
Instance-aware Image Colorization

Jheng-Wei Su1 Hung-Kuo Chu1 Jia-Bin Huang2

1National Tsing Hua University 2Virginia Tech

https://cgv.cs.nthu.edu.tw/projects/instaColorization

Figure 1. Instance-aware colorization. We present an instance-aware colorization method that is capable of producing natural and colorful

results on a wide range of scenes containing multiple objects with diverse context (e.g., vehicles, people, and man-made objects).

Abstract

Image colorization is inherently an ill-posed problem

with multi-modal uncertainty. Previous methods leverage

the deep neural network to map input grayscale images to

plausible color outputs directly. Although these learning-

based methods have shown impressive performance, they

usually fail on the input images that contain multiple ob-

jects. The leading cause is that existing models perform

learning and colorization on the entire image. In the ab-

sence of a clear figure-ground separation, these models

cannot effectively locate and learn meaningful object-level

semantics. In this paper, we propose a method for achiev-

ing instance-aware colorization. Our network architecture

leverages an off-the-shelf object detector to obtain cropped

object images and uses an instance colorization network to

extract object-level features. We use a similar network to

extract the full-image features and apply a fusion module

to full object-level and image-level features to predict the

final colors. Both colorization networks and fusion mod-

ules are learned from a large-scale dataset. Experimental

results show that our work outperforms existing methods on

different quality metrics and achieves state-of-the-art per-

formance on image colorization.

1. Introduction

Automatically converting a grayscale image to a plausi-

ble color image is an exciting research topic in computer

vision and graphics, which has several practical applica-

tions such as legacy photos/video restoration or image com-

pression. However, predicting two missing channels from a

given single-channel grayscale image is inherently an ill-

posed problem. Moreover, the colorization task could be

multi-modal [3] as there are multiple plausible choices to

colorize an object (e.g., a vehicle can be white, black, red,

etc.). Therefore, image colorization remains a challenging

yet intriguing research problem awaiting exploration.

Traditional colorization methods rely on user interven-

tion to provide some guidance such as color scribbles [20,

12, 35, 26, 22, 31] or reference images [34, 14, 3, 9, 21, 5]

to obtain satisfactory results. With the advances of deep

learning, an increasing amount of efforts has focused on

leveraging deep neural network and large-scale dataset such

as ImageNet [28] or COCO-Stuff [2] to learn colorization

in an end-to-end fashion [4, 13, 17, 38, 41, 15, 42, 11, 8,

27, 6, 24, 1]. A variety of network architectures have been

proposed to address image-level semantics [13, 17, 38, 42]

at training or predict per-pixel color distributions to model

multi-modality [17, 38, 42]. Although these learning-based
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(a) Input (b) Deoldify [1] (c) Zhang et al. [41] (d) Ours

Figure 2. Limitations of existing methods. Existing learning-based methods fail to predict plausible colors for multiple object instances

such as skiers (top) and vehicles (bottom). The result of Deoldify [1](bottom) also suffers the context confusion (biasing to green color)

due to the lack of clear figure-ground separation.

methods have shown remarkable results on a wide variety

of images, we observe that existing colorization models do

not perform well on the images with multiple objects in a

cluttered background (see Figure 2).

In this paper, we address the above issues and propose

a novel deep learning framework to achieve instance-aware

colorization. Our key insight is that a clear figure-ground

separation can dramatically improve colorization perfor-

mance. Performing colorization at the instance level is ef-

fective due to the following two reasons. First, unlike ex-

isting methods that learn to colorize the entire image, learn-

ing to colorize instances is a substantially easier task be-

cause it does not need to handle complex background clut-

ter. Second, using localized objects (e.g., from an object de-

tector) as inputs allows the instance colorization network to

learn object-level representations for accurate colorization

and avoiding color confusion with the background. Specif-

ically, our network architecture consists of three parts: (i)

an off-the-shelf pre-trained model to detect object instances

and produce cropped object images; (ii) two backbone net-

works trained end-to-end for instance and full-image col-

orization, respectively; and (iii) a fusion module to selec-

tively blend features extracted from layers of the two col-

orization networks. We adopt a three-step training that first

trains instance network and full-image network separately,

followed by training the fusion module with two backbones

locked.

We validate our model on three public datasets (Ima-

geNet [28], COCO-Stuff [2], and Places205 [43]) using the

network derived from Zhang et al. [41] as the backbones.

Experimental results show that our work outperforms exist-

ing colorization methods in terms of quality metrics across

all datasets. Figure 1 shows sample colorization results gen-

erated by our method.

Our contributions are as follows:

• A new learning-based method for fully automatic

instance-aware image colorization.

• A novel network architecture that leverages off-the-

shelf models to detect the object and learn from large-

scale data to extract image features at the instance and

full-image level, and to optimize the feature fusion to

obtain the smooth colorization results.

• A comprehensive evaluation of our method on compar-

ing with baselines and achieving state-of-the-art per-

formance.

2. Related Work

Scribble-based colorization. Due to the multi-modal na-

ture of image colorization problem, early attempts rely on

additional high-level user scribbles (e.g., color points or

strokes) to guide the colorization process [20, 12, 35, 26,

22, 31]. These methods, in general, formulate the coloriza-

tion as a constrained optimization problem that propagates

user-specified color scribbles based on some low-level sim-

ilarity metrics. For instance, Levin et al. [20] encourage as-

signing a similar color to adjacent pixels with similar lumi-

nance. Several follow-up approaches reduce color bleeding

via edge detection [12] or improve the efficiency of color

propagation with texture similarity [26, 22] or intrinsic dis-

tance [35] . These methods can generate convincing results

with detailed and careful guidance hints provided by the

user. The process, however, is labor-intensive. Zhang et

al. [41] partially alleviate the manual efforts by combining

the color hints with a deep neural network.

Example-based colorization. To reduce intensive user

efforts, several works colorize the input grayscale im-

7969



age with the color statistics transferred from a reference

image specified by the user or searched from the Inter-

net [34, 14, 3, 9, 21, 5, 11]. These methods compute

the correspondences between the reference and input im-

age based on some low-level similarity metrics measured

at pixel level [34, 21], semantic segments level [14, 3], or

super-pixel level [9, 5]. The performance of these methods

is highly dependent on how similar the reference image is

to the input grayscale image. However, finding a suitable

reference image is a non-trivial task even with the aid of au-

tomatic retrieval system [5]. Consequently, such methods

still rely on manual annotations of image regions [14, 5].

To address these issues, recent advances include learning

the mapping and colorization from large-scale dataset [11]

and the extension to video colorization [36].

Learning-based colorization Exploiting machine learn-

ing to automate the colorization process has received in-

creasing attention in recent years [7, 4, 13, 17, 38, 41, 15,

42]. Among existing works, the deep convolutional neural

network has become the mainstream approach to learn color

prediction from a large-scale dataset (e.g., ImageNet [28]).

Various network architectures have been proposed to ad-

dress two key elements for convincing colorization: seman-

tics and multi-modality [3].

To model semantics, Iizuka et al. [13] and Zhao et

al. [42] present a two-branch architecture that jointly learns

and fuses local image features and global priors (e.g., se-

mantic labels). Zhang et al. [38] employ a cross-channel en-

coding scheme to provide semantic interpretability, which

is also achieved by Larsson et al. [17] that pre-trained

their network for a classification task. To handle multi-

modality, some works proposed to predict per-pixel color

distributions [17, 38, 42] instead of a single color. These

works have achieved impressive performance on images

with moderate complexity but still suffer visual artifacts

when processing complex images with multiple foreground

objects as shown in Figure 2.

Our observation is that learning semantics at either

image-level [13, 38, 17] or pixel-level [42] cannot suffi-

ciently model the appearance variations of objects. Our

work thus learns object-level semantics by training on the

cropped object images and then fusing the learned object-

level and full-image features to improve the performance of

any off-the-shelf colorization networks.

Colorization for visual representation learning. Col-

orization has been used as a proxy task for learning vi-

sual representation [17, 38, 18, 39] and visual tracking [32].

The learned representation through colorization has been

shown to transfer well to other downstream visual recog-

nition tasks such as image classification, object detection,

and segmentation. Our work is inspired by this line of re-

search on self-supervised representation learning. Instead

of aiming to learn a representation that generalizes well to

object detection/segmentation, we focus on leveraging the

off-the-shelf pre-trained object detector to improve image

colorization.

Instance-aware image synthesis and manipulation.

Instance-aware processing provides a clear figure-ground

separation and facilitates synthesizing and manipulating vi-

sual appearance. Such approaches have been successfully

applied to image generation [30], image-to-image transla-

tion [23, 29, 25], and semantic image synthesis [33]. Our

work leverages a similar high-level idea with these meth-

ods but differs in the following three aspects. First, unlike

DA-GAN [23] and FineGAN [30] that focus only on one

single instance, our method is capable of handling complex

scenes with multiple instances via the proposed feature fu-

sion module. Second, in contrast to InstaGAN [25] that pro-

cesses non-overlapping instances sequentially, our method

considers all potentially overlapping instances simultane-

ously and produces spatially coherent colorization. Third,

compared with Pix2PixHD [33] that uses instance bound-

ary for improving synthesis quality, our work uses learned

weight maps for blending features from multiple instances.

3. Overview

Our system takes a grayscale image X ∈ R
H×W×1 as in-

put and predicts its two missing color channels Y ∈R
H×W×2

in the CIE L∗a∗b∗ color space in an end-to-end fashion. Fig-

ure 3 illustrates our network architecture. First, we leverage

an off-the-shelf pre-trained object detector to obtain multi-

ple object bounding boxes {Bi}
N
i=1 from the grayscale im-

age, where N is the number of instances. We then gener-

ate a set of instance images {Xi}
N
i=1 by resizing the images

cropped from the grayscale image using the detected bound-

ing boxes (Section 4.1). Next, we feed each instance image

Xi and input grayscale image X to the instance colorization

network and full-image colorization network, respectively.

The two networks share the same architecture (but different

weights). We denote the extracted feature map of instance

image Xi and grayscale image X at the j-th network layer

as f
Xi
j and f X

j (Section 4.2). Finally, we employ a fusion

module that fuses all the instance features { f
Xi
j }N

i=1 with the

full-image feature f X
j at each layer. The fused full image

feature at j-th layer, denoted as f X̃
j , is then fed forward to

j+ 1-th layer. This step repeats until the last layer and ob-

tains the predict color image Y (Section 4.3). We adopt a

sequential approach that first trains the full-image network,

followed by the instance network, and finally trains the fea-

ture fusion module by freezing the above two networks.
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(Section 4.1)
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Figure 3. Method overview. Given a grayscale image X as input, our model starts with detecting the object bounding boxes (Bi) using an

off-the-shelf object detection model. We then crop out every detected instance Xi via Bi and use instance colorization network to colorize

Xi. However, as the instances’ colors may not be compatible with respect to the predicted background colors, we propose to fuse all the

instances’ feature maps in every layer with the extracted full-image feature map using the proposed fusion module. We can thus obtain

globally consistent colorization results Y . Our training process sequentially trains our full-image colorization network, and the instance

colorization network, and the proposed fusion module.

4. Method

4.1. Object detection

Our method leverages detected object instances for im-

proving image colorization. To this end, we employ an off-

the-shelf pre-trained network, Mask R-CNN [10], as our ob-

ject detector. After detecting each object’s bounding box Bi,

we crop out corresponding grayscale instance image Xi and

color instance image Y GT
i from X and Y GT , and resize the

cropped images to a resolution of 256×256.

4.2. Image colorization backbone

As shown in Figure 3, our network architecture contains

two branches of colorization networks, one for colorizing

the instance images and the other for colorizing the full im-

age. We choose the architectures of these two networks so

that they have the same number of layers to facilitate fea-

ture fusion (discussed in the next section). In this work, we

adopt the main colorization network introduced in Zhang et

al. [41] as our backbones. Although these two colorization

networks alone could predict the color instance images Yi

and full image Y , we found that a naı̈ve blending of these

results yield visible visual artifacts due to the inconsistency

of the overlapping pixels. In the following section, we elab-

orate on how to fuse the intermediate feature maps from

both instance and full-image networks to produce accurate

and coherent colorization.

4.3. Fusion module

Here, we discuss how to fuse the full-image feature with

multiple instance features to achieve better colorization.

Figure 4 shows the architecture of our fusion module. Since

the fusion takes place at multiple layers of the colorization

networks, for the sake of simplicity, we only present the fu-

sion module at j-th layer. Apply the module to all the other

layers is straightforward.

The fusion module takes inputs: (1) a full-image fea-

ture f X
j ; (2) a bunch of instance features and corresponding

object bounding boxes { f
Xi
j ,Bi}

N
i=1. For both kinds of fea-

tures, we devise a small neural network with three convolu-

tional layers to predict full-image weight map WF and per-

instance weight map W i
I . To fuse per-instance feature f

Xi
j

to the full-image feature f X
j , we utilize the input bounding

box Bi, which defines the size and location of the instance.

Specifically, we resize the instance feature f
Xi
j as well as

the weight map W i
I to match the size of full-image and do

zero padding on both of them. We denote resized the in-

stance feature and weight map as
¯

f
Xi
j and W̄ i

I . After that, we

stack all the weight maps, apply softmax on each pixel, and

obtain the fused feature using a weighted sum as follows:

f X̃
j = f X

j ◦WF +
N

∑
i=1

¯
f

Xi
j ◦W̄ i

I , (1)
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Full-image Feature ( f X
j )

Instance Feature ({ f
Xi

j }N
i=1)

Full-image Weight

Map (WF )

Instance Weight

Map (W i
I )

Bounding

Boxes (Bi)

Resize and

Zero Padding

Softmax

Normalization

Sum Up

Fused Feature

( f X̃
j )

Figure 4. Feature fusion module. Given the full-image feature f X
j and a bunch of instance features { f

Xi

j }N
i=1 from the j-th layer of the

colorization network, we first predict the corresponding weight map WF and W i
I through a small neural network with three convolutional

layers. Both instance feature and weight map are resized, padded with zero to match the original size and local in the full image. The final

fused feature f X̃
j is thus computed using the weighted sum of retargeted features (see Equation 1).

where N is the number of instances.

4.4. Loss Function and Training

Following Zhang et al. [41], we adopt the smooth-ℓ1 loss

with δ = 1 as follows:

ℓδ (x,y) =
1
2
(x− y)21l{|x−y|<δ}+δ (|x− y|− 1

2
δ )1l{|x−y|>δ} (2)

We train the whole network sequentially as follows. First,

we train the full-image colorization and transfer the learned

weights to initialize the instance colorization network. We

then train the instance colorization network. Lastly, we

freeze the weights in both the full-image model and instance

model and move on training the fusion module.

5. Experiments

In this section, we present extensive experimental results

to validate the proposed instance-aware colorization algo-

rithm. We start by describing the datasets used in our ex-

periments, performance evaluation metrics, and implemen-

tation details (Section 5.1). We then report the quantita-

tive evaluation of three large-scale datasets and compare our

results with the state-of-the-art colorization methods (Sec-

tion 5.2). We show sample colorization results on several

challenging images (Section 5.3). We carry out three ab-

lation studies to validate our design choices (Section 5.4).

Beyond standard performance benchmarking, we demon-

strate the application of colorizing legacy black and white

photographs (Section 5.6). We conclude the section with

examples where our method fails (Section 5.7). Please re-

fer to the project webpage for the dataset, source code, and

additional visual comparison.

5.1. Experimental setting

Datasets. We use three datasets for training and evaluation.

ImageNet [28]: ImageNet dataset has been used by many

existing colorization methods as a benchmark for perfor-

mance evaluation. We use the original training split ( 1.3

million images) for training all the models and use the test-

ing split (ctest10k) provided by [17] with 10,000 images for

evaluation.

COCO-Stuff [2]: In contrast to the object-centric images

in the ImageNet dataset, the COCO-Stuff dataset contains a

wide variety of natural scenes with multiple objects present

in the image. There are 118K images (each image is as-

sociated with a bounding box, instance segmentation, and

semantic segmentation annotations). We use the 5,000 im-

ages in the original validation set for evaluation.

Places205 [43]: To investigate how well a colorization

method performs on images from a different dataset, we use

the 20,500 testing images (from 205 categories) from the

Places205 for evaluation. Note that we use the Place205

dataset only for evaluating the transferability. We do not use

its training set and the scene category labels for training.

Evaluation metrics. Following the experimental protocol

by existing colorization methods, we report the PSNR and

SSIM to quantify the colorization quality. To compute the

SSIM on color images, we average the SSIM values com-

puted from individual channels. We further use the recently

proposed perceptual metric LPIPS by Zhang et al. [40] (ver-

sion 0.1; with VGG backbone).

Training details. We adopt a three-step training process

on the ImageNet dataset as follows.

(1) Full-image colorization network: We initialize the

network with the pre-trained weight provided by [41]. We

train the network for two epochs with a learning rate of

1e-5. (2) Instance colorization network: We start with the
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Table 1. Quantitative comparison at the full-image level. The methods in the first block are trained using the ImageNet dataset. The

symbol ∗ denotes the methods that are finetuned on the COCO-Stuff training set.

Method
Imagenet ctest10k COCOStuff validation split Places205 validation split

LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑

lizuka et al. [13] 0.200 23.636 0.917 0.185 23.863 0.922 0.146 25.581 0.950

Larsson et al. [17] 0.188 25.107 0.927 0.183 25.061 0.930 0.161 25.722 0.951

Zhang et al. [38] 0.238 21.791 0.892 0.234 21.838 0.895 0.205 22.581 0.921

Zhang et al. [41] 0.145 26.166 0.932 0.138 26.823 0.937 0.149 25.823 0.948

Deoldify et al. [1] 0.187 23.537 0.914 0.180 23.692 0.920 0.161 23.983 0.939

Lei et al. [19] 0.202 24.522 0.917 0.191 24.588 0.922 0.175 25.072 0.942

Ours 0.134 26.980 0.933 0.125 27.777 0.940 0.130 27.167 0.954

Zhang et al. [41]* 0.140 26.482 0.932 0.128 27.251 0.938 0.153 25.720 0.947

Ours* 0.125 27.562 0.937 0.110 28.592 0.944 0.120 27.800 0.957

pre-trained weight from the trained full-image colorization

network above and finetune the model for five epochs with

a learning rate of 5e-5 on the extracted instances from the

dataset. (3) Fusion module: Once both the full-image and

instance network have been trained (i.e., warmed-up), we

integrate them with the proposed fusion module. We fine-

tune all the trainable parameters for 2 epochs with a learning

rate of 2e-5. In our implementation, the numbers of chan-

nels of full-image feature, instance feature and fused feature

in all 13 layers are 64, 128, 256, 512, 512, 512, 512, 256,

256, 128, 128, 128 and 128.

In all the training processes, we use the ADAM opti-

mizer [16] with β1 = 0.99 and β2 = 0.999. For training,

we resize all the images to a resolution of 256×256. Train-

ing the model on the ImageNet takes about three days on a

desktop machine with one single RTX 2080Ti GPU.

5.2. Quantitative comparisons

Comparisons with the state-of-the-arts. We report the

quantitative comparisons on three datasets in Table 1. The

first block of the results shows models trained on the Ima-

geNet dataset. Our instance-aware model performs favor-

ably against several recent methods [13, 18, 38, 41, 1, 19]

on all three datasets, highlighting the effectiveness of our

approach. Note that we adopted the automatic version

of Zhang et al. [41] (i.e., without using any color guid-

ance) in all the experiments. In the second block, we

show the results using our model finetuned on the COCO-

Stuff training set (denoted by the “*”). As the COCO-

Stuff dataset contains more diverse and challenging scenes,

our results show that finetuning on the COCO-Stuff dataset

further improves the performance on other two datasets

as well. To highlight the effectiveness of the proposed

instance-aware colorization module, we also report the re-

sults of Zhang et al. [41] finetuned on the same dataset

as a strong baseline for a fair comparison. For evaluat-

ing the performance at the instance-level, we take the full-

image ground-truth/prediction and crop the instances us-

Table 2. Quantitative comparison at the instance level. The

methods in the first block are trained using the ImageNet dataset.

The symbol ∗ denotes the methods that are finetuned on the

COCO-Stuff training set.

Method
COCOStuff validation split

LPIPS ↓ PSNR ↑ SSIM ↑

lizuka et al. [13] 0.192 23.444 0.900

Larsson et al. [17] 0.179 25.249 0.914

Zhang et al. [38] 0.219 22.213 0.877

Zhang et al. [41] 0.154 26.447 0.918

Deoldify et al. [1] 0.174 23.923 0.904

Lei et al. [19] 0.177 24.914 0.908

Ours 0.115 28.339 0.929

Zhang et al. [41]* 0.149 26.675 0.919

Ours* 0.095 29.522 0.938

ing the ground-truth bounding boxes to form instance-level

ground-truth/predictions. Table 2 summarizes the perfor-

mance computed by averaging over all the instances on the

COCO-Stuff dataset. The results present a significant per-

formance boost gained by our method in all metrics, which

further highlights the contribution of instance-aware col-

orization to the improved performance.

User study. We conducted a user study to quantify the

user-preference on the colorization results generated by our

method and another two strong baselines, Zhang et al. [37]

(finetuned on the COCO-Stuff dataset) and a popular on-

line colorization method DeOldify [1]. We randomly select

100 images from the COCO-Stuff validation dataset. For

each participant, we show him/her a pair of colorized results

and ask for the preference (forced-choice comparison). In

total, we have 24 participants casting 2400 votes in total.

The results show that on average our method is preferred

when compared with Zhang et al. [37] (61% v.s. 39%) and

DeOldify [1] (72% v.s. 28%). Interestingly, while DeOld-

ify does not produce accurate colorization evaluated in the

benchmark experiment, the saturated colorized results are
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(a) Input (b) Iizuka et al. [13] (c) Larrson et al. [18] (d) Deoldify [1] (e) Zhang et al. [41] (f) Ours

Figure 5. Visual Comparisons with the state-of-the-arts. Our method predicts visually pleasing colors from complex scenes with multiple

object instances.

sometimes more preferred by the users.

5.3. Visual results

Comparisons with the state-of-the-art. Figure 5 shows

sample comparisons with other competing baseline meth-

ods on COCO-Stuff. In general, we observe a consistent

improvement in visual quality, particularly for scenes with

multiple instances.

Visualizing the fusion network. Figure 6 visualizes

the learned masks for fusing instance-level and full-image

level features at multiple levels. We show that the proposed

instance-aware processing leads to improved visual quality

for complex scenarios.

5.4. Ablation study

Here, we conduct ablation study to validate several im-

portant design choices in our model in Table 3. In all abla-

tion study experiments, we use the COCO-Stuff validation

dataset. First, we show that fusing features extracted from

the instance network with the full-image network improve

the performance. Fusing features for both encoder and de-

coder perform the best. Second, we explore different strate-

Input Layer3 Layer7 Layer10

Zhang et al. [41] Our results
Figure 6. Visualizing the fusion network. The visualized

weighted mask in layer3, layer7 and layer10 show that our model

learns to adaptively blend the features across different layers. Fus-

ing instance-level features help improve colorization.

gies of selecting object bounding boxes as inputs for our

instance network. The results indicate that our default set-
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Table 3. Ablations. We validate our design choices by comparing with several alternative options.

(a) Different Fusion Part

Fusion Part COCOStuff validation split

Encoder Decoder LPIPS ↓ PSNR ↑ SSIM ↑

× × 0.128 27.251 0.938

X × 0.120 28.146 0.942

× X 0.117 27.959 0.941

X X 0.110 28.592 0.944

(b) Different Bounding Box Selection

Box Selection
COCOStuff validation split

LPIPS ↓ PSNR ↑ SSIM ↑

Select top 8 0.110 28.592 0.944

Random select 8 0.113 28.386 0.943

Select by threshold 0.117 28.139 0.942

G.T. bounding box 0.111 28.470 0.944

(c) Different Weighted Sum

Weighted Sum
COCOStuff validation split

LPIPS ↓ PSNR ↑ SSIM ↑

Box mask 0.140 26.456 0.932

G.T. mask 0.199 24.243 0.921

Fusion module 0.110 28.592 0.944

ting of choosing the top eight bounding boxes in terms of

confidence score returned by object detector performs best

and is slightly better than using the ground-truth bounding

box. Third, we experiment with two alternative approaches

(using the detected box as a mask or using the ground-truth

instance mask provided in the COCO-Stuff dataset) for fus-

ing features from multiple potentially overlapping object in-

stances and the features from the full-image network. Using

our fusion module obtains a notable performance boost than

the other two options. This shows the capability of our fu-

sion module to tackle more challenging scenarios with mul-

tiple overlapping objects.

5.5. Runtime analysis

Our colorization network involves two steps: (1) coloriz-

ing the individual instances and outputting the instance fea-

tures; and (2) fusing the instance features into the full-image

feature and producing a full-image colorization. Using a

machine with Intel i9-7900X 3.30GHz CPU, 32GB mem-

ory, and NVIDIA RTX 2080ti GPU, our average inference

time over all the experiments is 0.187s for an image of res-

olution 256× 256. Each of two steps takes approximately

50% of the running time, while the complexity of step 1

is proportional to the number of input instances and ranges

from 0.013s (one instance) to 0.1s (eight instances).

Input Expert Our results
Figure 7. Colorizing legacy photographs. The middle column

shows the manually colorized results by the experts.

(a) Missing detections (b) Superimposed detections

Figure 8. Failure cases. (Left) our model reverts back to the full-

image colorization when a lot of vases are missing in the detection.

(Right) the fusion module may get confused when there are many

superimposed object bounding boxes.

5.6. Colorizing legacy black and white photos

We apply our colorization model to colorize legacy black

and white photographs. Figure 7 shows sample results

along with manual colorization results by human expert1.

5.7. Failure modes

We show 2 examples of failure cases in Figure 8. When

the instances were not detected, our model reverts back to

the full-image colorization network. As a result, our method

may produce visible artifacts such as washed-out colors or

bleeding across object boundaries.

6. Conclusions

We present a novel instance-aware image colorization.

By leveraging an off-the-shelf object detection model to

crop out the images, our architecture extracts the feature

from our instance branch and full images branch, then

we fuse them with our newly proposed fusion module

and obtain a better feature map to predict the better re-

sults. Through extensive experiments, we show that our

work compares favorably against existing methods on three

benchmark datasets.
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