
Instance Segmentation of LiDAR Point Clouds

Feihu Zhang1, Chenye Guan2, Jin Fang2, Song Bai1, Ruigang Yang2, Philip H.S. Torr1, Victor Prisacariu1

Abstract— We propose a robust baseline method for in-
stance segmentation which are specially designed for large-scale
outdoor LiDAR point clouds. Our method includes a novel
dense feature encoding technique, allowing the localization and
segmentation of small, far-away objects, a simple but effective
solution for single-shot instance prediction and effective strate-
gies for handling severe class imbalances. Since there is no
public dataset for the study of LiDAR instance segmentation, we
also build a new publicly available LiDAR point cloud dataset
to include both precise 3D bounding box and point-wise labels
for instance segmentation, while still being about 3∼20 times
as large as other existing LiDAR datasets. The dataset will be
published at https://github.com/feihuzhang/LiDARSeg.

I. INTRODUCTION

Accurately capturing the location, velocity, type, shape,

pose, size etc. of objects (e.g. cars, pedestrians, cyclists

etc.) in the outdoor scenes is a vital task for many vision

and robotic applications. The LiDAR system can extract

3D information from the surrounding environment with high

accuracy in various lighting conditions and has become a key

component for e.g. autonomous driving and robotic systems.

LiDAR detection has seen much recent work, with the

introduction of methods such as [7], [42], [55], [58], which

estimate the locations of e.g. the cars, as either 3D or

2D bounding boxes. But, for detection, many outliers (e.g.

points from the road or neighborhoods) will be mixed into

the bounding boxes. Moreover, any imperfection (errors of

orientation, size, center etc.) of the detected bounding boxes

will heavily reduce the precision (illustrated in Fig. 1(b)).

A far less explored avenue of research is instance seg-

mentation in LiDAR data. Unlike the coarse estimation of

object detection, instance segmentation aims to accurately

pick up every reflected point from each foreground object.

It can significantly reduce the interference of outlier points

for each object, better represent the irregular shapes and

contribute to more accurate sensor fusions (illustrated in

Fig.1(c)), motion planning and 3D HD map construction.

Moreover, segmentation can better handle the occlusions or

neighborhood objects where 3D bounding boxes are hard

to estimate and usually ambiguous with large overlaps (as

illustrated in Fig.1(b-c)).

However, LiDAR instance segmentation is more challeng-

ing and different from 2D image or RGB-D based instance

segmentation (e.g. [9], [16]). As illustrated in Fig. 1(a):

1) Data representation: LiDAR points are sparse and dis-

tributed irregularly in a large 3D space. Sparsity also in-

creases considerably with distance;

1Authors are with the University of Oxford.
2Authors are with Baidu Research.

(a) Results of Instance Segmentation

(b) Detection Results (c) Segmentation Results

Fig. 1: Problem and performance illustrations. (a) Results of
instance segmentation produced by our method. (b) Results of the
state-of-the-art detection methods [42] (projection on 2D image). (c)
Our method (on 2D image). It can produce more accurate instance
segments and help get better sensor fusions by merging image and
point cloud segments/masks (zoom in to see sensor fusion results).

2) Large-scale scenes: One LiDAR frame can capture more

than 120k points in a space of larger than 140m×100m×5m;

3) Small objects: There are many small but important objects

(e.g. pedestrian, bicyclist etc.). These objects are relatively

tiny with few points reflected and are especially hard to be

discovered in large-scale scenes. For example, one pedestrian

is less than 0.5m3 in the 140m×100m×5m point cloud.

4) Class imbalances: The class imbalance problem is severe

in real-world road scenes. For example, the imbalance ratio

between the major class (e.g. car) and the minor class (e.g.

pedestrian) can be larger than a factor of 20.

In this paper, we focus on the multi-class and multi-object

instance segmentation of the LiDAR point clouds in large-

scale outdoor scenes. We propose a robust baseline model

which includes a new dense feature encoding scheme for

point cloud representations to achieve better localization and

segmentation of the far and small objects, a powerful densely

connected stacked backbone and a simple but effective

approach for instance prediction.

Moreover, we contribute a large dataset for the study of

LiDAR point cloud based instance segmentation. Existing

datasets (e.g. KITTI [12] and Nuscenes [4]) only label 3D

bounding boxes. Our new dataset has both 3D bounding

box and point-wise labels, which allows robust instance

segmentation models to be trained. It has a total of 130k

point cloud frames, with more than 3 millions foreground

objects, so is 3 ∼ 20× larger than existing LiDAR datasets.

II. RELATED WORK

In this section, we review related work on point-cloud-

based detection and instance segmentation. We also explore

the datasets available for training point-cloud methods.

A. 3D Detection

Several methods [7], [10], [42], [42], [46], [51], [55], [58]

propose point-cloud-based detectors, that estimate object

locations and produce 2D or 3D bounding boxes. Image

information is also leveraged, in approaches like [5], [6],

[20], [34], [53], [56], [59]. However, the accuracy of image-

based 3D detection approaches is heavily dependent on the

quality of the image data, so they would not be reliable in

all lighting conditions (e.g. in the dark). Multi-sensor fusion

approaches [23], [54] have also been proposed to increase

the reliability of the detectors.

These detection methods rely on the generation of accurate

3D bounding box proposals. As the variances of objects’

sizes and shapes increase, especially for many small objects,

it becomes much more difficult to produce accurate bounding

box proposals.

B. 3D Instance Segmentation

Instance segmentation is the problem of simultaneous lo-

cating and delineating each distinct object of interest appear-

ing in a scene. Based on recent advances in object detection

[13], [25], [26], [29], [37]–[40], instance segmentation [9],

[32], [33] has achieved good results on 2D images. Many of

the latest instance segmentation models are based on segment

or mask proposals [9], [16], [32]. These methods, however,

can not immediately be extended to 3D point clouds due

to irregularity and sparsity of the large 3D space and the

difficulty of generating proposals.

Recent approaches have shown promising performance

for point clouds in smaller indoor environments. Some of

them (e.g. [52], [28]) learn a similarity or affinity matrix for

grouping the points and generating instance-level segments.

Volumetric approaches, like 3D-SIS [18], uses both 3D

geometry and 2D images as input for anchor based detection

and mask prediction. Direct bounding box regression is used

in [57], with a shape generation/reconstruction stage.

However, there are currently limited work for large-

scale, outdoor point cloud instance segmentation. Existing

approaches are designed for indoor scenes, which (i) are

considerably smaller, (ii) have denser point clouds and (iii)

require a slammer variability of object shape and size. Some

also assume associated RGB data and are not applicable to

the challenging outdoor scenes or produce poor performance.

C. Point Cloud Datasets

There are several popular point cloud datasets for semantic

segmentation and detection. Most of them provide RGB-D

data, filmed by ToF cameras. Examples are (i) [14], [24],

[44], [48], [49], built for 2D object detection; (ii) LabelMe

[41] and SUN RGB-D [47], providing polygons in 2D and

bounding boxes in 3D; (iii) NYU v2 [45] consisting of 464

short sequences with semantic labels; (iv) Armeni et al. [1],

[2] providing an indoor dataset with 3D meshes and semantic

annotations for 265 rooms and (v) ScanNet [8], a RGB-D

video dataset containing with 2.5M views in 1513 scenes for

3D semantic and instance labels.

All these datasets target (relatively) small-scale indoor

scenes. There are also a few point cloud datasets for large-

scale outdoor scenes. Semantic3D [15] is built for large-

scale semantic segmentation. KITTI [12], Apollo [3], H3D

[31] and Nuscenes [4] are all LiDAR datasets developed for

object detection with only 3D bounding boxes labels.

We present in Section IV our LiDAR segmentation dataset

which has both 3D bounding boxes and point-wise labels.

III. PROPOSED MODEL

Fig. 2 outlines the components of our approach for large-

scale instance segmentation of LiDAR point clouds, detailed

in the following sections as follows: §III-A for the feature

representation, §III-B for the network backbone, §III-C for

our final instance prediction and §III-D for our loss.

A. Dense Feature Representation

The feature representation is the initial but crucial step

for point cloud based recognition tasks. In this section,

we develop our dense feature encoding technique for the

instance segmentation.

1) Challenges for Feature Representation

A popular type of irregular feature representation, used for

point-level semantic segmentation, is the approach employed

by PointNet [35] and PointNet++ [36], where local and

global features are learned for each point. The input points

are unordered, so such methods are unstable to use powerful

convolutional layers to learn spatial or geometric information

(e.g. bounding box regression). Then, Li et al. propose the

transformed CNN for feature extraction [22], which is also

for classification and semantic segmentation.

For large-scale LiDAR point clouds, regular representa-

tions, like voxels or grids, enable richer geometric infor-

mation (e.g., height, center, distance etc.) to be captured

efficiently by convolutions. Some approaches then use hand-

crafted features [7], [30], [55]. These yield satisfactory

results when rich and detailed 3D shape information is avail-

able. However, they do not adapt well to sparse scenes and

produce poor accuracies for small objects. Other approaches,

e.g. VoxelNet [58], learn sparse point-wise features for voxels

and use 3D convolutions for feature propagation, which

shows good results in 3D object detection.

These sparse regular feature representations are popular

in object detectors. But, they have limited performance

for segmentation models. Instance segmentation requires

high-resolution feature maps for finding tiny objects (e.g.

pedestrians and cyclists etc.) in large-scale point clouds.

This will lead to large amount of empty/invalid voxels/grids,

especially for far locations. The invalid/empty locations will

make the convolutional layers unstable and discount the

efficacy of feature propagation, localization and regression.

This is because traditional (dense) convolutions are not

specialized for the sparse data structure and the propagation

can be easily stopped or affected by void elements.

FC
 +

 C
o

n
v

P
o

in
t

FC
 L

ay
e

r

M
ax

 P
o

o
li

n
g

P
o

in
t

FC
 L

ay
e

r

Loss Function

KNN 餐嗣酸 grid

Self Attention

Self Reordering

讃岫姉岻
×

V
FE

 L
ay

e
rs

Se
lf

-A
tt

e
n

ti
o

n

(a) point cloud as input

(b) knn encoding

(c) feature learning

(d) network backbone

(e) result of instance segmentation

Fig. 2: Framework of the proposed method. (a) Point cloud frame as input, (b) knn to get dense representation, (c) feature learning with
a self-attention block to re-organize the unordered points, (d) backbone network, (e) instance segmentation result with bounding boxes.

2) KNN Encoding as Input

It is difficult to extract enough information only from the

valid points in each grid/voxel when targeting object-wise

inference. We design a novel dense high-resolution bird’s-

eye view representation for instance segmentation. Our point

cloud encoding is based on the fact that every point contains

rich information not only for its own grid/location/voxel but

also for its surroundings. This is especially meaningful for

the locations with few (e.g. in the distance) or no points. The

distances to valid points and the surrounding points’ heights

all provide rich geometric information for feature encoding.

For efficiency, we directly encode the point cloud into

a 2D high-resolution bird’s-eye view representation. The

segmentation and localization is then based on this regular

representation. Compared with more complicated 3D voxels,

our approach is much faster and memory efficient, since no

3D convolutions will be involved.

Our feature encoding and learning strategies are depicted

in Fig. 2(b)∼(c). All points are projected into high-resolution

(H ×W) 2D grids. We use KNN to augment empty or poor

grid locations with their K near neighborhoods.

The KNN algorithm runs based on the horizontal (x,y)
distance and can be efficiently parallelized for computation

on the GPU or accelerated using K-D Tree. There are

totally K points in each 2D grid. We represent each

point as Pi = {(gx,gy),(∆xi,∆yi),(zi,ri)}, where (i) (gx,gy)
are the coordinates of the center of the grid; (ii) (∆xi,

∆yi) = (xi,yi) − (gx,gy) is the shifts between the point

coordinates and the grid center; (iii) ri is the received

reflectance and (iv) zi is the point’s height. Finally, the input

becomes {P0,P1, ...PK−1} for each grid location.

3) Self-attention Block

Since the input of K points in each grid are unordered, we

cannot use convolutional or fully connected layers to learn

grid-level feature directly from these K points. We instead,

utilize a novel self-attention and re-ordering block to learn

grid-level feature representation from raw points.

The attention block starts with two voxel feature encoding

(VFE) layers, as proposed in [58], to learn point-wise fea-

tures and attention matrix. For each grid location, we assume

the K points are represented as Fp, which is a K ×n matrix

(K is the number of the points and n is the length of the point-

wise feature). We learn an adaptive weight matrix A, which

plays two key roles. Firstly, it helps re-organize the points

into a regular and ordered representation by adapting the

weights to the points, without being influenced by the order

and locations of the points. Secondly, it learns a self-attention

mask for the K points, to decide automatically which point

should play key role and have more of our attentions.

The grid-level feature Fg can be learned with:

Fg = AT ·Fp with A = f(Fp) (1)

where, f is a mapping function to get the self-attention and

self-reordering matrix A. The output is in K×n. Specifically,

each (i-th) row of Fg is learned as:

Fi
g = a0

i ·F0
p...+a

j
i ·F

j
p...+ak−1

i ·Fk−1
p (2)

where [F0
p, ...F

j
p, ...F

k−1
p] are point-wise features for K points.

The weight a
j
i is the j-th row and i-th column in matrix A.

Since a
j
i is adaptive and learned from F

j
p, the sequence of

the K points will not influence the output Fi
g. Moreover,

it helps re-weight the contributions from each point and

automatically decide which point need more attentions.

After the self-attention block, the grid-level feature can be

directly consumed by standard convolutional neural layers.

We further use one fully connected layer to refine and

reshape the n × n feature into a 48× feature vector. For

the mapping function f , we simply use a point-wise fully

connected layer along with a column-normalization to learn

the self-attention and self-reordering weight matrix.

Finally, the grid-level features construct a regular dense

bird’s-eye view representation, which is fed to the backbone

network for localization, segmentation and classification.

B. Network Backbone

We use a revised stacked hourglass block as the backbone

for instance segmentation. The architecture is illustrated in

Fig. 2 and detailed in Table I. The pyramid features from

different layers are densely connected by concatenations

which is similar to [60].

Our approach is single shot, i.e. no region proposal net-

work as those in [7], [10], [42], [46], [51], [58] is used. The

TABLE I: Parameters of the backbone network.

No. Layer Description Output Tensor

input feature encoding H×W×48
1 3×3 conv (bn, relu) H×W×24
2 3×3 conv (stride 2, bn, relu) 1/2H×1/2W×48
3 3×3 conv (bn, relu) 1/2H×1/2W×48
4-5 repeat 2-3 1/4H×1/4W×64
6-7 repeat 2-3 1/8H×1/8W×96
8-9 repeat 2-3 1/16H×1/16W×128
10-11 repeat 2-3 1/32H×1/32W×256
12 3×3 deconv (stride 2, bn, relu) 1/16H×1/16W×128
13 3×3 conv (bn, relu) 1/16H×1/16W×128
14-15 repeat 12-13 1/8H×1/8W×96
16-17 repeat 12-13 1/4H×1/4W×64
18-19 repeat 12-13 1/2H×1/2W×48
20-21 repeat 12-13 H×W×24
Output 1×1 conv (no bn or relu) H×W×(5+C)
Loss Eq. (5), loss weight: 0.6 —————-
22-41 repeat 2-21 H×W×24
Output 3×3 conv (no bn or relu) H×W×(5+C)
Loss Eq. (5), loss weight: 1.0 —————

Concatenate
(1,20), (3,18), (5,16), (7,14), (9,12), (13,28), (15,26)
(17,24), (19,22), (21,40), (23,38), (25,36), (27,34), (29,32)

outputs of our network are of size H ×W × (5+C), and are

used for (i) the foreground classification, (ii) regression of

objects’ center for clustering (with 2 channels), (iii) predict-

ing objects’ height limits (both upper and lower constraints

for removing the false positives) and (iv) classifying objects

into C classes (with the remaining C channels).

C. Instance Segmentation

Popular methods [16], [17] use anchors to predict bound-

ing boxes and achieve the instance IDs. However, in LiDAR

point clouds the sizes and poses of the objects have large

diversity (from large trucks to small children), making the

anchor-based bounding box regression difficult. Others, like

SGPN [52], learn a similarity score for each pair of points

and then merge them into groups. However, a LiDAR point

cloud frame usually contains more than 100k points, making

the learning of the similarity matrix not easily tractable

(with a time complexity of N2). Also, the similarity based

clustering is likely to be ambiguous and might miss a lot of

small objects for large-scale outdoor scenes.

We use a simple while effective way to predict the instance

objects. We predict the horizontal center (similar to [50]) and

the height limits of the object. We use them as constraints to

group points into each candidate object and further remove

outliers. Namely, for each foreground grid, we predict an

object center and the height limits. If the predicted centers of

different grids/points are close enough (< 0.3m), we merge

them into a single object. This is very effective for small

objects since points are very close to each other. Also, the

learning target is simple and easy to learn.

D. Loss Function

We use the class-balanced focal loss [26] to find fore-

ground points and for classification:

L f (x,y) =−
C

∑
i=1

(1− pi)
γ log(pi)

pi =

{

1
1+exp(−xi)

, if i = y.
1

1+exp(xi)
, otherwise.

(3)

where x is a C−channel output for C binary classification

tasks. pi is the probability after sigmoid function. We use

γ = 2 which is the same as that in [26].

For the instance prediction, the learning target is set to

(∆x,∆y,h), where ∆x and ∆y are the shifts from the current

location to the object’s center and h is the upper and lower

height limits of the object. The center of object is set as the

center of the bounding box. We employ the smooth L1 loss

for regression. It is defined as:

Ls(x) =

{

0.5x2, if |x|< 1.
|x|−0.5, otherwise.

(4)

The final multi-task loss for classification and regression

is:

L = ∑
x∈I

L f (xseg,yseg)+ ∑
x∈I′

α1 ·L f (xcls,ycls)

+ ∑
x∈I′

α2 ·Ls(xct − yct)+α3 ·Ls(xh − yh).
(5)

where, xseg and yseg are the predictions and labels for

categorizing foreground grids, xct and yct are the 2−channel

predictions and ground truths of the object centers, xh and

yh are the predictions and ground truths of the objects’

height limits, and xcls and ycls are the predictions and labels

for classification. The weights of (α1,α2,α3) for balancing

different tasks are set to (0.1,20,0.1).
The loss for classification and clustering only takes effects

on the foreground regions I′. We use the “one point one vote”

strategy to predict the objects’ categories. This is to reduce

the influence of the extreme values of unexpected noises.
IV. DATASET

A big limitation in developing a robust instance segmen-

tation algorithm for LiDAR data is the lack of a publicly

available dataset. We build a new large LiDAR point cloud

dataset, which contains both 3D bounding boxes and point-

wise labels for instance segmentation.

Table II shows comparisons between our dataset and the

existing LiDAR datasets. Our new dataset contains 130k

LiDAR frames with around three millions foreground ob-

jects, which is 3 ∼ 20 times larger than existing datasets.

Mostover, Our dataset contains point-wise labels for instance

segmentation.

Our dataset consists of two parts, real data and simulation

data, both are larger than either KITTI or Apollo. It is much

more expensive and difficult to label instance segments than

3D bounding boxes, To guarantee the diversity of the dataset,

we augment the 30k real dataset with 100k simulation

samples. The domain gaps between our simulation and the

real data are very small. In our experiments, simulation data

can improve the AP by 2∼3.5% in training.

A. Real Data

The data was acquired using Apollo cars [3] with a Velo-

dyne HDL-64E S3 laser scanner. The sensor is positioned

on the top and center of the car. The range of the vertical

scanning angle is [−24.9◦,2.0◦], and the scanning distance

range is 120m. During the data acquisition, the scanner

speed is set to 10Hz. The point clouds were also motion-

compensated using a high-precision GPS/IMU installed on

the vehicle.

TABLE II: Comparisons of different LiDAR point cloud datasets.

Dataset
trainig data

(simulation + real)
test data

(real)
number of

objects (total)
classes of

objects
labeled

region (angle)
label types

3D bounding box point label
Kitti [12] 7,481 7,518 80,256 4 45◦

√ ×
Apollo [3] 10k 10k 475k 4 360◦

√ ×
H3D [31] 27k - 1.1m 2 360◦

√ ×
Nuscenes [4] 34k 6k 1.4m 23 360◦

√ ×
Ours 100k+20k 10k 3.2m 7 360◦

√ √

Data was labeled manually on point cloud with the help

and guidance of color images, first by setting the bounding

box for each individual object, and second by removing

false positives (mainly the points from the ground and the

neighborhood objects) from the 3D bounding box.

B. Simulation Data

We build our LiDAR simulation system [11] using real

backgrounds and hundreds of foreground 3D object model-

s.We capture real world background with a professional 3D

scanner Riegl VMX-1HA which can provide the dense and

high-quality point cloud from the real traffic scenarios. To

obtain a clean background, moving objects can be removed

by repeatedly scanning the traffic scene for several rounds

(e.g., 5 rounds). While, to remove the static movable obsta-

cles, we use Pointnet++ [36] to get the initial semantic masks

and then correct these wrong parts manually.

The synthetic models of various objects, such as vehicles

and pedestrians, can be inserted to create different traffic

scenes. The obstacle placement are based on the probability

maps. We use a well-trained object detector [58] to calculate

the initial location distributions of different kinds of objects.

With the guidance of these distribution probabilities, we are

able to place the objects as real as possible.

V. EXPERIMENTS

In this section, we describe our experiments, including the

training settings and strategies, ablation study, comparisons

and the analysis of the results. More details are available in

the supplementary materials1. We use the evaluation metrics

of points based APs in the experiments. They are similar to

those in the COCO instance segmentation challenges [27].

A. Training Settings and Strategies

We consider point clouds within the range of [−64,64]×
[−64,64] meters along Z, Y, X axis respectively which leads

to a resolution of 640× 640 for the bird’s-eye view repre-

sentation.We use data resampling strategy1 to increase the

frequency of appearance for minor classes during training.

B. Ablation Study

We conduct experiments with several settings to evaluate

the effects of different architectures, loss functions and

features etc. As listed in Table III, our dense feature encoding

improves the AP by 3.4%, which plays a key role in the

performance improvements. The densely connected stacked

backbone contributes another 1.0% improvements. Focal

loss and data re-sampling can produce better classification

accuracy which help achieve 1 ∼ 2% improvements in APs.

SGPN [52]
Sparse Feature [58]
Our model

Recall

P
re

ci
si

o
n

Fig. 4: Precision-Recall curves with two IoU thresholds of 0.5 and
0.95. SGPN, our method and our model with sparse feature [58]
are compared in this figure.

TABLE V: Evaluations and comparisons in different ranges (%).

Range 0-30m 30-60m

Methods AP.50 AP.75 AP AP.50 AP.75 AP
SGPN [52] 50.2 48.1 52.1 48.3 41.8 39.1

Feature 1 [7] 65.9 62.4 60.9 62.0 55.5 53.9
Feature 2 [55] 66.9 63.1 62.3 62.6 55.8 54.1
Feature 3 [58] 68.7 65.9 64.1 64.2 59.4 56.4

Ours 70.1 67.6 65.7 67.4 63.1 59.5

C. Results and Comparisons

Since there is no existing instance segmentation method

for LiDAR point as the baseline. We compare our method

with the recent proposed SGPN [52] which is designed for

small-scale indoor scenes. As shown in Table IV and Fig. 3,

SGPN is not robust for road scenes when points are very

sparse in the distance and there are many small objects

with only a few points. As a comparison, our method far

outperforms the SGPN (by 17% in AP). It can pick up more

small objects and avoid most of the false positives.

We also compare our proposed dense feature encoding

with existing sparse feature representations [7], [55], [58] by

implementing them into our models (other settings are all the

same). As shown in Table IV, we find that for large objects

(e.g. car), existing features also produce good performances

for instance segmentation. This is because large objects

have rich information and are not sensitive to the feature

encoding techniques. But, our dense features produce far

better recognition accuracy (with 2 ∼ 5% improvements in

AP) for small objects (pedestrian, bicyclist and traffic cone).

This means that the proposed feature encoding can capture

more reliable information from the original point cloud for

small objects with fewer points. As shown in Table V,

for objects within 0 ∼ 30m from the LiDAR’s center, our

dense feature outperforms the VoxelNet’s feature by about

1%. While, for objects in the range of 30 ∼ 60m, where

points are much more sparse, our dense feature has 3∼ 3.5%

improvements in APs.

1Supplementary materials: http://www.feihuzhang.com

http://www.feihuzhang.com

TABLE III: Evaluations of models with different settings. AP0.50 and AP (%) are used for evaluations.

Dense Feature Encoding
Backbone Loss Function Classification Performance

hourglass dense connection focal loss data resampling AP0.50 AP
63.1 56.5√
65.8 59.9√ √
66.4 60.3√ √ √
67.1 60.9√ √ √ √
68.0 61.7√ √ √ √ √
68.9 62.4

TABLE IV: Evaluations and comparisons of different models for instance segmentation (AP %).

methods/features car large vehicle pedestrian bicyclist motorcyclist traffic cone others average
SGPN [52] 83.5 62.8 33.2 24.0 42.7 34.7 30.9 44.5

VoxelNet∗ [58] 87.1 70.2 47.2 29.0 45.8 46.5 35.1 51.5
PointRCNN∗ [43] 88.1 71.2 49.4 32.1 49.2 45.2 37.0 53.2

PointPillar∗ [21] 87.7 71.9 51.2 33.7 50.1 44.7 37.9 53.9
feature 1 [7] 86.1 69.6 55.5 38.8 50.0 58.3 41.4 57.1

feature 2 [55] 88.0 69.3 54.9 38.9 51.1 56.9 44.5 57.6
feature 3 [58] 89.2 72.2 60.2 39.8 54.8 58.7 45.7 60.1

Ours 89.0 74.9 62.4 45.1 55.0 61.8 48.2 62.4

car large vehicle pedestrian bicyclist motorcyclist otherstraffic cone background

Fig. 3: Visual comparisons between SGPN [52] and our model in complex and challenging scenes. Left: results of SGPN [52]. Middle:
results of our model. Right: ground truths. For visual pleasure, bounding boxes are added which is estimated directly from the instance
segments. As pointed by red arrows, many small objects are missed in SGPN. It also picks up many false positives.

D. Instance Segmentation vs. Detection

In this section, state-of-the-art detection methods [21],

[43], [58] are compared. Points in the detected bounding

boxes are counted as segments for evaluations. As shown in

Table IV, our instance segmentation model outperforms the

state-of-the-art 3D detectors by 8 ∼ 10% in AP evaluations.

This is because these detectors rely on the generation of

accurate 3D bounding box proposals. As both the range and

the variance of objects’ sizes and shapes increase, especially

for many small objects (e.g. pedestrian, cyclists etc.), the

large diversity of the possible bounding boxes makes it

difficult to produce accurate estimations for each object.

Moreover, many false positives are mixed into the bounding

boxes. (Even the 100% accurate ground truth bounding boxes

have 12-16% outliers). Therefore, detectors usually produce

lower APs for small objects which have fewer points. Any

imperfection (errors of orientation, size, center, height etc.) of

the detected bounding boxes will heavily reduce the precision

(as illustrated in Fig. 1(b-c)).

E. Application in Autonomous Driving

For application in self-driving car, picking up as many as

obstacles to avoid possible collisions is the most important

thing. Here, we evaluate the models’ abilities for accurately

picking up obstacles. All kinds of objects are counted as a

single class, namely, we calculate the precision and recall

without the influence of the classification. We plot the AP

curves with IoU thresholds of 0.5 and 0.95 in Fig. 4, which

shows that our method can achieve a higher recall with better

precision. It achieves a ∼90% precision at a recall of 90%

in AP0.5, which is the best among all these models.

VI. CONCLUSION

In this paper, we propose a robust baseline instance

segmentation solution for large-scale LiDAR point cloud.

The proposed model extracts more reliable dense features

for discovering far and small objects which have only a few

points. We also contribute a large LiDAR point cloud dataset.

The new dataset has both bounding box and point-wise labels

for instance segmentation and is 3 ∼ 20 times as large as the

existing LiDAR dataset.

ACKNOWLEDGEMENT

Research is mainly supported by Baidu’s Robotics and

Auto-driving Lab, in part by the ERC grant ERC-2012-AdG

321162-HELIOS, EPSRC grant Seebibyte EP/M013774/1

and EPSRC/MURI grant EP/N019474/1. We would also like

to acknowledge the Royal Academy of Engineering. Victor

Adrian Prisacariu would like to thank the European Commis-

sion Project Multiple-actOrs Virtual Empathic CARegiver for

the Elder (MoveCare).

REFERENCES

[1] I. Armeni, S. Sax, A. R. Zamir, and S. Savarese. Joint 2d-3d-semantic
data for indoor scene understanding. arXiv preprint arXiv:1702.01105,
2017. 2

[2] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer,
and S. Savarese. 3d semantic parsing of large-scale indoor spaces. In
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1534–1543, 2016. 2

[3] Baidu. Apollo dataset, http://data.apollo.auto/?locale=
en-us&lang=en. 2, 4, 5

[4] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom. nuscenes: A multimodal
dataset for autonomous driving. arXiv preprint arXiv:1903.11027,
2019. 1, 2, 5

[5] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun.
Monocular 3d object detection for autonomous driving. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2147–2156, 2016. 2

[6] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and
R. Urtasun. 3d object proposals for accurate object class detection. In
Advances in Neural Information Processing Systems, pages 424–432,
2015. 2

[7] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object
detection network for autonomous driving. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1907–1915, 2017. 1, 2, 3, 5, 6

[8] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner. Scannet: Richly-annotated 3d reconstructions of indoor
scenes. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5828–5839, 2017. 2

[9] J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via
multi-task network cascades. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3150–3158, 2016.
1, 2

[10] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner.
Vote3deep: Fast object detection in 3d point clouds using efficient
convolutional neural networks. In 2017 IEEE International Conference

on Robotics and Automation (ICRA), pages 1355–1361. IEEE, 2017.
2, 3

[11] J. Fang, D. Zhou, F. Yan, T. Zhao, F. Zhang, R. Yang, Y. Ma, and
L. Wang. Augmented LiDAR Simulator for Autonomous Driving
IEEE Robotics and Automation Letters, 2020. 5

[12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer

Vision and Pattern Recognition, 2012. 1, 2, 5

[13] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 1440–1448, 2015. 2

[14] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features
from rgb-d images for object detection and segmentation. In European

Conference on Computer Vision, pages 345–360. Springer, 2014. 2

[15] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and
M. Pollefeys. SEMANTIC3D.NET: A new large-scale point cloud
classification benchmark. In ISPRS Annals of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, volume IV-1-W1,
pages 91–98, 2017. 2

[16] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision,
pages 2961–2969, 2017. 1, 2, 4

[17] J. Hou, A. Dai, and M. Nießner. 3d-sis: 3d semantic instance
segmentation of rgb-d scans. arXiv preprint arXiv:1812.07003, 2018.
4

[18] J. Hou, A. Dai, and M. Nießner. 3d-sis: 3d semantic instance
segmentation of rgb-d scans. 2019. 2

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[20] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander. Joint
3d proposal generation and object detection from view aggregation.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 1–8. IEEE, 2018. 2

[21] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom.
Pointpillars: Fast encoders for object detection from point clouds. In
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 12697–12705, 2019. 6

[22] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn: Con-
volution on x-transformed points. In Advances in Neural Information

Processing Systems, pages 828–838, 2018. 2

[23] M. Liang, B. Yang, S. Wang, and R. Urtasun. Deep continuous fusion
for multi-sensor 3d object detection. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 641–656, 2018. 2

[24] D. Lin, S. Fidler, and R. Urtasun. Holistic scene understanding
for 3d object detection with rgbd cameras. In Proceedings of the

IEEE International Conference on Computer Vision, pages 1417–1424,
2013. 2

[25] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie.
Feature pyramid networks for object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages
2117–2125, 2017. 2

[26] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss
for dense object detection. In Proceedings of the IEEE international

conference on computer vision, pages 2980–2988, 2017. 2, 4

[27] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755.
Springer, 2014. 5

[28] C. Liu and Y. Furukawa. Masc: Multi-scale affinity with sparse convo-
lution for 3d instance segmentation. arXiv preprint arXiv:1902.04478,
2019. 2

[29] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg. Ssd: Single shot multibox detector. In European

conference on computer vision, pages 21–37. Springer, 2016. 2

[30] D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural net-
work for real-time object recognition. In 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 922–928.
IEEE, 2015. 2

[31] A. Patil, S. Malla, H. Gang, and Y.-T. Chen. The h3d dataset for
full-surround 3d multi-object detection and tracking in crowded urban
scenes. arXiv preprint arXiv:1903.01568, 2019. 2, 5

[32] P. O. Pinheiro, R. Collobert, and P. Dollár. Learning to segment object
candidates. In Advances in Neural Information Processing Systems,
pages 1990–1998, 2015. 2

[33] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learning to
refine object segments. In European Conference on Computer Vision,
pages 75–91. Springer, 2016. 2

[34] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets
for 3d object detection from rgb-d data. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 918–
927, 2018. 2

[35] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 652–660, 2017. 2

[36] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in Neural

Information Processing Systems, pages 5099–5108, 2017. 2, 5

[37] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 779–
788, 2016. 2

[38] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 7263–7271, 2017. 2

[39] J. Redmon and A. Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018. 2

[40] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in

neural information processing systems, pages 91–99, 2015. 2

[41] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme:
a database and web-based tool for image annotation. International

journal of computer vision, 77(1-3):157–173, 2008. 2

[42] S. Shi, X. Wang, and H. Li. Pointrcnn: 3d object proposal generation
and detection from point cloud. arXiv preprint arXiv:1812.04244,
2018. 1, 2, 3

[43] S. Shi, X. Wang, and H. Li. Pointrcnn: 3d object proposal generation
and detection from point cloud. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages
770–779, 2019. 6

[44] A. Shrivastava and A. Gupta. Building part-based object detectors via

http://data.apollo.auto/?locale=en-us&lang=en
http://data.apollo.auto/?locale=en-us&lang=en

3d geometry. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1745–1752, 2013. 2
[45] N. Silberman and R. Fergus. Indoor scene segmentation using a

structured light sensor. In 2011 IEEE international conference on

computer vision workshops (ICCV workshops), pages 601–608. IEEE,
2011. 2

[46] M. Simon, S. Milz, K. Amende, and H.-M. Gross. Complex-yolo:
An euler-region-proposal for real-time 3d object detection on point
clouds. In European Conference on Computer Vision, pages 197–209.
Springer, 2018. 2, 3

[47] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d
scene understanding benchmark suite. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 567–
576, 2015. 2

[48] S. Song and J. Xiao. Sliding shapes for 3d object detection in depth
images. In European conference on computer vision, pages 634–651.
Springer, 2014. 2

[49] S. Song and J. Xiao. Deep sliding shapes for amodal 3d object
detection in rgb-d images. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 808–816, 2016.
2

[50] J. Uhrig, M. Cordts, U. Franke, and T. Brox. Pixel-level encoding
and depth layering for instance-level semantic labeling. In German

Conference on Pattern Recognition, pages 14–25. Springer, 2016. 4
[51] D. Z. Wang and I. Posner. Voting for voting in online point cloud

object detection. In Robotics: Science and Systems, volume 1, pages
10–15607, 2015. 2, 3

[52] W. Wang, R. Yu, Q. Huang, and U. Neumann. Sgpn: Similarity
group proposal network for 3d point cloud instance segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2569–2578, 2018. 2, 4, 5, 6
[53] Y. Xiang, W. Choi, Y. Lin, and S. Savarese. Data-driven 3d voxel

patterns for object category recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1903–
1911, 2015. 2

[54] D. Xu, D. Anguelov, and A. Jain. Pointfusion: Deep sensor fusion for
3d bounding box estimation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 244–253, 2018.
2

[55] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3d object detection
from point clouds. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 7652–7660, 2018.
1, 2, 5, 6

[56] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia. Ipod: Intensive point-based
object detector for point cloud. arXiv preprint arXiv:1812.05276,
2018. 2

[57] L. Yi, W. Zhao, H. Wang, M. Sung, and L. Guibas. Gspn: Generative
shape proposal network for 3d instance segmentation in point cloud.
arXiv preprint arXiv:1812.03320, 2018. 2

[58] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud
based 3d object detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 4490–4499,
2018. 1, 2, 3, 5, 6

[59] M. Z. Zia, M. Stark, B. Schiele, and K. Schindler. Detailed 3d repre-
sentations for object recognition and modeling. IEEE transactions on

pattern analysis and machine intelligence, 35(11):2608–2623, 2013.
2

[60] F. Zhang, V. Prisacariu, R. Yang, and P. Torr. Ga-net: Guided
aggregation net for end-to-end stereo matching. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 185–194, 2019. 3

