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The interaction of stationary streaks undergoing nonmodal growth with modally 
unstable instability waves in a hypersonic boundary-layer flow is studied using numer-
ical computations. The geometry and flow conditions are selected to match a relevant 
trajectory location from the ascent phase of the HIFiRE-1 flight experiment; namely, 
a 7 degree half-angle, circular cone with 2.5 mm nose radius, freestream Mach number 
equal to 5.30, unit Reynolds number equal to 13.42 m−1, and wall-to-adiabatic tem-
perature ratio of approximately 0.35 over most of the vehicle. This paper investigates 
the nonlinear evolution of initially linear optimal disturbances that evolve into finite-
amplitude streaks, followed by an analysis of the modal instability characteristics of the 
perturbed, streaky boundary-layer flow. The investigation is performed with stationary 
direct numerical simulations (DNS) and plane-marching parabolized stability equations 
(PSE), in conjunction with partial-differential-equation-based planar eigenvalue analysis. 
The overall effect of streaks is to reduce the peak amplification factors of instability waves, 
indicating a possible downstream shift in the onset of laminar-turbulent transition. The 
present study confirms previous findings that the mean flow distorsion of the nonlin-
ear streak perturbation reduces the amplification rates of the Mack-mode instability. 
More importantly, however, the present results demonstrate that the spanwise varying 
component of the streak can produce a larger effect on the Mack-mode amplification. 
The study with selected azimuthal wavenumbers for the stationary streaks reveals that 
a wavenumber of approximately 1.4 times larger than the optimal wavenumber is more 
effective in stabilizing the planar Mack-mode instabilities. In the absence of unstable 
first-mode waves for the present cold-wall condition, transition onset is expected to be 
delayed until the peak streak amplitude increases to nearly 35 percent of the freestream 
velocity, when intrinsic instabilities of the boundary-layer streaks begin to dominate the 
transition process. For streak amplitudes below that limit a significant net stabilization is 
achieved, yielding a potential transition delay that can exceed 100 percent of the length 
of the laminar region in the uncontrolled case.

1. Introduction

Laminar-turbulent transition of boundary-layer flows can have a strong impact on the
performance of hypersonic vehicles because of its influence on the surface skin friction
and aerodynamic heating. Therefore, the prediction and control of transition onset and
the associated variation in aerothermodynamic parameters in high-speed flows is a key
issue for optimizing the performance of the next-generation aerospace vehicles.

Under low levels of background disturbances, transition is initiated by the exponential
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amplification of linearly unstable eigenmodes, i.e., modal instabilities of the laminar
boundary layer. In two-dimensional boundary layers, different instability mechanisms
dominate the exponential growth phase depending on the flight speed. Planar, i.e., two-
dimensional, Tollmien-Schlichting (TS) waves are the most unstable in the incompressible
regime, whereas oblique first-mode instabilities correspond to the most amplified distur-
bances in supersonic boundary layers. The hypersonic regime is again dominated by
the growth of planar acoustic waves of the second mode, i.e., Mack-mode type (Mack
1984). In the presence of sufficiently strong external disturbances in the form of either
freestream turbulence (FST) or three-dimensional wall roughness, streamwise streaks
involving alternately low and high streamwise velocity have been observed to appear
in incompressible boundary layers (Klebanoff 1971; Vermeersch & Arnal 2010). Further
research in the incompressible regime has shown that high amplitude streaks can become
unstable to shear layer instabilities that lead to a form of “bypass transition” (Andersson
et al. 2001). When the streak amplitudes are low enough to avoid these instabilities, i.e.,
when the background disturbance level is moderate, the streaks can actually reduce the
growth of the TS waves as documented in both theoretical and experimental studies
(Boiko et al. 1994; Cossu & Brandt 2002; Bagheri & Hanifi 2007). The stabilizing effect
of stationary streaks in low-speed boundary layers have been used in passive flow control
strategies to demonstrate delayed onset of transition by using micro vortex generators
(MVGs) along the body surface (Fransson et al. 2006; Shahinfar et al. 2012).

Despite the numerous research efforts focused on tripping hypersonic boundary-layer
flows by using roughness elements, there have been a few experimental and numerical
studies reporting a delay in transition under certain circumstances. Most of these studies
used two-dimensional roughness elements. James (1959) used fin-stabilized hollow tube
models in free flight with a screw-thread type of distributed two-dimensional roughness.
He found that for a given freestream Mach number between the range of 2.8 to 7,
there exists an optimum roughness height for transition delay. Fujii (2006) studied the
effects of two-dimensional roughness by using a 5◦ half-angle sharp cone at a freestream
Mach number of 7.1. He also observed transition delay for certain conditions when the
wavelength of the wavy wall roughness was comparable to that of the Mack-mode insta-
bilities. More recently, Fong et al. (2014, 2015) performed numerical and experimental
studies, respectively, that were focused on the effect of two-dimensional surface roughness
on the stability of a hypersonic boundary layer at a freestream Mach number of 6.
The experiments (Fong et al. 2015) used a flared cone with strips of roughness in the
Boeing/AFOSRMach 6 Quiet Tunnel and supported the numerical predictions indicating
a stabilizing influence on the amplification of Mack-mode disturbances (Fong et al. 2014).
In particular, these studies showed that the most dominant Mack-mode instability could
be suppressed via judicious placement of the roughness elements along the surface of
the cone. Among the limited experimental evidence of delayed transition in a hypersonic
boundary layer and in the presence of three-dimensional roughness elements is the study
by Holloway & Sterrett (1964), who used a single row of spherical roughness elements
partially recessed within a flat plate model in the NASA Langley 20-inch Mach 6 tunnel.
Data for multiple boundary-layer-edge Mach numbers were obtained by varying the
plate mounting angle. They found that, for cases with the smallest roughness diameters,
transition was delayed for edge Mach numbers larger than 3.7, which approximately
corresponds to the lower bound for second-mode dominance over first-mode instabilities
in a flat plate boundary layer at typical wind tunnel conditions. Therefore, their results
are suggestive of a stabilizing influence of roughness-induced streaks on Mack-mode
waves. When the roughness height becomes sufficiently large, the streaks can develop
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high-frequency instabilities that can lead to earlier transition (Choudhari et al. 2009;
Paredes et al. 2015a) as found by Holloway & Sterrett (1964).
Theoretical studies of the interaction between stationary disturbances and Mack-mode

instabilities in hypersonic boundary layers have been recently initiated. Li et al. (2010)
studied the interaction of Goertler vortices with Mack-mode instabilities on a flared cone,
demonstrating a possible route to transition via this interaction. Li et al. (2015b) studied
the secondary instability of crossflow vortices in a hypersonic cone at angle of attack and
found that nonlinearly saturated crossflow vortices destabilize the Mack modes, which
dominate the transition onset over the intrinsic secondary instabilities of the crossflow
vortices (Choudhari et al. 2017, 2018). Ren et al. (2016) studied the stabilizing effect
of weakly nonlinear suboptimal streaks and Goertler vortices on the planar first-mode
and Mack-mode instabilities. They documented a slight reduction in the logarithmic
amplification factor of approximately ∆N = 0.2 relative to the baseline, zero-streaks flat
plate boundary layer. Furthermore, Paredes et al. (2016b, 2017b) have demonstrated that
finite-amplitude optimal streaks can substantially damp planar Mack-mode instabilities
in the hypersonic flow over a circular cone at zero angle of attack and ground test
conditions, although oblique first-mode instabilities are destabilized.
The development of roughness-induced streaks is strongly dependent on the details

of roughness element shape, height, and spanwise or azimuthal spacing. A conceptually
simple model that can characterize as well as provide an upper bound on the transient
algebraic growth and subsequent slow decay of boundary-layer streaks due to arbitrary
initial disturbances is the optimal growth theory; see Schmid (2007) for a review. The
transient growth arises as a result of the non-normality of disturbance equations, and
the optimal growth theory seeks to maximize the disturbance growth between a selected
pair of streamwise locations. Regardless of the flow Mach number, the disturbances
experiencing the highest magnitude of transient growth have been found to be stationary
streaks that arise from initial perturbations that correspond to streamwise vortices.
The instabilities of optimal streaks with finite initial amplitudes in supersonic and
hypersonic boundary layers has been recently addressed by Paredes et al. (2016a,c,
2017c). Furthermore, Paredes et al. (2017a) investigated the interaction of nonlinear
stationary optimal growth perturbations with modally unstable instability waves in a
Mach 3 adiabatic flat-plate boundary-layer flow. At the selected conditions, the most-
amplified linear waves correspond to the oblique, first-mode waves. The analysis showed
that optimally growing stationary streaks can destabilize the first-mode waves, but only
when the spanwise wavelength of the instability waves is equal to or smaller than twice
the streak spacing. Thus, as long as the amplification factors for the destabilized, short
wavelength instability waves remain below the threshold level for transition, a significant
net stabilization is achieved. On the other hand, the effect of nonlinear stationary streaks
on the growth of Mack-mode instabilities has not been studied as yet. The present work
seeks to bridge this gap with the goal of developing a more thorough knowledge base
for transition prediction in the presence of stationary streaks and potentially expand the
range of available techniques for transition control at hypersonic flight Mach number
conditions.
To that end, we study the effect of a periodic array of finite-amplitude streaks on

the dominant instability waves in axisymmetric or two-dimensional boundary layers at
hypersonic Mach numbers, i.e., the Mack-mode instabilities. Figure 1 shows a schematic
of the flow configuration considered in this work. The geometry is a 7◦ half-angle
circular cone with rn = 2.5 mm nose radius and Lc = 2.0 m length. The freestream
parameters (M = 5.3, Re′ = 13.42 × 106 m−1, T ∗

∞
= 201.4 K) are selected to match

the flow conditions of the HIFiRE-1 flight experiment during the ascent phase at time
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Figure 1. Sketch (side view) of the cone illustrating the present conceptual configuration. The
wake of the periodic array of actuators generate the periodic array of streaks that modulate the
instability waves.

equal to 21.5 s (Kimmel et al. 2015). The laminar boundary layer flow is computed
by solving the full Navier-Stokes equations. The good correlation between experimental
measurements and theoretical predictions based on the parabolized stability equations
(PSE) has confirmed that laminar-turbulent transition in this flow is driven by the modal
growth of planar Mack-mode instabilities (Li et al. 2015a). The analysis presented herein
is based on boundary-layer streaks resulting from the transient growth of an optimal
initial perturbation. The perturbed three-dimensional boundary layer is used as a basic
state for the subsequent modal instability analysis by means of the plane-marching PSE.
The paper is organized as follows. Section 2 provides a summary of the transient

growth framework and the plane-marching PSE. The results are presented in §3. First, the
perturbed three-dimensional boundary layer composed of the two-dimensional boundary
layer plus a finite-amplitude optimal growth perturbation is analyzed by using the
stationary from of the plane-marching PSE. Subsequently, the plane marching PSE
are used to examine the instability characteristics of the Mack-mode waves as well as
the streak instabilities of the modified basic states. The effect of the streak azimuthal
wavelength on the net stabilization of the Mack-mode waves is also studied in §3. Finally,
summary and concluding remarks are presented in §4.

2. Theory

This section introduces the methodologies used in this paper. The procedure closely
follows the study of Paredes et al. (2017a) that analyzed the interactions of the oblique
first-mode waves and finite-amplitude optimal streaks in a supersonic boundary layer.
In brief, the analysis begins with the identification of the linearly optimal perturbation
that results in maximum energy gain. The latter is then used as inflow disturbance for
the parabolic integration of the stationary, nonlinear, plane-marching PSE to obtain a
three-dimensional, azimuthally-periodic, perturbed boundary-layer flow. Subsequently,
the modal instability characteristics of this perturbed three-dimensional boundary-layer
flow are studied by using the linear form of time harmonic, plane-marching PSE.

2.1. Linear optimal growth

Linear transient growth analysis is performed using the linear PSE as explained by
Pralits et al. (2000) and Paredes et al. (2016d). In the PSE context, the perturbations
have the form

q̃(ξ, η, ζ, t) = q̂(ξ, η) exp

[

i

(

∫ ξ

ξ0

α(ξ′) dξ′ +mζ − ωt

)]

. (2.1)
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The suitably nondimensionalized, orthogonal, curvilinear coordinate system (ξ, η, ζ) de-
notes streamwise, wall-normal, and azimuthal coordinates and (u, v, w) represent the
corresponding velocity components. Density and temperature are denoted by ρ and T .
The Cartesian coordinates are represented by (x, y, z). The vector of perturbation fluid
variables is q̃(ξ, η, ζ, t) = (ρ̃, ũ, ṽ, w̃, T̃ )T , the vector of amplitude functions is q̂(ξ, η) =
(ρ̂, û, v̂, ŵ, T̂ )T , and the vector of basic state fluid variables is q̄(ξ, η) = (ρ̄, ū, v̄, w̄, T̄ )T .
The streamwise and azimuthal wavenumbers are α and m, respectively; and ω is the
angular frequency of the perturbation. The azimuthal wavelength is defined as λ = 2π/m.
The optimal initial disturbance, q̃0, is defined as the initial (i.e., inflow) condition at

ξ0 that yields a maximum objective function, J(q̃). The objective function is defined as
the energy gain of the perturbation up to a specified position, ξ1. Herein, we use the
mean energy gain,

G =
1

ξ1 − ξ0

∫ ξ1
ξ0

E(ξ′)dξ′

E(ξ0)
, (2.2)

where E denotes the energy norm of q̃. The energy norm is defined as

E(ξ) =
1

λ

∫

ζ

∫

η

q̃(ξ, η, ζ)HMq̃(ξ, η, ζ)hξ hζ dη dζ, (2.3)

where hξ and hζ are the metric factors associated with the streamwise and azimuthal
curvatures, respectively, M is the energy weight matrix and the superscript H denotes
conjugate transpose. The positive-definite energy norm used here was derived by Mack
(1969) and Hanifi et al. (1996) and is defined as

M = diag

[

T̄ (ξ, η)

γρ̄(ξ, η)M2
, ρ̄(ξ, η), ρ̄(ξ, η), ρ̄(ξ, η),

ρ̄(ξ, η)

γ(γ − 1)T̄ (ξ, η)M2

]

. (2.4)

The variational formulation of the problem to determine the maximum of the objective
functional J = G leads to an optimality system (Pralits et al. 2000; Tumin & Reshotko
2003; Zuccher et al. 2006), which is solved in an iterative manner starting from a random
solution at ξ0 that must satisfy the boundary conditions. Summarizing, the linear PSE,
Lq̃ = 0, are used to integrate q̃ up to ξ1, where the final optimality condition is used to
obtain the initial condition for the backward adjoint PSE integration. At ξ0, the adjoint
solution is used to calculate the new initial condition for the forward PSE integration
with the initial optimality condition. The iterative procedure finishes when the value of
J has converged up to a certain tolerance, which was set to a relative error of 10−6 in
the present computations.

2.2. Plane-marching PSE

The nonlinear evolution of the stationary, finite-amplitude streaks is solved using an
implicit formulation of the nonlinear plane-marching PSE (Paredes et al. 2015b, 2016c,
2017a). Subsequently, the linear form of the plane-marching PSE is used to study the
linear, nonparallel stability characteristics of the modified basic state corresponding to
the sum of the circular cone boundary layer and the finite-amplitude optimal disturbance.
The initial disturbance profiles for the plane-marching PSE are obtained using a partial-
differential-equation (PDE) based two-dimensional eigenvalue problem (EVP). In the
plane-marching PSE context, the perturbations to the streak have the form

q̃(ξ, η, ζ, t) = q̂(ξ, η, ζ) exp

[

i

(

∫ ξ

ξ0

α(ξ′) dξ′ − ωt

)]

. (2.5)
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A more detailed description of the plane-marching PSE methodology is given by Paredes
(2014), Paredes et al. (2015b) and Paredes et al. (2017a).
The onset of laminar-turbulent transition is estimated using the logarithmic amplifica-

tion ratio, the so-called N -factor, based on the Mack’s energy norm E defined in Eq. (2.3)
and relative to the lower bound location ξlb where the disturbance first becomes unstable,

N = −
∫ ξ

ξlb

αi(ξ
′) dξ′ + 1/2 ln

[

Ê(ξ)/Ê(ξlb)
]

. (2.6)

Accordingly, we assume that transition onset is likely to occur when the peak N -factor
reaches a specified value. Similarly, the nonparallel growth rate based on the Mack’s
energy norm E is defined as

σ =
dN

dξ
. (2.7)

2.3. Spatial discretization and boundary conditions

The PSE are integrated along the streamwise coordinate by using second-order back-
ward differentiation. A constant step of ∆R = 2.5, where R =

√
Rex, along the

streamwise direction is used. Finite differences (Hermanns & Hernández 2008; Paredes
et al. 2013) (FD-q) of sixth-order are used for discretization of the wall-normal coordinate.
In the transient growth computations with PSE, the wall-normal direction is discretized
using Nη = 201. The nodes are clustered towards the wall (Paredes et al. 2013). The
clustering of points is dependent on the boundary layer thickness, with half of the
grid points located below 10 × δ, where δ is the similarity scale. No-slip, isothermal
boundary conditions are used at the wall, i.e., û = v̂ = ŵ = T̂ = 0. The amplitude
functions are forced to decay at the farfield boundary by imposing the Dirichlet conditions
ρ̂ = û = ŵ = T̂ = 0. The farfield boundary coordinate is set just below the shock layer.

The plane-marching PSE are used to predict the nonlinear evolution of finite-amplitude
transient growth disturbances as well as the linear amplification characteristics of mod-
ulated Mack-mode waves and streak instability waves sustained by the nonlinear streak
disturbances. The plane-marching PSE are integrated using the same streamwise and
wall-normal discretizations as that of the linear optimal growth analysis by using classic
PSE, although depending on the initial amplitude, the number of wall-normal nodes is
increased up to Nη = 241. In addition to the streamwise and wall-normal directions,
the azimuthal direction is discretized with Fourier collocation points. Note that the
PSE amplitude function of Eq. (2.1), q̂(ξ, η), depends only on the streamwise and wall-
normal coordinates, while that corresponding to plane-marching of Eq. (2.5), q̂(ξ, η, ζ)
depends on all three spatial directions. Depending on the amplitude of the optimal growth
perturbation, the number of azimuthal points is varied from Nζ = 16 to Nζ = 64.
Similar to the streamwise and wall-normal grids, the same azimuthal grids are used to
compute the evolution of both finite-amplitude streaks and their modal instabilities.
However, a nonperiodic finite-difference discretization (FD-q) of sixth-order is also used
in the azimuthal direction during a subset of the calculations for improved computational
efficiency. With the nonperiodic scheme, only one half of the streak azimuthal wavelength,
λST = 2π/mST , where mST denotes the streak wavenumber, needs to be discretized and
the boundary conditions in ζ = 0 and ζ = λST /2 determine the instability mode to be
studied, i.e., sinuous (S) or varicose (V) mode types with a fundamental (m = mST ),
subharmonic (m = 1/2mST ), and m = 3/2mST wavenumbers. Table 1 shows the
boundary conditions used in each case.
The number of discretization points in all three directions and the wall-normal domain
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wavenumber (×mST ) mode type ζ = 0 ζ = λST /2

1 S (ρ̂ , û , v̂ , ŵζ , T̂ )T = 0 (ρ̂ , û , v̂ , ŵζ , T̂ )T = 0

1 V (ρ̂ζ , ûζ , v̂ζ , ŵ , T̂ζ)
T = 0 (ρ̂ζ , ûζ , v̂ζ , ŵ , T̂ζ)

T = 0

1/2, 3/2 S (ρ̂ζ , ûζ , v̂ζ , ŵ , T̂ζ)
T = 0 (ρ̂ , û , v̂ , ŵζ , T̂ )T = 0

1/2, 3/2 V (ρ̂ , û , v̂ , ŵζ , T̂ )T = 0 (ρ̂ζ , ûζ , v̂ζ , ŵ , T̂ζ)
T = 0

Table 1. Azimuthal boundary conditions used in the plane-marching PSE analysis. The mode
types S and V refer to sinuous and varicose mode shapes, respectively, with respect to the half
symmetry plane of the streak, ζ = λST /2. Also, note that qζ ≡ ∂q/∂ζ.

size were varied to ensure that the relevant flow quantities were insensitive to further
improvement in grid resolution and enlargement of the domain size. Verification of the
present linear optimal growth module against available transient growth results from the
literature is shown in Paredes et al. (2016d). Verification of the present plane-marching
PSE module against line-marching PSE and DNS results is shown in De Tullio et al.

(2013) and Paredes et al. (2015b).

3. Results

Next, we study the axisymmetric boundary layer over a nearly sharp, 7◦ half-angle
circular cone at zero angle of attack in a hypersonic freestream flow. The details of the
basic state and its modal instability characteristics are introduced first. Then, the linear
transient growth analysis and the evolution of finite-amplitude optimal perturbations
are presented. Finally, the instability characteristics of the perturbed boundary-layer
flows and the overall effects of the streaks on the estimated transition onset location are
analyzed.

3.1. Basic state solution

The present analysis is performed for a 7◦ half-angle circular cone at zero angle of attack
in a hypersonic freestream flow. The length of the nearly sharp cone is L∗

c = 2.0 m, and
the nose radius is r∗n = 2.5 mm so that the front half of the cone matches the HIFiRE-1
geometry. The extended cone length is used in the present investigation to assess the
extent of potential delay in laminar-turbulent transition due to the streaks. The basic
state, laminar boundary-layer flow over the cone surface is computed by using a second-
order accurate algorithm as implemented in the finite-volume compressible Navier-Stokes
flow solver VULCAN-CFD† (Litton et al. 2003). The VULCAN-CFD solution is based
on the full Navier-Stokes equations and uses the solver’s built-in capability to iteratively
adapt the computational grid to the shock. Sutherland’s law is assumed for bulk viscosity.
The freestream conditions are selected to replicate those of the HIFiRE-1 flight ex-

periment at time equal to 21.5 s during the ascent phase (Kimmel et al. 2015), i.e.,
Mach 5.30 flow with a unit Reynolds number of 13.42×106 m−1, freestream temperature
of T ∗

∞
= 201.4 K and a prescribed surface temperature distribution that corresponds

to a wall-to-adiabatic temperature ratio of approximately 0.35 over most of the vehicle
(Li et al. 2015a). Figure 2(a) shows the prescribed wall temperature along the surface
of the cone. As explained by Li et al. (2015a), the surface temperature distribution
was obtained by combining the results of thermal analysis based on axisymmetric, finite-

† visit http://vulcan-cfd.larc.nasa.gov for further information about the VULCAN-CFD
solver
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Figure 2. Streamwise evolution of (a) wall temperature, (b) edge Mach number, and (c)
boundary layer thickness. The wall temperature values measured in the flight experiments are
included.

element calculations using the U.S. Air Force Research Laboratory (AFRL) TOPAZ code
(Kimmel et al. 2007) and the experimental data based on thermocouple measurements
(Kimmel et al. 2015). The edge Mach number Me and boundary layer thickness δh,
which is defined as the wall-normal position where ht/ht,∞ = 0.995, where ht is the total
enthalpy, are plotted in figures 2(b) and 2(c), respectively.

The computational grid has 865 points in the streamwise direction and 513 points
in the wall normal direction. A minimum of 120 points is clustered next to the cone
surface to resolve the thickness of the boundary layer. This grid resolution is based
on the work of Li et al. (2015a), who computed the laminar flow over the HIFiRE-1
geometry at selected flight experiment conditions with the VULCAN-CFD solver and
performed a grid-convergence test by doubling the number of points in each directions
and a verification of the results by comparing the solution with that computed with a
different Navier-Stokes solver, i.e., the CFL3D code (Rumsey et al. 1997).

In what follows, freestream values are used as reference values for nondimensional-
ization. The reference length scale is defined as δ =

√

Lν/u∞, where L∗ = 1.0 m. For
this problem, the computational coordinates, (ξ, η, ζ), are defined as an orthogonal body-
fitted coordinate system. The metric factors are defined as

hξ = 1 + κη, (3.1)

hζ = rb + η cos(θ), (3.2)

where κ denotes the streamwise curvature, rb is the local radius, and θ is the local
half-angle along the axisymmetric surface, i.e., sin(θ) = drb/dξ. For the present straight
circular cone (with exception of the nose region that is not included in this analysis),
κ ≡ 0 and θ is the cone half-angle equal to 7◦.

3.2. Modal instability characteristics of the unperturbed flow

Experimental measurements and theoretical predictions based on PSE have confirmed
that laminar-turbulent transition in this flow is driven by the modal growth of planar
Mack-mode instabilities (Li et al. 2015a). The instability of the unperturbed flow was
examined by PSE to establish the transition behavior in the absence of stationary streak
perturbations. The onset of laminar-turbulent transition in the unperturbed boundary-
layer flow is estimated using N -factor evolution of the planar Mack modes computed
with the PSE. For the conditions of the experiment (Kimmel et al. 2015), transition onset
in the unperturbed cone boundary layer was measured to occur near ξtr/L = 0.85 m.
Figure 3(a) shows that the peak N -factor at the measured transition location corresponds
to Ntr = 14.7, which is reached by a planar Mack-mode disturbance with frequency
ω = 0.603. Figure 3(b) shows the growth-rate isolines of planar Mack-mode instabilities.
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Figure 3. (a) N -factors and (b) growth-rate isolines of planar Mack-mode disturbances in the
unperturbed boundary layer. The thick blue line in (a) denotes the mode that reaches largest
N -factor value (Ntr) at the experimentally measured transition location (xtr) and corresponds
to a disturbance frequency of ω = 0.603.

The neutral stability curve corresponds to the black line with σ = 0.0. Neither planar nor
oblique first-mode instabilities were found in the present boundary-layer flow because of
the low surface temperature relative to the adiabatic temperature.

3.3. Stationary transient growth and streak development

Herein, transient growth calculations are performed with the initial and final distur-
bance locations set to ξ0/L = 0.5 and ξ1/L = 1.1, respectively. The initial location ξ0 has
been selected near the first neutral branch of the planar Mack mode that first reaches
Ntr (see figure 3(a)). The range [ξ0, ξ1] has been chosen to obtain appreciable streak
amplitudes over a majority of the cone length, as will be shown in what follows.

Linear transient growth predictions are presented first. Figure 4(a) shows the mean
energy gain as a function of the azimuthal wavenumber. The optimal azimuthal wavenum-
ber corresponding to maximum energy gain is found to be equal to mop = 180. The
components of the initial optimal perturbation with azimuthal wavenumbers of m = 90,
180, and 360 are plotted in figures 4(b), 4(c), and 4(d), respectively. Larger azimuthal
wavenumbers lead to optimum initial profiles with a slightly shorter wall-normal exten-
sion than the initial profiles for lower wavenumbers. Furthermore, the peaks of the initial
profiles with larger azimuthal wavenumbers are located slightly closer to the wall.

The nonlinear form of the plane-marching PSE is used to monitor the nonlinear
development of optimal initial disturbances with specified amplitudes. These disturbances
evolve into streamwise elongated streaks; and Figure 5(a) shows the evolution of the
streak amplitude based on ũ,

Asu(ξ) =
1

2
[maxη,ζ(ũ(ξ, η, ζ))−minη,ζ(ũ(ξ, η, ζ))], (3.3)

for selected initial amplitudes of the m = 180 disturbance from figure 4(c). Unlike
the energy norm in Eq. (2.3), the velocity amplitude Asu is expected to be more
closely related to the growth of streak instabilities. The streak amplitude parameter
A corresponds to the maximum streak amplitude Asu achieved by a linear perturbation
with the same initial amplitude, which is given by

A0 = A×
√

Elin,A=1. (3.4)

As indicated by Eq. (3.4), the amplitude parameter A provides a convenient measure
of the initial disturbance amplitude. As seen in figure 5(a), nonlinear effects reduce the
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(c) m = 180, and (d) m = 360. The horizontal, dash-double dot line in parts (b) through (d)
indicates the edge of the boundary layer based on total enthalpy (ht/ht,∞ = 0.995).
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Figure 5. (a) Evolution of streak amplitudes based on u, Asu, and (b) evolution of disturbance

amplitude,
√

E/E0, of finite-amplitude, linear optimal perturbations initialized at ξ0/L = 0.5
with ξ1/L = 1.1 and m = 180.

streak amplitude relative to the linear prediction; hence, for any given case, max(Asu) <
A. The streamwise location of this maximum moves progressively upstream as the
amplitude parameter A is increased. Figure 5(b), shows the evolution of the disturbance
amplitude defined as the square root of the energy norm defined in Eq. (2.3) normalized
by the initial energy. The deviation from the linear trend starts to become noticeable for
A > 0.20.
Figures 6(a-d), 6(e-h), and 6(i-l) show the isocontours of the total streamwise velocity

component in the cross-planes at selected streamwise locations for A = 0.10, A =
0.20, and A = 0.40, respectively. At the symmetry plane, ζ = λST /2, the near-wall,
low-momentum fluid is lifted upward by the counter-rotating vortices, resulting in a
localized region of increased boundary-layer thickness and lower wall shear. At the lateral
symmetry plane, ζ = 0 (or equivalently, ζ = λST ), the effect of the initial streamwise
vortices is exactly the opposite, yielding a localized region of reduced boundary-layer
thickness and increased wall shear. As the streak amplitude becomes larger, the associated
azimuthal gradients in the form of a detached three-dimensional shear-layer can support
the growth of streak instabilities, as studied by Paredes et al. (2016a,c, 2017c), in the
context of bypass transition in supersonic and hypersonic boundary layers.
Finally, the effect of streaks on the skin friction coefficient is studied in figure 7.
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Figure 7. (a) Evolution of spanwise-averaged local skin friction coefficient ratio between those
corresponding to perturbed flows and unperturbed flow, cf/cf,A=0.00. Also, mean-flow-distortion
streamwise velocity profiles (ũMFD) at streamwise positions (b) ξ/L = 0.75, (c) 1.0, and (d) 1.5.
The horizontal, solid black line in parts (b) through (d) indicates the edge of the unperturbed
boundary layer based on total enthalpy (ht/ht,∞ = 0.995).

Figure 7(a) shows the ratio of the spanwise-averaged local skin friction coefficient with
respect to that in the unperturbed case (A = 0.00). A peak skin friction increment of
6.1% is observed for the A = 0.20 case and of 22.5% for the A = 0.40 case. The skin
friction coefficient is calculated with the wall normal gradient of the mean flow distortion
(MFD) of the streamwise velocity perturbation, ũMFD, which is defined as

ũMFD(ξ, η) =
1

λST

∫ λST

0

ũ(ξ, η, ζ) dζ. (3.5)

Figures 7(b), 7(c), and 7(d) show the MFD streamwise velocity perturbation profiles at
streamwise locations ξ/L = 0.75, 1.0, and 1.5, respectively. The profiles exhibit a positive
peak close to the wall and a negative peak in the vicinity of the boundary-layer edge.
The negative peak grows from ξ/L = 0.75 to ξ/L = 2.0, although the positive peak of
ũMFD decreases as the skin friction coefficient decreases from ξ/L ≈ 0.85.
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3.4. Modal instability characteristics of the perturbed flow with optimal disturbances

The instability characteristics of the modified, streaky boundary-layer flow are exam-
ined next. First, the streaks plotted in figure 5 corresponding to finite-amplitude linearly
optimal disturbances initiated at ξ0/L = 0.5 with ξ1/L = 1.1 andmST = 180 are studied.
After that, the effect of the streak azimuthal wavenumber mST on the net stabilization
of Mack-mode waves is analyzed.

3.4.1. Effect of streaks on Mack-mode waves

The planar and oblique Mack-mode waves are modulated by the presence of the
azimuthally periodic streaks. At any given, nonzero azimuthal wavenumber of the Mack-
mode waves, there exists a pair of oblique modes with equal but opposite wave angles. For
oblique Mack modes with wavenumbers equal to m = mST (fundamental), m = 1/2mST

(subharmonic), and m = 3/2mST , the spanwise structure of the mode shape is phase
locked to the streaks. As a result, there exist both varicose (symmetric) and sinuous
(antisymmetric) modes with different amplification rates. For all other wavenumbers,
there is no such phase locking, and hence, both oblique modes with the same value
of m have the same amplification rate and their mode shapes satisfy the condition
q̂−(ξ, η, ζ) = q̂+(ξ, η,−ζ), where the superscripts + and − denote the signs of the
spanwise components of phase velocities associated with the two modes constituting
the pair.
Figure 8 shows the frequency dependence of spatial growth rates computed with

quasiparallel PDE-based EVP at a fixed streamwise location of ξ/L = 1.0. Results
are plotted for five different families of modes that can presumably be relevant in
the presence of the streaks: MM0, MM1/2,S , MM1/2,V , MM1,S , MM1,V , MM3/2,S , and
MM3/2,V . The mode MM0 reduces to a planar Mack-mode disturbance in the limit of
A → 0. Modes MM1/2,V and MM1/2,S correspond to oblique Mack-mode disturbances
(with azimuthal wavenumber equal to one half of the streak spacing) of varicose and
sinuous type, respectively. The fundamental varicose and sinuous modes, MM1,V and
MM1,S , respectively, correspond to oblique Mack-mode disturbances with azimuthal
wavenumber equal to the streak spacing. Similarly, the modes MM3/2,V and MM3/2,S

correspond to oblique Mack-mode disturbances with azimuthal wavenumber equal to 3/2
times the fundamental wavenumber, i.e., three Mack-mode wavelengths within two streak
wavelengths, with the second suffix denoting the mode types as varicose and sinuous,
respectively. Mode shapes for each family at frequencies corresponding to respective
peak local growth rate are shown in figures 9(a) through 9(g) for a streak amplitude
of A = 0.10. The varicose and sinuous characterizations of the modes correspond to
the symmetry and antisymmetry mode shapes, respectively, with respect to the half
symmetry plane of the streak (ζ = λST /2). Figure 8(a) shows a progressive reduction in
the peak growth rate of MM0 modes with increasing streak amplitude. Simultaneously,
the growth rate curves are displaced toward lower frequencies because the MM0 mode
shape is concentrated on the crests of the modified flow (i.e., regions of increased
boundary-layer thickness) as shown by figure 9(a). Similar to the MM0 mode, both of the
subharmonic modes (MM1/2,V and MM1/2,S) have mode shape distributions that peak
in the neighborhood of the crests (figures 9(b) and 9(c)). Accordingly, their peak growth
frequencies decrease as the streak amplitude is increased. While the peak amplification
rates of both subharmonic modes also decrease with an increasing streak amplitude, the
stabilizing influence is substantially stronger for the sinuous mode MM1/2,S . Figure 8(c)
indicates that the effect of the streaks is somewhat different in the case of the MM1,V

modes, which are strongest within the valley regions of the streaks. The growth rates
of these MM1,V modes initially increase with the streak amplitude parameter up to



Instability wave-streak interactions in a hypersonic boundary layer 13

0

0.5

1

1.5

2

0.3 0.35 0.4 0.45 0.5 0.55 0.6

−
α
i
(×

1
0
−
2
)

ω

A = 0.00

A = 0.02

A = 0.05

A = 0.10

A = 0.20

A = 0.40

(a)

0

0.5

1

1.5

2

0.3 0.35 0.4 0.45 0.5 0.55 0.6

−
α
i
(×

1
0
−
2
)

ω

A = 0.00

A = 0.02

A = 0.05

A = 0.10

A = 0.20

A = 0.40

MM1/2,S
MM1/2,V

(b)

−0.5

0

0.5

1

1.5

0.35 0.4 0.45 0.5 0.55 0.6 0.65

−
α
i
(×

10
−
2
)

ω

A = 0.00

A = 0.02

A = 0.05

A = 0.10

A = 0.20

A = 0.40

MM1,S

MM1,V

(c)

−1

−0.5

0

0.5

1

0.4 0.45 0.5 0.55 0.6 0.65 0.7

−
α
i
(×

10
−
2
)

ω

A = 0.00

A = 0.02

A = 0.05

A = 0.10

A = 0.20

A = 0.40

MM3/2,S
MM3/2,V

(d)

Figure 8. Spatial growth rates (−αi) of (a) planar Mack modes (MM0), (b) oblique Mack
modes with subharmonic (m = 1/2mST ) sinuous (MM1/2,S) and varicose (MM1/2,V ) mode
shapes, (c) oblique Mack modes with fundamental (m = mST ) sinuous (MM1,S) and varicose
(MM1,V ) mode shapes, and (d) oblique Mack modes with m = 3/2mST sinuous (MM3/2,S) and
varicose (MM3/2,S) mode shapes, for selected streak amplitudes at ξ/L = 1.0.

A = 0.05, and then decrease at higher A. Furthermore, the peak growth frequencies of
the MM1,V modes increase with A. In contrast, the streaks have a stabilizing influence
on the MM1,S modes (figure 9(d)) for all A. Finally, both the MM3/2,S and MM3/2,V

modes are destabilized with streak amplitude parameter up to A = 0.10, although the
varicose mode MM3/2,V does not reach the neutral stability threshold, i.e., zero growth
rate. The mode shapes of the modes MM3/2,S and MM3/2,V are shown in figures 9(f)
and 9(g), respectively.

As explained before, the instability waves with wavenumbers different from those
studied in figures 8 and 9 (namely, m = 1/2mST , mST , and 3/2mST ) are not phase
locked by the presence of the streaks, and hence, both oblique modes with the same
value of m have the same amplification rate and their mode shapes satisfy q̂−(ξ, η, ζ) =
q̂+(ξ, η,−ζ). Figure 10 shows the mode shape of the Mack mode wave withm = 3/5mST .
The three perturbation wavelengths within the five streak wavelengths are visible in the
real and imaginary parts of the perturbation. The streamwise velocity magnitude is rather
similar to that corresponding to the MM1/2,S plotted in figure 9(b), but differences in
phase are observed in the real and imaginary parts of the mode shape components.
To characterize the overall effect of streaks on the amplification of the Mack-mode

disturbances, we now examine the spatial evolution of fixed frequency planar and oblique
Mack modes with the plane-marching PSE. The N -factor defined in Eq. (2.6) is used as a
measure of the disturbance amplification. Figures 11(a) and 11(b) illustrate the N -factor
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ℑ(û)

0

5

η

(g)
ℜ(û)
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Figure 9. Isocontours of the real and imaginary parts and magnitude of streamwise velocity
perturbations for A = 0.10 at ξ/L = 1.0 and frequencies (a) ω = 0.455 for MM0, (b) ω = 0.501
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|û|

Figure 10. Isocontours of the real and imaginary parts and magnitude of streamwise velocity
perturbation for A = 0.10 at ξ/L = 1.0 and frequency ω = 0.501 for MM3/5. The isolines of
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evolution of the Mack modes with frequencies ω = 0.603 and ω = 0.421, respectively, for
the unperturbed basic state (A = 0.00) and the perturbed flow with A = 0.10. Results
for the unperturbed and pertubed flows include the planar Mack mode (MM0) and
oblique Mack modes with several values of m, i.e., m = 1/4mST (MM1/4), m = 1/3mST

(MM1/3), m = 1/2mST (MM1/2), m = 3/5mST (MM3/5), m = 2/3mST (MM2/3), and
m = mST (MM1), as well as the sinuous (S) and varicose (V) mode types for the locked
modes. As shown in figure 3, the disturbance frequency used in figure 11(a), ω = 0.603,
corresponds to the frequency of the planar Mack mode that reaches the largest N -factor,
Ntr = 14.7, at the experimentally observed transition location, ξtr/L = 0.85 m. For
the perturbed case with A = 0.10, the MM0 disturbance frequency ω = 0.421 that is
used in figure 11(b), reaches the transition N -factor Ntr = 14.7 at the most upstream
location, ξtr/L = 1.39. Figure 11(a) shows that for the unperturbed case, the maximum
value of the N -factor is reached by the MM0 mode and is N = 14.97. For the perturbed
case, the peak N -factor is also reached by the MM0 mode, but is drastically reduced
to N = 6.94. For the perturbed flow case, the unlocked oblique modes MM1/4, MM1/3,
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Figure 11. Evolution of N -factors with frequencies (a) ω = 0.603 and (b) ω = 0.421 of planar
and selected oblique Mack-mode waves for the unperturbed boundary-layer flow (A = 0.00) and
the perturbed boundary-layer flow with A = 0.10.

MM3/5, and MM2/3 experience a similarly stabilizing effect of the streaks as that found
for the MM0 mode and their N -factor curves remain below the N -factor curve of the
MM0 mode. The phase locked modes MM1,V and MM3/2,S are destabilized, although
their peak N -factor values are approximately one half of the peak value corresponding
to the N -factor of the MM0 mode. Figure 11(b) shows that the peak N -factor values
for the disturbance frequency ω = 0.421 are reduced from N = 25.26 to N = 15.11
by the introduction of the streak. The N -factor curves of the MM1/4, MM1/3, MM1/2,V

modes become nearly coincident but remain below the curve corresponding to the MM0

mode. The rest of oblique Mack modes plotted in figure 11(b), i.e., MM1/2,V , MM3/5,
MM2/3, MM1,S , MM1,V , MM3/2,S , and MM3/2,V , are also less amplified than the MM0.
Therefore, we can conclude that the planar Mack mode, MM0, dominates the instability
characteristics of both the unperturbed and perturbed boundary-layer flows.
Herein, the primary mechanism for the effect of the streak on the reduced amplification

of the planar Mack mode is investigated. Figures 12(a) and 12(b) illustrate the N -factor
evolution of the MM0 mode with frequencies ω = 0.603 and ω = 0.421, respectively,
for the unperturbed basic state (A = 0.00) and the perturbed flow with A = 0.10. The
extra three curves plotted in figures 12(a) and 12(b) indicate the N -factor evolution for
the same frequencies using three “artificial” basic states: a two-dimensional basic state
corresponding to the azimuthal average of the A = 0.10 flow, which corresponds to the
unperturbed flow (A = 0.00) plus the mean flow distortion (MFD) due to the streak,
A = 0.00+MFD, the perturbed flow with A = 0.10 minus the MFD of the perturbation,
A = 0.10−MFD, and the two-dimensional profile at the half symmetry plane (ζ = λST /2)
of the perturbed flow, A = 0.10 : ζ = λ/2. These extra cases are introduced to understand
the primary mechanism for the effect of the streak on the reduced amplification of the
planar Mack mode. By comparing the N -factor of the first extra case (A = 0.00+MFD)
with that for the unperturbed flow (A = 0.00), we can see that the MFD has a modestly
stabilizing influence on the planar Mack mode, which is in qualitative agreement with the
findings reported by Ren et al. (2016) for weak streaks (Asu < 0.05) and by Paredes et al.
(2016b) for a broader range of streak amplitudes for a boundary-layer flow representative
of wind tunnel conditions (Tw/Tw,ad = 0.68). However, the N -factor evolution for the
second “artificial” case (A = 0.10−MFD) indicates a stronger stabilizing influence on
the planar Mack mode by the three-dimensional modulation of the boundary layer, or,
equally, the spanwise varying component of the stationary streak. The N -factor curve
for the A = 0.10−MFD case closely approximates the result for the total perturbed
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Figure 12. Evolution of N -factors of planar Mack-mode waves with frequencies (a) ω = 0.603
and (b) ω = 0.421 for the unperturbed basic state (A = 0.00), the perturbed basic state
(A = 0.10), the unperturbed basic state plus the MFD of the A = 0.10 perturbation
(A = 0.10 + MFD), the perturbed basic state without the MFD (A = 0.10 − MFD), and
the ζ = λST /2 plane of the perturbed basic state (A = 0.10 : ζ = λ/2).

flow (A = 0.10), i.e., has similar neutral locations and maximum peak amplifications.
Therefore, the three-dimensional modulation of the boundary layer caused by the streaks
dominates the overall modification of the instability characteristics of the planar Mack-
mode waves. Because the MM0 mode shape is concentrated on the crests of the undulating
velocity contours of the modified flow (figure 9(a)), the analysis of the third “artificial”
case (A = 0.10 : ζ = λ/2) intends to resolve whether the instability characteristics of the
boundary layer along the half symmetry plane reflects the instability features of the total
flow field. Figures 12(a) and 12(b) show that as the streak amplitude becomes significant
for ξ/L > 0.5 (figure 5), the N -factor curve of the A = 0.10 : ζ = λ/2 case strongly differs
from that corresponding to the A = 0.10 case, which implies that the three-dimensional
effects need to be considered.
Finally, to further understand the dominant mechanism of the instability modes, the

production terms associated with the local kinetic energy transfer as a function of the
streamwise location are calculated; see Malik et al. (1999) and Paredes et al. (2017a) for
further details. Figures 13(a) and 13(b) show the evolution of the normalized production
terms associated with the streamwise velocity gradients in the three directions (ξ, η, ζ) for
disturbance frequencies ω = 0.603 and ω = 0.421, respectively. These terms are written
as

Puξ(ξ) = −
∫

ζ

∫

η

ℜ(ûûc)ρ̄ūξhξhζ dη dζ, (3.6)

Puη(ξ) = −
∫

ζ

∫

η

ℜ(ûv̂c)ρ̄ūηhξhζ dη dζ, (3.7)

Puζ(ξ) = −
∫

ζ

∫

η

ℜ(ûŵc)ρ̄ūζhξhζ dη dζ, (3.8)

where the superscript c denotes complex conjugate. Figures 13(a) and 13(b) show that
the production term associated with the wall-normal gradient clearly dominates for both
the unperturbed and perturbed cases, because the streamwise and azimuthal terms are
negligible. Furthermore, the Puη term for the perturbed boundary layer flow remains
positive over a relatively shorter streamwise domain, which explains the shorter range of
amplification and the lower N -factor peak of the MM0 mode observed in figures 12(a)
and 12(b).
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Figure 13. Evolution of the ratio between the production terms associated with the streamwise
velocity gradients and the kinetic energy of the planar Mack-mode waves with frequencies (a)
ω = 0.603 and (b) ω = 0.421.

3.4.2. Streak instabilities

In the previous subsections, we discussed the effect of streaks on the unstable eigen-
modes of the unperturbed boundary layer. However, as the streak amplitude is increased,
some of the stable (i.e., damped) modes of the original, axisymmetric boundary layer
become increasingly less stable, and eventually, cross over into the unstable portion of the
spectrum. Indeed, at large enough streak amplitudes, these streak instabilities (denoted
as SI modes following the nomenclature of Li et al. (2016)) can become the most amplified
modes, and hence, can dominate the process of laminar-turbulent transition. The PDE-
based EVP analysis is used to obtain the growth rates (figure 14) and eigenfunctions
(figure 15) of subharmonic and fundamental sinuous and varicose streak instability modes
(SI1/2,S , SI1/2,V , SI1,S , and SI1,V ) at ξ/L = 1.0 for the selected streak amplitudes.
Figure 14 shows that the SI1/2,S mode is the first streak instability mode to become
unstable for A = 0.20. The SI1/2,S is also the most unstable streak instability mode for
streak amplitude parameters A 6 0.40. The SI1,S becomes unstable for A = 0.30 and is
the most amplified mode for A = 0.50. Varicose modes, SI1/2,V and SI1,V become unstable
for A = 0.50. Summarizing, the SI1/2,S mode is the most unstable mode for moderate
streak amplitudes and, therefore, may play an important role in the transition process.
Mode shapes for each family at frequencies corresponding to peak local growth rate are
shown in figures 15(a) through 15(d) for a streak amplitude parameter of A = 0.50. The
streamwise velocity magnitude isocontours are rather similar between the fundamental
and subharmonic sinuous modes, SI1/2,S and SI1,S , as well as between the varicose modes,
SI1/2,V and SI1,V . These modes differ in the phase, which is observed in the real and
imaginary parts of the mode shape perturbation.

3.4.3. Overall effect on predicted transition onset

The overall effect of the streaks on the instability characteristics of the hypersonic
boundary-layer flow is summarized in figures 16(a) and 16(b), where the neutral stability
curves and theN -factor envelopes, respectively, of the MM0 and SI1/2,S modes are plotted
for selected streak amplitudes. Figure 16(a) shows how the streaks affect the range of
unstable frequencies. As explained in 3.4.1, the neutral stability curves are displaced
toward lower frequencies because the MM0 mode shape concentrates on the crests of the
modified flow (i.e., regions of increased boundary-layer thickness) as shown by figure 9(a).
The sinuous subharmonic streak instabilities, which arise from the stable oblique first-
mode disturbance with the same azimuthal wavelength, as documented by Paredes et al.
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Figure 14. Spatial growth rates (−αi) of streak instability modes (SI1/2,S , SI1/2,V , SI1,S , and
SI1,V ) for selected streak amplitudes at ξ/L = 1.0.
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Figure 15. Isocontours of real and imaginary parts and magnitude of streamwise velocity
perturbations for A = 0.50 at ξ/L = 1.0 and frequencies (a) ω = 0.0853 for SI1/2,S , (b) ω = 0.142
for SI1/2,V , (c) ω = 0.0967 for SI1,S , and (d) ω = 0.119 for SI1,V .

(2016c,b, 2017a) for supersonic and hypersonic boundary layer flows, become unstable
for streak amplitude parameter A = 0.20, with associated frequencies lower than those
associated to the MM0 mode. For each of the selected streak amplitudes, the stability
regions of the MM0 and SI1/2,S modes are separate from each other.

The primary focus of this work corresponds to the stabilizing effect of streaks on
Mack-mode disturbances, which have been shown to cause transition in the present flow
configuration (Li et al. 2015a). For the conditions of the experiment (Kimmel et al.

2015), transition onset in the unperturbed cone boundary layer was measured to occur
near ξtr/L = 0.85, where the peak N -factor of the MM0 modes is Ntr = 14.7. Selecting
this value as the transition threshold, figure 16(b) shows how the transition onset due to
MM0 modes would be displaced downstream by the introduction of the finite-amplitude
optimal disturbances. For the highest streak amplitude considered herein (A = 0.40
with max(Asu) = 0.34), the MM0 modes reach the threshold N -factor at ξtr,MM0

/L =
1.84, although the sinuous, subharmonic streak instability SI1/2,S reaches the threshold
N -factor at ξtr,SI1/2,S/L = 1.76. Assuming that the threshold N -factor is equivalent
for Mack mode and streak instabilities, the laminar flow region would be 2.07 times
larger than for the unperturbed case. These results for high altitude conditions present
an interesting comparison with the findings by Paredes et al. (2016b) for a 7◦ half-
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Figure 16. (a) Neutral stability curves and (b) N-factor envelopes for planar Mack-mode
disturbances (MM0) and sinuous, subharmonic streak instability modes (SI1/2,S).

angle circular cone at the flow conditions of a ground test experiment in the VKI H3
hypersonic tunnel (Grossir et al. 2015), namelyM∞ = 6, Re′ = 18×106 m−1, T∞ = 60.98
K, and wall-to-adiabatic temperature ratio equal to Tw/Tw,ad = 0.68. In the case of
Paredes et al. (2016b), the higher value of the Tw/Tw,ad allows for the growth of oblique
first-mode instability waves, which are destabilized by the presence of the streaks and
eventually become the streak instability modes. The amplification due to the modulated
unstable first-mode waves leads to a lower threshold streak amplitude beyond which
streak instability becomes the dominant cause for the onset of transition.. Paredes et al.
(2016b) predicted that the subharmonic sinuous mode dominates the transition onset
above A ≈ 0.20 for the ground test case with Tw/Tw,ad = 0.68, while the streak amplitude
analogous value of threshold for the flight test case with Tw/Tw,ad = 0.35 is A ≈ 0.40 as
observed in figure 16(b).
The N -factor threshold to cause transition can be lower in the presence of the streaks

than that in the uncontrolled case. The present analysis is solely based on the effect
of the streaks on the linear amplification stage and because of the role of the streaks
(or the device used to excite those streaks) on the receptivity and/or nonlinear phases of
transition, lower N -factors at the onset of transition can be possible. However, the results
in figure 16(b) suggest that even if the transition N -factor for the boundary layer with
streaks were to be as low as N = 10 (as against the value of N = 14.7 in the uncontrolled
case), transition onset may still be delayed until ξ/L = 1.34 for a streak amplitude of
A = 0.30.
The present results show a potential increase in the length of the laminar flow that

is comparable to the length of the laminar region in the unperturbed case, i.e., the
laminar flow acreage is potentially doubled. Considering that the ratio of local skin
friction coefficients for turbulent and laminar flows is in the range of cf,tur/cf,lam ∈ [5, 7]
(Schlichting 1979), the maximum total skin friction reduction for the present geometry
with a total length corresponding to ReLc

= 26.84× 106, at the present flow conditions
(M∞ = 5.3, Re′ = 13.42 × 106 m−1, Tw/Tw,ad = 0.35) and with a transition threshold
of N = 14.7, would be of the order of 60% relative to the unperturbed case.

3.4.4. Effect of streak wavenumber on transition onset

A parameter study for additional streak wavenumbers mST is conducted to help
with identifying the optimal flow control setting to maximize the transition delay for a
given flow configuration. Figure 17(a) shows the evolution of N -factor envelopes for the
unperturbed boundary layer (A = 0.00) and the perturbed boundary layers for a streak
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Figure 17. (a) N -factor envelopes for the unperturbed boundary-layer flow (A = 0.00) and
for perturbed boundary-layer flows with A = 0.10 and selected streak azimuthal wavenumbers
mST = 135, 180, 270, 360, 450, and 540. (b) Effect of predicted transition location with streak
azimuthal wavenumber for same streak amplitude parameter A = 0.10, and for same initial
disturbance amplitude A0 corresponding to A = 0.10 for mST = mop = 180. The experimentally
measured transition location for the unperturbed case (A = 0.00) is included. The suffix ST is
excluded in the figures for simplification.

amplitude parameter of A = 0.10 and selected azimuthal wavenumbers. Note that the
initial streak disturbance amplitude A0 is different for each perturbed case with selected
azimuthal wavenumbers following Eq. (3.4). The N -factor envelope curves show a strong
effect of the streak azimuthal wavenumber. For the azimuthal wavenumber (mST = 135)
smaller than the optimal streak wavenumber (mST = mop = 180), the N -factor values
are larger than those corresponding to mST = mop along most of the streamwise domain,
but slightly smaller near the initial disturbance location (ξ0/L = 0.5). For the present
configuration, streaks with mST < mop would be less effective for transition delay than
mST = mop. For azimuthal streak wavenumbers larger than mop, the effect of the
streaks is weaker near the initial disturbance location, resulting in larger N -factor values
than those corresponding to the mST = mop case, but the N -factor values decrease
further downstream and the N -factor envelopes for mST > mop remains below that
corresponding to mST = mop along most of the domain. Streak instabilities were not
found for any of the selected cases, even though the initial disturbance amplitude at
these suboptimal wavenumbers must be larger than that for mST = mop in order to
reach the same maximum streak amplitude. Therefore, for the same value of maximum
streak amplitude, streaks with azimuthal wavenumbers larger than that are larger than
the wavenumber corresponding to optimal transient growth are likely to result in a longer
delay in the onset of transition. To help determine the most convenient streak azimuthal
wavenumber for transition delay, figure 17(b) shows the predicted transition location as
a function of the azimuthal wavenumbers for optimal disturbances initiated at ξ/L = 0.5
with same streak amplitude parameter A = 0.10 and with same initial amplitude A0,
which is set to the relatively modest value for A = 0.10 with mST = mop = 180. Results
show that the streaks with mST = 256 (mST = 1.42mop) lead to a further downstream
displacement of the transition location with same initial amplitude; specifically, the
predicted transition location is ξtr/L = 1.39 for mST = mop = 180 and ξtr/L = 1.52 for
mST = 256 with same initial amplitude A0.
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4. Summary and concluding remarks

Optimal growth theory based on the stationary form of parabolized stability equations
(PSE) is used to identify the range of modulating wavenumbers that would benefit the
most from the intrinsic “lift-up” mechanisms within a high-speed boundary-layer flow
over a 7◦ half-angle circular cone at zero angle of attack. The plane-marching PSE have
been used to monitor the nonlinear disturbance evolution of finite-amplitude, linearly
optimal perturbations. Subsequently, the linear stability characteristics of the perturbed
streaky boundary-layer flow are studied using the linear form of the plane-marching PSE.
The present results have demonstrated that the introduction of finite-amplitude optimal
growth streaks in a Mach 5.3 axisymmetric flow over a cone at realistic flight conditions
from the HIFiRE-1 experiment will reduce the peak linear amplification of boundary-layer
instabilities, indicating the possibility of a delayed onset of laminar-turbulent transition.
The current predictions show that the planar Mack-mode waves are the most amplified
instabilities for both the unperturbed and perturbed cases up to a threshold amplitude of
the stationary streaks. A detailed analysis of the primary mechanism for the effect of the
streaks on the reduced amplification of the planar Mack modes provides further evidence
that the MFD of the nonlinear stationary streak perturbation has a stabilizing effect on
the Mack modes as previously reported by Ren et al. (2016) for small streak amplitudes
and by Paredes et al. (2016b) for a broad range of streak amplitudes. More interestingly,
however, the present calculations demonstrate that the spanwise varying component of
the stationary streak has an even larger effect of the amplification characteristics of the
Mack modes. Yet, in general, the production of disturbance kinetic energy associated
with the boundary layer instabilities is dominated by the wall-normal gradients of the
boundary layer flow with or without the streaks. For sufficiently large streak amplitudes,
intrinsic instabilities of the streaks can reach the threshold N -factor for transition onset
before the Mack-mode instabilities.

The results indicate that, if suitable stationary disturbances can be excited in the
originally axisymmetric boundary-layer flow, then the net stabilization of planar Mack-
mode instabilities due to the stationary streaks may lead to a notable delay in transition
onset, provided that the N -factor values correlating with transition onset remain similar
in both unperturbed and perturbed cases. The streaks with azimuthal wavenumber
corresponding to the optimal transient growth yield a downstream movement of the
laminar-turbulent transition onset that is comparable to the uncontrolled transition
length, which translates into a reduction of the total skin friction of the order of the
60% relative to the uncontrolled case. Furthermore, the parametric study for additional
streak wavenumbers has shown that a larger streak wavenumber of approximately 1.4
times the optimal growth value, may actually result in an increased delay in transition.

Detailed laboratory experiments are required to establish the effect of streaks, if any,
on the N -factor correlation. The physical source responsible for the excitation of transient
growth disturbances has not been addressed in this study and, in turn, the effect of this
source on the generation (i.e., receptivity) of the unsteady modal instabilities is also not
addressed in the present investigation. A study of both these aspects would represent an
important extension of the present work.
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