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ABSTRACT

We present 3D force-free electrodynamics simulations of magnetar magnetospheres that

demonstrate the instability of certain degenerate, high energy equilibrium solutions of the

Grad–Shafranov equation. This result indicates the existence of an unstable branch of twisted

magnetospheric solutions and allows us to formulate an instability criterion. The rearrangement

of magnetic field lines as a consequence of this instability triggers the dissipation of up to

30 per cent of the magnetospheric energy on a thin layer above the magnetar surface. During

this process, we predict an increase of the mechanical stresses on to the stellar crust, which can

potentially result in a global mechanical failure of a significant fraction of it. We find that the

estimated energy release and the emission properties are compatible with the observed giant

flare events. The newly identified instability is a candidate for recurrent energy dissipation,

which could explain part of the phenomenology observed in magnetars.

Key words: magnetic fields – methods: numerical – stars: magnetars – stars: neutron – X-

rays: bursts.

1 IN T RO D U C T I O N

Soft gamma-ray repeaters (SGRs) are neutron stars with recurrent

X-ray activity in the form of short bursts with duration ∼0.1 s and

luminosities in the range 1036–1043 erg s−1. Over the last 40 yr, three

bursts have been uniquely energetic, the so-called giant flares (GFs)

with luminosities of the order of 1044–1047 erg s−1 (SGR 0525-66,

SGR 1900 + 14, and SGR 1806-20; see Cline et al. 1980; Hurley

et al. 1999, 2005). In the three referenced cases, a short initial

peak was followed by a softer X-ray tail lasting for 50–400 s. The

engine behind these extraordinary events are magnetars, neutron

stars with the strongest known magnetic fields (1014–1016 G; see

comprehensive reviews of magnetar observations and physics, e.g.

in Woods & Thompson 2006; Rea & Esposito 2011; Mereghetti,

Pons & Melatos 2015; Turolla, Zane & Watts 2015; Kaspi &

Beloborodov 2017).

The precise mechanism producing such energetic events is still

unclear. Strong magnetic fields are a gigantic energy reservoir in

magnetars, generally of the order

Emagnetar ∼ 1.6 × 1047 erg

(

B

1015 G

)2 (
R∗

10 km

)3

, (1)

where we consider a neutron star with radius R∗.

The time-scale on which the magnetar is evolving, mainly due

to Hall drift and Ohmic dissipation in the crust, is of the order of

103–106 yr (Jones 1988; Goldreich & Reisenegger 1992; Pons &

⋆ E-mail: jens.mahlmann@uv.es

Geppert 2007; Pons, Miralles & Geppert 2009; Gourgouliatos,

Wood & Hollerbach 2016), by itself too slow to explain this

phenomenology. Two complementary models have tried to explain

these observations. In the crustquake model (Thompson & Duncan

1996; Perna & Pons 2011) the dynamical trigger is the mechanical

failure of patches of the magnetar crust due to large stresses built

during its magnetothermal evolution. Numerical simulations of the

Hall evolution of the crust (Viganò et al. 2013) show that it is

possible to recurrently reach the maximum stress supported by the

very same (Horowitz & Kadau 2009; Baiko & Chugunov 2018). At

this point, the crust likely becomes plastic (Levin & Lyutikov 2012),

i.e. the crust generates thermoplastic waves emerging from such a

localized trigger, or in other words yields (Beloborodov & Levin

2014; Li, Levin & Beloborodov 2016). The waves propagate into

the magnetosphere, probably resulting in rapid dissipation through

a turbulent cascade triggered by reconnection on slightly displaced

flux surfaces (Thompson & Duncan 1996, 2001; Li, Zrake &

Beloborodov 2018). The energy released in those events suffices

to explain the observed luminosities, even for GFs (Thompson &

Duncan 1996; Lander et al. 2015). The burst duration (∼0.1 s) is

related to the crossing time of shear waves through the whole crust

(1–100 ms). A limitation is that, if stressed for long periods of

time (∼ 1 yr) as it is the case due to the slow magnetothermal

evolution, the crust may yield at significantly lower breaking

stresses (Chugunov & Horowitz 2010). In that case, it would

effectively deform as a plastic flow, and, depending on its (unknown)

properties, cease to yield altogether (Lyutikov 2015; Lander &

Gourgouliatos 2019). Thompson, Yang & Ortiz (2017) has argued

that even in this case the crust could yield.
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The magnetospheric instability model requires a strongly twisted

magnetosphere that becomes unstable and leads to a rapid re-

connection event (Lyutikov 2003). The existence of long-lived

magnetospheric twists is supported by the observation of hard X-

ray emission in persistent magnetars (Beloborodov 2013a; Hascoët,

Beloborodov & den Hartog 2014). During the magnetothermal

evolution of the crust, the displacement of the magnetic field

footprints can generate large twists in the magnetosphere (Akgün

et al. 2017, 2018b). Above a critical twist, the magnetosphere

becomes unstable and undergoes a rapid rearrangement where

energy is dissipated by reconnection (Lyutikov 2003; Gill & Heyl

2010; Elenbaas et al. 2016) in a similar fashion as in the crustquake

model. The main challenge of this scenario is the ability of the crust

to produce significant twists in the magnetosphere. Beloborodov

(2009) estimated that currents supporting magnetospheric twist are

bound to dissipate on time-scales of years, effectively leading to

a progressive untwisting. Therefore, Hall evolution is required to

proceed relatively fast in order to allow for significant twists. Plastic

viscosity may also be a problem for similar reasons (Lander &

Gourgouliatos 2019). The latter authors have also suggested that

the dynamical crust fractures of the crustquake model could be

substituted by sustained episodes of accelerated plastic flows which

are able to generate large magnetospheric twists on times shorter

than the untwisting time-scale.

Numerical simulations by Parfrey, Beloborodov & Hui (2012),

Parfrey, Beloborodov & Hui (2013), and Carrasco et al. (2019)

confirm the instability of the magnetosphere beyond a critical twist,

accompanied by the formation of plasmoids. These results are an

analogy to the context of eruption processes in the solar corona

as found in numerical experiments by Roumeliotis, Sturrock &

Antiochos (1994), Mikic & Linker (1994). The energy dissipated

in the reconnection events is sufficient to explain the GF processes

(Parfrey et al. 2012). A caveat to these simulations is that the applied

twisting rate is larger than the one expected from the respective

magnetothermal evolution, although it would be fine if the trigger

was a rapid plastic deformation.

An alternative approach to the above is the study of stability

properties of magnetospheres. A number of authors have con-

structed equilibrium solutions to the Grad–Shafranov equation

(GSE) for neutron star magnetospheres (Fujisawa & Kisaka 2014;

Glampedakis, Lander & Andersson 2014; Pili, Bucciantini & Del

Zanna 2015; Akgün et al. 2016; Kojima 2017, 2018; Kojima &

Okamoto 2018; Akgün et al. 2018a). Akgün et al. (2017) performed

magnetothermal evolutions coupling the crustal magnetic field at

the stellar surface with an exterior equilibrium solution. The results

showed that large twists grow in the magnetosphere up to a critical

point beyond which no stable equilibrium solutions where found.

A more detailed analysis by Akgün et al. (2018a) showed that, for

sufficiently large twists, the solutions of the GSE are degenerate with

several possible configurations of different energies but matching

boundary conditions at the surface. This suggests the possibility of

an unstable branch of the solutions and, thus, a possible explanation

for the occurrence of bursts and GFs. In this work we explore

this possibility by performing 3D numerical simulations of the

equilibrium models in Akgün et al. (2018a). We assess their stability

properties and their potential as candidates for transient magnetar

phenomenology.

This work is organized as follows. In Section 2 we review

and discuss the physics involved in magnetars relevant to the

processes that we want to study. In Section 3 we briefly review

the equations of force-free electrodynamics (FFE) implemented

for simulations conducted on the infrastructure of the Einstein

Toolkit (supplemented by Appendix A1). A detailed description

of the derivation of initial models according to Akgün et al. (2018a)

is given in Section 4. In Section 5 we present the numerical setup of

our simulations as well as the outcome of the conducted 3D force-

free simulations of twisted magnetospheres (reviewing details on

maintaining the force-free regime in Appendix A2). The observed

rapid dissipation of electromagnetic energy through the magnetar

crust is interpreted and related to observable quantities, such as

luminosity estimates, shear stresses on the stellar crust, and opacity

models, in Section 6. Along this paper we use Gaussian units in

CGS, except for Section 3 in which we use Heaviside-Lorentz

with geometrized units (G = c = M⊙ = 1). For convenience we

express current densities in A m−2 and voltages in V, instead of the

corresponding CGS units.

2 PH Y S I C S O F M AG N E TA R S

The basic structure of the magnetar interior is a (likely) fluid

core of ∼10 km radius, amounting for most of the mass of the

object, surrounded by a solid crust of about 1 km size. Outside,

there is a tenuous, corotating magnetosphere connected to the NS

by magnetic field lines (threading the central object) that extend

up to the light cylinder at distances larger than 105 km. We start

by discussing some basic properties of the different parts of the

magnetosphere relevant for the interpretations and models presented

later in this work.

2.1 Currents supporting the magnetosphere

For the typical rotation periods of magnetars (P ∼ 1–10 s) the

Goldreich–Julian particle density (Goldreich & Julian 1969) for

a magnetar magnetosphere has the typical value

nGJ = 7 × 1012 cm−3

(

Bpole

1015 G

)(

R∗

r

)3 (
10 s

P

)

, (2)

where Bpole is the magnetic field strength at the magnetar pole, R∗

the magnetar radius, and r the distance to the centre of the star. This

limits the magnetospheric current density close to the surface to J <

e c nGJ ≈ 3 × 108 A m−2, much below the typical values needed to

support currents in strongly twisted magnetospheres of magnetars,

of the order of

J ∼
Bc

4πr
∼ 8.2 × 1012 A m−2

(

Bpole

1015 G

)(

R∗

10 km

)−1

. (3)

In general, magnetospheric currents in magnetars cannot be sup-

ported neither by Goldreich–Julian charges nor by charges lifted

from the surface. Beloborodov & Thompson (2007) proposed

that the currents are supported by e+–e− pairs generated in the

magnetosphere in an intermittent discharge process that can be

sustained for voltages along magnetic field lines of about 108–109 V.

This voltage can be maintained by self-induction in untwisting

magnetospheres (Beloborodov 2009). This untwisting is driven by

the effective resistivity of the magnetosphere; the thermal photons

from the magnetar’s surface scatter resonantly off the charges

supporting the magnetospheric currents, taking energy away, at the

same time that pairs are produced. The untwisting time-scale is

∼1 yr, and it may explain the spectral evolution of some magnetars

(Beloborodov 2009).

MNRAS 490, 4858–4876 (2019)
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2.2 Time-scales

Changes in magnetars take place during two different time-scales.

On the one hand, there is a secular time-scale of thousands of years

during which the magnetar is essentially in equilibrium. On the other

hand, there is a dynamical time-scale associated to energetic events

(burst, flares) that can produce observable variations on time-scales

as fast as 0.1s. The latter are likely associated to out-of-equilibrium

states.

2.2.1 Secular time-scales

The secular time-scale is set by the slow magnetothermal evolution

of the cooling object. The interior magnetic field evolution is domi-

nated by Hall drift and Ohmic diffusion at the crust (see e.g. Viganò,

Pons & Miralles 2012; Fujisawa & Kisaka 2014, and references

therein), which proceeds on typical time-scales of 103–106 yr. The

long-term evolution of the magnetosphere is driven by the changes

in the crustal magnetic field, which displaces the footprints of the

magnetospheric magnetic field lines. Since this evolution is much

slower than the dynamical time-scale of the magnetosphere (see

below), it can be considered that the magnetosphere evolves through

a series of equilibrium states. This evolution creates a twist in the

magnetosphere supported by currents – until a critical maximum

twist is reached (ϕcrit ∼ 1 rad) beyond which no magnetospheric

equilibrium solutions exist (Akgün et al. 2017). The stability of

the magnetosphere close to this critical point is the subject of this

paper.

At the same time as the crustal magnetic field evolves, other

processes in the magnetosphere can also contribute to the evolution.

The untwisting of the magnetosphere on time-scales of ∼1 yr

(Beloborodov 2009, and discussion in Section 2.2.1), may be a

competing action to the twisting process described above.

Although the velocity of the footprints is typically very slow,

numerical simulations of the magnetothermal evolution of magne-

tars including the magnetosphere show that, close to the critical

point, it can be as fast as vϕ ∼ 1 km yr−1 (see Akgün et al. 2017) in

the most optimistic scenario. Therefore, close to the critical twist,

the magnetosphere twists slowly (ϕ̇max,crit � 0.1 rad yr−1), evolving

on time-scales � 10 yr. In the best case scenario, this time-scale is

comparable to the untwisting time-scale (∼1 yr) and, hence, parts of

the magnetosphere could sustain a significant twist. This time-scale

is still much longer than the dynamical time-scale of the system

(see below). Therefore, in our study of the dynamical behaviour we

can neglect the secular evolution of the field.

2.2.2 Dynamical time-scales

The dynamical time-scale is set by the traveltime of waves propagat-

ing in the different regions of the magnetar. In the magnetosphere,

the mass density can be neglected in view of the dominating

magnetic field energy density. Also, the velocity of Alfvén and fast

magnetosonic waves is degenerated to the speed of light. Hence,

within ∼100 km the whole magnetosphere is coupled through time-

scales smaller than 1 ms, which sets the scale for the dynamical

evolution of the magnetosphere. In this region it is possible to

neglect the inertia of the fluid in the evolution equations of the

so-called FFE, which is used in the numerical simulations of this

work.

In the outermost parts of the crust, the force-free condition still

holds because of low densities. At sufficiently high densities, elastic

forces of the solid crust and pressure gradients break this condition.

Figure 1. Fast magnetosonic (solid lines) and magnetoelastic (dashed lines)

speed in the outer layers of a magnetar, for different magnetic field strengths

ranging from 0 to 1016 G. The neutron star model corresponds to the 1.4M⊙

mass APR + DH model of Gabler et al. (2012). The magnetic field is

considered to be constant for simplicity.

To estimate the transition density one may consider the depth at

which waves propagate at a velocity significantly different to the

speed of light. Two possible waves can travel in the interior of the

magnetized crust, the so-called magnetosonic (ms) waves, related

to sound waves, and magneto-elastic (me) waves, a combination

of Alfvén and shear waves. The complete eigenvalue structure of

relativistic ideal MHD equations in the presence of an elastic solid

is not known. To make a simple order of magnitude estimate of

the different wave speeds, we use the expression of magnetoelastic

torsional waves parallel to the magnetic field derived in Gabler

et al. (2012) as well as the expression for fast magnetosonic waves

perpendicular to the field:1

vme/c =

√

μs + B2

e + B2
vms/c =

√

ec2
s + B2

e + B2
, (4)

where e is the energy density and μs the shear modulus. Note that in

the limit of low magnetic field (B2 ≪ μs, B2 ≪ e) we recover the

shear and sound speed, respectively. In the high magnetic field limit

(B2 ≫ μs, B2 ≫ e) both, vme and vms, coincide with the speed

of light. Inside the fluid core (μs = 0) the magnetoelastic speed

becomes the Alfvén speed.

Fig. 1 shows the value of the characteristic speeds in the outer

layers of a typical NS model for different magnetic fields in the

magnetar range. Indeed, both fast magnetosonic waves and Alfvén

waves have a degenerate speed equal to the speed of light in the

magnetosphere. Inside the outer crust (ρ < 4 × 1011 g cm−3),

all characteristic speeds transition from the speed of light to a

significantly lower value, in a region that can still be considered

force-free. This transition depends on the magnetic field strength,

happening deeper inside the star for larger values of Bpole. Given

these characteristic speeds, any global rearrangement of the magne-

tosphere can modify the entire structure of the crust (of size ∼2πR∗)

on a time-scale of ∼1 ms for magnetosonic waves and ∼10 ms for

magnetoelastic waves.

1Slow magnetosonic waves are also possible but their velocity is much

smaller and not relevant for this work, in fact, for the case of waves

perpendicular to the magnetic field their speed is zero.

MNRAS 490, 4858–4876 (2019)
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One last aspect to consider is the ability of magnetospheric waves

to transmit energy into the crust. The discussion should be limited

to Alfvén waves, which become magnetoelastic waves once they

penetrate the crust; the energy carried by fast magnetosonic waves

in the magnetosphere can be neglected due to the small density,

which renders the compressibility effects of fast-magnetosonic

waves unimportant.

Since the characteristic time in the magnetosphere is ∼1 ms, the

typical frequency of the waves generated during its dynamics is in

the kHz range. At this frequency, the crust can be considered as a

thin layer because its thickness (∼1 km) is much smaller than the

typical wavelength in the magnetosphere (λ ∼ 100 km). In this case

the energy transmission coefficient for waves perpendicular to the

surface is approximately (cf. Link 2014; Li & Beloborodov 2015)

T =
4vme/c

(1 + vme/c)2
≈ 0.04

(

vme/c

0.01

)

, (5)

for typical physical conditions in the magnetar crust. Given the low

transmission coefficients of magnetospheric Alfvén waves hitting

the crust as well as the differences on time-scales between the crust

and the magnetosphere (typically ∼10 times shorter in the later) it

is reasonable to consider that most of the crust remains rigid during

any dynamical rearrangement of the magnetosphere.

In our magnetar model we will consider two regions: A force-

free region (exterior, hereafter) consisting of the magnetosphere

and the force-free part of the outer crust as well as the magnetar

interior for the remainder of the NS, which we will consider to be

fixed during our simulations. The limit between both regions is a

spherical surface below the NS surface, where magnetic field lines

are anchored, and is located below the transition density between

inner and outer crust at a density ρ < 4 × 1011 g cm−3. For the

purpose of describing the simulations we will refer to this transition

point simply as surface.

3 FO R C E - F R E E E L E C T RO DY NA M I C S

In analogy to Komissarov (2004) and Parfrey, Spitkovsky &

Beloborodov (2017) we solve Maxwell’s equations in the force-

free limit:

∂ B̃

∂t
= −∇ × Ẽ and

∂ Ẽ

∂t
= ∇ × B̃ − J̃ FF, (6)

where Ẽ, B̃, and J̃ FF are the electric field, the magnetic field,

and the so-called force-free current, respectively. We place a

tilde to distinguish quantities expressed in our Heaviside-Lorentz

geometrized (HLG) system of units, while the same symbols without

tilde express quantities in the Gaussian non-geometrized (GNG)

system of units (see Table 1). We explicitly include the charge

conservation equation

∂ρ̃e

∂t
+ ∇ · J̃ FF = 0, (7)

where ρ̃e represents the charge density. Furthermore, we use

a mixed hyperbolic/parabolic correction by the introduction of

additional potentials (further discussed in Appendix A1) in order

to numerically ensure the constraints ∇ · B̃ = 0 and ∇ · Ẽ = ρ̃e

(Dedner et al. 2002; Palenzuela et al. 2009; Mignone & Tzeferacos

2010).

In the force-free limit it is necessary to guarantee that there are

either no forces acting on the system or, more generally, that the

forces of the system balance each other. This is equivalent to a

vanishing net Lorentz force on the charges ρ̃e (see e.g. Camenzind

2007):

Table 1. Conversion table between code output in Heaviside-Lorentz

geometrized units (M⊙ = G = c = 1) and non-geometrized Gaussian units.

In order to transform the respective quantities from code quantities to the

non-geometrized system, one has to multiply the geometrized quantity by

its conversion factor expressed in CGS.

Quantity Non-geometrized unit Conversion factor

Mass M M⊙

Length L M⊙Gc−2

Time T M⊙Gc−3

Electric charge L3/2M1/2T−1 (4π )−1/2M⊙G1/2

Electric field L−1/2M1/2T−1 (4π )1/2M−1
⊙ G−3/2c4

Magnetic field L−1/2M1/2T−1 (4π )1/2M−1
⊙ G−3/2c4

Current density L−1/2M1/2T−2 (4π )−1/2M−2
⊙ G−5/2c7

(EM) Energy L2M T−2 M⊙ c2

(EM) Stress L−1M T−2 M−2
⊙ G−3c8

Ẽ · J̃ FF = 0 (8)

ρ̃e Ẽ + J̃ FF × B̃ = 0. (9)

From equation (9) one readily obtains the degeneracy condition

Ẽ · B̃ = 0. (10)

Additionally, force-free fields are required to be magnetically

dominant, the magnetic field being always stronger than the electric

one, such that the following condition must hold:

B̃
2
− Ẽ

2
≥ 0. (11)

Conditions (10) and (11), as well as the conservation condition

∂t

(

Ẽ · B̃
)

= 0 can be combined in order to obtain an explicit

expression for J̃ FF (cf. Komissarov 2011; Parfrey et al. 2017):

J̃ FF =
[

B̃ · ∇ × B̃ − Ẽ · ∇ × Ẽ
] B̃

B̃2
+ ρ̃e

Ẽ × B̃

B̃2
. (12)

Across the literature (e.g. Komissarov 2004; Alic et al. 2012; Parfrey

et al. 2017) we find various modifications in the definition of J̃ FF

in order to drive the numerical solution of the system of partial

differential equations (6) towards a state which fulfils equation (10)

by introducing a suitable cross-field conductivity. In the numerical

setup, we choose to combine the prescription of Komissarov (2004)

with the force-free current given above. This strategy effectively

minimizes the violations of equations (10) and (11) by exponentially

damping the (numerically induced) components of the electric

field parallel to B̃ and suitably adjusting the electric field in

magnetospheric current sheets in order to obtain B̃
2
− Ẽ

2
→ 0

at these locations.

Throughout the literature, the magnetic dominance condition (11)

condensates to a necessary condition of FFE (e.g. Uchida 1997;

McKinney 2006). For some authors (e.g. McKinney 2006) the

breakdown of the magnetic dominance implies the invalidity of the

numerical model. Others (e.g. Uchida 1997) claim that some physi-

cal processes (e.g. radiation losses) taking place in the regions where

condition (11) is breached may restore the magnetic dominance

condition. Indeed, Uchida (1997) explicitly allows for transient

phases violating condition (11) – these regions are then interpreted

as abandoning the freezing of magnetic flux on to the flux of matter,

being necessarily accompanied by dissipation. Following Uchida

(1997), the force-free regime continues to be a valid approximation

as long as the dissipative effects are only a small fraction of the

total energy. The violation of the perpendicularity condition (10) is

MNRAS 490, 4858–4876 (2019)
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4862 J. F. Mahlmann et al.

an additional source of (Ohmic) dissipation (studied for example

in the context of Alfvén waves in force-free electrodynamics by Li

et al. 2019). In practice, this channel of dissipation occurs when

Ẽ · B̃ �= 0 such that J̃ · Ẽ �= 0. Currently used force-free codes

aim to avoid the transient into this regime by numerically cutting

back all violations of condition (11) (e.g. Palenzuela et al. 2010;

Paschalidis & Shapiro 2013; Carrasco & Reula 2016) or include

a suitable Ohm’s law (e.g. Komissarov 2004; Spitkovsky 2006;

Alic et al. 2012; Parfrey et al. 2017) in order to minimize these

violations during a transient phase. Fig. 5 shows the breakdown

of condition (11) during the simulation and hints towards the

aforementioned dissipative processes. We refer to Appendix A2

as well as, for example, Lyutikov (2003) for further details on

the necessary constraint preservation and limitations of the highly

magnetized regime (such as the lack of physical reconnection). We

will give a thorough review of the procedures employed in our code

in a subsequent technical paper.

4 TWISTED MAGNETAR MAGNETOSPHERE

M O D E L S

4.1 Magnetospheres

Due to the long rotational period of observed magnetars pushing

the location of the light cylinder to great distances, it is possible to

neglect the rotation of the neutron star when building numerical

models of magnetospheres in the near zone. The equilibrium

structure of a non-rotating axisymmetric force-free magnetosphere

is given through the well-known GSE (Lüst & Schlüter 1954;

Grad & Rubin 1958; Shafranov 1966). This approach has been

followed in several recent papers (e.g. Spitkovsky 2006; Beskin

2010; Viganò, Pons & Miralles 2011; Fujisawa & Kisaka 2014;

Glampedakis et al. 2014; Pili et al. 2015; Akgün et al. 2016, 2018a;

Kojima 2017, 2018; Kojima & Okamoto 2018). In most of these

works, the toroidal field is confined within a magnetic surface near

the equator, smoothly transitioning to vacuum at large distances. In

stationary, non-rotating, axisymmetric magnetosphere models, the

toroidal field cannot extend to the poles. Otherwise, the toroidal field

would extend all the way to infinity, thus, violating the requirements

of finite magnetic energy. Following the notation of Akgün et al.

(2016, 2018a), we write the axisymmetric magnetic field in terms

of its poloidal and toroidal components:

B = ∇P × ∇ϕ + T ∇ϕ, (13)

where ϕ is the azimuthal angle in spherical coordinates. Here, P

and T are the poloidal and toroidal stream functions. Expressed in

the orthonormal spherical basis corresponding to the coordinates

(r, θ , ϕ), the magnetic field can be explicitly computed from the

potentials P and T as

Br =
1

r2 sin θ
∂θP , (14)

Bθ = −
1

r sin θ
∂rP , (15)

Bϕ =
T

r sin θ
. (16)

For an axially symmetric force-free field, the functions T and P may

be expressed in terms of each other and appear as solutions of the

force-free GSE:
[

∂2
r +

1 − μ2

r2
∂2

μ

]

P + T
dT

dP
= 0, (17)

where μ = cos θ . P and T are constant on magnetic surfaces or,

equivalently, along magnetic field lines. P is related to the magnetic

flux passing through the area centred on the axis and delineated

by the magnetic surface. Therefore, its value at the poles is zero

and increases towards the equator. The function T is related to the

current passing through the same area. Its functional dependence

on P can be chosen freely (consistently with any continuity and

convergence requirements, particularly for the currents), which is

equivalent to setting boundary conditions for T at the surface of the

star. Here, we invoke the same functional form for T(P) as in Akgün

et al. (2016, 2018a). Thus, the toroidal field is confined within some

critical magnetic surface (P = Pc),

T (P ) =

{

s × (P − Pc)σ : P � Pc

0 : else
, (18)

s being a parameter determining the relative strength of the toroidal

field with respect to the poloidal field. In order to avoid divergences

in the currents we must demand that the power index satisfies σ

≥ 1. For a pure dipolar field, the poloidal stream function in the

magnetosphere is

P =
1

2
Bpole

R3
∗

r
sin2 θ, (19)

while the toroidal stream function is T = 0 everywhere. We will

consider the simplest cases where the boundary value of P at the

surface of the magnetar coincides with that of a dipolar field,

and, therefore, the initial data are symmetric with respect to the

equator. For different choices of the functional relation T(P) given by

equation (18) we solve the GSE and obtain a twisted magnetospheric

initial model. We would like to note that all equations can be rescaled

with Bpole, hence, the results of our numerical simulations can be

normalized to the field strength of interest.

The energy stored in the magnetosphere can be computed as a

volume integral

E =
1

8π

∫

(B2 + E2) dV . (20)

For later reference and in order to normalize the energetic content of

our models, we provide the energy stored in the magnetosphere of

a pure dipolar magnetic field ( �E = 0, Br = Bpole(R∗/r)3cos θ , Bθ =
(Bpole/2)(R∗/r)3sin θ , Bϕ = 0):

Ed =
1

12
B2

poleR
3
∗ = 8.3 × 1046 erg

(

Bpole

1015 G

)2 (
R∗

10 km

)3

. (21)

Once the surface value of P and the functional relation T(P) are

defined, one can solve the GSE iteratively (as it is a non-linear

equation), while imposing vacuum boundary conditions at large

distances. We use the numerical code described in Akgün et al.

(2018a) to build our initial data. Using this parametrization, the

boundary condition at the surface of the neutron star for the

GSE (values of P and T) is fully determined by four parameters

Bpole, s, Pc, and σ . However, the solution of the GSE with this

fixed boundary condition is not necessarily unique. Akgün et al.

(2018a) showed that for sufficiently large magnetospheric twists,

there exist degeneracies, i.e. different solutions of the GSE for the

same boundary conditions (the same set of four parameters). These

solutions differ in their energy, twist, and the radial extent of the

toroidal currents.

Table 2 shows the parameters used to construct the initial data

for our numerical simulations. Each of the series A, B, and C

of initial models were chosen to have identical parameters but

different magnetospheric energies and, hence, represent degenerate

MNRAS 490, 4858–4876 (2019)
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Table 2. Overview of initial data models used in our simulations. s, σ , and

Pc are the parameters determining the boundary condition at the surface of

the neutron star (see Section 4.1). E denotes the total electromagnetic energy

in the magnetospheres, which is normalized to the vacuum dipole energy

Ed (equation 21), hence without dimension. J̃max denotes the maximum

current density at t = 0 (see Section 2.1 as well as Table 1 for unit

conversion). The maximum initial electromagnetic stresses on the magnetar

surface (equation 24) at t = 0 are shown in the last two columns (i.e.

T̃ ra
max := max{|x|=R∗}{T̃

ra(t = 0, x)}, with a = θ , ϕ). Values of J̃max and T̃ ra
max

are given in HLG units for an NS with Bpole = 1015 G and R∗ = 13.7 km .

s σ Pc E/Ed J̃max T̃
rϕ

max T̃ rθ
max

A1 2 2 0.3294 1.1553 1.71e-6 8.97e-10 1.44e-9

A2 2 2 0.3303 1.3356 1.58e-6 8.95e-10 1.24e-9

B1 1 1 0.3717 1.1547 1.08e-6 7.68e-10 1.39e-9

B2 1 1 0.3720 1.2276 1.07e-6 7.68e-10 1.31e-9

C1 1 1 0.4400 1.0653 1.95e-6 6.68e-10 1.56e-9

C2 1 1 0.4412 1.1943 1.03e-6 6.68e-10 1.44e-9

C3 1 1 0.4396 1.2738 1.03e-6 6.71e-10 1.35e-9

Figure 2. Magnetospheric energy normalized to the vacuum dipole energy

(equation 21) of the initial equilibrium models, for different values of the

parameter Pc (in units of P at the equator). The solid and dashed lines

correspond to a series of models with constant s and σ . The coloured dots

correspond to the initial data models used in our simulations.

magnetospheric models. We would like to point out that the value

of Pc is only equal, within each series, up to the second significant

digit, due to numerical reasons. Fig. 2 shows the energy of the

initial models as a function of the parameter Pc. Models within

each spiral curve (constant s and σ ) and with the same value of

Pc have identical boundary conditions but different energies. In

the interpretation made by Akgün et al. (2018a), the lower energy

state for each series of degenerate models (i.e. A1, B1, and C1)

corresponds to stable configurations, while high energy states (i.e.

A2, B2, C2, and C3) may be unstable and would evolve towards

the stable configuration releasing the respective energy difference.

This instability is a possible scenario for the flare activity observed

in magnetars.

The lowest energy solutions are the ones that are most similar to

the vacuum solutions, with all field lines connected to the surface,

while the higher energy solutions are more radially extended, and

can contain disconnected field lines.

4.2 Magnetar interior

The initial models described above provide solutions only for the

magnetosphere. For each possible magnetospheric model one can

build infinite solutions to describe the neutron star interior. The

magnetospheric (exterior) values of P and T determine the magnetic

field B at the exterior side of the surface (equations 14 to 16). To

match this solution to the interior, one has to ensure the continuity

of Br at the surface. This is valid if P is continuous and, hence, T and

Bϕ are continuous as well. However, Bθ does not necessarily match

continuously to the neutron star interior because current sheets (thin

current-carrying layers across which the magnetic field changes

either direction or magnitude) in the ϕ direction may occur. Even

if all components of B are continuous at the surface, the magnetic

field structure in the interior depends completely on how currents

are internally distributed.

In the astrophysical scenario we are considering, the magnetar

reaches the initial state in which we start our numerical simulation

after a slow magnetothermal evolution that proceeds in a long time-

scale compared to the dynamical time-scales (cf. Section 2.2) of

the magnetosphere (∼1 ms) or the crust (∼10 ms). On such long

time-scales, any current close to the surface of the NS is expected

to be dissipated by Ohmic diffusion. Therefore, we consider that

initially all fields are continuous across the surface. We build our

interior solution by extrapolating the exterior magnetic field towards

the stellar interior across a number of grid cells as needed by the

reconstruction algorithm used for the magnetospheric evolution

in our simulations. Since the neutron star is basically a perfect

conductor, the initial charge density and electric field in the interior

(and the magnetosphere) are set to zero.

The surface values of Br and Bϕ are coincident for degenerate

models (e.g. within the series C1, C2, and C3 in Fig. 2) because

P and T at the surface are identical. However, since P and T may

have a different radial dependence outside of the magnetar, and Bθ

depends on the radial derivative of P (equation 15), it is different

for every model of the same series.

5 SI MULATI ONS

We have performed numerical simulations of the neutron star mag-

netosphere using the initial models in Table 2. For all the simulations

we employ our own implementation of a General Relativistic FFE

code in the framework of theEinstein Toolkit2 (Löffler et al.

2012). The EINSTEIN TOOLKIT is an open-source software package

utilizing the modularity of the Cactus3 code (Goodale et al. 2003)

which enables the user to specify the so-called thorns in order to set

up customary simulations. There exist other code packages such as

GiRaFFE (Etienne et al. 2017), which integrate the equations of

force-free electrodynamics employing an evolution scheme based

on the Poynting flux as a conserved quantity (cf. McKinney 2006;

Paschalidis & Shapiro 2013) rather than the electric field and its

current sources (as formulated in e.g. Komissarov 2004; Parfrey

et al. 2017). The Einstein Toolkit employs units where

M⊙ = G = c = 1, which sets the respective time and length scales

to be 1 M⊙ ≡ 4.93 × 10−6 s ≡ 1477.98 m. This unit system is a

2http://www.einsteintoolkit.org
3http://www.cactuscode.org
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variation of the so-called system of geometrized units (as introduced

in appendix F of Wald 2010), with the additional normalization of

the mass to 1 M⊙ (i.e. our HLG units, as introduced in Section 3). For

easy reference, we provide a set of conversion factors for relevant

physical quantities in Table 1.

5.1 Numerical setup

All shown simulations are conducted on a 3D box with dimensions

[4741.12 M⊙ × 4741.12 M⊙ × 4741.12 M⊙] with a grid spacing

of 
x,y,z = 74.08 M⊙ on the coarsest grid level. For the chosen

magnetar model of radius R∗ = 9.26 M⊙ (≃ 13.7 km) this corre-

sponds to a [512R∗ × 512R∗ × 512R∗] box with a grid spacing of


x, y, z = 8R∗. For the low and high resolution tests we employ seven

and eight additional levels of mesh refinement, each increasing

the resolution by a factor of two and encompassing the central

object, respectively. This means that the finest resolution of our

models (close to the magnetar surface) are 
min
x,y,z = 0.0625 × R∗ =

0.5787 M⊙ and 
min
x,y,z = 0.03125 × R∗ = 0.2894 M⊙ for the low

and high resolution models, or in other words 16 and 32 points

per R∗, respectively. The initial data are evolved for a period of

t = 1185.28 M⊙ ≃ 5.84 ms, which is chosen to be well below

the dynamical time-scale of the magnetar crust, which can be

considered as a fixed boundary (see Section 2.2).

In order to ensure the conservation properties of the algorithm,

it is critical to employ refluxing techniques correcting numerical

fluxes across different levels of mesh refinement (see e.g. Collins

et al. 2010). Specifically, we make use of the thorn Refluxing4

in combination with a cell-centred refinement structure (cf. Shibata

2015). We highlight the fact that employing the refluxing algorithm

makes the numerical code 2−4 times slower for the benefit of

enforcing the conservation properties of the numerical method

(especially of the charge). Refluxing also reduces the numerical

instabilities, which tend to develop at mesh refinement boundaries.

In conservative schemes, numerical reconstruction algorithms

(we employ an MP7 scheme; cf. Suresh & Huynh 1997) derive inter-

cell approximations of the conservative variables by making use of

their values at several adjacent grid-points (for MP7, one requires

seven points). As a result of the numerical coupling between the

magnetosphere and the magnetar crust introduced by the intercell

reconstruction at the stellar surface, the field dynamics induce a

mismatch in the current flowing through the surface and effectively

trigger a (numerical) flow of charges leaving or entering the domain.

In order to avoid this artefact, we replace the reconstructed values

of the radial current J̃ r
FFE at interfaces between the stellar interior

and exterior by the cell-centred value in the stellar interior. This

procedure ensures a conservation of magnetospheric charge.

The (3D) initial data are imported from the (2D) initial models

(see section 4.1) by bicubic spline interpolation. Throughout the

numerical evolution, all quantities on grid-points inside of the

magnetar radius are fixed to their initial values.

5.2 Instability onset and magnetospheric energy balance

We have performed simulations with initial models in the low energy

branch (A1, B1, and C1) and in the high energy branch (A2, B2,

C2, C3). We observe a differentiated behaviour in the evolution of

the system depending on the class of initial model. For models in

4Refluxing at mesh refinement interfaces by Erik Schnetter: https://svn.cct.

lsu.edu/repos/numrel/LSUThorns/Refluxing/trunk

the low energy branch we find that the magnetosphere is stable and

that the system remains essentially unchanged. The energy of the

system remains constant throughout the simulation (see blue lines

in Fig. 3), confirming the stability of these configurations, at least on

dynamical time-scales. This is especially true in the high resolution

models, which exhibit a smaller numerical dissipation. The slightly

larger numerical dissipation of the low resolution models explains

the small drift in time with respect to the initial energy displayed

by the blue dashed lines in Fig. 3. On the other hand, models

in the high energy branch become unstable on a time-scale of a

few milliseconds and the magnetosphere changes its shape roughly

at the same time as the energy of the magnetosphere decreases

(see red and green lines in Fig. 3). This numerical experiment

confirms the hypothesis of Akgün et al. (2018a) that, for degenerate

initial models, only the lowest energy state is stable, and that all

corresponding degenerate cases of high energy are unstable. In

addition, we note that the lower energy states are closer to a purely

dipolar magnetosphere, hence, the minimized circumference of the

magnetic surfaces minimize the magnetospheric energy content (cf.

Thompson & Duncan 1996).

For configurations in the unstable branch, the onset of the instabil-

ity proceeds earlier for lower numerical resolution. This is expected

because a coarser grid contains larger numerical discretization

errors acting as a seed for the instability onset. However, the rapid

drop in energy during the instability proceeds in a similar fashion

for both numerical resolutions, indicating that the instability has

a physical origin and is not a numerical artefact. In the case of

the high energy initial model C2 we observe a rearrangement

of the lobes of magnetic twist towards a dipolar structure (see

Fig. 4) prior to a significant drop of magnetospheric energy (by

approximately 30 per cent of its initial value). During the phase of

full validity of the force-free condition (see equation 11) the loss of

magnetospheric energy is dominated by an outgoing Poynting flux

at the innermost boundary (see Fig. 5). For our boundary condition

it can be interpreted as the formation of a strong current on a thin

layer below the surface, where energy can be efficiently dissipated.

Following Parfrey et al. (2013) in the context of twisted magnetar

fields and Li et al. (2019) in a study of energy dissipation in

collisions of force-free Alfvén waves, the onset of the (topological)

relaxation is likely to be linked to Ohmic heating J · E �= 0,

which occurs as a result of (minor) violations of the force-free

condition (10), as can be seen in the bottom panel of Fig. 5 (note

the much smaller scale of that panel compared to the middle one).

We give a more detailed review of the treatment of these violations

in our code and throughout the literature in Appendix A2.

5.3 Surface currents and long-time evolution

Following the initial instability and subsequent rapid rearrangement

of the magnetar magnetosphere (Section 5.2), thin currents form at

the magnetar surface (see Figs 6 and 7). These currents are expected

to appear as the initial model in the high energy state tries to relax

to the lowest energy magnetospheric configuration, while keeping

the interior field fixed (see the discussion in Section 4.2). There

are two possible fates for these currents: (i) they could propagate

inwards, inside the magnetar crust, deforming the magnetic field

inside, and creating a mechanical stress in the crust, on a time-

scale of several 10 ms, or (ii) they could form a thin surface current

dissipating on a time-scale shorter that the time it takes to deform

the crust. These two possibilities are not mutually exclusive and a

combination of both is possible. In none of the cases our simulations

can give a conclusive answer because (i) we are not evolving the

MNRAS 490, 4858–4876 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

9
0
/4

/4
8
5
8
/5

5
8
0
6
4
0
 b

y
 U

n
iv

e
rs

id
a
d
 d

e
 A

lic
a
n
te

 u
s
e
r o

n
 1

9
 D

e
c
e
m

b
e
r 2

0
1
9

https://svn.cct.lsu.edu/repos/numrel/LSUThorns/Refluxing/trunk


Instability of twisted magnetar magnetospheres 4865

Figure 3. Time evolution of total magnetospheric energy content for the models in Table 2. The instability of the field configuration for degenerate solutions

of higher energy triggers the rearrangement of magnetic field lines as well as a release of energy into the magnetosphere and on to the magnetar surface. The

simulated time-scale on which the instabilities are observed falls within the dynamical time-scale of the magnetar crust. Low resolution simulations (16 points

per R∗) are shown in dotted lines, high resolution simulations (32 points per R∗) in solid lines. The initial (analytical) value of total magnetospheric energy for

each configuration is indicated by grey lines. The approximate time of the breakdown of the force-free condition Ẽ
2
− B̃

2
< 0 (see Appendix A2) is depicted

by coloured dots.

magnetar interior as we are considering only time-scales smaller

than the dynamical time-scale of the crust, (ii) the formation of

thin surface currents is numerically challenging (would require a

computationally prohibitively high resolution near the magnetar

surface), and (iii) it would eventually violate the FF conditions (10)

and (11), hence invalidating our current numerical approach.

The aforementioned current layers are expected to be regions

of strong energy dissipation and the breakdown of the force-free

conditions (see e.g. Uchida 1997; McKinney 2006; Palenzuela et al.

2010; Parfrey et al. 2013). Figs 5 and 7 link the breakdown of the

force-free condition (11) and the occurrence of surface currents

with the opening of dissipation channels different to the energy flow

through the magnetar surface (see Appendix A2 for a short review of

the force-free breakdown). We find the violation of condition (10) to

be continuously occurring with peaks at the instance of rapid energy

dissipation. Condition (11) starts to fail on longer time-scales at the

moment of fastest transfer of magnetic energy through the surface.

At this time, further dissipation mechanisms (see Fig. 5) come

into play, as is expected throughout the literature (Uchida 1997;

McKinney 2006; Li et al. 2019).

It should be noted that the total magnetospheric energy for

the models B2, C2, and C3 drops below the energy of their

respective low energy equilibrium solutions, and even below the

magnetospheric energy of the vacuum dipole (equation 21). How-

ever, this energy drop is (slightly) smaller for the high resolution

simulations, and shows some dependence on the chosen setup of the

hyperbolic/parabolic cleaning procedures (see Appendix A1) at the

magnetar surface. The sensitivity of this behaviour to the numerical

details at the location of the (3D Cartesian) crust may be attributed

to the numerical dissipation of the employed code.

6 D ISCUSSION

6.1 Energy release during the instability

During the rearrangement of magnetic field lines in the high energy

models A2, B2, C2, and C3, an amount 
E of electromagnetic

energy is released into the magnetosphere and on to the magnetar

crust (Poynting flux through the stellar surface, see Fig. 5). The

amount of released energy in CGS units, Er , can be quantified

directly from Table 3 by employing the conversion formula

Er = 2.14 × 1047 erg

(


E

Ed

)(

Bpole

1015 G

)2 (
R∗

13.7 km

)3

. (22)

For the changes in energy (
E/Ed ≈ 0.1 − 0.3) observed in our

simulations with the highest energy within each series (C2, C3, B2,

and A2) the released energy is in the range Er ≈ 2.1 × 1046 − 6.4 ×
1046 erg. This energy range is compatible with that of observed GFs

(1045–1048 erg). For instance, the energy liberated during the peak

of the GF of SGR 1806-20 is ∼ 3.7 × 1046 erg (Hurley et al. 2005),

which is compatible with values 
E/Ed ≃ 0.17. However, the other

two known GF events (SGR 0525-66 and SGR 1900 + 14; see Cline

et al. 1980; Hurley et al. 1999) display significantly smaller amounts

of energy during their initial peaks.

The range of 
E/Ed in our simulations depends on the choice

of initial models. The detailed analysis in Akgün et al. (2018a)

shows that 
E/Ed could, in principle, be as large as 0.8 for models

with the appropriate values of s and σ and the value of Pc to be at

the maximum of the corresponding sequence (see fig. 3 in Akgün

et al. 2018a). However, the astrophysical path that could lead to an

unstable configuration this far away from the equilibrium branch is

MNRAS 490, 4858–4876 (2019)
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Figure 4. Field line evolution (high resolution, 32 points per R∗) of the C2 initial model (Table 2). The initially extended lobes of magnetic twist relax towards

a dipolar structure and fall towards the central object. Strong energy dissipation (see Fig. 3) occurs when the magnetic twist collapses on to the magnetar crust.

The final configuration is dipole-like, though it fully relaxes on a much longer dynamical time-scale. Top: Poloidal field lines (cross-section through the 3D

data) and colour-filled contours of the toroidal magnetic field (same colour coding as below). The initial field line configuration is indicated by grey dashed

lines. Middle: Toroidal field distribution along the x-axis. The initial toroidal magnetic field is denoted by grey dashed lines. Bottom: Evolution of selected field

lines in 3D, displaying the twist relaxation. Click for animation: Evolution of total magnetospheric energy and selected field lines in 3D of the (high resolution)

C2 initial model (Acrobat Reader only).

unclear. Speaking in terms of evolution, models close to the stability

threshold for which 
E/Ed could be a small fraction of the energy

encountered in our simulations are much more likely than models

with values of e.g. 
E/Ed > 0.2.

The time-scale on which Er is released (
tr ∼ 1−5 ms; see

Table 3) is consistent with the dynamical time-scales in the

magnetosphere (Section 2.2.2). If we estimate the luminosity of

the energy released as

L0 :=
Er


tr
, (23)

we find that L0 ∼ (0.7 − 4) × 1049 erg s−1 for the unstable mod-

els listed in Table 4. This dynamical luminosity is significantly

larger than the peak luminosity of GFs (e.g. the peak luminos-

ity of SGR 1806-20 is ∼ 2 × 1047 erg s−1; Hurley et al. 2005),

and suggests that only a fraction of the released energy con-

tributes to explain the thermal properties of GFs in SGRs. As

an alternative, not necessarily exclusive, we consider different

mechanisms to broaden the time-scale over which the energy

leaks out of the system, hence reducing L0, in the following

sections.

6.2 Stresses induced in the crust

Fig. 5 suggests that a significant part of the released energy is

transferred into the magnetar crust during the (fully force-free)

evolution. We would like to point out that an exact modelling

of magnetar crust physics will be necessary in order to simulate

respective feedback mechanisms between the stellar surface and

the magnetosphere. However, in this section we make some crude

estimates regarding the stresses induced in the crust as a result of

the magnetospheric evolution of our models.

The stresses induced in the crust by the evolving magneto-

sphere can be computed studying the momentum-transfer from the

magnetosphere to the crust. The stress tensor in the (force-free)

MNRAS 490, 4858–4876 (2019)
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Instability of twisted magnetar magnetospheres 4867

Figure 5. Energy balance during the evolution of the high resolution model

C2 (Table 2). Top: Comparison of the change in total magnetospheric energy,

normalized to the energy of a magnetosphere equipped with a pure dipolar

magnetic field, 
E/Ed, as well as the Poynting flux through the magnetar

surface. Up to a simulation time of t ∼ 3.33 ms the energy change is

dominated by Poynting flux on to the magnetar crust. Middle: Maximum

violation of the B̃
2
− Ẽ

2
≥ 0 condition throughout the numerical grid.

Bottom: Maximum violation of the B̃ · Ẽ = 0 constraint throughout the

numerical grid. At the time of the breakdown of conditions (10) and (11),

the energy change is dominated by secondary (possibly numerical) effects.

magnetosphere is

T ij
ms =

1

4π

(

1

2
δij

(

E2
ms + B2

ms

)

− Ei
msE

j
ms − B i

msB
j
ms

)

, (24)

where B i
ms, and Ei

ms are the magnetic and electric fields in the

magnetosphere. The stress tensor in the crust consists of the

contribution of the magnetic field, the fluid, and the stress of the

solid

T ij
c = Pδij +

1

4π

(

1

2
δijB2

c − B i
cB

j
c

)

+ σ ij , (25)

where P is the pressure of the fluid, B i
c the magnetic field inside the

crust, and σ ij is the stress tensor of the deformed solid. Especially,

σ ij = 0 for a non-deformed solid – which holds at the beginning

of the presented simulations in which the crust is relaxed after

the long-term magneto-thermal evolution during which plastic

deformations can keep this relaxed state. Throughout the instability

phase captured in our simulations, the magnetosphere induces a

Figure 6. xz-cross-sections of the toroidal current in geometrized units

showing the development of strong surface currents during the evolution, in

addition to other currents extended on larger magnetospheric volumes. Top:

Low resolution model C2 (16 points per R∗). Bottom: High resolution model

C2 (32 points per R∗). The high resolution evolution shows currents located

around the magnetar surface with more detailed structures, emphasizing their

interpretation as surface currents. The spatial coincidence of the currents

in both resolutions reinforce the argument that the observed currents are

of physical origin (in spite of the – relatively small – differences among

different resolutions).

stress in the crust that effectively deforms it. The Lagrangian

displacement of any point in the crust with respect to the relaxed

state is given by the deformation vector ξ i. For linear displacements,

the stress tensor can be expressed in terms of the deformation vector

(Landau & Lifshitz 2012) as follows:

σ ij = Kξ k
;kf

ij + 2μ

(

1

2
(ξ j ;i + ξ i ;j ) −

1

3
f ij ξ k

;k

)

, (26)

where semicolon indicates the covariant derivative, fij the flat 3-

metric, K is the bulk modulus, and μ the shear modulus. Crust

and magnetosphere can only interchange momentum through Trθ

and Trϕ . Hence, these are the only relevant components. Imposing

continuity of these two components at the surface of the star (P = 0)

one finds

−
1

4π

(

Er
msE

a
ms + Br

msB
a
ms

)

= −
1

4π
Br

c B
a
c +σ ra a={θ, ϕ},

(27)
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4868 J. F. Mahlmann et al.

Figure 7. Azimuthal angular averages of the toroidal current (normalized

to its initial value at the stellar surface) in the equatorial plane showing the

development of surface currents during the evolution of the C2 initial model.

We display the current evolution for both low resolution (16 points per R∗,

denoted by dashed lines), and high resolution (32 points per R∗, denoted by

solid lines) models. The increase of the toroidal current during the transient

of energy dissipation (see Fig. 3) at the lower resolution (compare the two

blue lines) may be attributed to a faster onset of the twist instability for this

model.

Table 3. Selection of electromagnetic quantities monitored throughout

the (high resolution, 32 points per R∗) simulation of the models of

Table 2. The total change in energy 
E (displayed as a fraction of the

vacuum dipole energy; equation 21) corresponds to the maximum drop

of electromagnetic energy during the total runtime (see Section 6.1).

The operator 
mx acting on any quantity A(t, x) is defined as 
mxA :=
max{t,|x|=R∗} {A(t, x) − A(0, x)}/ max{|x|=R∗} A(0, x). Hence, 
mxJ is the

maximum increase in current density in the magnetosphere during the

relaxation relative to the initial values (see Section 2.1). In the right-

hand columns, 
mxTrϕ and 
mxTrθ denote the maximum increase of

electromagnetic stresses relative to their corresponding initial values (see

Section 6.2) on the stellar surface compared to its initial value. We highlight

with bold face the maximum values of each of the last four columns.

Model 
tr(ms) 
E/Ed 
mxJ 
mxTrϕ 
mxTrθ

A1 5.8400 0.0033 0.0159 0.0012 0.0010

A2 1.4162 0.0963 1.6350 0.0295 0.0150

B1 5.8400 0.0042 0.0363 0.0012 0.0014

B2 3.0427 0.1002 0.9805 0.0358 0.0232

C1 5.8400 0.0009 0.0640 0.0008 0.0013

C2 2.1604 0.2808 3.5400 0.0851 0.0414

C3 1.0490 0.1962 3.1720 0.1008 0.0811

and therefore

σ ra =
1

4π

(

Br
c B

a
c − Er

msE
a
ms − Br

msB
a
ms

)

a = {θ, ϕ}. (28)

For the equilibrium configuration at the beginning of the simulation,

in which E = 0 and B is continuous (no initial current sheets), the

mechanical stress is zero (σ ra = 0) and, hence, the stress at the

surface is just T ra
c = −Br

ms(t = 0)Ba
ms(t = 0)/(4π ). Therefore, we

can compute the mechanical stress at any time as

σ ra = T ra
ms − T ra

ms (t = 0). (29)

As discussed in Section 2.2.2, the magnetic fields are dominant in

the outermost low-density part of the crust and can be considered to

be force-free (Beloborodov 2009). The point at which the magnetic

field lines are anchored is not the surface of the star, but some radius,

rc, below it (see also the discussion referencing Fig. 1). However,

equation (28) still holds at this radius, because P is continuous,

and the relevant terms cancel out. In other words, from the point

of view of the numerical simulation, the inner boundary condition

therein used corresponds to rc, and not the radius of the star. The

force-free region of the crust corresponds to the region where shear

stresses do not play a role in the dynamics, i.e. μ ≪ B2. For typical

magnetar magnetic fields of B ∼ 1015 G this is fulfilled for μc ≪
1030 erg cm−3, which typically and for a large variety of equations

of state (Steiner & Watts 2009) corresponds to densities of ρ ≪
1014 g cm−3.

For the discussion at hand, we will consider that the anchoring is

produced at some point between the inner crust outer boundary

(ρ ≈ 4 × 1011 g cm−3), with μIC ≈ 1.4 × 1028 erg cm−3, and

μ14 ∼ 1030 erg cm−3, its value close to the core-crust transition,

at about 1014 g cm−3. The relevant components of the stress tensor

in spherical coordinates are

σ rθ = 2μ srθ = μ
[

r∂r

(

ξ θ

r

)

+ 1
r
∂θξ

r
]

, (30)

σ rϕ = 2μ srϕ = μ
[

r∂r

(

ξϕ

r

)

+ 1
r sin θ

∂ϕξ r
]

, (31)

where sij is the strain tensor. For sufficiently large strains the crust

will fail and a rapid plastic deformation will deform the crust

persistently. The breaking strain of the crust has been estimated

to be about 0.1 (Horowitz & Kadau 2009). Therefore, any stress

larger than ∼0.2μc will likely produce a failure in the crust. The

maximum mechanical stress exerted on the magnetar crust, σ ra
max,

can be quantified directly from the results shown in Tables 2 and 3

by employing the conversion formula

σ ra
max = 5.55 × 1028 erg cm−3

(


mxT
ra

0.1

)(

T̃ ra
max

10−9

)(

Bpole

1015 G

)2

.

(32)

The maximum mechanical stress (see Fig. 8) on the magnetar crust

measured throughout the shown simulations (see Tables 2 and 3)

correspond to σ ra ≈ 1028 erg cm−3 for Bpole ≈ 1015 G. Considering

the quadratic leverage of the magnetic field strength, mechanical

stresses of σ ra ≈ 1030 erg cm−3 are likely to be reached for Bpole ≈
1016 G and beyond. The largest mechanical stresses are exerted in

case of the high energy models A2, B2, C2, and C3.

Our numerical simulations indicate that the instability occurs in a

quasi-axisymmetric way (cf. Fig. 4), with deviations from axisym-

metry of less than 1 per cent.5 In axisymmetry, axial displacements

(ξϕ) and polar displacements (ξ r, ξ θ ) decouple and it is possible to

estimate the axial displacement from the σ rϕ component of the stress

tensor. Although the magnetospheric dynamics can, in principle,

induce radial deformations, ξ r, in reality those deformations are

strongly suppressed because they involve the motion of matter

parallel to the gravitational field (not included in our calculation).

Therefore, in practice one can consider ξ r = 0, such that

σ rϕ = μ r∂r

(

ξϕ

r

)

, (33)

5We quantify these deviations performing a multipolar expansion of the

eletromagnetic energy and evaluating the energy stored in modes with

azimuthal numbers m > 0.
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Instability of twisted magnetar magnetospheres 4869

Table 4. Energetics of our models scaled to a magnetic field strength Bpole = 1015 G. (i) Energy released. (ii)

Estimates of dynamic luminosity L0 (equation 23). (iii) Estimates of photospheric luminosity Lph (equation 53). (iv)

Estimates of photospheric temperature kBTph (equation 52). Rows (v) and (vi) display the estimated photospheric

luminosityLph and temperature kBTph computed for the case in which η <η∗, assuming that the energy is released over

a time-scale 
tspike = 0.1 s (equation 56). Finally, rows (vii) and (viii) show the initial luminosity L0 (equation 56)

and temperature kBT0 also assuming that the energy is released over a time-scale 
tspike = 0.1 s. Note that the last

two rows coincide with the photospheric values if η > η∗.

C2 C3 B2 A2

(i) Er (erg) 6.03 × 1046 4.21 × 1046 2.15 × 1046 2.07 × 1046

(ii) L0 (erg s−1) 2.78 × 1049 4.00 × 1049 7.05 × 1048 1.46 × 1048

(iii) Lph (erg s−1) 9.32 × 1047 2.31 × 1047 5.9 × 1047 3.49 × 1047

(iv) kBTph (keV) 25 21 43 84

(v) Lph (erg s−1) 2.60 × 1047 2.31 × 1047 1.84 × 1047 1.82 × 1047

(vi) kBTph (keV) 121 140 186 189

(vii) L0 (erg s−1) 6.03 × 1047 4.21 × 1047 2.15 × 1047 2.07 × 1047

(viii) kBT0 (keV) 281 257 217 215

Figure 8. Mechanical stresses exerted on the magnetar crust (according to

equation 32) for the maximum stresses (Tables 2 and 3) observed during

the high resolution simulations of models A2, B2, C2, and C3. The stress

component σ rϕ is denoted by solid lines, the component σ rθ by dotted

lines. The colour coding corresponds to the initial models as introduced in

Fig. 3. The black lines denote the approximate breaking stresses ∼0.2μIC,

and ∼0.2μ14, at the inner crust boundary and near the core-crust transition,

respectively. The high energy models reach the limit of a possible breaking

of field lines for field strengths of Bpole ≈ 1015–1016 G.

σ rθ = μ r∂r

(

ξ θ

r

)

. (34)

The transition at the anchoring point happens across a small

distance, h ≡ R∗ − rc, over which we can consider that μ = μc and

σ ra are constant. Integrating the stress tensor along this distance we

obtain:

ξ a
c = rc

σ ra

μc

ln

(

rc

rc + h

)

≈ R∗
σ ra

μc

, (35)

for h ≪ rc, R∗, and independent of the size of the transition layer,

h. The radial force per unit volume induced by the applied stress is

(Landau & Lifshitz 2012)

f r = σ rk
;k =

1

r

(

∂θσ
rθ + cot θσ rθ

)

+
1

r sin θ
∂ϕσ rϕ, (36)

where we have considered that the only non-vanishing components

are σ rθ and σ rϕ . We can estimate the radial displacement ξ r

balancing this force with the gravitational force on the displaced

mass, taken out of hydrostatic equilibrium. We can make an order

of magnitude estimate using linear perturbation theory if one

neglects terms including gradients of background quantities and

perturbations of the gravitational potential. In that case, the force

balance reads:

c2
s ρ ∂rrξ

r ≈ −fr . (37)

Integrating over the transition length h we get

ξ r ≈ −
fr h2

2 c2
s ρ

≈ −
c2

shear

c2
s

h2srk
;k, (38)

where c2
shear ≡ μ/ρ is the shear speed. For typical values in the crust

one assumes c2
shear/c

2
s ∼ 10−2. If we consider the maximum possible

strain, i.e. the breaking strain, sij ∼ hs
ij

;j ∼ 0.1 (Horowitz & Kadau

2009), and the maximum possible value for h ∼ 
R ∼ 1 km, the

size of the crust, one finds an upper limit for the radial displacement

of ξ r
max ∼ 100 cm. At the same time, the displacement components

may be estimated directly from the results displayed in Fig. 8 by

employing equation (35) and μc = 0.5 × (μ14 + μIC):

ξ a
c ≈ 2.7 × 104 cm

(

σ ra

1028 erg cm−3

)(

Bpole

1015 G

)2 (
R∗

13.7 km

)

.

(39)

Our results show that for typical magnetar field strengths (B �

1015 G) the instability is likely to break a large fraction of the crust

down to the inner crust. For the largest magnetic fields (B � 1016 G)

the stresses induced in the crust are sufficient to shatter the entire

crust. We should mention that the three magnetars that have showed

GFs are among the more magnetized known ones and all three

exceed 5 × 1014 G.

6.3 Emission processes

6.3.1 Estimation of observational properties of the energy release

We have advanced that our models may release Er ≈ 2.1 × 1046 −
6.4 × 1046 erg on time-scales of milliseconds, producing, there-

fore, dynamic luminosities L0 ∼ (0.7 − 4) × 1049 erg s−1 for the

unstable models listed in Table 4. Following the reasoning of

Thompson & Duncan (1995), confining this energy in the form

MNRAS 490, 4858–4876 (2019)
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4870 J. F. Mahlmann et al.

of a photon-pair plasma by a closed magnetic flux loop of outer

radius r requires that the field pressure at the outer boundary of the

loop exceed the deposited energy density

B(r)2

8π
�

Er

4π/3(r3 − R3)
. (40)

In a dominantly dipolar magnetosphere, B(r) ∼ Bpole(R∗/r)3, the

plasma can be confined if Er < Ed/2 within a radius r in the range

Ed

Er

[

1 −

√

1 − 2
Er

Ed

]

�

(

r

R∗

)3

�
Ed

Er

[

1 +

√

1 − 2
Er

Ed

]

. (41)

For the range of values ofEr/Ed ∼ 
E/Ed from our models (Table 3)

we obtain that the size of the confinement region, 
R ≡ r − R∗, is

limited by

(1.8 − 6) × 10−2 R∗ � 
R � (0.8 − 1.7) R∗. (42)

Note that this result is independent of the magnetic field strength

Bpole.

Our numerical simulations show that most of the energy is

released in a thin and numerically unresolved surface current of

the star, that we measure as a Poynting flux (see Fig. 5) and in

a region close to the surface (r � 1.25R∗) with large currents (see

Figs 6 and 7). Energy deposited there, essentially at the footprints of

magnetic field lines, is expected to distribute efficiently along those

lines aided by the flowing pair plasma. As a result, we expect that the

energy will fill an extended region of the magnetosphere comparable

in size to the region filled with currents (see Fig. 4). This region can

be as large as ∼4R∗ at the time of maximum energy dissipation.

For magnetic field lines extending within the limits given by

equation (42), the energy is expected to be confined. However,

for lines extending beyond (0.8−1.7)R∗, the energy will not be

confined and it may yield an ultrarelativistic fireball composed of

pairs, photons, and a small amount of baryons lifted up from the

outer crust by the large energy released there. Depending on the

structure of the magnetosphere, the energy released in this form can

be a significant fraction of Er. Obviously, our methodology does

not allow us to track the evolution of the released energy, but we

may obtain a rough estimation of its bolometric properties. For the

estimate we will consider that most of the energy is released in the

fireball, which gives us upper limits.

The physics of such expanding fireball has been considered in

many papers (e.g. Goodman 1986; Paczynski 1986; Shemi & Piran

1990; Meszaros, Laguna & Rees 1993; Piran, Shemi & Narayan

1993), especially addressing the generation of gamma-ray burst

(GRBs), but also applied to SGRs (e.g. Nakar, Piran & Sari 2005).

The sudden energy release results into a thermal burst carrying most

of the initial energy, and according to the canonical interpretation

(e.g. Hurley et al. 2005), with roughly the original temperature and a

fraction of the energy in the form of relativistic pairs. The observed

thermal spectrum of the flare and its temperature support this idea.

Here we follow the model of Mészáros & Rees (2000), which

suffices for the basic estimates we aim at. Assuming that in a region

of size R0 ≃ R∗ (initially at rest), energy is released at a rate L0, the

initial temperature of the fireball in units of the electron rest mass

is (Mészáros & Rees 2000, equation 2)

�0 =

(

kB

mec2

)(

L0

4πR2
0car

)1/4

= 1.43

(

L0

2.8 × 1049 erg s−1

)1/4 (
R0

1.37 × 106 cm

)−1/2

, (43)

where me = 9.1095 × 10−28 g is the electron mass, ar = 7.57 ×
10−15 g cm−1 s−2 K−4 is the radiation constant, and kB ≃ 1.38 ×
10−16 erg K−1 is the Boltzmann constant. In the previous equation

(and hereafter) we have scaled the luminosity to the dynamical

luminosity estimated for model C2, but a similar exercise has been

undertaken for models C3, B2, and A2, being the results listed in

Table 4. The value of �0 in equation (43) corresponds to a comoving

temperature kBT0 ≃ 732 keV. Starting from its initial radius, R0, the

fireball expands and accelerates until it converts most of its internal

energy into kinetic energy at a distance Rs, commonly called the

saturation radius (see equations 50 and 51 below). The Lorentz

factor, Ŵ, of the expanding fireball is approximately given by

Ŵ =

⎧

⎪

⎨

⎪

⎩

r

R0

if r < Rs,

Rs

R0

if r ≥ Rs.
(44)

The amount of mass that may be unbound due to an energy release

as large as suggested by our models (Er) is uncertain, but we may

estimate it to be as small as Mex ≃ 3 × 10−10 M⊙. The period over

which this mass is extracted we assume to be the same as that over

which the energy is released, 
tr. This implies a mass-loss rate

from the magnetar surface Ṁ ≃ Mex/
tr ≃ 2.8 × 1026 g s−1. The

dimensionless entropy of the fireball for this baryon load is

η =
L0

Ṁc2

≃ 110

(

L0

2.8 × 1049 erg s−1

)(

Ṁ

2.8 × 1026 g s−1

)−1

. (45)

As usual, we define the photospheric radius as the distance at which

the fireball becomes optically thin, which may happen before the

Lorentz factor saturates or after that, i.e. in the regime where the

fireball coasts

Rph ≃
L0σTY

4πmpc3η3
, (Rph > Rs) (46)

Rph ≃

(

L0σTY

4πmpc3η

)1/3

. (Rph ≤ Rs) (47)

Here, σT = 6.6525 × 10−25 cm2 and mp = 1.6726 × 10−24 g are

the Thompson cross-section and the proton mass, respectively. Y

represents the number of electrons per baryon. In the following, we

will take Y ≃ 1, which is appropriate once pairs are not present in

the system. Indeed, this shall be the case for radii larger than Rp

(Mészáros & Rees 2000, equation 3)

Rp = R0

�0

�p

≃ 5.8 × 107 cm

×

(

L0

2.8 × 1049 erg s−1

)1/4 (
R0

1.37 × 106 cm

)1/2 (
�p

0.03

)−1

, (48)

where the comoving dimensionless temperature below which e±

pairs drop out of equilibrium is �p ≃ 0.03 (equivalently, kBTp ≃
17.4 keV). Note that Rp ≪ Rph (see equations 46 and 47).

The critical baryon load, η∗ for which the photospheric radius

equals the saturation radius, i.e. Rph = Rs, is given by (Mészáros &

Rees 2000, equation 5)

η∗ =

(

L0σT

4πmpc3R0

)1/4

≃ 393

(

L0

2.8 × 1049 erg s−1

)1/4 (
R0

1.37 × 106 cm

)−1/4

.

(49)
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Instability of twisted magnetar magnetospheres 4871

Depending on the value of the parameter η, there are two regimes.

Either the photospheric radius happens beyond the saturation radius

(η < η∗) or, otherwise, the saturation radius happens when the

fireball is still expanding (η > η∗). In the former case, the saturation

radius is

Rs = ηR0 ≃ 1.5 × 108 cm

(

R0

1.37 × 106 cm

)

( η

110

)

, (50)

where we have used for η the value computed in equation (45)

for the assumed value of Ṁ . If the photosphere appears when the

fireball is still accelerating, the saturation radius is attained at a

distance (Mészáros & Rees 2000, equation 11)

Rs = η∗R0 ≃ 5.4 × 108 cm

×

(

L0

2.8 × 1049 erg s−1

)1/4 (
R0

1.37 × 106 cm

)3/4

, (51)

Interestingly, Hurley et al. (2005) model the peak of SGR 1806-

20 assuming that the dimensionless entropy of the fireball is η

> η∗ because for the observed peak luminosity (much smaller

than that implied in our models, namely, ∼ 2 × 1047 erg s−1), the

critical baryon load would be 3−4 times smaller than estimated in

equation (49) and, hence, Hurley et al. (2005) naturally obtain η �

η(1806−20)
∗ . The observational difference between the two described

regimes is notable for our models as we see next in the estimation

of the photospheric temperature and luminosity of the events. In

the case η < η∗, the photospheric temperature and luminosity are,

respectively,

kBTph = kBT0

(

Rph

Rs

)−2/3

≃ 25 keV

(

L0

2.8 × 1049 erg s−1

)−5/12

×
( η

110

)8/3
(

R0

1.37 × 106 cm

)−5/6

, (52)

and (Mészáros & Rees 2000, equation 9),

Lph = L0

(

Rph

Rs

)−2/3

≃ 9.3 × 1047 erg s−1

(

L0

2.8 × 1049 erg s−1

)7/12

×
( η

110

)8/3
(

R0

1.37 × 106 cm

)−5/6

. (53)

The value obtained in equation (52) must be compared with the

ones obtained from observations, namely kBT
obs

peak ≃ 175 − 250 keV.

Our result underestimates the observed temperature significantly.

However, we are neglecting Comptonization effects, which may

slightly raise the estimated photospheric temperature (still below the

observational data). Note that smaller values of L0, in line with the

observed luminosities at peak for SGRs, would bring the observed

photospheric temperature to the observed values, but, at the same

time, they would significantly raise the photospheric luminosity,

hence yielding events much more luminous than observed. The

dependence on η8/3 is the same in both equations (52) and (53),

therefore, changes in the assumed baryon loading may not improve

the consistency of our estimated photospheric values with the

observed ones. However, if the baryon load is sufficiently small

such that η > η∗ (as assumed in Hurley et al. 2005), the declining

temperature and luminosity in the outflow are compensated by the

relativistic blueshift. In this case, we would estimate the following

photospheric temperature

kBTph = kBT0

≃ 723 keV

(

L0

2.8 × 1049 erg s−1

)1/4 (
R0

1.37 × 106 cm

)−1/2

,

(54)

and luminosity

Lph = L0 ≃ 2.8 × 1049 erg s−1 erg s−1. (55)

In this case, both estimations for Tph and Lph significantly overesti-

mate the observed values for SGRs.

We have found in this section that independently of whether the

photosphere of the expanding fireball happens in the acceleration

phase or in the coasting phase, the estimated values of Tph and Lph

are not compatible with observations. The root for the discrepancies

found are the very large dynamic luminosities (L0) of most of our

models. These large values result from considering magnetospheric

initial data where the twist is so large that they release a large

amount of energy on time-scales of milliseconds. We note that

models with larger relative toroidal fields (as induced by a power-

index σ = 2, and s = 2) spanning a larger fraction of the magnetar

surface (due to their smaller values of Pc), e.g. model A2 (Table 4),

show values of Tph and Lph broadly compatible with the most

energetic GFs observed so far (see e.g. Hurley et al. 2005; Coti

Zelati et al. 2018). This is in contrast to models where we have built

up the magnetosphere with s = σ = 1 (namely, C2, C3, and B2),

which systematically yield overluminous and too cold photospheric

conditions. Thus, our results suggest that twisting magnetospheres

to the largest (theoretical) levels we have considered here may not

be realized in nature. Well before reaching the largest twists of

models C3, C2, or B2 the dynamical instability may set in releasing

smaller amounts of energy (and hence, producing smaller dynamical

luminosities).

A potential handicap in our models is the duration of the

observational signal that yield the fireballs modelled so far. In the

canonical fireball model, the energy release leads to a frozen pulse

whose duration approximately equals the time-scale over which

the energy is deposited, 
tr (e.g. Piran et al. 1993, but see Janka

et al. 2006). Since 
tr ≪ 
tspike, the quasi-thermal radiation bursts

that we have estimated are too short to account for the typical

time-scale of the initial spike of GFs in SGRs (
tspike ∼ 0.1 s).

In our simulations, the energy change in the magnetosphere is

driven by the Poynting flux through the star surface. However,

the ability of the crust to absorb all this energy on the dynamical

time-scale of the magnetosphere is limited because of the low

transmission coefficient (see equation 5). So far we have considered

that all this energy is temporarily stored in a thin layer above the

magnetospheric surface, where intense currents may convert the

stored magnetic energy into thermal energy. This is consistent with

the boundary conditions imposed in our numerical simulations.

Alternatively, we could have chosen boundary conditions that avoid

the formation of strong thin surface currents (as e.g. in Carrasco &

Reula 2016). In that case, Alfvén waves propagating towards the

surface of the star get reflected and collide at some distance from

the surface. This forces the formation of reconnection points at

some distance from the neutron star surface. Li et al. (2019) have

estimated that this process is relatively inefficient in dissipating the

energy of the magnetosphere and that it may take multiple bounces

in the magnetosphere to dissipate all the energy. This may allow for

a slower energy deposition on time-scales ∼
tspike.

MNRAS 490, 4858–4876 (2019)
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Unfortunately, our numerical models do not include the relevant

microphysics to fully address the conversion of magnetic into ther-

mal energy. Thus, we can only warn the reader that the milliseconds

time-scales over which we have made our (simple) estimations of the

dynamical luminosity of the models at hand are only lower bounds

of the true time-scales on which the released energy may leave the

magnetosphere. Taking into account this caveat, the values of L0

listed in Table 4 are upper bounds to the effective initial luminosity,

L0,

L0 : =
Er


tspike

≃ 1047 erg s−1

(

Er

1046 erg

)(


tspike

0.1 s

)−1

. (56)

Redoing the previous estimations for the photospheric conditions,

we find the values Lph and kBTph listed in Table 4. In addition

to these estimates of the photospheric luminosity and temperature

corresponding to the values of the initial luminosity given by

equation (56) when the photosphere happens beyond the saturation

radius (i.e. for η < η∗), we also provide the estimation of the

photospheric luminosity (L0) and temperature (kBT0) in the comple-

mentary case when the photospheric conditions are reached during

the acceleration phase of the fireball (i.e. η > η∗). All these new

values of the photospheric luminosity and temperature are perfectly

compatible with observational data. Not surprisingly, we find that

depending on whether we assume that photospheric conditions are

met in the accelerating phase or in the coasting phase of the fireball,

the values obtained for the photospheric temperature bracket the

typical values found for the spike of SGRs.

6.3.2 Optical depth of the magnetosphere

The observed maximum current density throughout the magneto-

sphere, Jmax, can be quantified directly from the results shown in

Tables 2 and 3 by employing the conversion formula

Jmax = 4.4926 × 1012 A m−2

(

J̃max

10−6

)(

Bpole

1015 G

)

. (57)

The presented results compare well to the expected current density

stated in equation (3). Close to the surface of the star, where the

highest currents appear, the particle density is

ne =
J

ce
M ∼ 1019 cm−3, (58)

where M is the multiplicity. Beloborodov (2013b) has estimated

that in extended regions close to the poles the multiplicity can be as

large as M ∼ 100, while close to the equator M ∼ 1.

The dominant contribution to the opacity in the magnetosphere

is the resonant cyclotron scattering of thermal photons off charge

particles in the vicinity of the neutron star.6 Thompson, Lyutikov &

Kulkarni (2002) have estimated that for twists of 
ϕ ∼ 1 the typical

optical depth in the magnetosphere is ∼1. In general, computing

the optical depth for magnetar magnetospheres is a complicated

problem, because one needs a self-consistent solution of the photon

field and the momentum distribution of charged particles travelling

along the magnetic field lines (see Beloborodov 2013b). In this

work we make an estimation for radially streaming photons and

a simplified momentum distribution of charged particles. We only

6If there is a dynamical mass ejection a result of the large energy release

close to the magnetar surface (Section 6.3.1), the Thompson scattering (in

the expanding fireball) may be the dominant source of opacity at sufficiently

large distances.

Figure 9. Snapshots of the logarithm of the optical thickness during the

evolution of the high resolution version of model C2. The logarithm of the

optical thickness for the {M = 100, γ = 30} model is displayed by the

colour scale, the photosphere (τ = 1) is displayed as a white solid line. See

appendix B for further details.

consider 1 keV photons, which are typical for the observed surface

temperature in magnetars. Inspired by Beloborodov (2013b) we use

a simple waterbag momentum distribution (see Appendix B) which

is characterized by two parameters, the mean specific momentum

(p̄, where p = vW) and M. We integrate the optical depth (τ )

radially inwards (see appendix B, equation B1 for details on the

computation) and identify the photosphere as the place where τ =
1.

Fig. 9 shows estimates for the optical thickness of the mag-

netosphere at three different times (during and after the rapid

drop of magnetospheric energy) computed with parameters {M =
100, γ = 30}. During the rearrangement of the magnetosphere, the

coronal region along the equator becomes optically thick. The

initial configuration is optically thin and, hence, not shown here.

An important conclusion is that close to the critical point, most

of the magnetosphere, if not all, is optically thin, which gives

rise to a blackbody spectrum with the typical temperature of the

NS surface (∼ 1 keV) plus a possible non-thermal contribution of

up-scattered photons. However, during the instability, the increase

of the magnetospheric currents, makes a large fraction of the

magnetosphere of a few stellar radii optically thick. This region is

filled up with pair plasma and will emit thermal radiation through its

photosphere. Its lifetime is related to the presence of strong currents

in the magnetosphere and may be an explanation for the X-ray tail

(kBT ∼ 30 keV) observed after GFs and lasting for a few 100 s. We

note that only a relatively small fraction of the total energy released

in the magnetosphere by the instability may contribute to the tail,

while most of it may contribute to the initial peak characteristic of

GFs (see discussion in Section 6.3.1).

Our model to compute the magnetospheric optical thickness

for resonant cyclotron scattering assumes uniform values of the

multiplicity and of the electron Lorentz factor. Neither for the

multiplicity (as we have argued above) nor for γ this is completely

correct. Modelling locally the values of the parameters {M, γ } is

beyond the scope of this paper. However, we may test the robustness

of our results by exploring the parameter space determined by M

and γ . In Fig. 10, we display the time evolution of the optical

thickness at the equator of the magnetar for various parameter sets.

As expected, the larger the value of M, the larger the number

density of leptons and, consistently, the larger the opacity (note the

MNRAS 490, 4858–4876 (2019)
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Instability of twisted magnetar magnetospheres 4873

Figure 10. Evolution of the optical thickness at the equator of the magnetar

(θ = π /2, r = R∗) of the high resolution initial model C2 (Bpole = 1015 G)

and various parameter sets (see legends). The modelled optical thickness

depends sensitively on the chosen multiplicity M and Lorentz factor γ (cf.

Section 6.3.2 and Appendix B). Initially, the magnetosphere is optically

thin. During the onset of the instability (∼1 ms) charges are produced

in the magnetosphere. Depending on the chosen model (M, γ ), the

magnetosphere becomes optically thick at different times. The times used

for the visualization of optical thickness in Fig. 9 are denoted in grey lines.

nearly two orders of magnitude difference between the solid lines

with M = 100 and the dashed lines with M = 1). The effect of

the variation of the Lorentz factor (electrons or positrons) is small

compared to the strong impact of M on the opacity. Although

the magnetosphere becomes eventually optically thick for all the

parameter sets under investigation, models with M = 100 develop

regions with τ > 1 very early (t � 0.8 ms), while models computed

with M = 1 become optically thick only when the instability in the

magnetosphere fully develops.

Emission by resonant scattering in magnetar magnetospheres

may be subject to (⊥ or �) polarization (see e.g. Fernández &

Davis 2011; Beloborodov 2013b). In the presented (approximate)

modelling of optical thickness, however, we have found differences

in these polarization states of < 1 per cent. We will further explore

the emission properties of force-free twisted magnetospheres on

suitable high-resolution numerical data in our future work.

7 C O N C L U S I O N S

In this work, we explore the stability properties of force-free equi-

librium configurations of magnetar magnetospheres by performing

numerical simulations of a selection of the models computed in

Akgün et al. (2018a). For the case of degenerate magnetospheres

(i.e. the same boundary conditions but different energies) we

validate the hypothesis of Akgün et al. (2018a) that configurations

in the high-energy branches are unstable while those in the lowest

energy branch are stable. This confirms the existence of an unstable

branch of twisted magnetospheres. It also allows us to formulate

an instability criterion for the sequences of models computed in

Akgün et al. (2018a). Our results are consistent with an interesting

scenario where bursts and GFs in magnetars are triggered without

involving crustal failures. The twist that is naturally produced in

the magnetosphere by the Hall evolution of the crust (Akgün et al.

2017) can lead to unstable configurations that will release up to a

10 per cent of the energy stored in the magnetosphere, sufficient to

explain the observations.

Akgün et al. (2017) have shown that the magnetothermal evolu-

tion of the crust leads naturally to configurations close to the insta-

bility threshold. However, the amount of energy released depends

on how far away from the stable branch can the evolution drive

the configuration. This is essentially a problem of comparing the

evolution time-scale and the instability time-scale. For the models

studied in this work the instability time-scale is of the order of

milliseconds, much shorter than the magnetothermal evolution time-

scales of the object (see Section 2.2.1). However, close to the critical

point, the growth rate of the instability could be significantly smaller

(actually, it should be zero at the critical point) which would allow

us to overshoot the instability threshold. Note that, since the energy

reservoir is large (∼1046 erg), even a very small fraction of energy

release could explain many of the phenomenology of magnetars.

Alternatively, there could be phenomena leading to fast dynamics

in the crust such as sustained episodes of accelerated plastic

flows triggered by the magnetic stresses in the crust (Lander &

Gourgouliatos 2019).

For the unstable models, we observe the development of almost

axisymmetric instabilities on a time-scale of a few ms rearranging

the magnetic field to a configuration similar to those in the

(stable) lower energy branch. The energy of the magnetosphere also

decreases towards the value of the stable configuration. Differences

with respect to the corresponding stable configuration can be

attributed to the influence of the non-preservation of the force-free

constraints (10) and (11). Using (much) larger numerical resolution

(beyond the scope of our computational resources) we envision that

the violation of the force-free constraints would be significantly

reduced and the expected (low-energy) states would be the endpoint

of the evolution after a full relaxation of the magnetosphere takes

place. The energy decrease is explained, mainly, by a flow of

energy towards the surface of the star, where it is dissipated

efficiently. A large fraction of this energy is also dissipated in the

magnetosphere at locations where the force-free conditions break.

This contrasts with the work of Beloborodov (2011), Parfrey et al.

(2013), and Carrasco et al. (2019) in which most of the energy is

dissipated by the formation and ejection of plasmoids. The different

setup used in these works (dynamically twisting versus unstable

equilibrium configurations) makes a direct comparison difficult. A

possible source for the qualitative discrepancy may be differences

in the boundary condition at the surface of the star. While we use

a boundary condition that dissipates very efficiently any strong

currents formed at the surface, in their work, their use of essentially

non-dissipative boundary conditions make the surface perfectly

reflective. For the future it would be interesting to compare more

closely the differences in the boundary condition and to develop a

better physical model for dissipation at the NS surface.

The magnetic field remains nearly axisymmetric throughout

the simulation indicating that the instability is mostly an m = 0

instability. A complete theoretical analysis of the origin of the

instability and its properties is beyond the scope of this paper.

However, we anticipate that such analysis has to be carried out on

a global scale either by calculating the eigenmodes or by using

the so-called energy principle of Bernstein et al. (1958) and is not

trivial due to the presence of both poloidal and toroidal components

(Akgün et al. 2013, and references therein). However, we note that,

MNRAS 490, 4858–4876 (2019)
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4874 J. F. Mahlmann et al.

since the poloidal field structure changes somewhat less than the

toroidal field, this instability could be compared to the interchange

instability discussed by Tayler (1973), where displacing the toroidal

field radially decreases the energy (even in the absence of a fluid).

We have made a crude estimation of the observational properties

of the energy liberated in the magnetosphere as a result of the

instability. The fact that large amounts of energy (in excess of

1046 erg) are released on milliseconds time-scales results in dynam-

ical luminosities significantly larger than 1048 erg s−1 (reaching in

some models 4 × 1049 erg s−1). This should trigger the expansion

of a pair-photon fireball polluted with baryons unbound from the

magnetar crust. The bolometric signature of these fireballs seems

incompatible with the observations of the initial spikes observed

in GFs. With our simple analytic model, most of the unstable

magnetospheres produce overluminous, too cool, and excessively

short flashes. However, this problem can be solved if the energy can

be liberated on longer time-scales, of the order of the observed GF

spikes (
tspike ∼ 0.1 s). This could be possible in a scenario of slow

energy dissipation as the one proposed by Li et al. (2019), which

we plan to explore in the future.

The currents produced during the instability increase significantly

the amount of pairs in the magnetosphere, a large fraction of

which, of size ∼10R∗, becomes optically thick. The hot plasma

magnetically confined in this region could be responsible for the

extended thermal X-ray emission lasting for 50−300 s after GFs.

Our force-free numerical method cannot properly deal with

the evolution of extremely thin surface currents. Therefore, the

dynamical millisecond time-scales computed in our models should

be taken as a lower bound for the physical time-scales. The

magnetic dissipation taking place at these locations can be due to,

e.g. Ohmic processes or to non-linear Alfvén wave interactions.

Assuming that energy is released on ∼
tspike, our estimate of

the electromagnetic signature yields photospheric luminosities and

temperatures compatible with observational data. Since this is a

sound physical assumption, we conclude that observed GFs in

SGRs are broadly compatible with the development of instabilities

in twisted magnetospheres.
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APPEN D IX A : N UMERICAL DETA ILS

A1 The augmented system

In order to preserve the physical conditions divB̃ = 0 and divẼ =
ρ̃e we make use of hyperbolic/parabolic cleaning potentials (Dedner

et al. 2002; Palenzuela et al. 2009; Mignone & Tzeferacos 2010).

Figure A1. Energy evolution of the high energy initial data models A2,

B2, and C2 using different damping constants κψ (divergence cleaning) in

a low resolution study (16 points per R∗). While one observes a converging

evolution for the lower cleaning potentials κψ = 0.03125 and κψ = 0.125,

the energy evolution shows a strong (non-physical) dependence on κψ for

larger damping constants. This effect is amplified in the high resolution (32

points per R∗).

Specifically, we implement an augmented system of Maxwell’s

equations as follows (Palenzuela et al. 2009; Miranda-Aranguren,

Aloy & Rembiasz 2018):

∂tφ − ∂iẼ
i = −ρ̃e − κφφ (A1)

∂t Ẽ
i − ∂j

(

ǫijkB̃k + δijφ
)

= −J̃ i
FF (A2)

∂tψ + ∂iB̃
i = −κψψ (A3)

∂t B̃
i + ∂j

(

ǫijkẼk + δijψ
)

= 0. (A4)

Here, ψ (divergence cleaning) and φ (charge conservation) are the

scalar potentials, κφ and κψ the respective damping constants and

δij denotes the Kronecker delta. As for the practical implementation,

we follow a Strang splitting approach (as employed e.g. in Komis-

sarov 2004), effectively solving part of the scalar equations (A1)

and (A3) analytically. Prior (before MoL Step) and after (before

MoL PostStep) the time integration of the EINSTEIN TOOLKIT

thorn MoL we evolve in time the equations

φ (t) = φ0 exp
[

−κφ t
]

, (A5)

ψ (t) = ψ0 exp
[

−κψ t
]

, (A6)

for a time t = 
t/2. The coefficients κφ and κψ have to be chosen

by optimization in accordance with the grid properties.

We find it beneficial to choose a large value for κφ , effectively

dissipating charge conservation errors on very short time-scales.

As for the divergence cleaning, we conducted a series of tests,

optimizing κψ to yield stable and converging evolution for all shown

resolutions, ultimately resorting to κψ = 0.125 (see Fig. A1 for a

review of the optimization process).

It should be noted at this point that Mignone & Tzeferacos (2010)

present a promising scheme of choosing κψ according to the grid

resolution that has also been used in Miranda-Aranguren et al.

(2018). In the framework of mesh refinement of the Einstein Toolkit,

this would result in a different damping of the cleaning potentials

across the refinement levels. We have found that the optimization

of the hyperbolic/parabolic cleaning becomes a very subtle issue
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and may experience strong numerical effects when increasing the

overall resolution. This observation may, however, be an artefact of

the fixed boundary of the magnetar surface – which on a Cartesian

grid, resembles an accumulation of boxes rather than a perfectly

aligned spherical boundary. The exploration of these effects and

the transition to a fully spherical version of this force-free thorn (as

introduced in Baumgarte et al. 2013; Montero, Baumgarte & Müller

2014) will be a subject of future efforts.

A2 Conservation of force-free constraints

FFE codes are valid in the limit of high electromagnetic energy

compared to the rest mass and thermal energy of the respective

plasma. The dynamics of force-free fields is described entirely

without the plasma four velocity. However, demanding the existence

of a physical, time-like velocity field u with Fμνuν = 0, as well as

the degeneracy condition FμνJν = 0 (see Uchida 1997, for a detailed

algebraic review) one is left with the aforementioned constraints:

Ẽ · B̃ = 0 (A7)

B̃
2
− Ẽ

2
≥ 0. (A8)

Within the shown simulations we find it beneficial to employ an

approach presented in Komissarov (2011) and Parfrey et al. (2017)

in order to archive ∂t

(

Ẽ · B̃
)

= 0 throughout the evolution (by

making use of the force-free current as in equation 12) without the

employment of target currents (as discussed in Parfrey et al. 2017).

Additionally, we include a suitable Ohm’s law (Komissarov 2004,

section C3) into our Strang splitting approach aiming towards an

evolution minimizing the violation of conditions (A7), and (A8).

In order to build up a force-free current, Komissarov (2004)

introduces a generalized Ohm’s law in the context of FFE:

J̃ = σ‖ Ẽ‖ + σ⊥ Ẽ⊥ + j̃d , (A9)

where the subscripts � and ⊥ denote the components parallel and

perpendicular to the magnetic field, B̃. A to be specified model for σ

introduces a suitable resistivity into the force-free system (see also

Lyutikov 2003, for further comments on resistive FFE), while j̃d is

the drift current perpendicular to the electric and magnetic fields.

In its general form, (A9) plays the central role in ensuring the

force-free conditions (A7) and (A8). Komissarov (2004) suggests

a resistivity model that depends on the time-step of the evolution


t (throughout the presented simulations we employ CFL =0.2),

where

σ‖ =
d


t
. (A10)

The cross-field resistivity σ⊥ is strongly linked to the violation of

condition (A8),

σ⊥ =

⎧

⎨

⎩

0 : B2 ≥ E2

b

(

Ẽ⊥ − Ẽ∗
⊥

)

Ẽ∗
⊥

: B̃
2

< Ẽ
2 , (A11)

where Ẽ⊥ =
∣

∣Ẽ⊥

∣

∣ and
(

Ẽ∗
⊥

)2
=

(

B̃ − Ẽ‖

)2
and b is an scalar

parameter controlling the magnitude of σ⊥. Equations (A10)

and (A11) have a pair of analytic solutions:

Ẽ‖ (t) = Ẽ‖ (0) × e−σ‖t (A12)

Ẽ⊥(t) =

[

Ẽ∗
⊥(0) +

Ẽ∗
⊥(0)

[

Ẽ⊥(0) − Ẽ∗
⊥(0)

]

× e−bσ‖t

Ẽ⊥(0) −
[

Ẽ⊥(0) − Ẽ∗
⊥(0)

]

× e−bσ‖t

]

×
Ẽ⊥(0)

Ẽ⊥(0)
. (A13)

During our numerical simulations, we usually choose d = 5.0, and

b = 0.1, and solve equation (A12) prior to equation (A13) in a Strang

splitting scheme in direct analogy to the implementation described

in Section A1. This resistivity model ensures the validity of the

force-free regime throughout time, in other words, the evolution is

driven towards a force-free state

Ẽ · B̃ → 0

B̃
2
− Ẽ

2
→ 0 : B̃

2
< Ẽ

2
.

(A14)

APPENDI X B: O PTI CAL DEPTH TO

R E S O NA N T C Y C L OTRO N SC AT T E R I N G

For the presented modelling of the optical thickness of highly

magnetized force-free plasmas around magnetars (see Section 6.3),

we adapt the techniques describing resonant scattering as presented

by Beloborodov (2013b) (from now on Be13). In the following, we

will give a short review of the underlying equations. In order to

derive the optical thickness τ , we integrate equation (Be13/A15),

dτ

ds
= 2π2re

c

ω

ξ

|μ̃|
ne [fe (p1) + fe (p2)] . (B1)

Here, re = e2/mec2 denotes the photon wavelength, ω the frequency

of the seed photon (we consider 1 keV photons), and ξ = 1 or

ξ = μ̃2 depending on the photon polarization (⊥ or �, respectively).

The relativistic particles require the specification of the quantities

μ = cos ϑ and μ̃ = cos ϑ̃ , where ϑ is the angle between the photon

path and the magnetic field B in the lab frame and ϑ̃ in the rest frame

of the electron. The dimensionless momenta p1, 2 correspond to the

electron (or positron) velocities favoured by the resonant scattering

model. As both polarizations yield similar results, we only consider

the slightly dominant ⊥ orientation for our model. Beloborodov

(2013b) estimated that the contribution of non-resonant scattering

to the optical depth is negligible and will not be considered in our

calculations (see, however, footnote 6).

Following Be13, we employ the so-called waterbag model as a

distribution function for electron (or positron) momenta. In analogy

to a two-fluid model, the distribution function is characterized by

the two parameters (dimensionless momenta) p+ and p−, with the

overall shape

fe (p) =

{

(p+ − p−)−1 : p− < p < p+

0 : else
. (B2)

Applying the waterbag model (B2) in equation (B1) selects the

relevant electron (or positron) momenta for the scattering process.

The distribution of this normalization factor throughout the magne-

tosphere especially depends on the flow direction of charges along

B. As described in Section 5.2 of Be13, we adjust their model

according to a flow of electrons (or positrons) which turns back

to the central object when field lines cross the equator. We apply

this to all field lines crossing regions with B < 1013 G (this holds

everywhere except in the inner coronal region of strong closed

magnetic field lines).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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