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Installation Effects on the Flow and Noise of an
Under-the-Wing Mounted Dual Stream Jet

Nikolai N. Pastouchenko* and Christopher K.W. Tam†

Florida State Univeristy, Tallahassee, FL 32306-4510

It is known experimentally that a jet mounted under a wing generates more noise than
the same jet in isolation. The excess noise is referred to as installation noise. Installation
noise is largely of aerodynamic origin. The principal mechanism is believed to be the impact
of the downwash of the wing-flap on the jet flow. The downwash causes the jet to deflect
downward and to distort laterally. This brings about an increase in turbulence in the jet.
The increase in the level of turbulence, in turn, leads to the emission of additional noise. The
modeling and computation of the downwash, the distorted jet flow and the excess noise
radiation are the objectives of this investigation. It will be shown that calculated results at
high frequencies compare well with experimental measurements.

 I. Introduction
T is known experimentally, since the late seventies, that a jet installed under a wing of an aircraft radiates more
noise than the same jet in a stand-alone condition. The excess noise is the propulsion-airframe integration noise or

commonly referred to as installation noise. When a jet is placed near a wing, there is an increase in noise in the fly-
over directions because of the reflection of sound by the wing. Here, installation noise includes not merely the noise
increase due to the reflection of sound by the wing. The major part of this noise is generated aerodynamically by the
nonlinear interaction between the flow around the wing-flap and the jet. In this work, our primary interest is to
model and to predict installation noise of aerodynamic origin. Installation noise increases not only the total aircraft
noise in the fly-over plane but also in the sideline directions. It is especially important during landings and take-offs
when the flaps are down.

During the eighties, a number of experiments were carried out trying to quantify the characteristics and intensity
of installation noise1-4. Most of these experiments involved the measurements of the jet alone noise and the noise
when the jet was placed near a model of an aircraft wing inside an anechoic chamber. The experimental
measurements by Wang2 were the most systematic. In his experiment, a scaled model of the wing of a DC-10
aircraft was used. Large noise increase was observed in the fly-over plane in the low frequency part of the spectrum.
The increase in high frequency noise was less. In directions at small exhaust angles, the installation noise intensity
was quite low. In the sideline, the radiated noise characteristics, on the other hand, were quite different. Overall, the
measured data indicated that installation noise had a unique spectral shape and a directional pattern of its own.

Recently, there is a renewed interest in propulsion-airframe integration noise. Mead & Strange5 investigated the
under-the-wing installation effects on jet noise with special emphasis on the sideline directions. Their interest in the
sideline was motivated by the experience that it was generally more difficult to meet legislative limit on sideline
noise level requirements. They reported the measurement of high installation noise level in the low frequency range.

One drawback of the Mead & Strange experiment as well as most of the previous works is that the experiments
were carried out in static conditions. Upon realizing that the effect of forward flight is extremely important in the
interaction between the flow around the wing-flap and the jet, a series of new experiments on installation noise was
conducted by engineers of the Boeing Company; Shivashankara & Blackner6, Blackner & Bhat7 and Bhat &
Blackner8. They employed an open wind tunnel at M=0.28 to simulate the forward motion of the aircraft. By using
elliptic mirror microphones and the newly developed phase array microphones, they were able to obtain noise source
location maps as well as far field noise data.

In the Boeing study, summarized by Bhat9, the variation and sensitivity of installation noise to a range of flow
parameters, wing-flap settings, jet engine location and pitching angle were investigated. Installation noise up to 6 dB
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across a wide band of frequency was measured. This is a very large increase in noise. It can easily negate the gains
of recent successes in suppressing other components of airframe noise.

Below is a summary of the important findings of the Boeing investigation.
1. The presence of the airframe increases jet noise significantly.
2. The noise increase follows monotonically with increasing flap deflection. Flap deflection has the largest effect on

installation noise.
3. Noise levels are insensitive to engine installation location within Boeing’s current envelope of possibilities at

takeoff flap setting.
4. A wide bifurcation can contribute to a slight increase in noise level.
5. Pitching the nozzle up toward the wing can increase the noise levels, while pitching the nozzle away from the

wing has little benefit.
In conjunction with their experimental study, an empirical installation noise prediction method was developed by

Bhat & Blackner8. The approach of Bhat & Blackner followed an earlier work at Boeing by Lu10 for the prediction
of noise from isolated coaxial jets in ambient flow. The methodology is entirely empirical. Only a limited amount of
flow physics was incorporated into the formulation of the prediction code. The predicted noise spectra were in fair
agreements with measurements at low to moderate frequencies. However, there were significant discrepancies in the

higher frequency range of all the measured spectra.
The primary objective of this investigation is to develop

a computational model to calculate installation effects on
the flow and noise of an under-the-wing mounted dual
stream jet. Installation of a jet engine under a wing in
forward flight leads to very complex fluid dynamical
interaction between the flow around the wing-flap and the
jet. To compute the entire interaction is beyond the scope of
this work. Based on the Boeing results, we focus our
attention mainly on the impact of the downwash of the
wing-flap on the jet plume. Figure 1 shows the streamlines
around an airfoil at zero angle of attack and a flap at a
deflection angle of 35 degrees. The forward flight Mach
number is 0.2. Superimposed on this figure are the outlines
of a nozzle and that of a Mach 0.8 jet at a temperature ratio
of 1.54. This figure indicates that the downwash, which is
especially strong when the flap is fully deployed, could
cause the jet to deflect downward and distorted laterally. In

the present investigation, a simple mathematical model is adopted in the computation. Only the effect of downwash
on the jet is considered. The effect of the presence of the jet on the wing-flap flow will be neglected. The large
deflection and distortion of the jet caused by the strong downwash lead to an increase in the level of turbulence in
the jet. This, in turn, leads to an increase in jet noise radiation. It is known that there are two principal components
of jet mixing noise. One component is generated by the large turbulence structures of the jet flow and the other
component is generated by the fine scale turbulence. In this work, only the installation noise from the enhanced fine
scale turbulence is calculated. Comparisons with experimental measurements will be reported.

The rest of the paper is as follows. First, the downwash from the wing-flap is calculated by solving the Euler
equations. The distorted jet mean flow is then calculated by a parabolized RANS k–e turbulence model taking into
consideration the downwash as a side boundary condition. The computed mean flow and the turbulence information
from the k–e model are subsequently used to calculate the radiated noise through the extended Tam & Auriault fine
scale turbulence noise theory11,12. Finally, the installation noise is determined by subtracting from the calculated
noise the noise of the same jet in isolation.

 II. Downwash from a Wing-Flap in High-Lift Configuration
For the purpose of calculating the downwash of a wing-flap combination in an approach configuration, an inviscid
flow model is used. The wing will be taken as two-dimensional. The governing equations are the Euler and energy
equations,

† 

∂r
∂t

+ r
∂u
∂x

+
∂v
∂y

Ê 

Ë 
Á 

ˆ 

¯ 
˜ + u

∂r
∂x

+ v
∂r
∂y

= 0 (1)

Figure 1. Streamlines showing the impact of
downwash on an under-the-wing mounted jet
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The boundary condition on the surface of the wing-flap is,

† 

unx + vny = 0 (5)

where n=(nx,ny) is the unit normal
of the wing-flap surface.

In the present study, equations
(1) to (4) are solved by the Multi-
s ize -mesh  Mul t i - t ime-s tep

Dispersion-Relation-Preserving
scheme13 on a Cartesian grid as
shown in figure 2. The finest mesh
is employed in the block
containing the airfoil and the flap.
This very fine mesh is used to
resolve the geometrical details of
the two solid bodies. Away from
the airfoil, the flow becomes more
and more smooth. Thus, there is a
gradual relaxation of the resolution
requirement. Accordingly, the
mesh size and the corresponding
time step used in the computation
increase by a factor of two each
time one moves to the next outer
block. In this way, the flow over a
fairly large domain can be
computed with a reasonable
amount of computing time.

To enforce boundary condition (5), the Cartesian boundary treatment method proposed by Kurbatskii & Tam14 is
used. At the inflow and lower boundaries of the computation domain, the radiation boundary condition of Tam &
Webb15 is enforced. At the right and top boundaries, the Tam & Webb15 outflow boundary conditions are
implemented. The computation starts with a uniform flow and time marched to steady state. To promote fast
convergence, the method of accelerated convergence to steady state proposed by Tam & Dong16 is applied. The idea
of the method is to perform a “canceling-the-residue” operation. In a numerical computation, the best one can do is
to make the difference between the numerical and the exact solution to be of the order of a tenth of a percent. In
other words, further time marching computation could be a waste of effort in terms of improving the accuracy of the
solution, once the residual reaches a level of the order of 10–5. With this in mind, it is possible to add a term that is
exactly equal in magnitude but opposite in sign to the residual, at this stage, to the right side of each of the
governing equations. These are terms of order 10–5 or less and would, therefore, not materially affecting the
accuracy of the steady state numerical solution. The added terms may be regarded as minute artificial distributed
sources of fluid, momentum or heat. The consequence of adding these source terms is to cancel the residuals
instantly to zero. Of course, for the multi-level matching scheme, the residuals of the scheme are greatly reduced in
this way but they would not exactly equal to zero at the next time level. Numerical experiments indicate that when
the above canceling-the-residual procedure is performed, the overall residuals of the computation drop almost

Figure 2. Computation domain for calculating the downwash of an airfoil
and flap
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instantaneously by several orders of magnitude. This operation may be applied repeatedly until the residuals are
driven to machine round-off error.

 III. Computation of the Mean Flow of an Under-the-Wing Mounted Jet
We will use the Reynolds Averaged Navier-Stokes Equations (RANS) together with the k–e turbulence model to
calculate the mean flow of an under-the-wing mounted dual stream jet. It has been pointed out that the standard k–e
model has a number of deficiencies. To remedy the shortcomings of the model, we will include the Pope
correction17 for three-dimensional flows, the Sarkar correction18 for convective Mach number effects and the Tam &
Ganesan19 correction for density gradients existing in hot jets.

A. Parabolized RANS Equations
For convenience, nondimensional variables with respect to the following scales are used.

† 

length scale = Dp  (diameter of primary nozzle)
velocity scale = up  (fully expanded velocity of primary jet)
time scale =  Dp up

density scale = rp  (density of primary nozzle)
pressure scale = rpup

2

temperature scale = Tp  (fully expanded temperature of primary jet)
scale for k and t ij = up

2

scale for e = up
3 Dp

scale for n t = Dpup

The steady state RANS equations including the modified k–e turbulence model in Cartesian tensor notation are,
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+
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= 0 (6)
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Ê 
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rT
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2kM p

2

T
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e
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(s) = cm
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(s) (14a)
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e 2
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r —u
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Ï 

Ì 
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2
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Ï 
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† 

sij =
1
2

k
e s

∂ui

∂x j
+

∂u j

∂xi

Ê 

Ë 
Á 

ˆ 

¯ 
˜ . (15c)

The empirical constants of the above equations are assigned the values below.

† 

cm = 0.0874,        ce1 = 1.40,        ce 2 = 2.02,        ce 3 = 0.822

† 

gs T = Pr (turbulent Prandtl number) = 0.422

† 

s k = 0.324,        s e = 0.377,        a1 = 0.518,        cr = 0.035 .

It is advantageous to separate the solution into two parts as,

† 

p

T

ui

È 

Î 
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Í 

˘ 

˚ 

˙ 
˙ 
˙ 

=

p (a)

T (a)

ui
(a)

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

+

ˆ p 
ˆ T 
ˆ u i

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

(16)

where the quantities with superscript (a) are the downwash flow solution found in the previous section. Here it will
be assumed that this solution has been completed at this stage and that the main effort now is to calculate 

† 

( ˆ p , ˆ T , ˆ u i) .
The principal reason for separating the solution in the form of (16) is to allow a clear and simple prescription of
boundary conditions. Here the natural boundary conditions are,

† 

ˆ p , ˆ T , ˆ u i ,k,e( ) Æ 0,    away from the jet . (17)
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In this investigation, the aim is to develop a set of parabolized equations for the determination of unknown
variables 

† 

( ˆ p , ˆ T , ˆ u i ,k,e) . The approach is similar to previous works12,20,21. But because of the downwash flow, the
resulting equations are different. To simplify the derivation of the parabolized equations, it will be assumed that the
downwash flow is practically incompressible; i.e.,

† 

∂u j
(a)

∂x j
@ 0 (18)

and that r in equations (2) and (3) may be substituted by r∞. This approximation is justified since the forward flight
Mach number is low subsonic.

In Ref. [12,20,21], the fluid density is eliminated by using the equation of state in favor of pressure p and
temperature T. Here the same strategy is followed. Thus, (16), which is the continuity equation, is used to compute

† 

ˆ p . Substitution of (16) into (6) and after some algebraic manipulation, it is straightforward to derive a parabolized
equation for 

† 

ˆ p  in Cartesian coordinates. The x-axis is in the flow direction
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∂y
+

∂p (a)

∂y
Ê 

Ë 
Á 

ˆ 

¯ 
˜ - ˆ w ∂

ˆ p 
∂z

- ˆ p + p (a)( ) ∂ ˆ u 
∂x

+
∂ ˆ v 
∂y

+
∂ ˆ w 
∂z

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

        + r
gM p

2 ˆ u + u (a)( ) ∂ ˆ T 
∂x

+ ˆ v + v(a)( ) ∂ ˆ T 
∂y

+ ˆ w 
∂ ˆ T 
∂z

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

˘ 

˚ 
˙ 
˙ 

(19)

where (

† 

ˆ u , ˆ v , ˆ w ) are the Cartesian velocity components. It is to be noted that the terms 

† 

∂ ˆ u /∂x  and 

† 

∂ ˆ T /∂x  on the right
side of (19) are given by the x-momentum and the energy equation (see equations (20) and (23) below), so that the
right side does not have any unknown x-derivative.

On following the steps in the derivation of  (19) and by making use of approximation (18) and boundary layer
argument; i.e., 

† 

∂ /∂y , 

† 

∂ /∂z >> ∂ /∂x , a full set of parabolized equations for variables 

† 

( ˆ u , ˆ v , ˆ w , ˆ T ,k,e )  can be derived
readily. These equations when written out are as follows
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where r∞ and T∞ are the density and temperature of the free stream. To complete the parabolized system, all the x-
derivatives in the stress terms and c of (13) and (15) are dropped. They are small compared to the y and z derivative
terms.

B. Radiation or Outgoing Wave Boundary Conditions
To compute the solution of the parabolized system of equations (19) to (25), the 4-level Dispersion-Relation-

Preserving (DRP) scheme15 is used to march the solution downstream in the x-direction. Here, the x-axis is treated as
the time axis in the DRP methodology. The solution is contained in planes parallel to the x–z plane. The computation
domain in these parallel planes is finite and does not extend too far from the jet flow. For this reason, boundary
condition (17) for the variables 

† 

( ˆ p , ˆ T , ˆ u i )  cannot be implemented. As in previous work involving the computation of
jet mean flow through parabolized equations22, a set of radiation/outgoing wave boundary conditions is used at the
edge of the computation domain. This set of boundary conditions is derived by first finding an asymptotic solution
(an approximate one if necessary) of the parabolized equations in the limit (y2+z2)1/2 is large. The radiation boundary
conditions are then found by eliminating the unknown function of the asymptotic solution through cross
differentiation. In this work, this procedure has been carried out with the aid of a frozen coefficient approximation.
The boundary conditions for large (y2+z2)1/2 actually implemented in this work are,

† 

u(a ) ∂ ˆ u 
∂x

+ v(a ) ∂ ˆ u 
∂y

= 0 (26)

† 

u(a ) ∂ ˆ v 
∂x

+ v(a ) ∂ ˆ v 
∂y

+ a•
z

z 2 + y 2( )
1
2

∂ ˆ v 
∂z

+
y

z 2 + y 2( )
1
2

∂ ˆ v 
∂y

+
z 2

y 2 + z 2( )
3
2

ˆ v - v(a )

u(a )
ˆ u 

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 

Í 
Í 
Í 

           - yz

y 2 + z 2( )
3
2

ˆ w 

˘ 

˚ 

˙ 
˙ 
˙ 

+

ˆ v - v(a ) ˆ u 
u(a )

y 2 + z 2( )
1
2

= 0

(27)

† 

u(a ) ∂ ˆ w 
∂x

+ v(a ) ∂ ˆ w 
∂y

+ a•
z

y 2 + z 2( )
1
2

∂ ˆ w 
∂z

+
y

y 2 + z 2( )
1
2

∂ ˆ w 
∂y

È 

Î 

Í 
Í 
Í 

+
y 2

y 2 + z 2( )
3
2

ˆ w 

            - yz

y 2 + z 2( )
3
2

ˆ v - v(a )

u(a )
ˆ u 

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

˘ 

˚ 

˙ 
˙ 
˙ 

+
ˆ w 

y 2 + z 2( )
1
2

= 0

(28)

† 

u(a ) ∂
∂x

+ v(a ) ∂
∂y

+ a•
z

y 2 + z 2( )
1
2

∂
∂x

+
y

y 2 + z 2( )
1
2

∂
∂y

Ê 

Ë 

Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
+

1

y 2 + z 2( )
1
2

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

ˆ p 
ˆ T 

È 

Î 
Í 

˘ 

˚ 
˙ = 0 (29)
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† 

k = es = 0 . (30)
C. Numerical Results

Consider an under-the-wing mounted dual
stream jet in a configuration as shown in figure 3.
The nozzle has an area ratio of 3 and is designed to
operate at a bypass ratio of 6 with primary jet
Mach number, Mp=0.762, temperature ratio
Tp/Ta=2.9 (Tp is the reservoir temperature of the
primary jet, Ta is the ambient temperature) and
secondary jet Mach number, M s=0.9, and
temperature ratio Tp/Ta=1.2. The geometry of the
nozzle that is used in the Boeing experiments8, is
shown in figure 4.. To illustrate the effect of wing-
flap downwash on the jet flow, we consider the
case of forward flight Mach number 0.28. As
shown in figure 3, the nozzle exit is located
directly under the leading edge of the wing, so that
there is little downwash flow. The trailing edge of
the deflected flap is located at a distance of
approximately 3 Ds (Ds = diameter of secondary
nozzle) downstream. At this location, the
downwash is at the maximum intensity. For the jet
mean flow calculation, use is made of the oblique

Cartesian coordinates method of Ref. [22]. Computation starts at the exit of the secondary nozzle and marches
downstream to the tip of the
plug nozzle. This solution
provides the starting values for
the present computation using
parabolized RANS equations
(19) to (25) and boundary
conditions (26) to (30).

Figure 5 shows the
computer contours of constant
axial velocity at different
distance downstream on planes
parallel to the nozzle exit plane
or the y–z-plane. The two black
concentric circles in figures 5a
and 5f are the inner and outer
boundaries of the primary jet at
the nozzle exit. They provide a
reference to show the
downward displacement of the
jet flow. Figures 5a and 5b
show the axial velocity contours
at x /D s=1.5 and 3.5. The

contours are nearly circular indicating the fact that the impact of wing-flap downwash has not been felt by the jet
flow. Figures 5c to 5f show a gradual downward displacement of the jet. At the same time, the jet is distorted
laterally. The downward deflection and lateral distortion are responsible for an increase in turbulence level in the jet.
Figure 6 show the computed axial velocity profiles of the jet in the vertical symmetry plane through the center of the
jet at various distance downstream. These profiles are shown in dotted lines. For comparison purposes, the profiles
of the same jet in a stand-alone condition are shown in full lines. It is readily seen that the velocity profiles are
displaced gradually downward. In addition, the profiles are no longer symmetric with respect to the maximum
velocity point. In a Boeing experiment7, the downward displacement, as well as the lateral distortion, of the jet were
observed. However, not enough quantitative information was provided to allow a direct comparison with computed
results.

Figure 3. Installed jet model. C = length of wing chord.

Figure 4. Dual stream nozzle with an external plug of the Boeing
experiments. Area ratio = 3, Ds/Dp=1.9, X1/Dp=0.85, X2/Dp=1.8, a=14°, b=15°
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Figure 5. Contours of axial velocity of a dual stream. Flap deflection angle 35°. Mp=0.762, Tp/Ta=2.9; Ms=0.9,
Ts/Ta=1.2, Mf=0.28.  Area ratio 3, bypass ratio 6 dual stream nozzle.  (a) X/Ds=1.5, (b) 3.5, (c) 8.5, (d) 10.5, (e)
15.5, (f) 20.5.
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Figure 6. Comparisons between velocity profiles in the vertical plane through the center of the jet. ———
isolated jet, – – – – – under-the-wing mounted dual stream jet with flap at 35° deflection angle. Jet operating
conditions and downstream locations are the same as the previous figure.
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 IV. Computation of Installation Noise and Comparison with Experiment
Once the mean flow of an installed jet and the values of k and e are computed, the fine scale turbulence noise

from the jet may be calculated by the extended Tam & Auriault theory11,12. The far field noise spectrum,
S(R,Q,f,fDp/up). at a point with spherical polar coordinates (R,Q,f), with respect to a polar coordinate system
centered at the nozzle exit with the polar axis coinciding with the x-axis, is given by (in dB),

† 

S R,Q,f,
fDp

up

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ = 10 log

4pS x,w( )
pref

2 Dp

up

Ê 
Ë 
Á ˆ 

¯ 
˜ 

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

(31)

where

  

† 

S x,w( ) =
4p 3

ln 2( )
3
2

G n + 1
2( )

G n( )
ˆ q s

2

c 2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 
l s

3

t s

pa x2,x,w( )
2e

- w 2ls
2

u 2 4 (ln 2)

1+ w 2t s
2 1-

u 
a•

cosQ
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

n + 1
2

dx2
Volume of jet

ÚÚÚ . (32)

For convenience, we use Dp and Ds to denote the nozzle exit diameters of the primary and secondary jet (see
figure 4) and up and us to denote the fully expanded velocities. In (32), pa(x2,x,w) is the adjoint Green’s function and
w=2pf is the angular frequency. For an installed jet, the computation of the adjoint Green’s function is not
straightforward.  Here it is computed using a time domain approach.  The adjoint Green’s function includes the
presence of the wing-flap and thus accounts for sound reflection by these surfaces.  G(n) is the Gamma function. 

† 

u 
is the mean flow velocity of the jet at the source point x2. pref is the reference pressure for the dB scale. a∞ is the
ambient sound speed. The quantities 

† 

(qs
2 /c 2) , n , ls and Ts are related to k and e of the k–e turbulence model as

follows,

† 

n =
1
2

+ ch

k
3
2

e
1
r

—u( ) ⋅ —r( )
—u

                                                         (33a)

0                                                          (33b)

Ï 

Ì 
Ô 

Ó 
Ô 

† 

ˆ q s
a

c 2 = A2q2 + B k
3
2

e
1
r

—u( ) ⋅ —r( )
—u

q2                                               (34a)

0                                               (34b)
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Ì 
Ô 

Ó 
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† 

l s = cl

k
3
2

e
+ clr

k 3

e 2
1
r

—u( ) ⋅ —r( )
—u

                                                  (35a)

0                                                   (35b)

Ï 

Ì 
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† 

t s = ct
k
e

+ ctr
k

5
2

e 2
1
r

—u( ) ⋅ —r( )
—u

                                                  (36a)

0                                                   (36b)
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Ì 
Ô 

Ó 
Ô 

In (33) to (36), the (a) formulas are to be used when (—u)·(—r) is negative, otherwise the (b) formulas are used.
The three constants A, cl and ct were determined empirically by Tam & Auriault11 and they were assigned the values

  

† 

A = 0.755,        cl = 0.256,        ct = 0.233.
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The remaining four constants were given the values

  

† 

ch = 2.1599,       B = 0.806,       clr = -0.026,       ctr = -0.2527

in Ref. [12].

Figure 7. Installation noise. Flap deflection angle 35°.
Inlet angle c=90.0°. Mp=0.762, Tp/Ta=2.9; M s=0.9,
Ts/Ta=1.2, Mf=0.28. Area ratio 3, bypass ratio 6 dual
stream nozzle. ° computed. D experiment.

Figure 8. Installation noise. Flap deflection angle 35°.
Inlet angle c=120.0°. Mp=0.762, Tp/Ta=2.9; Ms=0.9,
Ts/Ta=1.2, Mf=0.28. Area ratio 3, bypass ratio 6 dual
stream nozzle. ° computed. D experiment.

Figure 9. Installation noise. Flap deflection angle 23°.
Inlet angle c=90.0°. Mp=0.762, Tp/Ta=2.9; M s=0.9,
Ts/Ta=1.2, Mf=0.28. Area ratio 3, bypass ratio 6 dual
stream nozzle. ° computed. D experiment.

Figure 10. Installation noise. Flap deflection angle
23°. Inlet angle c=120.0°. Mp=0.762, T p/Ta=2.9;
Ms=0.9, Ts/Ta=1.2, Mf=0.28. Area ratio 3, bypass ratio
6 dual stream nozzle. ° computed. D experiment.

By means of formulas (30) and (31), the noise of the installed jet whose mean flow velocity profiles are
given in figures 5 and 6 are computed. By subtracting out the noise of the same jet in isolation, the installation noise,



American Institute of Aeronautics and Astronautics
13

D, is found. Figure 7 shows a comparison of the computed installation noise spectrum from the fine scale turbulence
of the jet and experimental measurements of Bhat & Blackner8. The flap is at a deflection angle of 35°. The
measurement microphone is at an inlet angle of 90° in the fly-over plane. As can be seen, the computed installation
noise spectrum at high Strouhal number is in good agreement with measurements. However, at intermediate
Strouhal number, the measured spectrum has a high level of installation noise that is not predicted by the present
model. Figure 8 shows similar comparison at an inlet angle of 120°. There are similar agreement and disagreement
with measurements as at 90° inlet angle. Figures 9 and 10 show similar comparisons at a flap deflection angle of
23°. Again similar results as at 35° deflection angle are found.

Clearly, the present model does not predict a mid-Strouhal number increase in installation noise. However,
we believe that the mid-Strouhal number installation noise is from the large turbulence structures of the jet flow. For
this reason, the present fine scale turbulence noise model is unable to correctly predict the entire installation noise
spectrum. It is to be noted that large turbulence structures noise of a jet generally peaks at a lower Strouhal number
than that of the fine scale turbulence noise. These large turbulence structures have a near pressure field that extends
well outside the jet. This extended field moves downstream with the large turbulence structures. They impinge on
the flap when it is deployed at a large angle. The interaction with the flap leads to acoustic scattering and hence
noise radiation. We believe this is the mechanism responsible for the observed mid-Strouhal number installation
noise. If this explanation is accepted, then the prediction of the present model is in good agreement with
experimental measurements. This may also be interpreted as providing a confirmation of the original finding of Ref.
[9] that the downwash from the wing-flap has a dominant effect on installation noise.

 V. Summary and Conclusions
In this work, the effect of the downwash from a wing-flap combination on an under-the-wing mounted dual

stream jet is investigated. It is found that at large flap deflection angle, the jet flow is forced downward and distorted
laterally. The deflected jet flow is computed using a set of parabolized RANS equations with a modified k–e
turbulence model. Numerical results reveal that there is an increase in turbulence level in the jet flow. The noise
radiated by the fine scale turbulence of the jet is then calculated by means of the extended Tam & Auriault
theory11,12. By subtracting out from the computed noise spectrum the noise of the same jet in a stand-alone
condition, the installation noise from the fine scale turbulence of the jet is determined.

Comparisons between calculated installation noise and experimental measurements are made. It is found that
there are good agreements at the high Strouhal number range. However, measurements indicate significant level of
installation noise in the mid-Strouhal number range that is not predicted by the computation. It is, however, the
contention of the authors that the discrepancy is not a fault of the computational model, rather that the mid-Strouhal
number installation noise is generated by a different mechanism that is beyond the scope of the present
investigation. In a jet flow, both large turbulence structures and fine scale turbulence generate noise. The dominant
frequencies of large turbulence structures noise are known to be lower than that of the fine scale turbulence. In
addition, large turbulence structures of a jet have pressure fields extending well outside the jet. The scattering of the
extended pressure field by a deployed flap as the large turbulence structures propagate downstream is believed to be
the mechanism responsible for generating the mid-Strouhal number installation noise.

Finally, it is the authors’ belief that there is now a computational model by which high frequency installation
noise from fine scale turbulence of an installed jet may be computed. Because only a limited amount of experimental
data is available at the present time, it has not been possible to perform extensive validation of the computation
model. Further comparisons are beneficial and necessary. In addition, there is a great need for the development of a
large turbulence structures jet noise prediction theory. In the absence of such a theory, a complete prediction of
installation jet noise would be very difficult if not impossible.
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