 31931 ~.24395 x 1072 —.12646
v (55 .24082 X 10™* —.14739 X 107! 16363 X 1073 .84820 x 1072
v v'S) ~.10847 X 1072 36157 X 107! .00000 .00000
Y —.10606 X 1072 21418 x 107! .16363 x 1073 .84820 x 1072
Si/S' 23066 X 107! .23066 X 107! .23066 x 10~ .23066 X 107!
vV (5T) .33501 X 107¢ -.30218 x 1073 .34168 X 107° 17712 X 1073
vV (v'T) —.60416 X 1073 20139 x 107! .00000 .00000
—T .59021 X 1072 —.19389 X 107! .00000 .00000
T, —.13514 X 10~ 44723 X 1073 .34168 X 107* 17712 X 1073
T .23066 X 107! .23066 X 107 .23066 X 107! .23066 X 107!

perature field is no longer consistent with the new cir-
culation, and it has to adjust to the new state. As our
analysis does not assume that the temperature is fixed,
we can examine the mechanism by which the growth
of the temperature perturbation is achieved. This
mechanism is demonstrated in Table 2.

As for the salinity, the dominant destabilizing term
in the surface boxes is the advection of the mean tem-
perature gradients by the perturbation velocity. Note,
however, that unlike the salinity field, the temperature
is somewhat passive here because the perturbation ve-
locity is determined by the salinity perturbation alone.
This can be seen as follows: The perturbation velocity
is determined from the perturbation density field
through the second equation in (4), which has the same
form for the mean and perturbation fields. Now, cal-
culating the perturbation density using the perturbation
temperature alone (by setting § = 0), using the per-
turbation salinity alone (« = 0), and using both the
perturbation salinity and temperature, we can calculate
the contribution of the salinity and temperature to the
perturbation velocity v'. Table 2 shows the perturbation
velocity calculated from S’, T, and from both (p'),
and it is clear that v’ is determined by the salinity per-
turbation. The deeper water instability mechanism for
the temperature is, as for the salinity, due to the ad-
vection of the perturbation temperature by the mean
velocity.

We conclude that the instability of the temperature
field exists only when the salinity perturbations are un-
stable, and the mechanism of instability for the tem-
perature relies on the perturbation velocity created by
the salinity perturbation.

Next, consider the instability regime where the un-
stable mode is oscillatory, that is, where the unstable
eigenvalue has a nonvanishing imaginary part (regime
marked “O” in Fig. 4a). In this regime, there are two
eigenmodes for which both the eigenvalue and eigen-
vector are the complex conjugates of each other. It
seems worthwhile to make sure that the instability
mechanism is the one discussed above even when there
are two different unstable eigenvalues. At any given
moment the perturbation may be either increasing or
decreasing depending on the timing within the oscil-
lation period. Averaging the time tendencies S; and
T, over the oscillation period given by 27 /A'™, we
obtain the averaged tendency that.is affected by the
exponential growth or decay alone, and in which we
are interested.

Let the two unstable complex eigenvectors and ei-
genvalues be denoted by (X = XR¢ + ;X" X* = XRe
— iX"™) and (X, M\*), respectively, where X * denotes
the complex conjugate of X, etc. Suppose that at time
t = 0 the initial conditions for the temperature and
salinity perturbations are such that

Tl

(S,)=x‘“=%(x+x*). (10)
At later times,

(5)=3xersxeem,

and the averaged time tendehcy is given by
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TABLE 3. Summary of box model experiments used to demonstrate the stabilizing effect of increased salinity restoring times. Solutions
(a, b, ¢) are found using restoring boundary conditions for both the temperature and salinity. Solutions (al, b1, cl) are found by diagnosing
the air-sea freshwater flux from solutions (a, b, ¢), and searching for the second temperature-dominated steady solution to the model
equations under flux salt conditions. The rms deviations of temperature and salinity (ASST and ASSS, not to be confused with AS and AT,
which denote the equator-to-pole surface differences in temperature and salinity in the box model) are given in units of degrees Celsius and
ppt; heat and freshwater flux are given in units of watts per square meter and centimeters per year; and the meridional circulation is given
in Sverdrups (Sv = 10° m® s™'), as calculated from the meridional velocity by assuming that the zonal extent of the box model is equal to

L = 5000 km.

Flux Meridional
1 LS ASST ASSS circulation Mixed
Run YT Ys (rms) (rms) Heat Water (Sv) b.c.
a 30 30 .67 0.05 66.5 111.5 15.9 unstable
al 30 —_ 37 1.09 37.0 111.5 8.8 unstable
b 30 120 70 0.21 69.4 107.1 16.6 stable
bl 30 — 34 1.21 34.1 107.1 8.0 unstable
c 120 30 2.23 0.05 55.5 100.0 14.2 stable
cl 120 — 1.30 1.07 322 100.0 79 unstable
< d (T’)> J‘Zw/k'“‘ d 9 (T') 4. The stabilizing effect of increased restoring times
o\ S 0 or\s' We have seen in section 2 that when the salinity
1 " . At restoring time i's changed from 30 days to 120 days,
= <§ A(Xe™ + X*e )> the steady solution of the global GCM obtained under
restoring conditions remains stable upon transition to
= AR{(Xe™)} mixed boundary conditions. In the previous section
A* 270/ NIM (3), it was shown that there are different regimes of
= A?R[ 5 Xe™ } instability, and in particular that by changing the air-
2y o sea flux of fresh water (or the equivalent salt flux), the
1 model may make a transition from a regime that is
= AR{N*X} — (e*™"/"™ _ 1), (12) unstable under mixed conditions to a stable regime

I

This implies that in order to isolate the effect of the
exponential growth or decay of a perturbation that is
equal to X®¢ at ¢ = 0, we should examine the different
terms in the perturbation equations for a perturbation
that is equal to R { \*X }. Similarly, if the perturbation
is equal to X'™ at ¢ = 0, the terms in the equations need
to be evaluated for a perturbation that is equal to
J{NX }.

Examining the different terms in the averaged per-
turbation equations following the above procedure, we
find that the basic instability mechanism is roughly the
same as in the nonoscillatory unstable regime: Walin’s
mechanism [i.e., V(v'S)] is dominant in the upper
boxes, and the second mechanism [i.e., V(9.S5’)] acts
in the deeper boxes. [ There are some minor differences
in the instability mechanism of the complex modes,
where one of the two unstable modes is characterized
by the vanishing of the term V(v'S) in one of the sur-
face boxes. But the second unstable mode still acts as
before, and in any case, such details are beyond the
scope of this work.]

Having explored both the stability regimes and sta-
bility mechanisms of the thermohaline circulation in
this highly simplified model, let us examine the effect
of the temperature and salinity restoring coeflicients
on the linear stability of the solution obtained under
restoring b.c.

(see the boundary between the markers * and O in
Fig. 4a).

These two observations immediately suggest a pos-
sible explanation for the stabilization of the general
circulation model solution due to the increase in salin-
ity restoring times. It seems possible that the change
in salinity restoring time from 30 to 120 days caused
a corresponding change in the implied surface salt flux,
which in turn caused the general circulation model to
make a transition to a stable regime. The purpose of
this section is to carefully examine this hypothesis.

We begin by repeating the global GCM experiments
with the box model presented in the previous section.
First [entry (a) in Table 3] we calculate the steady
solution using restoring conditions for both tempera-
ture and salinity, with restoring times of 30 days for
both. The salinity restoring boundary conditions are
used with the box model, the surface salinity gradient
is specified to be S5 — ST = 2 ppt. The solution ob-
tained this way is stable to small perturbations under
restoring conditions, but turns out to be unstable to
small perturbations under mixed conditions [this is
determined, as before, by examining the eigenvalues
of the matrix A in (6)].

Next, the implied salt flux from solution (a) is di-
agnosed, and the steady model equations are solved
using mixed boundary conditions. As mentioned pre-
viously, there are now two physical solutions. One is
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always the same solution obtained under restoring
conditions, and the details of the second solution, dif-
ferent from (a), are given by entry (al) in Table 3.
This second solution turns out again to be unstable to
small perturbations. Table 3 gives the value of the salt
flux for these two solutions (translated into dimensional
equivalent freshwater flux), which is 111.5 cm yr~!.
Examining Fig. 4a, we see that the solutions obtained
in (a, al) are indeed both in the unstable regime.

In the next experiment with the box model (b), we
increase the salinity restoring time to 120 days, and
calculate the steady solution. This time the steady so-
lution is stable to infinitesimal perturbations under
both restoring and mixed boundary conditions. Di-
agnosing the salt flux and calculating the second so-
lution under mixed condition (bl), we find that the
second solution is unstable. The value of the salt flux
obtained in these experiments [entries (b, bl ) in Table
3]is 107.1 cm yr~!, for which there is one stable and
one unstable solution as seen in Fig. 4a.

Clearly the box model supports our assumption that
increasing the restoring times results in a shift of the
model from an unstable to a stable regime. This shift
is obtained in the box model through a decrease in the
implied freshwater flux, and a corresponding change
to the interior steady solution. But is this also the case
for the global GCM? Obviously, we cannot prove this
in a rigorous manner, but there are some clear indi-
cations that this mechanism is also at work in the re-
alistic primitive equations model.

Let us first examine the dependence of the freshwater
forcing in the GCM solution on the salinity restoring
coefficient. Examining the zonally averaged implied
salt flux in the global GCM for runs (a) and (b) in
Table 1, as given in Fig. 5, we see that the amplitude
of the flux (or, more accurately, of the peaks in the
zonally averaged figure, and therefore of the north-
south flux gradient) is consistently larger for the 30
days restoring .time. This is also the case for the box
model as can be seen in Table 3 by comparing the
water flux for entries (a) and (b) (111.5 vs 107.1
cm yr~'). We have seen that in the box model the
small weakening of the freshwater forcing was sufficient
to shift the model to the stable regime, and it seems
that this is also the case for the GCM. Note that the
change in freshwater flux between the two GCM so-
lutions, as given in Fig. 5, is not large. (The somewhat
larger differences in zonally averaged fluxes at 80°S
and 60°N reflects a small contribution to the total dif-
ference in the freshwater forcing, as the ocean area at
these latitudes is rather small.)

Having confirmed the dependence of the freshwater
forcing on the salinity restoring coefficient, let us now
examine how the interior solution depends on the re-
storing coefficients for both the box model and the re-
alistic GCM. Consider the meridional circulation cal-
culated in the two GCM experiments shown in Table
1. Increasing the salinity restoring time from 30 to 120
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FIG. 5. Zonally averaged air-sea freshwater flux, calculated for the
global primitive equations GCM under restoring conditions [ entries
(a)and (b) in Table 1]. The full curve is for 120-day salinity restoring
time, and the dashed curve for 30-day restoring time.

days resulted in an increase of the meridional circu-
lation in the North Atlantic Ocean from 18.3 to 22.3
Sv (Sv = 10° m®s™!'). The corresponding increase in
the salinity restoring time for the box model also results
in an increase of the meridional circulation;as seen in
Table 3 by comparing entries (a) and (b). In both cases
the reason for the increase in the meridional circulation
is as follows. The salinity forcing induces circulation
that is opposite to that of the temperature-dominated
thermohaline circulation, and acts as a break on the
thermohaline circulation (Walin 1985; Marotzke et al.
1988). The increased restoring time for salinity results
in weaker freshwater forcing, and therefore the braking
effect of the salinity is weakened, allowing the temper-
ature-dominated meridional circulation to strengthen.
This effect seems to work in a similar way for both the
GCM and the box model, indicating that the GCM is
in a similar parameter regime to that of the box model.

The above diagnostics, using the meridional stream-
function and the implied air-sea salt flux, strengthen
the similarity between the behavior of the box model
and the global GCM as far as the response to an in-
creased salinity restoring time is concerned. This sim-
ilarity, in turn, strengthens our conclusion that the
mechanism that resulted in the stabilization of the
GCM as the restoring time was increased is the same
mechanism we observed in the box model, that is, the
transition from an unstable to a stable regime because
of a.change in the implied salt flux. .

The close resemblance between the box model results
and the GCM results is obviously not a coincidence,
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but a result of fine-tuning the box model parameters.
But the basic mechanism demonstrated by the box
model does seem to be at work for the GCM as well.
A sensitivity analysis of the box model results shows
that the extent and location of the stability regimes
shown in Fig. 4a are both affected by the various model
parameters, such as A, 8, S5 — T, etc. In particular,
the magnitude of the exponential growth time, deter-
mined by the real part of the unstable e¢igenvalue, can
change from tens of years to thousands of years. The
possible existence of very different instability time scales
in the box model teaches us something about the GCM
as well: The GCM solution derived using y5' = 120
days and which seemed stable under mixed boundary
conditions may in fact be weakly unstable with a very
long instability time scale. But it seems reasonable to
assume that in this case a further increase of the re-
storing time will bring the solution into the stable re-
gime. In any case, the values of the restoring coefhicients
used in Table 1 were chosen only to demonstrate the
effects of increased restoring time. None of them is
meant to be the optimal value to be used for this or
other realistic general circulation model (especially as
the flux obtained from a given restoring coefficient
also depends on the vertical resolution of the model,
see (1)].

The suggested stabilizing mechanism implies that
the global GCM solution, obtained with v5' of 30 or
120 days, is near the transition point from the stable
to the unstable regime. This is deduced from the fact
that the stable and unstable GCM solutions for the
temperature, salinity, and circulation are very similar.
In fact, the interior temperature and salinity fields for
the two runs shown in Table 1 are hardly distinguish-
able in most areas. The proximity to the transition
point allows the model to make the transition to the
stable regime induced by a relatively minor change in
the implied surface freshwater flux. As we believe that
the ocean model solution is not far from the state of
the ocean itself, this also implies that the ocean itself
is near this transition point. This possibility was, in
fact, already raised by Walin (1985). The proximity
to the transition point makes sense physically, because
as the freshwater forcing increases, the ocean goes into
the unstable regime, and has to readjust the thermo-
haline circulation until it is back in the stable regime
not far from the transition point, when the adjustment
may stop.

Having understood how a change in restoring times
may result in a stabilization of the solution obtained
with restoring conditions, we now wish to examine how
one should go about choosing a value for the restoring
coeflicients for realistic models.

5. A consistency condition for the magnitude of the
restoring time

Numerical general circulation models normally
contain a number of parameters that are specified fairly

TZIPERMAN ET AL.

229

arbitrarily. The most outstanding example is, perhaps,
the various eddy mixing coefficients, while the restoring
times used in the upper boundary condition formu-
lation are another important example. One would nat-
urally like to reduce the uncertainty in the values of
these parameters especially if the model results are sen-
sitive to them. We have shown above that the behavior
of the solution of a global primitive equation model
critically depends on the value of the restoring time
used for the salinity upper boundary condition. In this
section we wish to propose a criterion for choosing the
value of the restoring times.

When restoring coefficients are discussed, Haney’s
(1971) work is sometimes used to deduce the value of
the restoring coefficient for the temperature. But note
that Haney’s formulation involves writing the air-sea
heat flux as proportional to the difference between the
oceanic surface temperature and an apparent atmo-
spheric temperature, which is neither the atmospheric
temperature nor the observed oceanic surface temper-
ature. As ocean models are commonly run by restoring
the surface temperature to an observed oceanic sea
surface temperature, one cannot directly apply Haney’s
formalism to calculate the restoring coefficient for such
model runs.

The best way to choose the restoring times for the
salinity boundary conditions is even less clear. As there
is weaker feedback between surface salinity and fresh-
water flux than between surface temperature and the
air-sea heat flux, one tends to use larger values for the
salinity restoring times than for the temperature re-
storing times. But the precise value to be used is still
arbitrary to a large extent. The sensitivity of the model
stability to the value of these coefficients, however, re-
quires that these coeflicients be chosen with care.

We may summarize our previous findings concern-
ing the stability of the thermohaline circulation in the
ocean general circulation model as follows: Consider
the stability of the ocean model as function of some
measure of the amplitude of the salinity forcing (either
E — Por BAS/aAT, see Fig. 4a). The entire range of
forcing is divided into stable and unstable regimes. It
seems plausible, based on what we have seen, that the
ocean itself lies in the stable regime near the stability
transition point, while the steady solution of an ocean
model obtained with restoring conditions may lie in
the unstable regime or the stable regime, depending
on the magnitude of the salinity restoring coefficient.

Suppose the ocean model dynamics were completely
consistent with the real ocean’s dynamics, and that the
observed sea surface temperature and salinity were
known with no observational errors. Then prescribing
the model surface temperature and salinity to be equal
exactly to the observed fields would result in the model
solution being in the stable regime, near the transition
point, just like the real ocean.

But there obviously are inconsistencies between the
model dynamics and those of the real ocean, especially
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for coarse-resolution models as used in climate studies.
Similarly, there are observational errors in the mea-
sured surface temperature and salinity fields that are
used to constrain ocean models. Because of these errors,
the transition point for the ocean model may be in a
slightly different position from that of the real ocean.
Presumably, the distance between the stability transi-
tion points of the ocean and the model is of the order
of the combined observational and model errors. Con-
straining the ocean model precisely to the observed
fields may therefore result in the model solution being
near the stability transition point, but in the unstable
regime. Figure 6 schematically describes a possible
configuration for the location of the stability transition
points and the location of the GCM solutions. Note in
particular that while the solution obtained with a sa-
linity restoring time of 30 days may be characterized
by surface forcing that is in the stable regime for the
ocean itself, it is in the unstable regime for the model.
Clearly our discussion of the reasons for the stabili-
zation of the global PE model is speculative to some
extent, as a rigorous stability analysis such as was car-
ried out for the box model is simply not possible for
the three dimensional primitive equation general cir-
culation model.

The above explanation also suggests a remedy for
the undesired instability with respect to mixed b.c.:
one should not set the model surface temperature and
salinity fields exactly equal to the observed fields, but
allow for some deviation. This deviation should be
within the limits determined by both the observational
error and the error expected to result from inconsis-
tencies between the model and oceanic dynamics. It is
this deviation that allows the model to “move” into
the stable regime. (While one may have some rough
idea of the magnitude of the observational error, it is
more difficult to quantify the model error for this pur-
pose. It may roughly be defined, perhaps, to be of the
order of magnitude of the difference between the model
results and the data.)

Note that increasing the restoring times results in
larger deviations of the calculated surface properties
from the observed ones, and in weaker salt forcing that
may bring the model into the stable regime. We can
therefore formulate a criterion for choosing the right
values of the restoring coefficients: The restoring coef-
ficients should be chosen such that at steady state, the
root-mean-square deviation between the model and
observed surface fields is of the order of the combined
observational error and model error:

choose vy and vy such that

rms [ SSTmoder — SSTdata] °
rms[SSSmodel — SSSqata]

~ observational error + model error.
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FiG. 6. A schematic picture of a possible configuration for the
location of the stability transition points and the location of the GCM
solutions. See text for details. )

Returning now to the GCM runs in Table 1 and the
box model runs in Table 3, we first note that the in-
creased salinity restoring time resulted in a larger rms
deviation of the model surface temperature and salinity
from the observed fields. Using 30 days restoring time
for the salinity in the global GCM resulted in an rms
salinity deviation of 0.11 ppt, certainly less than even
the observational error alone for the climatological an-
nually averaged data we use. Increasing the restoring
time to 120 days increased the rms salinity deviation
to 0.22 ppt, which is more acceptable, and indeed re-
sulted in a steady solution that is stable under mixed
boundary conditions. The rms deviation of the GCM
surface temperature from the observed surface tem-
perature is about 0.5°C, which is probably less than
the observational error. We have examined the effect
of increasing the restoring time for temperature using
the box model only, and found that this too can shift
the box model from an unstable to a stable regime
[entry (¢) in Table 3].

Examining the spatial structure of the implied fresh-
water flux in the global GCM for the solutions shown
in Figs. 1 and 2, we note that the solution with 30-day
salinity restoring time is much noisier than that ob-
tained with a salinity restoring time of 120 days. The
noisy structure of E — P field for 45! = 30 days seems
more an artifact of the calculation than a real feature
of the freshwater forcing in the ocean. The results with
120 days, on the other hand, seem significantly more
reasonable. Examining the surface salinity and merid-
ional salinity sections through the various oceans for
the two solutions (not shown), one can see that the
differences between the two are very small, within the
observational error in the Levitus (1982) data. .

To summarize, it seems that the increased salinity
restoring time produces seemingly more reasonable re-
sults for the freshwater flux, does not cause too large
deviations from the specified surface salinity, and most
important, results in a solution that seems stable upon
transition to mixed boundary conditions.

In a recent work Zhang et al. (1993) argued that the
formulation of mixed boundary conditions with a rel-
atively short restoring time for the temperature is in-
consistent with the small atmospheric heat capacity
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relative to that of the upper ocean. They argued that
significantly longer restoring times should be used, and
showed that this may result in different behavior under
mixed boundary conditions. Their work seems to in-
dicate that the polar halocline catastrophe of Bryan
(1986), which is intimately related to the instability
under mixed b.c., may not be as severe a problem for
climate models as it may seem at first. Thus, they sup-
port the conclusion of this study, although from a
completely different point of view than ours.

6. Conclusions

We have used a global primitive equations oceanic
general circulation model and a simple four-box model
of the meridional circulation to examine and analyze
the stability of the thermohaline circulation in a realistic
ocean model under mixed boundary conditions. This
instability has been extensively documented using
models of various complexities, but within idealized
geometries. Our purpose was to examine this instability
for a GCM that is run with realistic geometry and forc-
ing conditions, as is done in climate studies. More spe-
cifically, we tried to determine whether the thermo-
haline instability should occur in the parameter range
characterizing today’s oceans.

We found that for a realistic GCM, using realistic
geometry and forcing there are both stable and unstable
regimes with respect to mixed boundary conditions.
The steady solution of the global GCM under restoring
conditions may be either stable or unstable upon tran-
sition to mixed boundary conditions, depending on
the regime in which the solution is. One of the most
important findings here is that the solution of a general
circulation model using realistic geometry and forcing
lies in the stable regime, but very close to the stability
transition point with respect to mixed boundary con-
ditions. This proximity to the transition point allows
the model to make a transition between the unstable
and stable regimes due to a relatively minor change in
the surface freshwater flux and in the interior solution.
Such a change in the surface flux may be induced, for
example, by changing the salinity restoring time used
to obtain the steady model solution under restoring
conditions. It is important to note that the needed
change in the restoring time in order to shift the model
from one stability regime to another is not large, and
the GCM solutions obtained in both regimes are nearly
identical within observational errors. Assuming that
the ocean model solution is not far from the state of
the ocean itself, this also implies that the ocean itself
is near this stability transition point, as also suggested
by Walin (1985).

By carefully analyzing the stability regimes of a sim-
ple four-box model, we were able to demonstrate that
an increase in the restoring time for salinity may indeed
cause the box model to make a transition from an un-
stable regime to a stable regime. Such a rigorous sta-
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bility analysis is, of course, impossible to carry out using
the PE model, but we have presented and examined
evidence indicating that such a transition is also re-
sponsible for the stabilizing effect of increased restoring
time in the realistic three-dimensional general circu-
lation model.

Finally, we argued that the use of too short restoring
times is inconsistent with the level of errors in the data
and in the model dynamics. A consistency criterion
for the magnitude of the restoring times in realistic
models was formulated. This criterion states that the
restoring coefhicients should be large enough to allow
the rms deviation of the model surface temperature
and salinity from the corresponding observed fields to
be of the order of the observational and model errors.
Shorter restoring times bring the calculated surface
fields nearer to the observed ones. But because the
transition point from stable to unstable regimes is dif-
ferent in the ocean and in the model, the more realistic
surface fields seem to correspond to an unstable regime
in the ocean model.

Our finding that a realistic ocean model using care-
fully formulated boundary conditions should be stable
upon transition to mixed boundary conditions is also
relevant to some recent studies concerning the vari-
ability of the oceanic circulation. Weaver and Sarachik
(1991) have shown that with strong freshwater forcing,
a primitive equations model may produce strong in-
terdecadal variability. They also showed that this vari-
ability does not exist for weaker freshwater forcing,
and that the parameter range where this variability oc-
curs is within the unstable regime with respect to mixed
boundary conditions. Our results, on the other hand,
seem to indicate that the present day oceans are in a
stable regime, or at least very close to this regime and
not in a strong forcing unstable regime. It is still pos-
sible, of course, that a model of higher resolution and
with lower viscosity and diffusion coefficients, may be
able to excite the decadal oscillations mechanism found
by Weaver et al. (1991) even in the seemingly weaker
freshwater forcing that corresponds to the state of to-
day’s oceans.

Climate studies often initialize a coupled ocean-at-
mosphere model run with the steady-state oceanic cir-
culation obtained with restoring boundary conditions
using climatological surface temperature and salinity.
The results presented here may be of use to such studies
by indicating how the restoring coeflicients for the ini-
tialization run should be chosen in order to avoid the
instability upon transition to the coupled model run.
The solutions found using the longer restoring times
are sufficiently close to the observed temperature and
salinity fields, like those found with shorter restoring
times. Yet we have seen that the implied surface fluxes
are far smoother and more reasonable. Coupled models
are often run with a “flux correction” (Manabe et al.
1991) calculated from the difference between the im-
plied fluxes from the ocean model and those from the
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atmospheric model. The more reasonable surface fluxes
obtained from the ocean model using carefully chosen
restoring coefficients may significantly reduce the flux
correction needed to prevent a climate drift in the cou-
pled model.
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