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Abstract

Current state-of-the-art instance segmentation methods

are not suited for real-time applications like autonomous

driving, which require fast execution times at high ac-

curacy. Although the currently dominant proposal-based

methods have high accuracy, they are slow and generate

masks at a fixed and low resolution. Proposal-free meth-

ods, by contrast, can generate masks at high resolution and

are often faster, but fail to reach the same accuracy as the

proposal-based methods. In this work we propose a new

clustering loss function for proposal-free instance segmen-

tation. The loss function pulls the spatial embeddings of

pixels belonging to the same instance together and jointly

learns an instance-specific clustering bandwidth, maximiz-

ing the intersection-over-union of the resulting instance

mask. When combined with a fast architecture, the network

can perform instance segmentation in real-time while main-

taining a high accuracy. We evaluate our method on the

challenging Cityscapes benchmark and achieve top results

(5% improvement over Mask R-CNN) at more than 10 fps

on 2MP images.1

1. Introduction

Semantic instance segmentation is the task of locating

all objects in an image, assigning each object to a spe-

cific class and generating a pixel-perfect mask for each one,

perfectly delineating their shape. This contrasts with the

standard bounding-box detection methods, where each ob-

ject is represented by a crude rectangular box. Since hav-

ing a binary mask for each object is desired (and neces-

sary) in many applications, ranging from autonomous driv-

ing and robotics applications to photo-editing/analyzing ap-

plications, instance segmentation remains an important re-

search topic.

1For experiments on additional datasets we refer to the arXiv version

of this paper.

Figure 1. Our loss function encourages pixels to point into an opti-

mal, object-specific region around the object’s center, maximizing

the intersection-over-union of each object’s mask. For big objects,

this region will be bigger, relaxing the loss for edge-pixels, which

are further away from the center. Bottom left displays the learned

offset vectors, encoded in color. Bottom right displays the dis-

placed pixels, displaced with the learned offset vectors. Instances

are recovered by clustering around each center with the learned,

optimal clustering region.

Currently, the dominant method for instance segmenta-

tion is based on a detect-and-segment approach, where ob-

jects are detected using a bounding-box detection method

and then a binary mask is generated for each one. Despite

many attempts in the past, the Mask R-CNN framework was

the first one to achieve outstanding results on many bench-

marks, and is still the most used method for instance seg-

mentation to date. While this method provides good re-

sults in terms of accuracy, it generates low resolution masks

which are not always desirable (e.g. for photo-editing appli-

cations) and operates at a low frame rate, making it imprac-

tical for real-time applications such as autonomous driving.

Another popular branch of instance segmentation meth-

ods are proposal-free methods, which are mostly based on
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embedding loss functions or pixel affinity learning. Since

these methods typically rely on dense-prediction networks,

their generated instance masks can have a high resolution.

Additionally, proposal-free methods often report faster run-

times than proposal-based ones. Although these methods

are promising, they fail to perform as well as the above men-

tioned detect-and-segment approaches like Mask R-CNN.

In this paper, we formulate a new loss function for

proposal-free instance segmentation, combining the bene-

fits of both worlds: accurate, high resolution masks com-

bined with real-time performance. Our method is based on

the principle that pixels can be associated with an object by

pointing to that object’s center. Unlike previous works that

apply a standard regression loss on all pixels, forcing them

to point directly at the object’s center, we introduce a new

loss function which optimizes the intersection-over-union

of each object’s mask. Our loss function will therefore in-

directly force object pixels to point into an optimal region

around the object’s center. For big objects, the network will

learn to make this region bigger, relaxing the loss on pix-

els which are further away from the object’s center. At in-

ference time, instances are recovered by clustering around

each object’s center with the learned, object-specific region.

See figure 1.

We test our method on the challenging Cityscapes

dataset and show that we achieve top results, surpassing

Mask R-CNN with an Average Precision score of 27.6 ver-

sus 26.2, at a frame rate of more than 10 fps. We also ob-

serve that our method does very well on cars and pedes-

trians, reaching similar accuracy scores as a Mask R-CNN

model which was trained on a combination of Cityscapes

and COCO. On the Cityscapes dataset, our method is the

first one which runs in real time while maintaining a high

accuracy.

In summary, we (1) propose a new loss function which

directly optimizes the intersection-over-union of each in-

stance by pulling pixels into an optimal, object-specific

clustering region and (2) achieve top results in real-time on

the Cityscapes dataset.

2. Related Work

The current best performing instance segmentation

methods are proposal-based, and rely on the Faster R-

CNN [23] object detection framework, which is the cur-

rent leader in most object detection benchmarks. Previ-

ous instance segmentation approaches relied on their detec-

tion output to get object proposals, which they then refine

into instance masks [4, 12, 21, 22]. Mask R-CNN [8] and

its derivative PANet [16] refine and simplify this pipeline

by augmenting the Faster R-CNN network with a branch

for predicting an object mask. Although they are the best-

scoring methods on popular benchmarks, such as COCO,

their instance masks are generated at a low resolution

(32x32 pixels) and in practice are not often used in real-

time applications.

Another branch of instance segmentation methods rely

on dense-prediction, segmentation networks to generate in-

stance masks at input resolution. Most of these meth-

ods [6, 18, 11, 5, 19] are based on an embedding loss func-

tion, which forces the feature vectors of pixels belonging

to the same object to be similar to each other and suf-

ficiently dissimilar from feature vectors of pixels belong-

ing to other objects. Recently, works [19, 14] have shown

that the spatial-invariant nature of Fully Convolutional Net-

works is not ideal for embedding methods and propose to ei-

ther incorporate coordinate maps [14] or use so-called semi-

convolutions [19] to alleviate this problem. Nevertheless, at

the current time these methods still fail to achieve the same

performance as the proposal-based ones.

In light of this, a more promising and simple method is

proposed by Kendall et al. [10], inspired by [13], in which

they propose to assign pixels to objects by pointing to its ob-

ject’s center. This way, they avoid the aforementioned prob-

lem of spatial-invariance by learning position-relative offset

vectors. Our method is based on the same concept, but in-

tegrates the post-processing clustering step directly into the

loss function and optimizes the intersection-over-union of

each object’s mask directly. Related to our method is the

very recent work of Novotny et al. [19]. Although similar

in concepts, they use a different loss function and still apply

a detection-first principle.

Also inspired by [10] is Box2Pix, a work proposed by

Uhrig et al. [25], where they first predict bounding boxes

based on a single-shot detection method, and then asso-

ciate pixels by pointing to object centers, which can after-

wards be efficiently clustered. Its focus lays on real-time

instance segmentation and shows promising results on the

Cityscapes dataset. Our method also shows real-time per-

formance on the Cityscapes dataset, but at a much higher

accuracy.

Our loss relaxation by learning an optimal clustering

margin shows some similarites with [20, 9], where they in-

tegrate the aleatoric uncertainty into the loss function. In

contrast to these works, we directly use the learned margin

at test time.

3. Method

We treat instance segmentation as a pixel assignment

problem, where we want to associate pixels with the cor-

rect objects. To this end we learn an offset vector for each

pixel, pointing to its object’s center. Unlike the standard re-

gression approach, which we explain further in 3.1, we also

learn an optimal clustering region for each object and by

doing so we relax the loss for pixels far away from the cen-

ter. This is explained in 3.2. To locate the object’s centers,

we learn a seed map for each semantic class, as described
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in 3.5. The pipeline is graphically depicted in figure 2.

3.1. Regression to the instance centroid

The goal of instance segmentation is to cluster a

set of pixels X = {x0, x1, x2, ..., xN}, with x a 2-

dimensional coordinate vector, into a set of instances S =
{S0, S1, ..., SK}.

An often used method is to assign pixels to their cor-

responding instance centroid Ck = 1

N

∑

x∈Sk
x . This is

achieved by learning an offset vector oi for each pixel xi,

so that the resulting (spatial) embedding ei = xi+oi points

to its corresponding instance centroid. Typically, the off-

set vectors are learned using a regression loss function with

direct supervision:

Lregr =

n
∑

i=1

‖oi − ôi‖ (1)

where ôi = Ck − xi for xi ∈ Sk. However, the above

method poses two issues at inference time. First, the loca-

tions of the instance centroids have to be determined and

second, the pixels have to be assigned to a specific instance

centroid. To solve these problems, previous methods rely

on density-based clustering algorithms to first locate a set of

centroids C = {C0, C1, ..., CK} and next assign pixels to a

specific instance based on a minimum distance-to-centroid

metric :

ei ∈ Sk : k = argmin
C

‖ei − C‖ (2)

Since this post-processing step (center localization and

clustering) is not integrated within the loss function, the

network cannot be optimized end-to-end for instance seg-

mentation, leading to inferior results.

3.2. Learnable margin

The assignment of pixels to instance centroids can be

incorporated into the loss function by replacing the standard

regression loss with a hinge loss variant, forcing pixels to

lay within a specified margin δ (the hinge margin) around

the instance centroid:

Lhinge =

K
∑

k=1

∑

ei∈Sk

max(‖ei − Ck‖ − δ, 0) (3)

This way, at test time, pixels are assigned to a centroid

by clustering around the centroid with this fixed margin:

ei ∈ Sk ⇐⇒ ‖ei − Ck‖ < δ (4)

However, a downside to this method is that the margin

δ has to be selected based on the smallest object, ensuring

that if two small objects are next to each other, they can still

be clustered into two different instances. If a dataset con-

tains both small and big objects, this constraint negatively

influences the accuracy of big objects, since pixels far away

from the centroid will not be able to point into this small

region around the centroid. Although using a hinge loss in-

corporates the clustering into the loss function, given the

said downside it is not usable in practice.

To solve this issue we propose to learn an instance spe-

cific margin. For small instances a small margin should

be used, while for bigger objects, a bigger margin would

be preferred. This way, we relax the loss for pixels fur-

ther away from the instance centroid, as they are no longer

forced to point exactly at the instance centroid.

In order to do so, we propose to use a gaussian func-

tion φk for each instance Sk, which converts the distance

between a (spatial) pixel embedding ei = xi + oi and the

instance centroid Ck into a probability of belonging to that

instance:

φk(ei) = exp

(

−
‖ei − Ck‖

2

2σ2
k

)

(5)

A high probability means that the pixel embedding ei
is close to the instance centroid and is likely to belong to

that instance, while a low probability means that the pixel

is more likely to belong to the background (or another in-

stance). More specifically, if φk(ei) > 0.5, than that pixel,

at location xi, will be assigned to instance k.

Thus, by modifying the sigma parameter of the mapping

function, the margin can be controlled:

margin =
√

−2σ2
k ln 0.5 (6)

A large sigma will result in a bigger margin, while a

small sigma will result in a smaller margin. This addition-

ally requires the network to output a σi at each pixel loca-

tion. We define σk as the average of all σi belonging to

instance k:

σk =
1

|Sk|

∑

σi∈Sk

σi (7)

Since for each instance k the gaussian outputs a fore-

ground/background probability map, this can be optimized

by using a binary classification loss with the binary fore-

ground/background map of each instance as ground-truth.

As opposed to using the standard cross-entropy loss func-

tion, we opt for using the Lovasz-hinge loss [27] in-

stead. Since this loss function is a (piecewise linear) con-

vex surrogate to the Jaccard loss, it directly optimizes the

intersection-over-union of each instance. Therefore we do

not need to account for the class imbalance between fore-

ground and background.

Note that there is no direct supervision on the sigma

and offset vector outputs of the network (as was the

8839



a)  sigma map(s) b) pixel offset vectors (x,y)

c) class-specific seed maps

car person bike

Seed branch

margins

Sampling

ymap

xmap

Instance branch

Figure 2. Instance segmentation pipeline. The bottom branch of the network predicts: a) a sigma value for each pixel, which directly

translates into a clustering margin for each object. Bigger objects are more blueish, meaning a bigger margin, and smaller objects are

more yellowish, meaning a smaller margin. b) Offset vectors for each pixel, pointing at the center of attraction, and displayed using a

color-encoding where the color indicates the angle of the vector. The top branch predicts a seed map for each semantic class. A high value

indicates that the offset vector of that pixel points directly at the object center. Notice therefore that the borders have a low value, since

they have more difficulty of knowing to which center to point. The pixel embeddings (= offset vectors + coordinate vectors) and margins

calculated from the predicted sigma are also displayed. The cluster centers are derived from the seed maps.

case in the standard regression loss). Instead, they are

jointly optimized to maximize the intersection-over-union

of each instance mask, receiving gradients by backpropaga-

tion through the Lovasz-hinge loss function and through the

gaussian function.

3.3. Intuition

Let us first consider the case where the sigma (margin)

of the Gaussian function is kept fixed. In contrast with the

standard regression loss explained above, we don’t have an

explicit loss term pulling instance pixels to the instance cen-

troid. Instead, by minimizing the binary loss, instance pix-

els are now indirectly forced to lay within the region around

the instance centroid and background pixels are forced to

point outside this region.

When the sigma is not fixed but a learnable parameter,

the network can now also modify sigma to minimize the

loss more efficiently. Aside from pulling instance pixels

within the (normally small) region around the instance cen-

troid and pushing background pixels outside this region, it

can now also modify sigma such that the size of the region

is more appropriate for that specific instance. Intuitively

this would mean that for a big object it would adapt sigma

to make the region around the centroid bigger, so that more

instance pixels can point inside this region, and for small

objects to choose a smaller region, so that it is easier for

background pixels to point outside the region.

3.4. Loss extensions

Elliptical margin In the above formulation of the gaus-

sian function we have used a scalar value for sigma. This

will result in a circular margin. However, we can modify

the mapping function to use a 2-dimensional sigma:

φk(ei) = exp

(

−
(eix − Ckx)

2

2σ2
kx

−
(eiy − Cky)

2

2σ2
ky

)

(8)

By doing so, the network has the possibility of also learn-

ing an elliptical margin, which may be better suited for elon-

gated objects such as pedestrians or trains. Note that in this

case the network has to output two sigma maps, one for σx

and one for σy .

Learnable Center of Attraction Another modification

can be made on the center of the gaussian function. Cur-

rently, we place the gaussian in the centroid Ck of each in-

stance. By doing so, pixel embeddings are pulled towards

the instance centroid. However, we can also let the network

learn a more optimal Center of Attraction. This can be done

by defining the center as the mean over the embeddings of

instance k. This way, the network can influence the location

of the center of attraction by changing the location of the

embeddings:

φk(ei) = exp

(

−
‖ei −

1

|Sk|

∑

ej∈Sk
ej‖

2

2σ2
k

)

(9)

We will test these modifications in the ablation experi-

ment section.
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3.5. Seed map

At inference time we need to cluster around the center of

each object. Since the above loss function forces pixel em-

beddings to lay close to the object’s center, we can sample a

good pixel embedding and use that location as instance cen-

ter. Therefore, for each pixel embedding we learn how far it

is removed from the instance center. Pixel embeddings who

lay very close to their instance center will get a high score

in the seed map, pixel embeddings which are far away from

the instance center will get a low score in the seed map.

This way, at inference time, we can select a pixel embed-

ding with a high seed score, indicating that that embedding

will be very close to an object’s center.

In fact, the seediness score of a pixel embedding should

equal the output of the gaussian function, since it converts

the distance between an embedding and the instance center

into a closeness score. The closer the embedding is laying

to the center, the closer the output will be to 1.

Therefore, we train the seed map with a regression loss

function. Background pixels are regressed to zero and fore-

ground pixels are regressed to the output of the gaussian.

We train a seed map for each semantic class, with the fol-

lowing loss function:

Lseed =
1

N

N
∑

i

✶{si∈Sk}‖si−φk(ei)‖
2+✶{si∈bg}‖si−0‖2

(10)

with si the network’s seed output of pixel i. Note that

this time we consider φk(ei) to be a scalar: gradients are

only calculated for si.

3.6. Post-processing

At inference time, we follow a sequential clustering ap-

proach for each class-specific seed map. The pixels in the

seed map with the highest value indicate which embeddings

lay closest to an object’s center. The procedure is to sample

the embedding with the highest seed value and use that lo-

cation as instance center Ĉk. At the same location, we also

take the sigma value, σ̂k. By using this center and accompa-

nying sigma, we cluster the pixel embeddings into instance

Sk:

ei ∈ Sk ⇐⇒ exp

(

−
‖ei − Ĉk‖

2

2σ̂k
2

)

> 0.5 (11)

We next mask out all clustered pixels in the seed map and

continue sampling until all seeds are masked. We repeat this

process for all classes.

To ensure that during sampling σ̂k ≈ σk =
1

|Sk|

∑

σi∈Sk
σi, we add a smoothness term for each in-

stance to the total loss:

Lsmooth =
1

|Sk|

∑

σi∈Sk

‖σi − σk‖
2 (12)

4. Experiments

In this section we evaluate the performance of our in-

stance segmentation method on the Cityscapes dataset. To

find the best settings of our loss function, we first analyze

the different aspects in an ablation study. Afterwards we re-

port results of our best model on the test set of Cityscapes

and compare with other top performing methods. Since our

method is optimized for fast instance segmentation, we also

report a time comparison with other instance segmentation

methods.

4.1. Implementation details

Network architecture We use the ERFNet-

architecture [24] as base-network. ERFNet is a

dense-prediction encoder-decoder network optimized

for real-time semantic segmentation. We convert the model

into a 2-branch network, by sharing the encoder part and

having 2 separate decoders. The first branch predicts

the sigma and offset values, with 3 or 4 output channels

depending on sigma (σ vs σxy). The other branch outputs

N seed maps, one for each semantic class. The offset values

are limited between [-1,1] with a tanh activation function,

sigma is made strictly positive by using an exponential

activation function, effectively letting the network predict

log( 1

2σ2 ).

Coordinate map Since the Cityscapes images are of size

2048x1024, we construct a pixel coordinate map so that

the x-coordinates are within the range of [0,2] and the y-

coordinates within the range of [0,1]. This way, the differ-

ence in coordinate between two neighboring pixel is 1/1024,

both in x and y direction. Because the offset vectors can

have a value between [-1,1], each pixel can point at most

1024 pixels away from its current location.

Training procedure We first pre-train our models on

500x500 crops, taken out of the original 2048x1024 train

images and centered around an object, for 200 epochs with

a batch-size of 12. This way, we don’t spend to much

computation time on background patches without any in-

stances. Afterwards we finetune the network for another 50

epochs on 1024x1024 crops with a batch-size of 2 to in-

crease the performance on the bigger objects who couldn’t

fit completely within the 500x500 crop. During this stage,

we keep the batch normalization statistics fixed. We use

the Adam optimizer and polynomial learning rate decay

(1 − epoch

max epoch
)0.9. During pre-training we use an initial
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method training data AP AP50 person rider car truck bus train mcycle bicycle

DIN [2] fine+coarse 23.4 45.2 20.9 18.4 31.7 22.8 31.1 31.0 19.6 11.7

SGN [15] fine+coarse 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

PolygonRNN++ [1] fine 25.5 45.5 29.4 21.8 48.3 21.1 32.3 23.7 13.6 13.6

Mask R-CNN [8] fine 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0

GMIS [17] fine+coarse 27.6 44.6 29.3 24.1 42.7 25.4 37.2 32.9 17.6 11.9

PANet [16] fine 31.8 57.1 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8

Mask R-CNN [8] fine+COCO 31.9 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7

PANet [16] fine+COCO 36.4 63.1 41.5 33.6 58.2 31.8 45.3 28.7 28.2 24.1

ours fine 27.6 50.9 34.5 26.1 52.4 21.7 31.2 16.4 20.1 18.9

Table 1. Results on Cityscapes test set. With a score of 27.6 AP we reach second place on the benchmark, compared with the fine-only

methods.

re
al

-ti
m

e

Average Precision (AP)

FP
S

(ours)

PANet

Mask R-CNN

Discriminate Loss

Box2Pix

SGN

Figure 3. Speed accuracy trade-off between instance segmentation

methods on the Cityscapes benchmark. Our method is the first

real-time method with high accuracies. Image adapted from [25]

learning rate of 5e-4, which we lower to 5e-5 for finetun-

ing. Training takes roughly 24 hours on two NVIDIA 1080

Ti GPU’s. Next to random cropping, we also apply random

horizontal mirroring as data-augmentation.

4.2. Cityscapes dataset

The Cityscapes dataset is high quality dataset for urban

scene understanding. It consists out of 5,000 finely anno-

tated images (fine) of 2048 by 1024 pixels, with both se-

mantic and instance-wise annotations, and 20,000 coarsely

annotated images (coarse) with only semantic annota-

tions. The wide range in object size and the varying scene

layout makes this a challenging dataset for instance segmen-

tation methods.

The instance segmentation task consists in detecting ob-

jects of 8 different semantic classes and generating a binary

mask for each of them. The performance is evaluated by

the average precision (AP) criterion on the region level and

averaged over the different classes. Aside from AP, AP50%

for an overlap of 50 %, AP100m and AP50m for objects re-

stricted to respectively 100m and 50m are also reported.

In the following experiments we will only use the fine

train set to train our models, which consists out of the fol-

lowing classes with their respective number of objects:

person rider car truck bus train mcycle bicycle

17.9k 1.8k 26.9k 0.5k 0.4k 0.2k 0.7k 3.7k

Note that some classes (truck, bus, train) are highly un-

derrepresented, which will negatively effect the model’s test

performance on those specific classes.

4.3. Ablation Experiments

In this section we evaluate the influence of the differ-

ent parameters of our loss function on the validation set of

Cityscapes: we investigate the importance of a learnable

sigma, the difference in using the instance centroid or a

learnable center as the center of attraction, and the differ-

ence in using a scalar or a 2 dimensional sigma. Since we

want to measure the effect on the instance part, we remove

the object detection and classification part from the equation

by using the ground truth annotations to localize the objects

and assigning the correct semantic class, which is indicated

in the tables as APgt.

Fixed vs. learnable sigma In this experiment we evaluate

the importance of a learnable, instance-unique sigma over a

fixed one. As explained in section 3.2, when using a fixed

sigma, the value has to be selected based on the size of the

smallest object we still want to be able to separate, and is

therefore set to correspond with a margin of 20 pixels. The

results can be seen in table 2. The significant performance

difference (28 AP vs. 38.7 AP) shows the importance of

having a unique, learnable sigma for each instance. Notice

also that for classes with relatively more small instances,

the difference is less pronounced, as expected.

Fixed vs. learnable Center of Attraction As described

in the method section, the center of attraction (CoA) of

an instance can be defined as either the centroid, or more

general, as a learnable center calculated by taking the mean

over all spatial embeddings belonging to the instance. Intu-

itively, by giving the network the opportunity to decide on

the location of the CoA itself, it can learn a more optimal
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σ/σxy CoA AP[val]gt person rider car truck bus train mcycle bicycle

σfixed centroid 28.0 32.3 28.1 45.1 30.2 37.3 14.4 19.9 16.9

σ centroid 38.7 36.4 33.6 54.5 42.7 56.0 36.7 24.9 24.5

σ learnable 39.5 39.4 35.4 56.0 40.3 57.6 34.6 26.1 26.5

σxy centroid 39.1 38.0 33.9 54.5 42.0 59.4 37.8 23.0 24.5

σxy learnable 40.5 39.3 34.5 55.5 44.3 59.8 41.2 24.8 25.0

Table 2. Ablation experiments evaluated on the Cityscapes validation set using a ground-truth sampling approach. We measure the perfor-

mance of a fixed sigma, the difference in using a scalar vs. 2-dimensional sigma and the difference in using the centroid or learnable center

as center of attraction.

Figure 4. Learned margin against the object’s size. Each dot rep-

resents an object in the dataset. As predicted, we notice a positive

correlation between the margin and the object’s size.

location than the standard centroid. In table 2 we evaluate

the two different approaches on the Cityscapes validation

set using a ground-truth sampling approach,both in the case

of a scalar or a 2-dimensional sigma. As predicted, in both

cases we achieve a higher AP-score when using a learnable

center instead of the fixed centroid, with a noticeable im-

provement over all classes.

Circular vs. elliptical margin The margin for each in-

stance is defined by the learnable sigma parameter in the

gaussian function. This sigma can either be a scalar (σ),

which results in a circular margin, or a two-dimensional

vector (σxy), resulting in an elliptical margin. For rectan-

gular objects (e.g. pedestrians) a circular margin is not op-

timal, since it can only expand until it reaches the shortest

border. An elliptical margin however would have the possi-

bility to stretch and adapt to the shape of an object, possibly

resulting in a higher accuracy. In table 2 we compare both

methods and verify that a 2-dimensional sigma (elliptical

margin) indeed performs better than a scalar one (circular

margin).

Since sigma is a learnable parameter, we have no direct

control over its value. Intuitively, since sigma controls the

clustering margin, we speculated that for big objects sigma

will be bigger, resulting in a bigger margin, and smaller for

small objects. To verify this, in figure 4 we plotted sigma in

function of the object’s size. As predicted, there is indeed a

positive correlation between an object’s size and sigma.

4.4. Results on Cityscapes

In table 1 we report results on the Cityscapes test set and

compare with other high performing methods. Note how-

ever that it is important to pay attention at the training data

on which a method is trained. Since the truck, bus and train

classes are highly underrepresented in the fine set, meth-

ods who only train on this set will perform less on these

classes than methods who augment their dataset with the

coarse or COCO set.

Comparing our method against the other fine-only

methods, we occupy the second place with an AP-score of

27.6, locating ourselves between between the popular Mask

R-CNN (26.2) and PANet(31.8). Notice however that we

do much better on the person (34.5 vs 30.5), rider (26.1 vs

23.7) and car class (52.4 vs 46.9) than Mask R-CNN. If we

compare our method with GMIS, a method trained on both

the fine and coarse set, we notice that although it has

the same AP-score as our method, it only performs better on

the truck, bus and train class (because of the extra coarse

set) and performs worse on all other classes.

Although it is not fair to compare our method against

methods trained on fine+COCO, we do notice that we

achieve similar results on person (34.5 vs 34.8) and rider

(26.1 vs 27.0), and even perform better on car (52.4 vs 49.1)

and bicycle (18.9 vs 18.7) with respect to Mask R-CNN.

4.5. Timing

In table 3 we compare the execution speed of differ-

ent methods. This is also depicted in fig 3. Up to this

moment, most methods have put there focus on accuracy

rather than on execution speed. Mask-RCNN (26.2 AP -

1fps) and derivatives have high accuracy, but slow execu-

tion speed. Other methods,like Discriminative loss (17.5

AP - 5fps) or Box2Pix (13.1 AP - 10.9fps) achieve higher

frame rates by downsampling resolution or using single shot

detection methods, but dramatically lack behind in accuracy
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Figure 5. Results on the Cityscapes dataset. From left to right: input image, ground-truth and our predicts. Notice that our method is very

good at detection small objects and often predicts more correct objects than annotated in the ground-truth.

Method AP AP50 FPS

Deep Contours [26] 2.3 3.6 5

Box2Pix [25] 13.1 27.2 10.9

BAIS [7] 17.4 36.7 <1

Discriminate Loss [5] 17.5 35.9 5

DWT [3] 19.4 35.3 < 3

Dynamic Net [2] 20.0 38.3 < 3

SGN [15] 25.0 44.9 0.6

Mask-RCNN [8] (fine) 26.2 49.9 2.2

PANet [16] 31.8 57.1 <1

ours 27.6 50.9 11

Table 3. Approximate timing results of instance segmentation

methods on a resolution of 2048x1024 with test set accuracy [25].

Methods which are either to slow or have a very low accuracy are

left out.

compared to Mask R-CNN. Since our method is based on

the ERFNet network and combined with a clustering loss

function, we are the first ones to achieve high accuracy com-

bined with real time performance (27.6 AP - 11fps). More

specifically, the forward pass at a resolution of 2MP takes

65ms and the clustering step requires 26ms.

5. Conclusions

In this work we have proposed a new clustering

loss function for instance segmentation. By using a

gaussian function to convert pixel embeddings into a

foreground/background probability, we can optimize the

intersection-over-union of each object’s mask directly and

learn an optimal, object-specific clustering margin. We

show that when applied to a real-time, dense-prediction net-

work, we achieve top results on the Cityscapes benchmark

at more than 10 fps, making our method the first proposal-

free, real-time instance segmentation method with high ac-

curacy.
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