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ABSTRACT Instance-level image translation aims to only translate instance of interest and can be

operated more finely and flexibly than object-level and holistic-level image translation. However, current

algorithms are not suitable to do it since they employ a holistic or object level’s discriminator that tends

to change the whole image or all instances. To address the issue, we propose a simple yet effective local

discriminator, in which the input image is split into two parts, region of interest (ROI) and background.

Instance mask is employed to align the ROI and the background is design to be random in a prior distribution

to mitigate a divergence between the ROI and the background. In this way, we obtain translated instance

with decent margins without artifacts as current algorithms get. Moreover we propose a new architecture

to simultaneously realize versatile instance-level image translation. Experimental results prove that our

proposed algorithm outperforms the state-of-the-art in position accuracy and background retainment by

a clear margin.

INDEX TERMS Image Translation, Local Discriminator, Generative Adversarial Network.

I. INTRODUCTION

A rapid development has been witnessed in image-to-

image (I2I) translation with generative adversarial networks

(GAN) [1]. I2I aims to learn the mapping between two do-

mains. According to the type of dataset, it can be grouped into

paired [2] and unpaired [3], [5], [6]. On the other hand, we

can factorize I2I into three levels according to the content that

we want to translate, holistic-level, object-level and instance-

level. In holistic-level image translation, holistic image is

taken as one domain and expected to be translated, such as

style transferring [7] and semantic image synthesis [8], [9]

but one natural images commonly include various objects.

Fortunately, object-level image translation [10], [11], [12],

[4], has been proposed to address the issue. It hypothesizes

that one image can be split into two parts, interest of object

to be translated and background to be retained. In this paper,

we extend the assumption that there are several instances

belonging to same domain in one image and come up with

instance-level image translation. To be clear, object in this

paper means specific domain, such as horse or zebra domain,

while instance denotes each entity for specific object or

domain, such as one horse and another horse. For example,

object horse include two instances in Figure 1. In horse and

zebra case, object level image translation always translates all

horses or zebras but instance level image translation allows us

only translate one of them or desired horses and zebras.

Differing with object-level image translation, hence,

instance-level image translation not only imposes a restric-

tion on the background but also makes use of the difference

of individual instances. In the latter one, we can translate part

instance(s) of interest and keep other part. In other words,

region of interest (ROI) evolves to be individual instance(s)

from all instances in specific domain. Meanwhile, it degrades

as object-level image translation when our interest are all

instances and degrades further as holistic image translation

when there is no limitation on the background. Although

instance-level image translation is not first proposed in this

paper, we emphasize that the meaning of instance-level in this

paper is rather distinct from the literature, [15], [13], [14], in

which instance-level information is adopted to improve the
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translation performance for whole image and therefore all of

them can be categorized into holistic-level image translation.

On the contrary, we assume in this paper that we just translate

the chosen instance and hold the other content. We hold

that our instance-level image translation would play a role

for other applications such as data augmentation, left as

our future work. After all, different domains appearing in

one image is common and thus, the generated images by

instance-level image translation are more close to real images

which can be utilized as augmented data to train instance

segmentation and object detection.

To achieve the instance-level image translation, one subtle

but key issue appears and that is how to design discrim-

inator’s input? Feeding holistic image to discriminator is

obviously problematic as the background will be evaluated

and inevitable changed. Currently there are three plausible

mechanisms for the above issue, as shown in Figure 1.

(a) Crop and resize ROI, [13], [14], [15]. The instance is

assumed in rectangle shape and hence the algorithm could

behave not always reasonably. (b) Employ two networks to

separately extract holistic image and mask features followed

by a fusion module, [16]. It hypothesizes that the networks

can be trained to find the spatial relation between the im-

age and mask. Unfortunately, the assumption is not always

satisfied. In other words, the background is always looked

by the discriminator and the discriminator inevitably push

the generator change the background. (c) Multiply an image

with corresponding binary mask in which the background

is static and commonly are set zero. The discriminator is

suspected to devote itself on ROI but one question elusively

remains. To be clear, the receptive field in the last layer

of discriminator can be classified into three kinds, as the

colorful bounding boxes in Figure 1 (c). The blue box only

covers background, the yellow one only covers instance, but

the red one covers background and instance (if the last layer

of discriminator is scalar, only the red one exists). Because of

the semantic divergence between instance and background,

the feature in the red receptive field is not as stable as the

blue and the yellow one, which poses a recognition dilemma

for discriminator in the margin area. One of the evidences is

the artifacts or blur appearing in the edge between instance

and background in the synthesized images.

Following the third method as instance spatial information

can be utilized accurately than other two, we believe that

the translated margin area would become better if the dis-

tribution of background is same or similar to the distribution

in the ROI. In this case, the dilemma of the three receptive

fields mentioned in last paragraph disappears since the fields

are subjected to a similar distribution with the background.

Empirically, we take the ROI as a random distribution and

replace it with the background. As illustrated in Figure 1 (d),

we leverage a random background in a prior distribution and

fuse it with ROI in spatial-wise. In this way, the divergence

between instance and background is diminished and then the

recognition dilemma mentioned in last paragraph disappear.

Although the random background is very simple, experimen-

FIGURE 1: The input schemes of local discriminator. The

blue, red and yellow bounding boxes represent receptive

fields.

tal results validate its efficiency.

Another interesting issue in image translation is versa-

tile generator that one generator is employed to do more

than one translation between domains, such as StarGAN

[17] in which the emotion of one face can be translated

into various emotions. Conversely, non-versatile translation

must employ domain-specific generator and discriminator,

for example CycleGAN [3]. Obviously, non-versatile image

translation requires more networks and parameters and may

suffer from overfitting because of imbalance training data.

Unfortunately, versatile translation has received much less

attraction in object-level and instance-level than holistic-level

image translation. One of the main differences is that more

inputs are required. Hence, how to design an architecture for

generator to absorb three multi-modal inputs, image, mask

and target label, is a new challenge. To overcome it, we

design a novel encoder to merge label and mask in which we

first embed one-hot label into vector and then multiply the

vector to the binary mask in a spatial manner, followed by a

network to get label and mask feature map. The feature map

is then concatenated with image feature map got by another

encoder to form a final feature map. With the two encoders,

a three multi-modal inputs encoding scheme is achieved and

can be directly combined with popular decoder to generate

the final translated image.

To summarize, we have following contributions:

1) we propose a very simple yet effective local discrim-

inator taking an extra random background as input,

which is compatible with existing algorithms. Armed

with the new local discriminator, decent translated

instance with competing margin is received;
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2) we design a novel architecture for generator to achieve

two goals simultaneously, instance-level image trans-

lation and versatile generation, to which we design a

novel mask and label encoder;

3) to evaluate algorithms of instance-level image transla-

tion, we introduce a novel evaluation metric, termed

mIoU, which takes position-accuracy into considera-

tion.

II. RELATED WORK

A. IMAGE TRANSLATION

Pix2pix [2] can be regraded as the first model with gen-

erative adversarial network (GAN) to do image-to-image

translation (I2I) successfully with paired training data and

I2I then received a great amount of interests. Although many

new algorithms have been proposed, majority of them can

be classified as holistic-level image translation, for exam-

ple, unpaired image translation algorithms, CycleGAN [3],

DiscoGAN [5], DualGAN [6], which start from a similar

idea that one image will be reconstructed if it undergoes

twice translation between two domains. Multi-modal image

translation, aiming to get multiple different outputs with

same input and received much attentions recently, can also be

categoried into holistic-level, such as [18], [19], [20], [21].

Generally, holistic-level image translation hypothesizes that

one image just include one domain or one style and tends to

change the whole image.

Obviously, the hypothesis is not always satisfied, for exam-

ple translating object of interest but retaining the background

[11]. To address the issue, object-level image translation is

designed [11], [12], [10], [22]. Object-level image translation

can be factorized into two works, finding the potential object

and then do object translation while retaining the background

[11]. Therefore, it assumes that all instances in the domain

must be translated into another domain. In this paper, we

further loose the assumption to make individual instance have

its own freedom and then explicitly raise a new challenge,

namely instance-level image translation.

In instance-level image translation, it is not compulsory

to eliminate all instances in source domain. In fact, source

and target domain often appear simultaneously, such as horse

and zebra standing together, dog and cat playing with each

other. Therefore, instance-level image translation is much

closer to images taken by our human and can be operated

or controlled in a fine and precise way. Even InstaGAN [16],

assuming that using prior information such as instance masks

contributes to distinguish different instances, can be utilized

to do instance-level translation, we rethink using mask and

image in an effective way to have a higher position-accuracy

in translation process and realize instance-level and versatile

image translation simultaneously.

Instance-level image translation also appears in existing

papers. Shen et.al believe that a natural image tends to in-

clude multiple objects and thinking them in a same way could

incur issue for every instance has its own style and attribute

[13]. Meanwhile, instance difference is gradually getting

more popular to be employed in image translation, [13], [15],

[14]. But the meaning of instance-level or instance on these

paper is rather different from ours. In those papers, instance-

level is adopted to get a better holistic image translation

with distinctive instances but in our case the background is

required to keep as possible and be coherent in the margin

with new object.

B. GENERATIVE ADVERSARIAL NETWORKS

Vanilla generative adversarial network (GAN) can be adopted

on image generation with random noise [1]. Its adapted

version, Conditional GANs (CGAN) [23], is widely used

to achieve many interesting applications. On the basis of

CGAN, we introduce multimodal conditions in our algorith-

m, RGB image, binary mask and one-hot label. To merge

those conditions, two encoders are introduced. Therefore, our

algorithm is a natural extension of CGAN yet to be more

controllable and practical.

On the other hand, original GAN loss is developed to

minimize the distance between two holistic-image distribu-

tions such as WGAN [25] and LSGAN [26]. But instance-

level image translation essentially requires local cognition

and translation rather than checking the whole image. Hence,

the input of discriminator should be adaptive accordingly.

Unfortunately, this issue is too subtle to be found. Thus,

we propose a very simple but effective strategy to design

discriminator’s input, as shown in Figure. 1 (d).

C. VERSATILE TRANSLATION AND MULTI-TASK

LEARNING

It is very common to have multiple domains in image trans-

lation. To address it, a straightforward way is employing

domain-wise generator and discriminator such as CycleGAN

[3]. To compare, a versatile generator is domain-agnostic

who asks less parameters and further eases overfitting. From

multitask learning’s viewpoint [27], one translation for a

domain-pair may be related with another pair. Therefore,

putting them together can receive a better learning pro-

cess. ACGAN [29] is one seminal work to achieve multi-

domain image generation but it is not for image translation,

in which an auxiliary domain classifier is employed. For

image translation, starGAN [17] is the first model to realize

versatile translation by using label embedding and sharing

other modules. In StarGAN, the emotions of one face can be

translated into different emotions with assigned input labels.

Meanwhile, an auxiliary object-classifier is deployed along

with real and fake prediction in the discriminator. Similarly,

starGAN v2 [40] and [39] adopted a two-stage discriminator,

in which a shared feature extractor is the first stage while in

the second stage domain specific real or fake classifiers are

deployed.

Following ACGAN [29] and StarGAN [17] et.al, we adopt

a discriminator with a simple auxiliary object-classifier, as

displayed in Figure. 1 (d). But, to the best of our knowledge,

we are the first to achieve instance-level image translation

and versatile translation simultaneously.
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III. PRELIMINARY

As defined before, the instance-level image translation in

this paper aims to translate the instance to a specific domain

but retain the background, which differs from the usage that

instance-level is considered but for holistic image translation,

[15], [13], [14].

It is well-known that GAN loss can be deployed to do

image translation [1], [26], [30], [31]. Originally, holistic

image is taken as one domain and the whole image is ex-

pected to be translated into another domain. To achieve it,

original GAN loss in (1) can be successfully applied (here

we use the Least Squares GAN loss [26] since it shows

its priority in training stability). Obviously, as discriminator

checks the holistic image the holistic-level GAN loss pushes

the generator change the whole image.

LGAN = Ey{(D(y)− 1)2}+ Ey′{D(y′)2}, (1)

where y is real image, y′ is generated image and D is the

discriminator.

To translate a local area, cropping and resizing trick, as

shown in Figure 1 (a), was introduced in [13], [14], [15].

The local area given by a rectangle is then hypothesized as

a domain and translated into another domain. Rectangle is

not good enough to stand for instance since some instances

overlap together or background is included. Take the bound-

ing box in Figure 1 (a) as example, two horses are included

in one box and the undesired horse would be also translated

into zebra.

Another possible way is using two networks to learn the

connection between image and mask as displayed in Figure

1 (b), [16], in which the spatial connection is supposed to

be learned after training. Unfortunately, experimental results

suggest that the connection is not always recognized. To be

more specific, some instances that we do not want to change

are changed and some instances that we want to translate are

not translated.

To learn the spatial connection better, AGGAN [12] firstly

employed a new type of GAN loss as showed in Figure 1

(c), multiplying mask with image. If region of interest (ROI)

is explicitly given, AGGAN loss can be rewrote as (2), in

which the discriminator is expected to just evaluate the ROI.

Unfortunately, there are potential deficiencies. To explain

clearly, we can cast the receptive field in the last layer of

discriminator into three categories: only background, only

translated instance and the combination of background and

the instance, as the colorful boxes. (If the discriminator is

scalar, there is only the last receptive field.) The main issue

is from the combination receptive field in that background

and the instance have different statistical features. The main

feature of the receptive field is based on the percentage of the

instance, which results in a learning instability. The instabili-

ty incurs empirically artifacts or blurring in the margin of the

translated instance.

FIGURE 2: Proposed generator’s framework from horse

to zebra domain. It consists of three sub-models. Image

encoder EI extracts necessary features from the original

image, mask-label encoder EML combines desired label and

assigning location denoted by binary mask into features, and

decoder Dec generates the output.

LAGGAN = Ey{(D(y ∗my)− 1)2}+

Ey′{D(y′ ∗my′)2}, (2)

in which my and my′ are the corresponding mask of y and

y′.
To address the issue, we believe that if we can set back-

ground similar to instance the instability will disappear. We

assume that the pixel value inside the instance is subjected

to a random distribution and then sample background from

the distribution. As displayed in (3) and illustrated in (d) of

Figure 1, we put forward a local GAN loss function termed

RBGAN (Random Background GAN). By sampling from a

random noise, background of real and generated images are

supposed to be a same distribution with the instance. In this

way, the receptive filed in the last layer of discriminator is

invariant to the location or size of the background, which

makes the discriminator and generator easier to be trained.

LRBGAN = Ey{(D(y ∗my +N ∗ (1−my))− 1)2}+

Ey′{D(y′ ∗my′ +N ∗ (1−my′))2}, (3)

where N is a random noise matrix, same size with image y
and y′.

IV. PROPOSED ALGORITHM

In this section, we introduce our versatile generator’s archi-

tecture, training recipes for generator and discriminator, fol-

lowed by metrics to evaluate instance-level image translation.

A. PROPOSED GENERATOR ARCHITECTURE

To achieve two goals simultaneously, instance-level and ver-

satile image translation, an extra input, mask to show the

region of interest (ROI), should be considered except target

label and translating image. One of the challenges is how
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to merge three information spatially. To address it, a new

encoder for fusing target label and the ROI is proposed and

explained in the next paragraph.

Figure 2 illustrates our versatile generator’s architecture,

divided into three parts. The first part image encoder, EI ,

encodes input images into feature. Secondly, mask-label en-

coder EML merges desired label cy into specific location

denoted by binary mask mx, in which one means that the

pixel belongs to ROI. For example in Figure. 2, only the left

horse is expected to be translated and the right horse and

other background are required to be kept. In EML, the label

cy in one-hot format is embedded to a vector in n dimension

meanwhile mx is expanded n times in channel-wise. Then

the label vector is multiplied with the expanded mask in every

spatial position. In this way, label information is combined

with ROI. Followed by several convolution layers, the mask

and label combination becomes mask-label feature as the

output of EML. By concatenating the image feature from

EI and the mask-label feature from EML, a triplet-feature

is obtained. Finally, decoder Dec takes the triplet-feature as

input and outputs a translated image. Mathematically, (4) is

utilized to express the generation process from x to y domain.

(To simplify, other types of translation are omitted)

y′ = Dec{EI(x) +©EML(mx, cy)}, (4)

where y′ is the generated image from the original image x
and mx denotes the binary mask corresponding to x. cy is

the desired label that we want to have in the translated image

and an identity translation appears if we just replace cx with

cy . +© denotes feature map’s concatenation in channel-wise.

Besides, we can imagine that the instance in y′ has same

mask with x and we will just use my′ for y′ in the following

notations.

B. LOSS FUNCTION

Except for proposed RBGAN loss mentioned in the last sec-

tion, an auxiliary object-classifier loss is borrowed to achieve

instance-level and versatile image translation. Similar to [29],

[17], it shares all computations with discriminator except

the last layer and output label prediction c′, which merely

increases a slight computation burden. Softmax is adopted to

compute the classification loss.

Lcls = softmax(c′, ct), (5)

where c′ and ct are the predicted and target class, respective-

ly.

Different with current algorithms with classifier in dis-

criminator, translated image from one domain to another

domain is not classified to update the classification network

in discriminator since it is far from real domain images,

otherwise the classification network would be interrupted in

training process. This is illustrated in Figure 3 in which y′ is

not utilized to do classification. On the contrary, an identity-

translated image such as x′′ in Figure 3 is extra added to ease

the generator as it can converge quickly to its own with the

FIGURE 3: Training scheme for generator and discriminator.

Real and fake are used as ground truth to compute GAN

loss while cx and cy are the class ID for the input and the

ground truth for discriminator to compute classification loss.

When we are not interested in the loss, we use no loss to

show the loss will not be adopted to update the generator or

discriminator. For example, when training the discriminator

with fake image y′ as input, we only use GAN loss to update

the discriminator while the class cy denoted as − are not used

to update the discriminator.

identity loss introduced latter. With this new training scheme,

we can obtain a more stable training for classification.

To retain the background out of the given instance, as

shown in (6), L1 norm is applied to compute its difference

in pixel-wise between the original image and the translated

image. Slightly not same with current algorithms, we do

not want to push the background as exactly same as before.

We hold that the background should be compatible with the

translated instance especially in the margin since no masks is

given perfectly.

LBG = ||(x− y′) ∗ (1−mx)||1. (6)

To ease the training of generator, an identity loss, that

an instance in target domain should be not changed, is also

introduced as (7). Notice that our identity loss also just

focuses on the instance other than whole image as other

algorithms do in that the background space may not be shared

between domains.

Lident = ||(y−Dec{EI(y) +©EML(my, cy)})∗my||1. (7)

Finally, our full loss function becomes:

LD = LRBGAN + λclsLcls, (8)
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LG = LRBGAN +λclsLcls+λBGLBG+λidentLident, (9)

where λcls, λBG and λident are hyper-parameters to balance

the losses.

C. EVALUATION METRICS

1) mIoU

To access the fidelity and diversity of the translated images,

two of the commonly used assessments are Frechet Inception

Distance (FID) [32] and Inception Score (IS) [33], both of

them computed in a pre-trained Inception Network [34].

FID and IS aim to compute the feature distribution distance

between real images and fake images and intuitively, the

smaller distance, the better performance of fake images.

Therefor, they are not sensitive to synthetic instance location.

Besides, these metrics will lose fairness when target domain

exists with source domain in one image. To conclude, FID

and IS is not suitable to access instance-level and object-

level image translation and new evaluation metrics should

be used. Therefore, mask intersection over union (mIoU for

simplicity), computed as (10), is proposed in this paper.

mIoU =
tm ∩

∑p

i=1
gim

tm ∪
∑p

i=1
gim

, (10)

where ∩ and ∪ denote intersection and union of two sets,

respectively. tm denotes the target mask where we want to

translate the instance. And gm means the instance’s mask

of generated image in the target domain. As tranlation al-

gorithms could not only translate the assigned instance but

also other instances even background, gm may include p
instances. To get the generated image’s mask gm, we can

annotate the translated images via human labor or use a pre-

trained instance segmentation model over the images. To

automatically generate translated image’s mask, the second

method was used in our experiment.

Clearly, mIoU equals one if translation algorithm and the

pre-trained model are good enough, which means that the

former will translate perfectly for only the given instance and

the latter will faultlessly segment the instance’s mask. On the

other hand, it is close to zero if the given instance is not

promisingly translated or the instance in the background is

converted. Hence, mIoU is sensitive to translated instance’s

position as well as the fidelity since the translated instance

quality is so low that the pre-trained model could not detect

it. A similar idea with our mIoU is the masked classification

score in InstaGAN [16]. Though it checks if the expecting

position is converted correctly, the score does not check the

background.

2) mFID

As discussed before, FID [32] is not suitable to check

instance-level image translation. But we find that, with a mi-

nor revision, it can be used to evaluate the generated instance.

Classic FID computes the feature distribution distance of

holistic images which can not distinguish the background and

the interested instance. A possible solution for this is that

only the interested instance are given and the background are

set as zero, in which the discrepancy between the instance

and the background leads to unstable impact on the FID. To

push the background be similar to the instance, we adopt a

random background with instance as input to compute FID, a

similar spirit to discriminator’s input. Formally, compute the

revised FID, termed as mFID, between real image set R and

generated image set G is as follows:

mFID(R,G) = FID(R ∗mR +N ∗ (1−mR),

G ∗mG +N ∗ (1−mG)), (11)

where mR and mG denotes the mask of set R and set S ,

respectively.

3) mPSNR and mSSIM

Although mIoU can check the location requirement, it could

not explicitly signify the extent to retain the background dur-

ing instance translation. Hence, we introduce the PSNR and

SSIM which have already been widely used as evaluation in

image super-resolution and image assessment. Intuitively, P-

SNR computes the pixel-wise difference between two images

while SSIM quantifies the change in structural information

(such as local mean, local variance). As we aiming to evaluate

the background retain after translating, we use masked ones

(only compare the background parts), mPSNR and mSSIM,

introduced firstly in [11]. Mathematically, they are computed

as Equation. (12) and Equation. (13). In summary, those two

metrics are used to assess how the background is retained.

The better saving of background, the bigger evaluation val-

ues. In the following experiments, we compute the mean

values over the all testing samples for those three metrics

mentioned.

mPSNR = PSNR((1−mx) ∗ x, (1−mx) ∗ y
′). (12)

mSSIM = SSIM((1−mx) ∗ x, (1−mx) ∗ y
′). (13)

V. EXPERIMENTAL RESULTS

A. DATASET

Horse and zebra images were widely employed in many

image-to-image papers, [10], [12], [16], but none of them

used instance masks. COCO dataset [35] released instance

masks for instance segmentation. Therefore, we leveraged

COCO dataset to collect horse and zebra images and instance

masks. Both image and mask were resized to 256 * 256 in

width and height, respectively. We noticed that there were

many small instances which could not even be recognized

by our human eyes. To evaluate our algorithm and other

current methods effectively and fairly, tiny masks had been

abandoned when forming dataset. To evaluate instance’s size,

an index was raised as following: Isize = nins/(H ∗ W ).
In the equation H and W are the height and width of the

resized image, respectively. nins symbolizes the number of

pixels occupied by an instance. The smaller the index, the
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TABLE 1: Number of images and masks for training and

testing. n denotes number.

Dataset Horse Zebra Sheep Cow

n of images in training 1014 797 402 627
n of masks in training 1126 1042 517 748

n of images in testing 253 199 100 156
n of masks in testing 286 265 129 184

smaller the instance. 0.1 was selected as a threshold. In a

similar way, sheep and cow are collected. After getting the

dataset, we split them into training and testing based on valid

mask and Table. 1 shows the dataset.

B. TRAINING DETAILS

To train our algorithm, CycleGAN [3] training recipe was

borrowed. Adam optimizer was deployed with a learning rate

of 0.0002 in the first 100 epochs and linearly decay learning

rate to zero in the second 100 epochs. In order to ease training

stability, we adopted a history of generated images to train

the discriminator and generator. PatchGAN [36] with 70 * 70

receptive field had also been used.

C. MODEL ANALYSIS

To realize the instance-level image translation, the input of

discriminator plays a fundamental role. It consists of two

parts, how to combine mask and label and how to ease the

training from the divergence between instance and back-

ground.

For the first challenge, apart for the multiplication we also

considered adding the mask into the image, concatenating the

mask into the image, and adopting two individual networks

as displayed in (b) of figure 1. Everything else was same

and the random background was not used to have a fair

comparison. Table. 2 shows the results. The results suggest

that multiplication gets much better mIoU which means that

the spatial relation between mask and image is learned.

Simultaneously, it pushes the discriminator devote itself to

translate the instance and retain the background, a lower

mFID and higher mPSNR and mSSIM.

For the second issue as discussed before, we assume that

the instance is subject to a known distribution and then

sample the background from the distribution to remedy the

divergence between them. Here two types of distribution is

considered, normal and uniform, as well as their ranges. We

thought about four cases of the range of random distribution,

[-1.0, 1.0], [-0.6, 0.6] [-0.2, 0.2] and without random back-

ground. In normal distribution, the values were clipped into

the range. The result are displayed in Table. 3. First of all,

the FID with same background is also compared with our

proposed mFID, adopting a random noise in the background

to remedy the divergence between instance and background.

From the results, mFID is better than FID, which verifies

our assumption, that there is a divergence between instance

and background and reducing the divergence contributes to

corresponding performance.

TABLE 2: Comparison on the method to combine the mask

and image for discriminator. Adding and Concat means

adding and concatenate the mask to the image, two-net

denotes that separately extracts feature from image and mask,

multiply means that multiply the mask with the image (for

this experiment, the random background is not used to check

the plain multiplication’s performance). The lower mFID, the

better and the bigger mIoU, mPSNR and mSSIM, the better.

The bold value is the best one in the row.

Adding Concat Two-net Multiply

Fake
Zebra

mFID 87.1 101.4 78.3 48.6

mIoU 0.559 0.523 0.547 0.711

mPSNR 24.36 24.33 26.86 25.14
mSSIM 0.900 0.905 0.884 0.908

Fake
Horse

mFID 144.9 125.7 139.0 116.8

mIoU 0.368 0.396 0.389 0.413

mPSNR 22.98 22.31 21.90 24.09

mSSIM 0.888 0.879 0.856 0.930

Besides, one main character of the random noise can

be derived from the results that the impact of the random

background is slightly invariant to the noise type but related

to its range and the target domain. The main reason behind

is that they play a key role to reduce the divergence between

the instance, its distribution space related with the domain,

and the background, highly related with the noise range. In

the dataset zebras are observed to have stripes in white and

black, a higher distributional range, while most of horses are

in bay, a lower distributional range. The experimental results

validate that the performance is better when the background

is near to the distribution, such as [-1, 1] is better for zebra

but [-0.2, 0.2] is better for horse.

To conclude, the results validate our assumption about the

divergence between instance and background and sampling

the background from a prior random distribution is useful to

improve the translation performance. Uniform distribution in

absolute 1 and 0.2 space for zebra and horse are adopted in

the latter experiments.

D. ABLATION STUDY

Except for the random background, our training scheme is

also different to other algorithms. We took our algorithm as

baseline and add or reduce schemes to form comparison, as

displayed in table 4. In our algorithm, generated image is not

employed to update discriminator’s ability on classification

as [17] and [29] did in that the generated images are from the

real images which will make the discriminator confused. In

our setting, our classifier can be trained with a high certainty.

Otherwise, all performances reduced shown in (d) mainly

because the classifier is interrupted by the fake images.

Besides, an identity translation is used in our algorithm

to push the generator produce image in correct class. Since

an identity loss in (7) is used, identity translation is quick

to converge and can guide the generator produce image in

correct class. Because of the dependency, we could not use
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TABLE 3: The impact of random background’s type and

range. U and N denote uniform and norm distribution, re-

spectively. In the experiments, we only change the variation

but not mean for normal distribution since the input image is

underwent a normalization with mean as zero. The number

* means the range: [-*, *] and the value is truncated for

norm distribution. For example, U (0.6) means an uniform

distribution from -0.6 to 0.6. No noise symbolizes without

random background. The bold value is the best one in the

row of same distribution.

No noise U (1.0) U (0.6) U (0.2) N (1.0) N (0.6) N (0.2)

Fake
Zebra

FID 55.5 36.1 40.4 53.1 37.3 37.3 49.6
mFID 48.6 32.6 35.73 49.3 33.3 36.1 38.5
mIoU 0.711 0.781 0.766 0.724 0.775 0.766 0.716

mPSNR 25.14 25.63 25.51 25.27 25.72 25.44 24.98
mSSIM 0.908 0.917 0.914 0.911 0.923 0.919 0.914

Fake
Horse

FID 142.2 157.8 141.3 139.0 156.1 152.3 149.0

mFID 116.8 126.5 115.6 113.0 131.3 126.4 130.6
mIoU 0.413 0.441 0.475 0.525 0.439 0.476 0.389

mPSNR 24.09 24.52 24.40 24.12 24.49 24.24 23.98
mSSIM 0.930 0.937 0.935 0.928 0.938 0.933 0.935

TABLE 4: Ablation study of training recipe.

(a) (b) (c) (d) (e)

Fake
Zebra

mFID 31.8 35.8 33.9 35.5 53.6
mIoU 0.781 0.760 0.757 0.759 0.698

mPSNR 25.92 25.47 24.78 26.02 25.88
mSSIM 0.926 0.915 0.899 0.913 0.925

Fake
Horse

mFID 119.8 120.1 126.2 126.2 132.4
mIoU 0.552 0.468 0.484 0.478 0.438

mPSNR 24.59 24.32 23.52 24.93 24.62

mSSIM 0.939 0.929 0.907 0.943 0.945

(a): baseline, our proposed algorithm.
(b): (a) - identity-translation classification for updating generator.
(c): (b) - identity translation loss.
(d): (a) + generated images to updating classification network.
(e): (a) + cycle-consistency loss [3] to update the generator.

the identity translation alone. As shown in (c), eliminating

both of them undermines the generator in both instance

and background area. And the identity classification loss

contributes to better translated instance, suggested by the

fourth column.

Finally, cycle-consistency is proved to be harmful to trans-

late the instance as it gets smaller mFID and mIoU. One of

the possible reason could be that the cycle-consistency intro-

duces a too strong restriction between input and generated

image as suggested in [37] and [31].

E. COMPARISON WITH STATE-OF-THE-ART

1) Quantitative Comparison

We compare our algorithm to the following algorithms by

evaluating the translated instance, mIoU and mFID, and the

background, mPSNR and mSSIM. We compare the algo-

rithms in the four domains, zebra and horse, sheep and cow.

CycleGAN [3], utilizes a cycle-consistency loss in pixel-

wise and is one of most successful unpaired image translation

algorithms.

CLGAN [37], adopts patch contrastive learning, based on

a patch instead of whole image.

U-gat-it [38], employs attention mechanism to let the dis-

criminator and generator know where the object is. The above

three algorithm belong to object-level image translation.

InstaGAN [16], explicitly uses binary instance mask dur-

ing image translation but is expected to learn the spatial co-

herence between instance and mask (two-net showed before).

AGGAN* [12]. Original AGGAN introduces an attention

module, an implicit way, to detect which part is background

and which part we want to convert. To give a fair comparison,

we replaced an explicit mask with the original attention

module which was denoted as AGGAN*, in which the back-

ground of original image was merged with the translated ROI

content. Simultaneously, the discriminator’s input was also

updated into masked images as shown in (2).

Table 5 shows the results. As can be seen, for both mPSNR

and mSSIM, our method outperforms others, which indicates

that the proposed model can retain the desired background

with the background loss. Although InstaGAN also adopts

a similar background loss, the discriminator also push the

generator change the background because two networks are

trained to learn the spatial connect between mask and image

but it is hard to learn, which results in lower mIoU and

mPSNR, mSSIM. In terms of mFID, our algorithm achieves a

competitive values, which means that it obtains desired target

instance. We observed that different target domain requires

distinct translation ability, such as all the algorithms get

better performance in zebra than horse. Finally, our algorithm

obtains much better mIoU, which suggests that our algorithm

learns the spatial connection between mask and image and

translate the given instance while keep other background. All

algorithms fail to be reasonable in cow domain. We suspect

that one of the reasons is that this domain requires that the

original instance change its shape, which is beyond of the

algorithms. Another reason is that the detector is not good

enough or its learned patterns are far away from the generator

generated.

2) Qualitative Comparison

Translated images of horse ↔ zebra are shown in figure 4

and sheep ↔ cow are shown in figure 5. We observed that

CycleGAN, CL-GAN, U-gat-it always change the holistic

input, such as all the horses are changed into zebras in the

third row, which means that current algorithms are not com-

petent to do instance-level image translation and supports

the quantitative results in table 5. In InstaGAN, the spatial

connection between mask and image is hard to learn and

train and tend to change background, as illustrated in the

last four rows from zebra to horse. Although AGGAN* can

focus on the assigned instance, artifacts and blurring appear

in the margin area, such as the generated sheep in the last

row. Because of using random noise in the background to

reduce the divergence, our algorithm can generate decent

target instance in the margin area.
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(a) x (b) m (c) [3] (d) [37] (e) [38] (f) [16] (g) [12]* (h) Ours

FIGURE 4: Qualitative comparison on horse and zebra domains. [3] is CycleGAN, [37] is CLGAN, [38] is U-gat-it, and [16]

is InstaGAN, [12] is AGGAN. Please zoom in to see the detail.
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(a) x (b) m (c) [3] (d) [37] (e) [38] (f) [16] (g) [12]* (h) Ours

FIGURE 5: Qualitative comparison on sheep and cow domains. [3] is CycleGAN, [37] is CLGAN, [38] is U-gat-it, and [16] is

InstaGAN, [12] is AGGAN. Please zoom in to see the detail.

TABLE 5: Quantitative comparison to the state-of-the-art.

[3]is CycleGAN, [37] is CLGAN, [38] is U-gat-it, and [16]

is InstaGAN, [12] is AGGAN. The bold value is the best one

in the row. - means not computation since AGGAN* uses the

background of the input image.

[3] [37] [38] [16] [12]* Ours

Fake
Zebra

mFID 60.5 104.7 104.0 87.9 45.7 31.8

mIoU 0.524 0.452 0.428 0.613 0.735 0.781

mPSNR 20.62 15.77 18.18 20.85 - 28.2

mSSIM 0.844 0.666 0.742 0.871 - 0.932

Fake
Horse

mFID 112.5 147.2 127.6 120.2 149.6 111.0

mIoU 0.448 0.331 0.315 0.484 0.450 0.554

mPSNR 20.52 17.01 16.95 19.90 - 27.36

mSSIM 0.810 0.735 0.694 0.834 - 0.946

Fake
Cow

mFID 155.4 156.6 167.8 157.6 207.0 153.8

mIoU 0.006 0.001 0.003 0.001 0.005 0.004
mPSNR 24.40 18.82 20.47 20.46 - 26.54

mSSIM 0.807 0.778 0.740 0.900 - 0.907

Fake
Sheep

mFID 141.6 152.7 159.8 148.2 160.6 143.7
mIoU 0.378 0.340 0.293 0.270 0.189 0.475

mPSNR 22.79 18.69 19.62 21.62 - 27.81

mSSIM 0.811 0.808 0.789 0.893 - 0.926

VI. CONCLUSION AND FUTURE WORK

To achieve instance-level image translation which requires to

translate the given instance and retain the background, we

proposed a local discriminator and a versatile generator in

this paper. And a novel local discriminator with a random

background as input was proposed to mitigate the divergence

between the instance and the background. It is validated to

have decent margin area in translated instance. Same idea

is also useful to evaluate generated images, such as FID.

Simultaneously, an mask and label encoder was not trivially

designed to achieve instance-level and versatile image trans-

lation. Besides, mIoU was proposed that takes the position

of translated instance into consideration to evaluate fairly

instance-level image translation. Although the shape change

as InstaGAN did and diversity of translation images were not

considered, our algorithm was proved to be much effective to

do instance-level image translation on multiple domains. In

the experimental results, our algorithm displayed superiority

to literature in terms of the translation performance and the

background retainment, which makes image translation more

controllable and close to natural image.
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For future work, we will investigate how to use our al-

gorithm for other applications, such as a data augmenta-

tion method for detection or segmentation. For example,

imbalance data of specific objects could mitigate the mod-

els’ generalization for detection and segmentation, in which

our algorithm can be regraded as a data augmentation to

increase the number of training samplers close to natural

image. Specifically, armed with our algorithm, instance of the

classes with plenty samples can be translated into the instance

of minor classes to increase the training dataset.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.

Ozair, A. Courville, Y. Bengio, “Generative adversarial nets,” in Advances

in neural information processing systems, 2014, pp. 2672–2680.

[2] P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, “Image-to-image translation with

conditional adversarial networks,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2017, pp. 1125–1134.

[3] J.-Y. Zhu, T. Park, P. Isola, A. A. Efros, “Unpaired image-to-image trans-

lation using cycle-consistent adversarial networks,” in IEEE International

Conference on Computer Vision 515 (ICCV), 2017.

[4] Yuan, L., Chen, D., Hu, H, “Unsupervised object-level image-to-image

translation using positional attention bi-flow generative network. ” in IEEE

Access, 7, 2019, pp. 30637-30647.

[5] T. Kim, M. Cha, H. Kim, J. K. Lee, J. Kim, “Learning to discover cross-

domain relations with generative adversarial networks,” in Proceedings of

the 34th International Conference on Machine Learning, vol 70, 2017, pp.

1857–1865.

[6] Z. Yi, H. Zhang, P. Tan, M. Gong, “Dualgan: Unsupervised dual learning

for image-to-image translation, ” in Proceedings of the IEEE international

conference on computer vision, 2017, pp. 2849–2857.

[7] X. Huang, S. Belongie, “Arbitrary style transfer in real-time with adaptive

instance normalization, ” in Proceedings of the IEEE International Con-

ference on Computer Vision, 2017, pp. 1501–1510.

[8] T. Park, M.-Y. Liu, T.-C. Wang, J.-Y. Zhu, “Semantic image synthesis with

spatially-adaptive normalization, ” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019, pp. 2337–2346.

[9] R. Li, W. Cao, Q. Jiao, S. Wu, H.-S. Wong, “Simplified unsupervised

image translation for semantic segmentation adaptation, ” in Pattern

Recognition, 2020, pp. 107343.

[10] C. Yang, T. Kim, R. Wang, H. Peng, C.-C. J. Kuo, “Show, attend, and

translate: Unsupervised image translation with self-regularization and

attention,” in IEEE Transactions on Image Processing, vol 28, 2019, pp.

4845–4856.

[11] X. Chen, C. Xu, X. Yang, D. Tao, “Attention-gan for object transfiguration

in wild images, ” in Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 164–180.

[12] Y. A. Mejjati, C. Richardt, J. Tompkin, D. Cosker, K. I. Kim, “Unsu-

pervised attention-guided image-to-image translation, ” in Advances in

Neural 540 Information Processing Systems, 2018, pp. 3693–3703.

[13] Z. Shen, M. Huang, J. Shi, X. Xue, T. S. Huang, “Towards instance-level

image-to-image translation, ” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp. 3683–3692.

[14] D. Bhattacharjee, S. Kim, G. Vizier, M. Salzmann, “Dunit: Detection

based unsupervised image-to-image translation,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2020, pp. 4787–4796.

[15] S. Ma, J. Fu, C. Wen Chen, T. Mei, “Da-gan: Instance-level image transla-

tion by deep attention generative adversarial networks,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2018,

pp. 5657–5666.

[16] S. Mo, M. Cho, J. Shin, “Instagan: Instance-aware image-to-image trans-

lation,” in ICLR, 2019.

[17] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, J. Choo, “Stargan: Unified

generative adversarial networks for multi-domain image-to-image trans-

lation,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018, pp. 8789–8797.

[18] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang,

E. Shechtman, “Toward multimodal image-to-image translation,” in Ad-

vances in neural information processing systems, 2017, pp. 465–476.

[19] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, M.-H. Yang, “Diverse

image-to-image translation via disentangled representations, in Proceed-

ings of the European conference on computer vision, 2018, pp. 35-51.

[20] Q. Mao, H.-Y. Lee, H.-Y. Tseng, S. Ma, M.-H. Yang, “Mode seeking gen-

erative adversarial networks for diverse image synthesis,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

2019, pp. 1429–1437.

[21] W. Xu, K. Shawn, G. Wang, “Toward learning a unified many-to-many

mapping for diverse image translation” in Pattern Recognition, 2019, pp.

570-580.

[22] H. Emami, M. M. Aliabadi, M. Dong, R. Chinnam, “Spa-gan: Spatial

attention gan for image-to-image translation,” in IEEE Transactions on

Multimedia, 2020, pp. 391-401.

[23] M. Mirza, S. Osindero, “Conditional generative adversarial nets,” in arXiv

preprint arXiv:1411.1784.

[24] H. Zhang, V. Sindagi, V. M. Patel, “Image de-raining using a conditional

generative adversarial network,” in IEEE transactions on circuits and

systems for video technology, 2019 pp. 3943-3956.

[25] M. Arjovsky, S. Chintala, L. Bottou, “Wasserstein generative adversarial

networks,” in Proceedings of the 34th International Conference on Ma-

chine Learning, vol 70, 2017, pp. 214–223.

[26] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, S. Paul Smolley, “Least squares

generative adversarial networks,” in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 2794–2802.

[27] S. Ruder, “An overview of multi-task learning in deep neural networks,” in

arXiv preprint arXiv:1706.05098.

[28] Y. Choi, Y. Uh, J. Yoo, J.-W. Ha, “Stargan v2: Diverse image synthesis

for multiple domains,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 8188–8197.

[29] A. Odena, C. Olah, J. Shlens, “Conditional image synthesis with auxiliary

classifier gans,” in International conference on machine learning, 2017,

pp. 2642–2651.

[30] T. R. Shaham, T. Dekel, T. Michaeli, “Singan: Learning a generative model

from a single natural image,” in Proceedings of the IEEE International

Conference on Computer Vision, 2019, pp. 4570–4580.

[31] M. Amodio, S. Krishnaswamy, “Travelgan: Image-to-image translation by

transformation vector learning,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019, pp. 8983–8992.

[32] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, “Gans

trained by a two time-scale update rule converge to a local nash equilib-

rium,” in: Advances in neural information processing systems, 2017, pp.

6626-6637.

[33] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X.

Chen, “Improved techniques for training gans,” in Advances in neural

information processing systems, 2016, pp. 2234–2242.

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, “Rethinking the

inception architecture for computer vision,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 2818-

2826.

[35] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.

Doll´ar, C. L. Zitnick, “Microsoft coco: Common objects in context,” in

European conference on computer vision, Springer, 2014, pp. 740–755.

[36] C. Li, M. Wand, “Precomputed real-time texture synthesis with markovian

generative adversarial networks,” in European conference on computer

vision, Springer, 2016, pp. 702–716.

[37] Park, T., Efros, A. A., Zhang, R., Zhu, J. Y, “Contrastive learning for un-

paired image-to-image translation.” in European Conference on Computer

Vision, Springer, Cham, 2020.

[38] Kim J, Kim M, Kang H, Lee KH. “U-GAT-IT: Unsupervised Generative

Attentional Networks with Adaptive Layer-Instance Normalization for

Image-to-Image Translation,” in International Conference on Learning

Representations, 2019.

[39] Kyungjune Baek, Yunjey Choi, Youngjung Uh, Jaejun Yoo, Hyunjung

Shim, “Rethinking the Truly Unsupervised Image-to-Image Translation,”

in arXiv preprint arXiv:2006.06500, 2020.

[40] Choi, Yunjey and Uh, Youngjung and Yoo, Jaejun and Ha, Jung-Woo,

“Stargan v2: Diverse image synthesis for multiple domains,” in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020.

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3102263, IEEE Access

MINGLE XU received his B.S from Jiangxi Agri-

cultural Universiaty in 2015 and M.S from Shang-

hai University of Engineering Science in 2018.

His main research interests include artificial in-

telligence and machine learning, computer vision

and image understanding. Email: xml@jbnu.ac.kr.

JAEHWAN LEE received the B.S. and M.S. de-

grees in engineering from Jeonbuk National U-

niversity, Republic of Korea, in 2012, and 2014,

respectively. Currently he is pursuing doctor de-

gree in Jeonbuk National University from 2018

in South Korea. His main research interests in-

clude image processing, pattern recognition, and

machine learning. Email: dlwo6@jbnu.ac.kr.

ALVARO FUENTES received his B.S. degree

in Mechatronics Engineering from the Technical

University of the North, Ecuador in 2012, and his

M.S. and Ph.D. degrees in Electronics Engineer-

ing majoring in Artificial Intelligence and Com-

puter Vision from Jeonbuk National University,

South Korea, in 2016 and 2019 respectively. He

is currently a Postdoctoral Researcher with the

Department of Electronics Engineering at Jeonbuk

National University in South Korea. His main re-

search interests include machine learning, deep learning, computer vision,

and robotics.

DONG SUN PARK is a professor at the Jeon-

buk National University, Republic of Korea. He

received his BS from Korea University, Repub-

lic of Korea in 1979, and MS and PhD degrees

from the University of Missouri, United States in

1984 and 1990. He has published many papers

in international conferences and journals. He is a

member of IEEE Computer Society. His research

interests include computer vision and artificial

neural network, especially deep learning. E-mail:

dspark@jbnu.ac.kr.

JUCHENG YANG is a full professor in College

of Artificial of Intelligence, Tianjin University of

Science and Technology, Tianjin, P.R. China. He is

number of CCF. He received his B.S. degree from

South-Central University for Nationalities, China,

MS and PhD degrees from Chonbuk National

University, Republic of Korea. He has published

over 120 papers in related international journals

and conferences, such as IEEE Communication-

s Magazine, IEEE Trans. Industrial Informatics,

IEEE Trans. on HMS, Expert Systems with Applications and so on. He

has served as editor of five books in biometrics (Intech publisher), he is

the associate editor of International Journal of Information Security and

Applications (JISA),and as reviewer or editor for international journals such

as IEEE Transactions on Information Forensics & Security, IEEE Transac-

tions on Circuits and Systems for Video Technology, IEEE Communications

Magazine, and as program committee member of many conferences such

as ICNC’06-FSKD’06, JCeSBI’10, IMPRESS’11 and CCBR’13. He is the

publicity chair of ICMeCG’10-12. He owns 20 patents in biometrics. His

research interests include image processing, biometrics, pattern recognition,

and neural networks.

SOOK YOON is a Professor with the Department

of Computer Engineering at Mokpo National U-

niversity in South Korea. She received her Ph.D.

degree in Electronics Engineering from Jeonbuk

National University, South Korea, in 2003. She

was a researcher in Electrical Engineering and

Computer Sciences at the University of California,

Berkeley, USA, until June 2006. And she joined

Mokpo National University in September 2006.

She was a visiting scholar at Utah Center of Ad-

vanced Imaging Research, University of Utah, USA, from 2013 to 2015. Her

main research interests include computer vision, object recognition, machine

learning, and biometrics. Email: syoon@mokpo.ac.kr.

12 VOLUME 4, 2016


