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Abstract

The nearest neighbor algorithm and its
derivatives are often quite successful at learning
a concept from a training set and providing
good generalization on subsequent input
vectors.  However, these techniques often retain
the entire training set in memory, resulting in
large memory requirements and slow execution
speed, as well as a sensitivity to noise.  This
paper provides a discussion of issues related to
reducing the number of instances retained in
memory while maintaining (and sometimes
improving) generalization accuracy, and
mentions algorithms other researchers have
used to address this problem.  It presents three
intuitive noise-tolerant algorithms that can be
used to prune instances from the training set.  In
experiments on 29 applications, the algorithm
that achieves the highest reduction in storage
also results in the highest generalization
accuracy of the three methods.

1. INTRODUCTION

The nearest neighbor algorithm (Cover & Hart, 1967;
Dasarathy, 1991) has been used successfully for pattern
classification on many applications.  Each pattern has an
input vector with one value for each of several input
attributes.  An instance has an input vector and an output
class.  A training set T is a collection of instances with
known output classes.

A new pattern x  is classified in the basic nearest
neighbor algorithm by finding the instance y in T that is
closest to x, and using the output class of y  as the
predicted classification for x.  The instance that is closest
to x is taken to be the one with minimum distance, using
some distance function.  The distance function can have
a significant impact on the ability of the classifier to
generalize correctly.

The nearest neighbor algorithm learns very quickly
(O(n)) because it need only read in the training set
without further processing.  It can also generalize
accurately for many applications because it can learn
complex concept descriptions, and provides an
appropriate bias for many applications.

The nearest neighbor algorithm also has several
shortcomings.  Since it stores all training instances, it has
large (O(n)) memory requirements.  Since it must search
through all available instances to classify a new input
vector, it is slow (O(n)) during classification.  Since it
stores every instance in the training set, noisy instances
(i.e., those with errors in the input vector or output class,
or those not representative of typical cases) are stored as
well, which can degrade generalization accuracy.

Techniques such as k-d trees (Sproull, 1991) and
projection (Papadimitriou & Bentley, 1980) can reduce
the time required to find the nearest neighbor(s) of an
input vector, but they do not reduce storage
requirements, do not address the problem of noise, and
often become much less effective as the dimensionality
of the problem (i.e., the number of input attributes)
grows.

On the other hand, when some of the instances are
removed (or pruned) from the training set, the storage
requirements and time necessary for generalization are
correspondingly reduced.  This paper focuses on the
problem of reducing the size of the stored set of
instances while trying to maintain or even improve
generalization accuracy.  Much research has been done
in this area, and an overview of this research is given in
Section 2.

Section 3 discusses several issues related to the problem
of instance set reduction, and provides motivation for
further algorithms.  Section 4 presents four new instance
reduction techniques that were hypothesized to provide
substantial instance reduction while continuing to
generalize accurately, even in the presence of noise.  The
first is similar to the Reduced Nearest Neighbor (RNN)
algorithm (Gates 1972).  The second changes the order
in which instances are considered for removal, and the
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third adds a noise-reduction step similar to that done by
Wilson (1972) before proceeding with the main
reduction algorithm.

Section 5 describes experiments on 29 datasets that
compare the performance of each of these three
reduction techniques to a basic k-nearest neighbor
algorithm.  The results indicate that these algorithms
achieve substantial storage reduction, while maintaining
good generalization accuracy.  Comparisons are also
made with two of the best algorithms from the review in
Section 2.  Section 6 provides conclusions and future
research directions.

2. RELATED WORK

Several researchers have addressed the problem of
training set size reduction.  This section reviews
previous work in reduction algorithms.

2.1. NEAREST NEIGHBOR EDITING RULES

Hart (1968) made one of the first attempts to reduce the
size of the training set with his Condensed Nearest
Neighbor Rule (CNN).  This algorithm begins by
randomly selecting one instance belonging to each
output class from the training set T and putting it in a
subset S.  Then each instance in T is classified using only
the instances in S.  If an instance is misclassified, it is
added to S , thus ensuring that it will be classified
correctly.  This algorithm is especially sensitive to noise,
because noisy instances will usually be misclassified by
their neighbors, and thus will be retained.

Ritter et. al. (1975) extended the condensed NN method
in their Selective Nearest Neighbor Rule (SNN) such that
every member of T must be closer to a member of S of
the same class than to a member of T (instead of S) of a
different class.  Further, the method ensures a minimal
subset satisfying these conditions.  This algorithm
resulted in greater reduction in the training set size as
well as slightly higher accuracy than CNN in their
experiments, though it is still sensitive to noise.

Gates (1972) modified this algorithm in his Reduced
Nearest Neighbor Rule (RNN).  The reduced NN
algorithm starts with S = T and removes each instance
from S if such a removal does not cause any other
instances in T to be misclassified.  Since the instance
being removed is not guaranteed to be classified
correctly, this algorithm is able to remove noisy
instances and internal instances while retaining border
points.

Wilson (1972) developed an algorithm which removes
instances that do not agree with the majority of their k
nearest neighbors (with k=3, typically).  This edits out

noisy instances as well as close border cases, leaving
smoother decision boundaries.  It also retains all internal
points, which keeps it from reducing the storage
requirements as much as many other algorithms.  Tomek
(1976) extended Wilson’s algorithm with his “all k-NN”
method of editing by calling Wilson’s algorithm
repeatedly with k=1..k, though this still retains internal
points.

2.2. “INSTANCE-BASED” LEARNING AL-
GORITHMS

Aha et. al. (1991) presented a series of instance-based
learning algorithms that reduce storage.  IB2 is quite
similar to the Condensed Nearest Neighbor (CNN) rule
(Hart, 1968), and suffers from the same sensitivity to
noise.

IB3  (Aha et al. 1991) addresses IB2’s problem of
keeping noisy instances by using a statistical test to
retain only acceptable misclassified instances.  In their
experiments, IB3 was able to achieve greater reduction
in the number of instances stored and also achieved
higher accuracy than IB2, due to its reduced sensitivity
to noise on the applications on which it was tested.

Zhang (1992) used a different approach called the
Typical Instance Based Learning (TIBL) algorithm,
which attempted to save instances near the center of
clusters rather than on the border.

Cameron-Jones (1995) used an encoding length heuristic
to determine how good the subset S is in describing T.
After a growing phase similar to IB3, a random mutation
hill climbing method called Explore is used to search for
a better subset of instances, using the encoding length
heuristic as a guide.

2.3. PROTOTYPES AND OTHER MOD-
IFICATIONS OF THE INSTANCES

Some algorithms seek to reduce storage requirements
and speed up classification by modifying the instances
themselves, instead of just deciding which ones to keep.

Chang (1974) introduced an algorithm in which each
instance in T is initially treated as a prototype.  The
nearest two instances that have the same class are
merged into a single prototype (using a weighted
averaging scheme) that is located somewhere between
the two prototypes.  This process is repeated until
classification accuracy starts to suffer.

Domingos (1995) introduced the RISE 2.0 system which
treats each instance in T  as a rule in R , and then
generalizes rules until classification accuracy starts to
suffer.
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Salzberg (1991) introduced the nested generalized
exemplar (NGE) theory, in which hyperrectangles are
used to take the place of one or more instances, thus
reducing storage requirements.

Wettschereck & Dietterich, (1995) introduced a hybrid
nearest-neighbor and nearest-hyperrectangle algorithm
that used hyperrectangles to classify input vectors if they
fell inside the hyperrectangle, and kNN to classify inputs
that were not covered by any hyperrectangle.  This
algorithm must therefore store the entire training set T,
but accelerates classification by using relatively few
hyperrectangles whenever possible.

3. INSTANCE REDUCTION ISSUES

From the above learning models, several observations
can be made regarding the issues involved in training set
reduction.  This section covers the issues of instance
representation, the order of the search, the choice of
distance function, the general intuition of which
instances to keep, and how to evaluate the different
strategies.

3.1. REPRESENTATION

One choice in designing a training set reduction
algorithm is to decide whether to retain a subset of the
original instances or whether to modify the instances
using a new representation.  For example, NGE
(Salzberg, 1991) and its derivatives (Wettschereck &
Dietterich, 1995) use hyperrectangles to represent
collections of instances;  RISE (Domingos, 1995)
generalizes instances into rules; and prototypes (Chang
1974) can be used to represent a cluster of instances,
even if no original instance occurred at the point where
the prototype is located.

On the other hand, many models seek to retain a subset
of the original instances, including the Condensed NN
rule (CNN) (Hart, 1968), the Reduced NN rule (RNN)
(Gates 1972), the Selective NN rule (SNN) (Ritter et. al.,
1975), Wilson’s rule (Wilson, 1972), the “all k-NN”
method (Tomek, 1976), Instance-Based (IBL)
Algorithms (Aha et. al. 1991), and the Typical Instance
Based Learning (TIBL) algorithm (Zhang, 1992).

Another decision that affects the concept description for
many algorithms is the choice of k, which is the number
of neighbors used to decide the output class of an input
vector.  The value of k is typically a small integer (e.g.,
1, 3 or 5) that is odd so as to avoid “ties” in the voting of
neighbors.  The value of k is often determined from
cross-validation.

3.2. DIRECTION OF SEARCH

When searching for a subset S of instances to keep from
training set T, there are different directions the search
can proceed.  We call these search directions
incremental, decremental, and batch.

Incremental.  The incremental search begins with an
empty subset S, and adds each instance in T to S  if it
fulfills the criteria.  Using such a search direction, the
order of presentation of instances can be very important.
In particular, the first few instances may have a very
different probability of being included in S than they
would if they were visited later.  For example, CNN
begins by selecting one instance from each class at
random, which gives these instances a 100% chance of
being included.  The next instances visited are classified
only by the few instances that are already in S, while
instances chosen near the end of the algorithm are
classified by a much larger number of instances that
have been included in S.  Other incremental schemes
include IB2 and IB3.

One advantage to an incremental scheme is that if
instances are made available later, after training is
complete, they can continue to be added to S according
to the same criteria.

Decremental.  Decremental searches begins with S=T,
and then search for instances to remove from S.  Again
the order of presentation can be important, but unlike the
incremental process, all of the training examples are
available for examination at any time, so a search can be
made to determine which instance would be best to
remove during each step of the algorithm.  Decremental
algorithms include RNN, SNN, and Wilson’s (1972)
rule.  NGE and RISE can also be viewed as decremental
algorithms, except that instead of simply removing
instances from S, they are instead generalized into
hyperrectangles or rules.  Similarly, Chang’s prototype
rule operates in a decremental order, but prototypes are
merged into each other instead of being simply removed.

One disadvantage with the decremental rule is that it is
often computationally more expensive than incremental
algorithms.  For example, in order to find the nearest
neighbor in T of an instance, n distance calculations must
be made.  On the other hand, there are fewer than n
instances in S (zero initially, and some fraction of T
eventually), so finding the nearest neighbor in S of an
instance takes less computation.

However, if the application of a decremental algorithm
can result in greater storage reduction and/or increased
generalization accuracy, then the extra computation
during learning (which is done just once) can be well
worth the computational savings during execution
thereafter.
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Batch.  A final way to apply a training set reduction rule
is in batch mode.  This involves deciding if each instance
meets the removal criteria before removing any, and then
removing all of them at once.  For example, the “all-
kNN” rule operates this way.  This can relieve the
algorithm from having to constantly update lists of
nearest neighbors and other information when instances
are individually removed, but there are also dangers in
batch processing.

For example, assume we apply a rule such as “Remove
an instance if it has the same output class as its k nearest
neighbors” to a training set.  This could result in entire
clusters disappearing if there are no instances of a
different class nearby.  If done in decremental mode,
however, some instances would remain, because
eventually enough neighbors would be removed that one
of the k nearest neighbors of an instance would have to
be of another class, even if it was originally surrounded
by those of its own class.

3.3. BORDER POINTS VS. CENTRAL POINTS

Another factor that distinguishes instance reduction
techniques is whether they seek to retain border points,
central points, or some other set of points.

The intuition behind retaining border points is that
“internal” points do not affect the decision boundaries as
much as the border points, and thus can be removed with
relatively little effect on classification.  Algorithms
which tend to retain border points include CNN, RNN,
IB2, and IB3.

On the other hand, some algorithms instead seek to
remove border points.  Wilson’s rule and the “all kNN”
rule are examples of this.  They remove points that are
noisy or do not agree with their neighbors.  This removes
close border points, leaving smoother decision
boundaries behind.  This may help generalization in
some cases, but typically keeps most of the instances.

Some algorithms retain center points instead of border
points.  For example, the Typical Instance Based
Learning algorithm attempts to retain center points and
can achieve very dramatic reduction (ideally one
instance per class) when conditions are right.  However,
when decision boundaries are complex, it may take
nearly as many instances to define the boundaries using
center points as it would using boundary points.  Current
research is addressing this question.

3.4. DISTANCE FUNCTION

The nearest neighbor algorithm and its derivatives
usually use the Euclidean distance function, which is
defined as:

E(x, y) = (xi − yi )2

i=1

m

∑ (1)

where x and y are the two input vectors, m is the number
of input attributes, and xi and yi are the input values for
input attribute i.  This function is appropriate when all
the input attributes are numeric and have ranges of
approximately equal width.  When the attributes have
substantially different ranges, the attributes can be
normalized by dividing the individual attribute distances
by the range or standard deviation of the attribute.

When nominal (discrete, unordered) attributes are
included in an application, a distance metric is needed
that can handle them.  We use a distance function based
upon the Value Difference Metric (VDM) (Stanfill &
Waltz, 1986) for nominal attributes.  A simplified
version of the VDM defines the distance between two
values x and y of a single attribute a as:

vdma (x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,y











c=1

C

∑
2

(2)

where Na,x is the number of times attribute a had value
x; Na,x,c is the number of times attribute a had value x
and the output class was c; and C is the number of output
classes.  Using this distance measure, two values are
considered to be closer if they have more similar
classifications, regardless of the order of the values.

In order to handle heterogeneous applications—those
with both numeric and nominal attributes—we use the
heterogeneous distance function HVDM (Wilson &
Martinez, 1997), which is defined as:

HVDM(x, y) = da
2 (xa , ya )

a=1

m

∑ (3)

where the function da(x,y) is the distance for attribute a
and is defined as:

da (x, y) =
vdma (x, y),  if a is nominal

x − y

4σa
,  if a is numeric






(4)

where vdma(x,y) is the function given in (2), and σa is
the standard deviation of the values occurring for



5

Figure 1:  Pseudo-code for RT1.

  1 RT1(Training set T): Instance set S.
  2 Let S = T.
  3 For each instance P in S:
  4 Find P.N1..k+1, the k+1 nearest neighbors of P in S.  
  5 Add P to each of its neighbors’ lists of associates.  
  6 For each instance P in S:
  7 Let with = # of associates of P classified correctly with P as a neighbor.
  8 Let without = # of associates of P classified correctly without P.
  9 If (without - with) ≥ 0
10 Remove P from S.
11 Remove P from its associates’ lists of nearest neighbors, and find
12 the next nearest neighbor for each of these associates.
13 Remove P from its neighbors’ lists of associates.
14 Endif
15 Return S.

attribute a in the instances in the training set T.  This
function handles unknown input values by assigning
them a large distance (1.0), and provides appropriate
normalization between numeric and nominal attributes,
as well as between numeric attributes of different scales.

4. NEW INSTANCE SET REDUCTION
ALGORITHMS

This section presents a collection of new heuristics or
rules used to decide which instances to keep and which
instances to remove from a training set.  In order to
avoid repeating lengthy definitions, some notation is
introduced here:

A training set T consists of n instances (or prototypes)
P1..n.  Each instance P has k nearest neighbors P.N1..k
(ordered from nearest to furthest), where k is a small odd
integer such as 1, 3 or 5.  P also has a nearest enemy,
P.E, which is the nearest instance with a different output
class.  Those instances that have P as one of their k
nearest neighbors are called associates of P, and are
notated as P.A1..a (sorted from nearest to furthest) where
a is the number of associates that P has.

Given the issues in Section 3 to consider, our research is
directed towards finding instance reduction techniques
that provide noise tolerance, high generalization
accuracy, insensitivity to the order of presentation of
instances, and significant storage reduction, which in
turn improves generalization speed.  Sections 4.1-4.3
present three rules, called RT1-RT3, respectively, that
seek to meet these goals.

4.1. REDUCTION TECHNIQUE 1 (RT1)

The first reduction technique we present, RT1, uses the

following basic rule to decide if it is safe to remove an
instance from the instance set S (where S = T originally):

 Remove P if at least as many of its associates
in S would be classified correctly without it.

To see if an instance can be removed using this rule,
each associate is checked to see what effect the removal
of P would have on it.

Removing P causes each associate P.Ai to use its k+1st

nearest neighbor (P.Ai.Nk+1) in place of P.  If P has the
same class as P.Ai, and P.Ai.Nk+1 has a different class
than P.Ai, this weakens its classification, and could
cause P.Ai to be misclassified by its neighbors.  On the
other hand, if P is a different class than P.Ai and the
P.Ai.Nk+1 is the same class as P.Ai, the removal of
P could cause a previously misclassified instance to be
classified correctly.

In essence, this rule tests to see if removing P would
degrade leave-one-out cross-validation generalization
accuracy, which is an estimate of the true generalization
ability of the resulting classifier.  An instance is removed
when it results in the same level of generalization with
lower storage requirements.

The algorithm for RT1 proceeds as shown in Figure 1.

This algorithm begins by building a list of nearest
neighbors for each instance, as well as a list of
associates.  Then each instance in S is removed if its
removal does not hurt the classification of the instances
remaining in S.

This algorithm removes noisy instances, because a noisy
instance P usually has associates that are mostly of a
different class, and such associates will be at least as
likely to be classified correctly without P .  RT1 also
removes instances in the center of clusters, because
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associates there are not near their enemies, and thus
continue to be classified correctly without P.

Near the border, the removal of some instances
sometimes causes others to be classified incorrectly
because the majority of their neighbors can become
enemies.  Thus this algorithm tends to keep non-noisy
border points.  At the limit, there is typically a collection
of border instances such that the majority of the k nearest
neighbors of each of these instances is the correct class.

4.2. REDUCTION TECHNIQUE 2 (RT2)

There is a potential problem that can arise in RT1 with
regards to noisy instances.  A noisy instance will
typically have associates of a different class, and will
thus be contained to a somewhat small portion of the
input space.  However, if its associates are removed by
the above criteria, the noisy instance may cover more
and more of the input space.  Eventually it is hoped that
the noisy instance itself will be removed.  However, if
many of its neighbors are removed first, its associates
may eventually include instances of the same class from
the other side of the original decision boundary, and it is
possible that removing the noisy instance at that point
could cause some of its distant associates to be classified
incorrectly.

RT2 solves this problem by considering the effect of the
removal of an instance on all the instances in the original
training set T instead of considering only those instances
remaining in S.  In other words, an instance P is removed
from S  only if at least as many of its associates
(including those that may have already been pruned) are
classified correctly without it.

Using this modification, each instance in the original
training set T continues to maintain a list of its k + 1
nearest neighbors in S, even after it is removed from S.
This in turn means that instances in S  have associates
that are both in and out of S, while instances that have
been removed from S have no associates (because they
are no longer a neighbor of any instance).  This
modification makes use of additional information that is
available for estimating generalization accuracy, and
also avoids some problems that can occur with RT1 such
as removing entire clusters.  This change is made by
removing line 13 from the pseudo-code for RT1 so that
pruned instances will still be associates of their nearest
neighbors in S.

RT2 also changes the order of removal of instances.  It
initially sorts the instances in S by the distance to their
nearest enemy.  Instances are then checked for removal
beginning at the instance furthest from its nearest enemy.
This tends to remove instances furthest from the decision
boundary first, which in turn increases the chance of
retaining border points.

4.3. REDUCTION TECHNIQUE 3 (RT3)

RT2 sorts S in an attempt to remove center points before
border points.  One problem with this method is that
noisy instances are also “border” points, and cause the
order of removal to be drastically changed.  One noisy
point in the center of a cluster causes many points in that
cluster to be considered border points, and some of these
can remain in S even after the noisy point is removed.

Two passes through S can remove the dangling center
points, but unfortunately, by that time some border
points may have already been removed that should have
been kept.

RT3 therefore uses a noise-filtering pass before sorting
the instances in S.  This is done using a rule similar to
Wilson’s Rule (Wilson, 1972): Any instance
misclassified by its k nearest neighbors is removed.  This
removes noisy instances, as well as close border points,
which can in turn smooth the decision boundary slightly.
This helps to avoid “overfitting” the data, i.e., using a
decision surface that goes beyond modeling the
underlying function and starts to model the data
sampling distribution as well.

After removing noisy instances from S in this manner,
the instances are sorted by distance to their nearest
enemy remaining in S, and thus points far from the real
decision boundary are removed first.  This allows points
internal to clusters to be removed early in the process,
even if there were noisy points nearby.

5. EXPERIMENTAL RESULTS

The reduction algorithms RT1, RT2 and RT3 were
implemented using k = 3, and using the HVDM distance
function described in Section 3.4.  These algorithms
were tested on 29 data sets from the University of
California, Irvine Machine Learning Database
Repository (Merz & Murphy, 1996) and compared to a
k-nearest neighbor classifier that was identical to RT1
except that it does not remove any instances from the
instance set (i.e., S=T).

Each test consisted of ten trials, each using one of ten
partitions of the data randomly selected from the data
sets, i.e., 10-fold cross-validation.  For each trial, 90% of
the training instances were used for T, the subset S was
determined using each reduction technique (except for
the kNN algorithm, which keeps all the instances), and
the remaining 10% of the instances were classified using
only the instances remaining in S .  The average
generalization accuracy over the ten trials for each test is
given in Table 1.  The average percentage of instances
retained in S is shown in the table as well.
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Table 1:  Generalization accuracy and storage requirements of kNN, RT1, RT2, and RT3.

Database
Anneal
Australian
Breast Cancer WI
Bridges
Crx
Echocardiogram
Flag
Glass
Heart
Heart.Cleveland
Heart.Hungarian
Heart.Long Beach VA
Heart.More
Heart.Swiss
Hepatitis
Horse-Colic
Image.Segmentation
Ionosphere
Iris
LED-Creator+17
LED-Creator
Liver.Bupa
Pima Indians Diabetes
Promoters
Sonar
Soybean-Large
Vehicle
Vowel
Wine
Average

kNN
93.11
84.78
96.28
66.09
83.62
94.82
61.34
73.83
81.48
81.19
79.22
70.00
74.17
92.69
80.62
57.84
93.10
84.62
94.00
67.10
60.60
65.57
73.56
93.45
87.55
88.59
71.76
96.57
94.93
80.78

(size)
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

RT1
87.85
82.61
94.00
55.64
81.01
93.39
58.13
60.30
79.26
77.85
78.92
73.00
73.20
91.15
76.21
65.09
84.76
84.91
89.33
68.80
64.00
59.66
70.96
85.00
69.81
79.81
66.21
88.98
91.05
76.93

(size)
9.11
7.67
2.56

20.86
6.70
9.01

24.51
26.11
12.96
14.26
11.38
11.78
11.20
2.08
8.67

10.89
10.21
5.67

11.70
17.50
7.78

27.28
20.12
8.18

24.04
24.03
24.00
43.14
8.55

14.55

RT2
95.36
84.64
96.14
59.18
84.93
85.18
62.34
64.98
81.11
79.87
79.22
72.00
74.50
93.46
82.00
66.17
92.38
88.32
95.33
70.50
67.00
65.80
73.31
87.91
81.86
84.99
68.91
91.46
93.79
80.09

(size)
11.42
15.41
5.79

24.11
14.11
7.51

32.30
31.52
21.60
20.61
15.98
16.33
16.98
2.89

13.98
17.98
13.76
12.09
16.89
26.23
11.20
37.55
28.11
17.82
30.82
27.94
31.60
46.91
15.23
20.16

RT3
93.49
84.35
96.14
58.27
85.80
93.39
61.29
65.02
83.33
80.84
79.95
73.50
76.25
93.46
81.87
71.08
92.62
87.75
95.33
70.40
68.20
60.84
75.01
86.82
78.00
85.62
65.85
89.56
94.93
80.31

(size)
8.63
5.93
3.58

18.66
5.46
9.01

20.45
23.88
13.62
12.76
10.43
4.22
9.10
1.81
7.81
7.42

10.98
7.06

14.81
12.66
11.57
24.99
16.90
16.67
26.87
25.73
23.00
45.22
16.11
14.32

H-IB3
94.98
85.99
95.71
59.37
83.48
93.39
51.50
67.77
76.30
74.23
74.83
69.50
74.75
84.62
72.79
61.82
90.24
88.32
92.00
52.60
71.30
55.64
67.83
88.59
71.67
90.23
66.45
94.70
94.38
77.41

(size)
7.81
6.48
2.56

38.67
6.86

14.85
39.18
32.92
10.33
10.78
8.88

11.67
13.97
4.79
8.03

17.64
14.79
13.61
10.96
42.42
24.32
15.59
13.22
10.02
15.22
21.90
29.17
23.42
13.42
16.67

Results were also obtained for several of the methods
discussed in Section 2, including CNN (Hart, 1968),
SNN (Ritter et al., 1975), Wilson’s Rule (Wilson, 1972),
the “All k-NN” method (Tomek, 1976), IB2, IB3 (Aha,
Kibler & Albert, 1991), and the Explore method
(Cameron-Jones, 1995).  Space does not permit the
inclusion of all of the results, but the results for IB3 are
included in Table 1 as a benchmark for comparison,
since it is one of the most popular algorithms.  This
version of IB3 was modified to use the heterogeneous
distance function HVDM and is thus labeled H-IB3.

From the results in this table, several observations can be
made.  RT1 had very good storage reduction on average,
but also dropped in generalization accuracy by an
average of almost 4%.  This is likely due to the fact that
this algorithm ignores those instances that have already
been pruned from S when deciding whether to remove
additional instances.  It also prunes them in a random
order, thus causing some border points to be removed
too early.

RT2 had better generalization accuracy than RT1
because of its use of the additional information provided
by pruned instances in determining whether to remove
others.  However, it also has higher storage
requirements, due at least in part to the fact that noisy
instances sometimes cause nearby instances to be
retained even after the noisy instance is removed.

RT3 had a higher average generalization accuracy than
RT1, RT2, and H-IB3, and also had the lowest storage
requirements of the four.  Its generalization accuracy
was within one-half of a percent of the kNN algorithm
that retained 100% of the instances, and yet it retained
on average only 14.32% of the instances.

Some datasets seem to be especially well suited for these
reduction techniques.  For example, RT3 required less
than 2% storage for the Heart.Swiss dataset, yet it
achieved even higher generalization accuracy than the
kNN algorithm.  On the other hand, some datasets were
not so appropriate.  On the Vowel dataset, for example,
RT3 required over 45% of the data, and dropped in
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generalization accuracy by 7%, suggesting that RT3 is
inappropriate for this particular dataset.

The Heterogeneous IB3 algorithm was also compared to
the original IB3 algorithm (i.e., with k = 1, and using
Euclidean distance on linear attributes and overlap
metric on nominal attributes), to make sure that the
above comparison was fair.  The original IB3 algorithm
attained 75% accuracy with 18% storage on average on
these 29 datasets, indicating that the heterogeneous
distance function was beneficial to IB3.

As mentioned above, the results in Table 1 were also
compared with those achieved by CNN, SNN, Wilson’s
Rule, and the All k-NN method.  All of these resulted in
lower generalization accuracy and higher storage
requirements than RT3.  IB2, CNN and SNN all had
about 76% accuracy and required about 25-33% storage.
Wilson’s Rule and the All k-NN method both had 80.1%
accuracy but retained over 75% of the instances.

The Explore method (Cameron-Jones, 1995) mentioned
in Section 2.2 was also tested, and though its average
accuracy was lower than RT3 (76.23%), it reduced
storage more dramatically than the others, retaining only
2.23% of the instances on average.  When modified with
the HVDM distance function, its storage improved
further (2.11%) and accuracy increased to 79.01%.  This
is still not as accurate as RT3, but the improved
reduction may be worth the trade-off in some cases.

One factor that influences the amount of reduction
achieved by RT3 is the use of k = 3.  This causes some
instances to be retained that could be removed with
k = 1.  Initial experiments suggest that the smaller value
of k results in more dramatic storage reduction, but may
reduce generalization accuracy slightly in RT3.  One
area of future research is in the use of a dynamic value of
k, where k  starts out  with a value of 3 or 5 and is
reduced as pruning continues until it is eventually
reduced to a value of 1.

We were interested to see how fast generalization
accuracy drops as instances are removed from S, and to
see if it drops off more slowly when using an intelligent
reduction technique than it does when removing
instances randomly.

In order to test this, the experiments described above
were modified as follows.  When instances were
removed from S, the order of their removal was recorded
so that the training set T could be sorted by order of
removal (with the instances in S at the beginning in
random order, since they were not removed).  Then the
instances in the test set were classified using only the
first 1% of the data, then 2%, and so on up to 100% of
the data.  Figure 2 shows the average generalization
accuracy (over all 10 trials on all 29 datasets) as a
function of the percentage of the training set that was
used for generalization.

As can be seen from the figure, the average
generalization accuracy drops off more quickly if
instances are randomly removed than if they are
removed using RT3, indicating that the order of removal
is improved by RT3.

This can be useful if more storage is available than that
required by RT3.  For example, if an instance set of 10
million instances is reduced to just 100, but there is
sufficient storage and computational resources to handle
1000 instances, then by using the sorted list of pruned
instances, the best 1000 instances can be used.  The user
is thus allowed to manually trade off storage for
accuracy without the higher loss in accuracy that random
removal would cause.

Figure 2:  Generalization Accuracy for RT3 vs.
Randomly removing instances.
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6. CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

Nearest neighbor algorithms and their derivatives are
often appropriate and can provide high generalization
accuracy for real-world applications, but the storage and
computational requirements can be restrictive when the
size of the training set is large.

This paper introduced three new instance reduction
techniques which are intuitive and provide good storage
reduction.  In experiments on 29 datasets, the third
technique, RT3, provided higher generalization accuracy
and lower storage requirements than the other two
methods, and its accuracy was within 0.5% of that of a
nearest neighbor classifier that retained all of the
instances.  On average it retained under 15% of the
original training set.
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RT3 (and to a lesser extent the other algorithms) is
designed to be robust in the presence of noise and use an
estimate of generalization accuracy in making decisions,
which helps it avoid removing instances that would be
helpful in generalization.  Since RT3 makes use of all
the instances in the training set in making its decision, it
is not sensitive to the order of presentation of the
instances (as are incremental approaches), and is able to
choose a good order of removal regardless of how the
instances were ordered in the original training set.

These reduction algorithms were also among the first to
use heterogeneous distance functions that are appropriate
for applications with both nominal and continuous
attributes (Wilson & Martinez, 1997).

Future research will focus on determining the conditions
under which these algorithms are not appropriate, and
will seek to overcome weaknesses in such areas.  These
reduction algorithms will also be integrated with feature
selection algorithms and weighting techniques in order
to produce comprehensive instance-based learning
systems that are robust in the presence of irrelevant
attributes and other difficult circumstances, thus
providing more accurate learning algorithms for a wide
variety of problems.
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