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Abstract. We prove instability of a part of a branch of viscous incompressible fluid

flows induced by a shrinking sheet. These flows are exact solutions of the Navier-Stokes

equation.

1. Introduction. The main purpose of this paper is to prove instability of an exact

solution of Navier-Stokes equations for an incompressible fluid. There are many stability

results available [2]. For example, in bounded domains, the 0 solution is stable. This is

basically due to the fact that −� has a spectrum in [ε,∞) for some ε > 0. In unbounded

domains ε = 0 but use of weighted spaces can sometimes push the spectrum away from the

zero, and stability can be proved for small Reynolds numbers [4]. To show instability of

a viscous flow to arbitrarily small perturbations, one basically needs to show existence of

an unstable eigenvalue corresponding to the linearization around the flow. This was done

numerically many times, but to prove the existence of one is a different matter due to the

complicated nature of the Navier-Stokes equations. Fairly recently [6], a number of exact

solutions to the Navier-Stokes equations was discovered. For a branch of those solutions,

describing a flow of an incompressible fluid over a shrinking plate with suction, both

eigenfunctions corresponding to 0 eigenvalue of the linearization are presented explicitly,

and we prove that the eigenvalue crosses an imaginary axis transversally.

Let (u,w) be velocity components of an incompressible fluid in the Cartesian directions

(x, z) respectively. The time-dependent Navier-Stokes equations are

ux + wz = 0, (1.1)

ut + uux + wuz = −px/ρ+ ν∇2u, (1.2)

wt + uwx + wwz = −pz/ρ+ ν∇2w. (1.3)

Here p is the pressure, ρ is the density and ν is the kinematic viscosity. The boundary

conditions on the sheet at z = 0 are

u = −ax, w = −W
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where a > 0 is the shrinking constant and W is the suction velocity. Far from the sheet,

the fluid has no lateral velocities and the pressure is uniform. We will study solutions of

equations (1.1-1.3) that are in the form

u = axfη(η, τ ), w = −
√
aνf(η, τ ) (1.4)

where η = z
√
a/ν and τ = at. Equation (1.1) is automatically satisfied. Pressure

p = p(z, t) can be obtained from equation (1.3). Equation (1.2) reduces to the following

PDE

fητ = fηηη + ffηη − f2
η , (1.5)

and the boundary conditions are

f(0, τ ) =
W√
aν

≡ s, fη(0, τ ) = −1, fη(∞, τ ) = 0. (1.6)

Equations (1.5, 1.6) have stationary solutions [6]

f0(η) = C +
1

C
e−Cη where C =

s±
√
s2 − 4

2
. (1.7)

Observe that suction needs to be big enough (s ≥ 2) for these solutions to exist and that

we get two solutions at each s > 2: one with C > 1 and one with C < 1. It will be shown

that the branch 0 < C < 1 is unstable. We will prove this for C close to 1 in Sections

2 and 3 and show it numerically in Section 4. For the precise meaning of instability, see

Theorem 2.2 below.

Equation (1.5) was studied in [7] for a flow over a stretching sheet. The stationary

solution in this case is known as Crane’s solution and was shown to be stable to small

perturbations. We show here numerically that (1.7) is stable for small perturbations

when C > 1 and prove it for C >
√
10. However, allowed small perturbations of u,w

belong to a rather restricted set; see equations (1.4, 2.1). Instability established in such

a restricted set will of course hold in a larger set too.

2. Semilinear parabolic equation. Let us look for solutions of equations (1.5, 1.6)

that are in the form

f(η, τ ) = C +
1

C
e−Cη +

∫ η

0

e−Cr/2ψ(r, τ )dr (2.1)

where C > 0 and s = C + 1/C. The above weight e−Cr/2 is used to initially separate

the point spectrum from the continuous spectrum and is discussed in Section 5. The

perturbation ψ has to satisfy

ψτ − ψηη +
C2

4
ψ − e−Cη

C
ψη −

3e−Cη

2
ψ − Ce−Cη/2

∫ η

0

e−Cr/2ψ(r, τ )dr

= (ψη − Cψ/2)

∫ η

0

e−Cr/2ψ(r, τ )dr − e−Cη/2ψ2, (2.2)

subject to

ψ(0, τ ) = 0, ψ(∞, τ ) = 0, ψ(η, 0) to be given. (2.3)

We will interpret (2.2, 2.3) as an abstract evolution equation, see [1] or [5],

ψ′ +Aψ = h(ψ) (2.4)
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in a Hilbert space H = L2(0,∞) with the usual inner product (·, ·).
Let V = W 1

0 (0,∞). Define F : V × V → C by

F (u, v) =

∫ ∞

0

(
u′v′ +

C2

4
uv − e−Cη

C
u′v − 3e−Cη

2
uv − Ce−Cη/2 v

∫ η

0

e−Cr/2u(r)dr

)
dη.

(2.5)

Note that for u ∈ V

Re F (u, u) =

∫ ∞

0

(
|u′|2 +

(
C2

4
− 2e−Cη

)
|u|2

)
dη − C

2

∣∣∣∣
∫ ∞

0

e−Cr/2u(r)dr

∣∣∣∣
2

. (2.6)

Using the simplest bounds one obtains

Re F (u, u) ≥
∫ ∞

0

|u′|2 + C2 − 10

4

∫ ∞

0

|u|2 (2.7)

and hence F is a sectorial form (see p. 80 in [5]). This form defines a linear operator A

by

F (u, v) = (Au, v) for v ∈ V.

It is easy to see that

Au = −u′′ +
C2

4
u− e−Cη

C
u′ − 3e−Cη

2
u− Ce−Cη/2

∫ η

0

e−Cr/2u(r)dr (2.8)

for u ∈ D(A) = W 2(0,∞)∩W 1
0 (0,∞) - which is what we want in (2.4). Inequality (2.7)

implies that σ(A), the spectrum of A, satisfies

Re σ(A) ≥ C2 − 10

4
. (2.9)

Equation (2.2) suggests that we define h : V → H by

h(u) = (u′ − Cu/2)

∫ η

0

e−Cr/2u(r)dr − e−Cη/2u2. (2.10)

Since ||u||∞ ≤ ||u||1,2 for u ∈ V there exists c1 < ∞ such that

||h(u)|| ≤ c1 ||u||21,2 for all u ∈ V, (2.11)

||h(u)− h(v)|| ≤ c1 ||u− v||1,2 (||u||1,2 + ||v||1,2) for all u, v ∈ V. (2.12)

A couple of integrations by parts shows that for each u ∈ V there exists cu < ∞ such

that

|F (u, v)− F (v, u)| ≤ cu ||v|| for all v ∈ V. (2.13)

This implies that the domain of (A− a)1/2 is equal to V when a < Re σ(A) (see p. 253,

p. 87 in [5]). Thus, all results in section 6.4 in [5] are applicable with α = 1/2. In

particular,

Theorem 2.1. For any u0 ∈ V there exists τ > 0 and a unique ψ ∈ C([0, τ ), V ) such

that ψ(0) = u0 and ψ satisfies equation (2.4) on (0, τ ).
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For small initial data, Theorem 6.4.11 in [5] implies global existence, stability and

exponential decay of solutions of (2.4) when Re σ(A) > 0. This happens when C >
√
10

according to (2.9). According to numerical calculations below, this happens whenever

C > 1. We can improve (2.9) somewhat but we cannot match the numerical result.

Instability Theorem 6.4.12 in [5] adapted to this case states

Theorem 2.2. If Re λ < 0 for some λ ∈ σ(A), then there exists δ > 0 such that for each

ε > 0 there exists τ > 0 and ψ ∈ C([0, τ ), V ) which satisfies equation (2.4) on (0, τ ) and

is such that

||ψ(0)||1,2 < ε and ||ψ(t)||1,2 > δ for some t > 0.

Our instability assertion is a consequence of the existence of λ ∈ σ(A) with Re λ < 0.

We will prove this in the next section when C is close to 1 and C < 1. We will show this

numerically when 0 < C < 1 in Section 4. Theorem 6.4.12 in [5] also says that we can

choose ψ(0) ∈ ∩∞
n=1D(An), which implies regularity of ψ.

3. Spectrum of A.

Lemma 3.1. σ(A)\[C2/4,∞) consists of isolated points of C. Moreover, each point in

σ(A)\[C2/4,∞) is an eigenvalue of A with (geometric) multiplicity 1, and the corre-

sponding spectral projection has a finite-dimensional range.

Proof. Let us write A = T − B where Tu = −u′′ + C2u/4, with D(T ) = D(A),

and let B represent the remaining terms in (2.8). Note that σ(T ) = [C2/4,∞). For

λ ∈ C\[C2/4,∞) we can write (T − λ)−1 as an integral operator. Since B contains

an exponentially decaying factor we see that B(T − λ)−1 is an integral operator with

a square integrable kernel. Therefore B(T − λ)−1 is a holomorphic family of compact

operators for λ ∈ C\[C2/4,∞).

Let S be the set of λ ∈ C\[C2/4,∞) for which 1 is an eigenvalue of B(T − λ)−1. If

λ ∈ S, then clearly λ is an eigenvalue of A and hence Re λ ≥ (C2 − 10)/4 by (2.9).

Theorem 1.9 on p. 370 in [3] implies that the points of S are isolated. If on the other

hand λ �∈ S ∪ [C2/4,∞), then obviously

(A− λ)−1 = (T − λ)−1(1−B(T − λ)−1)−1 (3.1)

and hence S = σ(A)\[C2/4,∞).

If u and v are linearly independent eigenfunctions of A corresponding to an eigenvalue

λ, then a linear combination of u and v gives an eigenfunction w �≡ 0 such that w(0) =

w′(0) = 0. Using (2.8) we see that Aw = λw implies w′′(0) = 0 and since Aw = λw can

be rewritten as a 3rd order ODE, we have a contradiction when w ≡ 0.

The spectral projection corresponding to λ ∈ σ(A)\[C2/4,∞) is defined, as usual, by

Pλ =
1

2πi

∫
Γλ

(z −A)−1dz (3.2)

where Γλ is a circle in the resolvent set of A that contains λ and no other part of σ(A).

Clearly,

Pλ − 0 =
1

2πi

∫
Γλ

((z −A)−1 − (z − T )−1) dz;
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using (3.1),

Pλ =
1

2πi

∫
Γλ

(z − T )−1 B(T − z)−1 (1−B(T − z)−1)−1 dz.

Since B(T −z)−1 is compact, the integrand and hence Pλ is compact, and since its range

is closed, Pλ has a finite-dimensional range. �
The form (2.5) defines A∗, the adjoint of A, by

F (u, v) = (u,A∗v) for u ∈ V.

It is easy to see that

A∗v = −v′′ +
C2

4
v +

e−Cη

C
v′ − 5e−Cη

2
v − Ce−Cη/2

∫ ∞

η

e−Cr/2v(r)dr (3.3)

for v ∈ D(A∗) = W 2(0,∞) ∩W 1
0 (0,∞).

Lemma 3.2. If C = 1, then 0 is an isolated eigenvalue of A with an

eigenfunction of A: ψ0(η) = ηe−η/2 (3.4)

eigenfunction of A∗: φ0(η) = (e−η/2 − e−3η/2)e−e−η

(3.5)

(ψ0, φ0) = 1− e−1 (3.6)

and the corresponding spectral projection has one dimensional range.

Proof. Using (2.8) it is easy to verify (3.4). φ0 given by (3.5) can be rewritten as

φ0(η) = e−η/2
∞∑

n=0

(n+ 1)
(−e−η)n

n!
. (3.7)

Using (3.7) in (3.3) gives A∗φ0 = 0. By using (3.7) it is also easy to verify (3.6). See

also Figure 1.

Let P0 be the corresponding spectral projection given by (3.2), let Y denote its range

and let n = dimY . To prove that n = 1 it is sufficient to prove

AP0u = 0 for all u ∈ H (3.8)

because the zero eigenvalue has (geometric) multiplicity 1 by Lemma 3.1.

Let Qu ∈ C
n give coordinates of u ∈ Y with respect to a basis of Y . Ã = QAQ−1 is

the matrix representing A with respect to this basis. The fact that A restricted to Y has

spectrum consisting of 0 only implies that the characteristic polynomial of Ã is equal to

(−λ)n and hence Ãn = 0 (Hamilton-Cayley Theorem).

Assuming AP0u1 �= 0 for some u1 implies that there exists y1 and k ≥ 1 such that

Ãky1 �= 0 and Ãk+1y1 = 0. Thus, if y3 = Ãk−1y1, then

y2 := Ãy3 �= 0, Ãy2 = 0.

Since QAQ−1y2 = 0 we have to have that AQ−1y2 = 0, and hence Q−1y2 = cψ0 for some

c. c �= 0 because y2 �= 0 and hence we have a contradiction:

0 �= c(ψ0, φ0) = (Q−1y2, φ0) = (AQ−1y3, φ0) = (Q−1y3, A
∗φ0) = 0.

Therefore (3.8) has to be true. �
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Fig. 1. Eigenfunctions ψ0(η) (above) and φ0(η) given by (3.5).

Theorem 3.3.
dλ

dC

∣∣∣∣
C=1,λ=0

=
2

e− 1
= 1.163953, (3.9)

and A has a negative eigenvalue when C ∈ (1− ε, 1) for some ε > 0.

Proof. Let Γ0 be a fixed circle around 0 that does not contain any part of σ(A) except

for 0 when C = 1. For C close to 1, A = A(C), define

P (C) =
1

2πi

∫
Γ0

(z −A)−1dz. (3.10)

P (1) is just the spectral projection P0 corresponding to eigenvalue 0, and it has one

dimensional range by Lemma 3.2. The integrand in (3.10) is an analytic function of C

for C close to 1 in a neighborhood of the range of the fixed Γ0, so, C → P (C) is analytic

near C = 1 and hence the dimension of the range of P (C) must remain 1. P (C) is a

spectral projection corresponding to some λ(C) inside Γ0 for C close to 1; see [3]. Define

Ψ(C) = P (C)ψ0 =
1

2πi

∫
Γ0

(z −A)−1ψ0 dz.

Note that Ψ(1) = ψ0 as given by (3.4) and C → Ψ(C) is analytic for C close to 1. Since

P (C) is a spectral projection, we have that

AΨ(C) = λ(C)Ψ(C). (3.11)

This implies that λ(1) = 0 and C → λ(C) is analytic for C close to 1. Differentiation of

(3.11) with respect to C at C = 1 gives

A′ψ0 +AΨ′(1) = λ′(1)ψ0 (3.12)

where

2A′ψ0 = ψ0 + e−η(2(1 + η)ψ′
0 + 3ηψ0) +

∫ η

0

e−(r+η)/2(r + η − 2)ψ0(r)dr
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A′ψ0 = ηe−η/2 + e−3η/2. (3.13)

Taking a scalar product with φ0 on both sides of (3.12) gives

dλ

dC

∣∣∣∣
C=1,λ=0

= λ′(1) =
(A′ψ0, φ0)

(ψ0, φ0)
(3.14)

Using (3.7) and (3.13) gives

(A′ψ0, φ0) = 2 e−1.

This and (3.6) imply (3.9). �

4. Numerical computation of the spectrum. Pick a truncation distance L > 0,

n > 1 and let h = L/(n + 1). A straightforward discretization of λu = Au gives for

1 ≤ i ≤ n

λui = −ui+1 + ui−1 − 2ui

h2
+

C2

4
ui −

e−Cih

C

ui+1 − ui−1

2h
− 3e−Cih

2
ui

−Ch

⎛
⎝1

2
e−Cihui +

n−1∑
j=1

e−C(i+j)h/2uj

⎞
⎠ (4.1)

where ui is an approximation of u(ih). u0 = 0 due to the boundary condition and

un+1 = 0 due to the truncation.

Use of central differences and the trapezoid formula in (4.1) results in very well behaved

errors. Error terms in approximations of λ ∈ σ(A) are proportional to even powers of h

and hence we can eliminate them one by one (Richardson extrapolation). We typically

do this two times - ending with errors of order h6.

The leading eigenvalue, when away from the continuous spectrum, does not depend

much on the truncation length L. For example, one obtains the same 9 significant digits

when 50 ≤ L ≤ 400 for a reference value

leading eigenvalue λ = −0.244314795 when C = 0.8.

Other eigenvalues of (4.1) seem to be approximations of the continuous spectrum and

do depend on L. The eigenvalue approximating the beginning of the continuous spectrum

is approximately C2/4 + (π/L)2 - as one would expect from Tu = −u′′ + C2u/4 on

L2(0, L).

The leading eigenvalue, as a function of C, is represented by the lower curve on

Figure 2. Note that it is negative for C ∈ (0, 1), indicating instability, and positive for

C > 1. The bottom of the continuous spectrum (C2/4) is represented by the upper curve

on Figure 2. The leading eigenvalue gets absorbed into the continuous spectrum near

C = 1.7. The vertical cross sections, like the one shown at C = 0.8, show the spectrum

of A.

To see how the predicted crossover rate (3.9) compares to the numerical estimate, we

calculated

when C = 1.01, λ = 0.011613

when C = 0.99, λ = −0.011666.
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Fig. 2. The bottom curve shows the leading eigenvalue as a
function of C. The top curve shows the bottom point (C2/4)
of the continuous spectrum.

Hence the numerical approximation of the rate of change of eigenvalue λ = 0 is

(0.011613 + 0.011666)/.02 = 1.16395,

which is very close to the predicted value given by equation (3.9).

5. Notes. What would happen if we look for perturbations of the stationary solution

that are in the form

f(η, τ ) = C +
1

C
e−Cη +

∫ η

0

e−ωrψ(r, τ )dr (5.1)

where ω ∈ [0, C)? In (2.1) we assumed ω = C/2. We can proceed as in Section 2 and let

Aω be the new equivalent of A given by (2.8). Let us split Aω as in Lemma 3.1:

Aω = Tω −Bω

where

Tωu = −u′′ + (2ω − C)u′ + ω(C − ω)u (5.2)

Bωu =
e−Cη

C
u′ + (2− ω/C)e−Cη u+ Ce−(C−ω)η

∫ η

0

e−ωru(r)dr (5.3)

and D(Aω) = D(Tω) = D(Bω) = W 2(0,∞)∩W 1
0 (0,∞). As before, Bω is a relative com-

pact perturbation of Tω, and the resolvent set of Tω can contain only isolated eigenvalues

of Aω. However, the resolvent set of Tω is very different:

σ(Tω) = {λ ∈ C|(Imλ)2 ≤ (2ω − C)2(Reλ− ω(C − ω)), Reλ ≥ ω(C − ω)}. (5.4)

The continuous spectrum of Tω is pushed furthest away from 0 when ω = C/2 and,

when ω = 0, 0 is a part of the continuous spectrum of Tω. On the other hand, the

leading eigenvalue does not depend on ω. When C = 1 it is easy to see that 0 is an

eigenvalue of Aω for all ω ∈ [0, 1) with the corresponding eigenfunction ηe(ω−1)η. The

above argument showing that the 0 eigenvalue crosses an imaginary axis breaks down
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when ω = 0 because 0 is also in the continuous spectrum of T0. However, we can obtain

an eigenfunction with a negative eigenvalue in the case ω = 0 when C < 1 and C is close

to 1 by simply multiplying the unstable eigenfunction provided in Theorem 3.3 by e−η/2.

Therefore the assumption of Theorem 2.2 is also satisfied in the case ω = 0 when C < 1

and C is close to 1.

References

[1] Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics,
vol. 840, Springer-Verlag, Berlin, 1981. MR610244 (83j:35084)

[2] Daniel D. Joseph, Stability of fluid motions. I, Springer-Verlag, Berlin, 1976. Springer Tracts in
Natural Philosophy, Vol. 27. MR0449147 (56 #7452)

[3] T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer, New York, 1980.
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