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Abstract

Supervised learning models are typically

trained on a single dataset and the perfor-

mance of these models rely heavily on the

size of the dataset i.e., the amount of data

available with ground truth. Learning algo-

rithms try to generalize solely based on the

data that it is presented with during the train-

ing. In this work, we propose an induc-

tive transfer learning method that can augment

learning models by infusing similar instances

from different learning tasks in Natural Lan-

guage Processing (NLP) domain. We propose

to use instance representations from a source

dataset, without inheriting anything else from

the source learning model. Representations of

the instances of source and target datasets are

learned, retrieval of relevant source instances

is performed using soft-attention mechanism

and locality sensitive hashing and then aug-

mented into the model during training on the

target dataset. Therefore, while learning from

a training data, we also simultaneously exploit

and infuse relevant local instance-level infor-

mation from an external data. Using this ap-

proach we have shown significant improve-

ments over the baseline for three major news

classification datasets. Experimental evalua-

tions also show that the proposed approach re-

duces dependency on labeled data by a sig-

nificant margin for comparable performance.

With our proposed cross dataset learning pro-

cedure we show that one can achieve compet-

itive/better performance than learning from a

single dataset.

1 Introduction

A fundamental issue with performance of super-

vised learning techniques (like classification) is

the requirement of enormous amount of labeled

data, which in some scenarios maybe expensive

or impossible to acquire. Every supervised task

requires a dedicated labeled dataset and training

state-of-the-art deep learning model requires ex-

tensive computational power. In this paper, we

propose a deep transfer learning method that can

enhance the performance of learning models by in-

corporating information from a secondary dataset

belonging to a similar domain.

We present our approach in an inductive trans-

fer learning (Pan and Yang, 2010) framework,

with a labeled source (DS domain and task TS)

and target (DT domain and task TT ) dataset, the

aim is to boost the performance of target pre-

dictive function fT (·) using available knowledge

in DS and TS , given TS 6= TT . Knowledge

transfer in our approach takes place in four ways

(a) instance-transfer (b) feature-representation-

transfer (c) parameter-transfer and (d) relational-

knowledge-transfer. Parameter and relational

knowledge transfer are studied exhaustively in in-

ductive transfer literature. Our work is based

on a simple inductive bias (also used in (Snell

et al., 2017)), that there exists an embedding space

where instances belonging to the same class clus-

ter around a central point. We utilize the instance-

level information in the source dataset, and also

make the newly learnt target instance representa-

tion similar to the retrieved source instances. This

allows the learning algorithm to improve general-

ization across the source and target datasets. We

use instance-based learning that actively looks for

similar instances in the source dataset given a tar-

get instance. The intuition behind retrieving sim-

ilar instances comes from instance-based learning

perspective, where simplification of the class dis-

tribution takes place within the locality of a test

instance. As a result, modeling of similar in-

stances become easier (Aggarwal, 2014). Similar

instances have the maximum amount of informa-

tion necessary to classify an unseen instance, as

exploited by techniques like k-nearest neighbours.

We derived inspiration to propose this method
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from the working of the human brain, where mem-

ory consolidation (McGaugh, 2000) occurs, in

which new memory representations are consoli-

dated slowly over time for efficient retrieval in fu-

ture. According to (McGaugh, 2000), newly learnt

memory representation remain in a fragile state

and are affected as further learning takes place.

In our approach, we make use of encodings of in-

stances precipitated while training for the source

task using an independent model. This model be-

ing independently used for an source task and can

be adapted as required, is in alignment with mem-

ory consolidation in human brain.

One of the attractive features of the proposed

method is that the search mechanism allows us

to use more than one source dataset during train-

ing the joint model to achieve inductive trans-

fer learning. Our approach differs from the stan-

dard instance-based learning in two major aspects.

First, the instances retrieved are not necessarily

from the same dataset, but can be from various

secondary datasets. Secondly, our model simulta-

neously makes use of local instance level informa-

tion as well as the macro-statistical view point of

the dataset, where typical instance-based learning

like k-nearest neighbour search make use of only

the local instance level information.

2 Background

Locality Sensitive Hashing (LSH): Locality Sen-

sitive Hashing (Gao et al., 2014; Gionis et al.,

1999) is an algorithm which performs approxi-

mate nearest neighbor similarity search for high-

dimensional data in sub-linear time. LSH is a

data independent hashing technique as the hash

functions are selected at random, which makes

LSH perfectly suited for our purpose. Latent vec-

tors encountered during training cannot be ac-

cessed, which is required for constructing data-

driven hash functions.

The locality sensitive hash family, H has to

satisfy certain constraints mentioned in (Indyk

and Motwani, 1998) for nearest neighbor re-

trieval. The LSH Index maps each point p into

a bucket in a hash table with a label g(p) =
(h1(p), h2(p), . . . , hk(p)), where h1, h2, . . . , hk
are chosen independently with replacement from

H. We generate l different hash functions of

length k given by Gj(p) = (h1j(p), h2j(p), · · · ,
hkj(p)) where j ∈ 1, 2, . . . , l denotes the index of

the hash table. Given a collection of data points

C, we hash them into l hash tables by concate-

nating randomly sampled k hash functions from

H for each hash table. While returning the near-

est neighbors of a query Q, it is mapped into a

bucket in each of the l hash tables. The union of

all points in the buckets Gj(Q), j = 1, 2, . . . , l is

returned. Therefore, all points in the collection C
is not scanned and the query is executed in sub-

linear time. The storage overhead for LSH is sub-

quadratic in n, the number of points in the collec-

tion C.

LSH Forests (Bawa et al., 2005) are an im-

provement over LSH Index which relaxes the con-

straints on hash family H with better practical per-

formance guarantees. LSH Forests utilizes l pre-

fix trees (LSH trees) instead of having hash ta-

bles, each constructed from independently drawn

hash functions from H. The hash function of each

prefix tree is of variable length (k) with an up-

per bound km. The length of the hash label of a

point is increased whenever a collision occurs to

form leaf nodes from the parent node in the LSH

tree. For m nearest neighbour query of a point

p, the l prefix trees are traversed in a top-down

manner to find the leaf node with highest similar-

ity with point p. From the leaf node, we traverse in

a bottom-up fashion to collect M points from the

forest, where M = cl, c being a small constant.

It has been shown in (Bawa et al., 2005), that for

practical cases the LSH Forests execute each query

in constant time with storage cost linear in n, the

number of points in the collection C.

Instance-based transfer learning: Instance-

based transfer learning has been extensively stud-

ied in literature (Zadrozny, 2004) (Gretton et al.,

2009) (Huang et al., 2007) (Sugiyama et al.,

2008) (Dai et al., 2007). These methods primar-

ily focus on the problem of distribution mismatch

between data from two different sources. They

also assume that the training instances are sam-

pled from a homogenous distribution and have

the same target label space. In our approach, we

are not assuming any constraints on the distribu-

tion of data or label space, our only assumption is

that the datasets should have certain feature over-

lap in some embedding space. The feature over-

lap may not necessarily be substantial, as we also

enforce the instance representations to be simi-

lar using a penalty function. The penalty func-

tion performs structural transformation of the fea-

ture space, which is usually an attribute of feature-
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Figure 1: Proposed Model Architecture

based transfer learning methods (Pan et al., 2011).

3 Proposed Model

Given the data x with the ground truth y, super-

vised learning models aim to find the parameters

Θ that maximizes the log-likelihood as

Θ = argmax
Θ

logP (y|x,Θ). (1)

To augment the learning by infusing similar source

instances latent representations, a latent vector

from source dataset zs is retrieved using the data

sample xt (target dataset instance). Thus, our

modified objective function can be expressed as

max
Θ

P (y|xt, zs,Θ). (2)

To enforce latent representations of the instances

to be similar, for better generalization across the

tasks, we add a suitable penalty to the objective.

The modified objective then becomes,

Θ = argmax
Θ

logP (y|xt, xs,Θ)−λL(zs, zt) (3)

where L is the penalty function and λ (scale-

factor) is a hyperparameter.

The subsequent sections focus on the methods

to retrieve instance latent vector zs using the data

sample xt. It is important to note that, we do not

assume any structural form for P . Hence the pro-

posed method is applicable to augment any super-

vised learning setting with any form for P . In the

experiments we have used softmax using the bi-

LSTM (Greff et al., 2015) encodings of the input

as the form for P . Any state of the art text encod-

ing scheme (Le and Mikolov, 2014) can be used

here instead. The schematic representation of the

model is shown in Figure 1. In the following sec-

tion, we discuss the in-detail working of individual

modules in Figure 1 and formulation of the penalty

function L .

Sentence Encoder: The purpose of this module

is to create a vector in some latent space, encoding

the semantic context of a sentence from the input

sequence of words. The context vector c is ob-

tained from an input sentence which is a sequence

of word vectors x = (x1, x2, . . . , xT ), using a bi-

LSTM (Sentence Encoder shown in Figure 1) as

ht = f(xt, ht−1), (4)

where ht ∈ R
n is the hidden state of the bi-LSTM

at time t and n is the embedding size. We com-

bine the states at multiple time steps using a linear

function g. We have,

o = g({h1, . . . , hT }), c = ReLU(oTW ), (5)

where W ∈ R
n×m and m is a hyper parameter

representing the dimension of the context vector.

g in our experiments is set as

g({h1, h2, . . . , hT }) =
1

T

T∑

t=1

ht. (6)

The bi-LSTM module is responsible for generat-

ing the context vector c is pre-trained on the tar-

get classification task. A separate bi-LSTM mod-

ule (sentence encoder for the source dataset) is

trained on the source classification task. In our

experiments we used similar modules for creating

the instance embeddings of the source and target

dataset, this is not constrained by the method and

different modules can be used here.
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Instance Retrieval: Using the obtained context

vector ct (c in Equation 5) corresponding to a tar-

get instance as a query, k-nearest neighbours are

searched from the source dataset (zs1, z
s
2, . . . , z

s
k)

using Locality Sensitive Hashing (LSH). The

search mechanism using LSH takes constant time

in practical scenario (Bawa et al., 2005) and there-

fore does not affect the training duration by large

margins. Although LSH returns approximate near-

est neighbours it doesn’t introduce any extra loss

(compared to exact nearest neighbour retrieval) in

our model, as our objective is to retrieve similar in-

stances in order to determine the class label. Even

if the ranking of the instances retrieved are not ac-

curate, retrieving multiple instances (k) reduces

the chance of missing out very similar instances.

The retrieved source dataset instance embeddings

receive attention αz
i , using soft-attention mecha-

nism based on inner product similarity given as,

αz
i =

exp(cTt z
s
i )

k∑
j=1

exp(cTt z
s
j )

, (7)

where ct ∈ R
m and zsi , z

s
j ∈ R

m.

The fused instance embedding vector zs formed

after soft attention mechanism is given by,

zs =
k∑

i=1

αz
i z

s
i , (8)

where zs ∈ R
m. The retrieved instance is concate-

nated with the context vector c (in Equation 5) as

s = [ct, zs] and y = softmax(sTW (1)), (9)

where W (1) ∈ R
2m×u, y is the output of the fi-

nal target classification task. This model is then

trained jointly with the initial parameters from the

pre-trained classification module. The pre-training

of the classification module is necessary because if

we start from a randomly initialized context vec-

tor ct, the LSH Forest retrieves arbitrary vectors

and the model as a whole fails to converge. As the

error only propagates through the attention values

and penalty function it is impossible to simulta-

neously rectify the query and search results of the

hashing mechanism.

It is important to note that the proposed model

adds only a limited number of parameters over the

baseline model. The extra trainable weight matrix

in the model is W (1) ∈ R
2m×u, adding only 2m×

u, where m is the size of the context vector c and

u is the number of classes.

Penalty Function: In instance-based learning,

a test instance is assigned the label of the majority

of its nearest-neighbour instances. This follows

from the fact that similar instances belong to the

same class distribution. Following the retrieval of

latent vector embeddings from the source dataset,

the target latent embedding is constrained to be

similar to the retrieved source instances. In order

to enforce this, we introduce an additional penalty

along with the loss function (shown in Figure 1).

The modified objective function is given as

min
θ

L(y, yt) + λ||zs − zt||
2
F , (10)

where || • ||F stands for Frobenius norm of a ma-

trix, y and zs are the outputs of the model and re-

trieved latent embedding respectively, yt is the la-

bel, λ is the scale factor and zt is the latent vector

embedding of the target instance. L(·) in the above

equation denotes the loss function used to train the

model (depicted as L(·) in Figure 1) and θ denotes

the model parameters. The additional penalty term

enables the latent vectors to be similar across mul-

tiple datasets, which aids performance in the sub-

sequent stages.

4 Experiments & Results

The experiments are designed in a manner to com-

pare the performance of the baseline model with

that of external dataset augmented model. A sim-

ple bi-LSTM (target-only) model is trained with-

out consideration for source-domain instances (no

source-instance retrieval branch included into the

network), which acts as the baseline. The em-

beddings of the source instances are also trained

using bi-LSTM classifier. The only constraint on

the embeddings is that their shape should be same

across multiple domain for LSH search to take

place. Our experiments shows performance en-

hancement across several datasets by incorporat-

ing relevant instance information from a source

dataset in varying setups. Our experiments also il-

lustrate that our proposed model continues to per-

form better even when the size of training set is

reduced, thereby reducing the dependence on la-

beled data. We also demonstrate the efficacy of

our model through latent vector visualizations.

Datasets & Setup: For our experiments,

we have chosen three popular publicly-available

news classification datasets (a) 20 Newsgroups



187

TARGET NEWS20 BBC BBC SPORTS

METHOD
SOURCE BBC NEWS20 BBC

Acc F1 Acc F1 Acc F1

Bi-LSTM (target only) 65.17 0.6328 91.33 0.9122 84.22 0.8395

Instance-Infused Bi-LSTM 76.44 0.7586 95.35 0.9531 88.78 0.8855

Instance-Infused Bi-LSTM (with penalty) 78.29 0.7773 96.09 0.9619 91.56 0.9100

Table 1: Classification accuracies and F1-Scores for news arcticle classifications for different source and target

domains. The first row corresponds to the baseline performance trained on the target dataset. The next two rows

shows the performance of instance-infusion method with and without the penalty function.

Dataset Train Size Test Size #Classes

News20 18000 2000 20

BBC 2000 225 5

BBC Sports 660 77 5

Table 2: Dataset Specifications

(News20)1 (Lichman, 2013) (b) BBC2 (Greene

and Cunningham, 2006), (c) BBC Sports2 (Greene

and Cunningham, 2006). The datasets are chosen

in such a way that all of them share common do-

main knowledge and have small number of train-

ing examples so that the improvement observed

using instance-infusion is significant. The statis-

tics of the three real-world datasets are mentioned

in Table 2.

The mentioned datasets do not have a dedicated

test set, so the evaluations were performed using

k-fold cross validation scheme. All performance

scores that are reported in this paper are the mean

performance over all the folds.

Parameter News20 BBC BBC-Sports

Batch size 256 32 16

Learning rate 0.01 0.01 0.01

Word vector dim 300 300 300

Latent dim (m) 50 50 50

#Neighbours (k) 5 5 5

Scale factor (λ) 10−4 10−4 10−4

# Epochs 30 20 20

Table 3: Hyper-parameters which were used in experi-

ments for News20, BBC & BBC-Sports

The word embeddings were randomly initial-

ized and trained along with the model. The learn-

ing rate is regulated over the training epochs, it is

1http://qwone.com/ jason/20Newsgroups/
2http://mlg.ucd.ie/datasets/bbc.html

decreased to 0.3 times its previous value every 10

epochs. The relevant hyper-parameters are listed

in Table 3.

Results: Table 1 shows the details results of our

approach for all the datasets. The source and tar-

get are chosen in such a manner so that the source

dataset is able to provide relevant information. In

Table 1, we have shown improvements by a high

margin for all datasets. For 20Newsgroups the

improvement over baseline model is 12%, BBC

and BBC Sports datasets show an improvement

of 5%. As the proposed approach is independent

of the source encoding procedure, the source in-

stance embeddings are kept constant during train-

ing, source instances from multiple datasets can be

incorporated. In the subsequent sections, we de-

scribe various setups to prove the efficacy of our

model.

Instance Infusion from Same Dataset: We

study the results of using the target dataset as the

source for instance retrieval. This setting is same

as the conventional instance-based learning setup.

However, our approach not only uses the instance

based information, but also leverage the macro

statistics of the target dataset. The intuition be-

hind this experimental setup is that instances from

the same dataset is also useful in modeling other

instances especially when a class imbalance exists

in the target dataset. In this experimental setup, the

nearest neighbour retrieved is ignored as it would

be same as the instance sample being modeled

during training. The performance of this setup is

shown in Table 4.

Dataset Reduction with Single Source: We

will discuss a set of experiments performed to sup-

port our hypothesis that the proposed model is ca-

pable of reducing the dependency on labeled in-

stances. In these set of experiments, we show that

the cross-dataset augmented models perform sig-
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Figure 2: Accuracy Plot over dataset fractions for baseline and proposed model for (a) News20 (b) BBC (c) BBC

Sports datasets. The proposed approach (in blue) beats the baseline (in red) performance by a significant margin

across varying dataset fractions for all datasets.

Dataset Acc F1 Source

News20 77.51 0.7707 News20

BBC 96.17 0.9606 BBC

BBC Sports 90.63 0.8931 BBC Sports

Table 4: Test Accuracy for proposed model using in-

stances from the same target dataset

nificantly better than baseline models when vary-

ing fractions of the training data is used. Fig-

ure 2 shows the variation of instance-infused bi-

LSTM and bi-LSTM (target-only) performance for

20Newsgroups, BBC and BBC Sports datasets. In

these set of experiments 20Newsgroups had BBC,

BBC had 20Newsgroup and BBC Sports had BBC

as source dataset. As shown in the plot, 0.3,

0.5, 0.7, 0.9 and 1.0 fraction of the dataset are

used for performance analysis. The dashed line

in the plots indicates the baseline model perfor-

mance with 100% dataset support. It is observed

that the performance of instance-infused bi-LSTM

with 70% dataset, is better than the baseline model

trained on the entire dataset. This observation

shows that our proposed approach is successful in

reducing the dependency on the training examples

by at least 30% across all datasets.

Dataset Reduction with Multiple Source:.

We design an experimental setup in which only

0.5 fraction of the target dataset is utilized and

study the influence of multiple source dataset in-

fusion. Table 6 compares the results, when single

source and multiple source datasets are used for

50% dataset fraction. The results improves as and

when more source datasets are used in the infusion

process. This can be effectively leveraged for im-

proving the performance of very lean datasets, by

heavily deploying large datasets as source. For the

single source setup, the same source datasets are

used as mentioned in results section. In multiple

source experiment setup, for a given target dataset

the other two datasets are used as source.

Comparative Study: Table 5 gives the ex-

perimental results for our proposed approach,

baselines and other conventional learning tech-

niques on the 20 Newsgroups, BBC and BBC

Sports datasets. Literature involving these datasets

mostly focus on non-deep learning based ap-

proaches, we compare our results with some pop-

ular conventional learning techniques. The exper-

iments involving conventional learning were per-

formed using scikit-learn (Pedregosa et al., 2011)

library in Python3. For the k-NN-ngram experi-

ments, the number of nearest neighbours k was set

to 5. In Table 5, the models studied are Multino-

mial Naive Bayes, k-nearest neighbour classifier,

Support Vector Machine (SVM) (Bishop, 2006)

and Random Forests Classifier. The input vec-

tors were initialized using n-grams, bi-gram or

term frequency-inverse document frequency (tf-

idf). For the mentioned datasets, conventional

models outperform our baseline Bi-LSTM model,

however upon instance infusion the deep learning

based model is able to achieve competitive perfor-

mance across all datasets. Moreover by instance

infusion the simple bi-LSTM model approaches

the classical models in performance on News20

and BBC Sports dataset, whereas on BBC Dataset

the proposed instance infused bi-LSTM model

beats all the mentioned models. The improve-

ment by instance infusion is 13% for News20, 5%

for BBC and 8% for BBC Sports datasets. The

3https://www.python.org/
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MODEL
NEWS20 BBC BBC SPORTS

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

k-NN-ngrams 35.25 0.3566 74.61 0.7376 94.59 0.9487

Multinomial NB-

bigram

79.21 0.7841 95.96 0.9575 95.95 0.9560

SVM-bigram 75.04 0.7474 94.83 0.9456 93.92 0.9393

SVM-ngrams 78.60 0.7789 95.06 0.9484 95.95 0.9594

Random Forests-

bigram

69.01 0.6906 87.19 0.8652 85.81 0.8604

Random Forests-

ngrams

78.36 0.7697 94.83 0.9478 94.59 0.9487

Random Forests- tf-idf 78.6 0.7709 95.51 0.9547 96.62 0.9660

Bi-LSTM 65.17 0.6328 91.33 0.9122 84.22 0.8395

Instance-Infused Bi-

LSTM

78.29 0.7773 96.09 0.9619 91.56 0.9100

Table 5: Comparison of results using other learning schemes on News20, BBC and BBC Sports datasets. Our

approach achieves competitive performance compared to other methods across all datasets.

Dataset
Single Source Multiple Source

Acc F1 Acc F1

News20 61.72 0.6133 67.32 0.6650

BBC 91.01 0.9108 91.41 0.9120

BBC Sports 81.72 0.7990 82.81 0.8027

Table 6: Test Accuracy using instances from multiple

source datasets with 50% target dataset

important point to note here is that although for

News20 dataset we are not able to beat the state of

the art(by less than 1%), by instance infusion we

are able to improve the performance of the deep

learning model by a significant margin of 13%.

Visualization: We show visualizations of latent

space embeddings formed using bi-LSTM (target

only) and with instance infusion. In Figure 3, the

latent vector embeddings of BBC Sports dataset

with News20 support is shown for 0.3 in (a) & (b),

0.5 in (c) & (d) and 0.7 in (e) & (f), fraction of the

target training dataset (BBC Sports). Figure 3 (f)

is the embeddings representation with 70% data

for which best performance (among the 6 visual-

izations) is observed.

It is evident from the figure that even with 30%

and 50% of the data instance infusion tries to make

the embedding distribution similar to Figure 3 (f)

as seen in Figure 3 (b) and (d), when the bi-LSTM

(target-only) instances representations in Figure 3

(a) and (c) are quite different. This illustrates that

by instance infusion the latent space evolves faster

to the better performing shape compared to the

scenario where no instance infusion is done.

(a) (b)

(c) (d)

(e) (f)

Figure 3: t-SNE visualization of LSTM latent space

vectors (in red) and instance-infused embeddings (in

blue) of BBC Sports with News20 as source dataset for

varying dataset fractions. (a) & (b) show embeddings

for 30% data fraction, (c) & (d) for 50% data, and (e)

& (f) for 70% data. This figures shows the efficacy of

our approach in shaping embedding space which leads

to enhanced performance.
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5 Related Work

The motivation behind our model comes from

memory networks (Graves et al., 2014) that have

an augmented long-term memory component and

our model follows the general workflow in (We-

ston et al., 2014; Sukhbaatar et al., 2015). In

our work we have incorporated instance level

information using content-based attention from

support dataset memory. Attention based ap-

proaches are widely used in text analysis (Bah-

danau et al., 2014; Lin et al., 2017) . This ap-

proach has gained popularity in works with limited

sample space. (Vinyals et al., 2016) uses a sim-

ilar approach for one-shot learning however they

form inference based on only support instance la-

bels. (Snell et al., 2017) extends the idea to few

shot learning in a discriminative manner by mea-

suring distance from a class representative from a

support set. (Triantafillou et al., 2017) introduced

a scoring function to rank instances in a batch and

optimize mean Average Precision (mAP) for few-

shot learning. (Edwards and Storkey, 2016) used

a generative approach for selecting representative

samples for inference.

In our work, like memory network we main-

tain a fixed long term memory from source dataset

but do not perform any modifications to it dur-

ing training. We sample instances from the mem-

ory using content-based similarity but our model

does not access labels like few-shot learning tech-

niques. We present our work as a generalized ap-

proach for transfer learning across datasets sharing

a common domain.

6 Conclusion & Future Work

In this work, we posit that while learning from

a training data, infusion of instance level local

information from an external data will improve

the performance of learning algorithm, which we

show through extensive experimentation on our

proposed model. Although instance based learn-

ing is extensively studied in AI literature, this has

rarely been used in a deep learning setup for trans-

fer learning. An aspect of work which can be pur-

sued to improve our setup is to incorporate a so-

phisticated search paradigm for instance retrieval

in order to reduce latency. In this work, we have

shown that our method is able to reduce the de-

pendency on labeled data, which can also be ex-

tended to analyse performance in an unsupervised

setup. Improved feature modification techniques

can be augmented along with the search module

in order to enhance the query formulation. We

also assumed that the datasets share a common

domain, in future work means to tackle domain

discrepancy needs to be formulated to incorporate

instances from a range of datasets.
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