
Mach Learn (2018) 107:109–147
https://doi.org/10.1007/s10994-017-5629-5

Instance spaces for machine learning classification

Mario A. Muñoz1
· Laura Villanova1

·

Davaatseren Baatar1
· Kate Smith-Miles1

Received: 10 May 2016 / Accepted: 20 January 2017 / Published online: 28 December 2017
© The Author(s) 2017

Abstract This paper tackles the issue of objective performance evaluation of machine learn-
ing classifiers, and the impact of the choice of test instances. Given that statistical properties or
features of a dataset affect the difficulty of an instance for particular classification algorithms,
we examine the diversity and quality of the UCI repository of test instances used by most
machine learning researchers. We show how an instance space can be visualized, with each
classification dataset represented as a point in the space. The instance space is constructed
to reveal pockets of hard and easy instances, and enables the strengths and weaknesses of
individual classifiers to be identified. Finally, we propose a methodology to generate new test
instances with the aim of enriching the diversity of the instance space, enabling potentially
greater insights than can be afforded by the current UCI repository.

Keywords Classification · Meta-learning · Test data · Instance space · Performance
evaluation · Algorithm footprints · Test instance generation · Instance difficulty

1 Introduction

The practical importance of machine learning (ML) has resulted in a plethora of algorithms
in recent decades (Carbonell et al. 1983; Flach 2012; Jordan and Mitchell 2015). Are new
and improved machine learning algorithms really better than earlier versions? How do we
objectively assess whether one classifier is more powerful than another? Common practice
is to test a classifier on a well-studied collection of classification datasets, typically from
the UCI repository (Wagstaff 2012). However, this practice is attracting increasing criticism
(Salzberg 1997; Langley 2011; Wagstaff 2012; Macia and Bernadó-Mansilla 2014; Rudin

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10994-
017-5629-5) contains supplementary material, which is available to authorized users.

B Kate Smith-Miles
kate.smith-miles@monash.edu

1 School of Mathematical Sciences, Monash University, Clayton, VIC 3800, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5629-5&domain=pdf
http://orcid.org/0000-0002-7254-2808
http://orcid.org/0000-0003-2718-7680
https://doi.org/10.1007/s10994-017-5629-5
https://doi.org/10.1007/s10994-017-5629-5

110 Mach Learn (2018) 107:109–147

and Wagstaff 2014) due to concerns about over-tuning algorithm development to a set of test
instances without enough regard to the adequacy of these instances to support further gener-
alizations. While there is no doubt that the UCI repository has had a tremendous impact on
ML studies, and has improved research practice by ensuring comparability of performance
evaluations, there is concern that the repository may not be a representative sample of the
larger population of classification problems (Holte 1993; Salzberg 1997). We must chal-
lenge whether chosen test instances are enabling us to evaluate algorithm performance in an
unbiased manner, and we must seek new tools and methodologies that enable us to generate
new test instances that drive improved understanding of the strengths and weaknesses of
algorithms. The development of such methodologies to support objective assessment of ML
algorithms is at the core of this study.

As stated by Salzberg (1997), “the UCI repository is a very limited sample of problems,
many of which are quite easy for a classifier”. Additionally, because of the intensive use
of the repository, there is increasing knowledge about its problem instances. Such knowl-
edge inevitably translates into the development of new algorithms that can be biased towards
known properties of the UCI datasets. Therefore, algorithms that work well on a handful of
UCI datasets might not work well on new or less popular problem instance classes. If these
less-popular instances are found to be prevalent in a particular critical application area, such
as medical diagnostics, the consequences for selecting an algorithm that does not generalize
well to this application domain could be severe.

Indeed, based on the No-Free-Lunch (NFL) theorems (Culberson 1998; Igel and Tous-
saint 2005), it is unlikely that any one algorithm always outperforms other algorithms for all
possible instances of a given problem. Given the large number of available algorithms, it is
challenging to identify which algorithm is likely to be best for a new problem instance or
class of instances. This challenge is referred to as the Algorithm Selection Problem (ASP).
A powerful framework to address the ASP was proposed by Rice (1976). The framework
relies on measurable features of the problem instances, correlated with instance difficulty, to
predict which algorithm is likely to perform best. Rice’s framework was originally developed
for solvers of partial differential equations (Weerawarana et al. 1996; Ramakrishnan et al.
2002); it was then generalized to other domains such as classification, regression, time-series
forecasting, sorting, constraint satisfaction, and optimization (Smith-Miles 2008). For the
machine learning community, the idea of measuring statistical features of classification prob-
lems to predict classifier performance, using machine learning methods to learn the model,
developed into the well-studied field of meta-learning (learning about learning algorithm per-
formance) (Aha 1992; Brazdil et al. 2008; Ali and Smith 2006; Lee and Giraud-Carrier 2013).

Beyond the challenge of accurately predicting which algorithm is likely to perform best for
a given problem instance, based on a learned model of the relationship between instance fea-
tures and algorithm performance, is the challenge to explain why. Smith-Miles and co-authors
have developed a methodology over recent years through a series of papers (Smith-Miles and
Lopes 2012; Smith-Miles et al. 2014; Smith-Miles and Bowly 2015) that extend Rice’s
framework to provide greater insights into algorithm strengths and weaknesses. Focusing on
combinatorial optimization problems such as graph coloring, the methodology first involves
devising novel features of problem instances that correlate with difficulty or hardness (Smith-
Miles and Tan 2012; Smith-Miles et al. 2013), so that existing benchmark instances can
be represented as points in a high-dimensional feature space before dimension reduction
techniques are employed to project to a 2-D instance space. Within this instance space (Smith-
Miles et al. 2014), the performance of algorithms can be visualized and pockets of the instance
space corresponding to algorithm strengths and weaknesses can be identified and analyzed
to understand which instance properties are being exploited or are causing difficulties for an

123

Mach Learn (2018) 107:109–147 111

algorithm. Objective measures can be calculated that summarize each algorithm’s relative
power across the broadest instance space, rather than on a collection of existing test instances.
Finally, the location of the existing benchmark instances in the instance space reveals much
about their diversity and challenge, and a methodology has been developed to evolve new
test instances to fill and broaden the instance space (Smith-Miles and Bowly 2015). This
methodology has so far only been applied to combinatorial optimization problems such as
graph coloring, although its broader applicability makes it suitable for other problem domains
including machine learning.

Of course the decades of work in meta-learning has already contributed significant knowl-
edge about how the measurable statistical properties of classification datasets affect difficulty
for accurate machine learning classification. This relates to the first stage of the aforemen-
tioned methodology. It remains to be seen how these features should be selected to create the
most useful instance space for classification problems; what can be learned about machine
learning classifiers in this space; and whether the existing UCI repository instances are suffi-
ciently diverse when viewed from the instance space. Further, the question of how to evolve
new classification test instances to fill this space needs to be carefully considered, since it is
a more challenging task than evolving graphs in our previous work (Smith-Miles and Bowly
2015) which have a relatively simple structure of nodes and edges. In the current work we
revisit the domain of ML and adapt and extend the proposed methodology to enable objec-
tive assessment of the performance of supervised learning algorithms, which are the most
widely used ML methods (Hastie et al. 2005). The diversity of the UCI repository instances
will be visualized, along with algorithm strengths and weaknesses, and a methodology for
generation of new test classification instances will be proposed and illustrated.

The remainder of this paper is organized as follows. Section 2 summarizes the method-
ology that will be employed based on an extended Rice framework. Section 3 describes the
building blocks of the methodology when applied to machine learning classification, namely
the meta-data composed of problem instances, features, algorithms and performance metrics.
In Sect. 4, we describe the statistical methodology used to identify a subset of features that cap-
ture the challenges of classification. Section 5 then demonstrates that these selected features
are adequate by showing how accurately they can predict the performance of ML algorithms.
In Sect. 6, details are presented of the process employed to generate a 2-dimensional instance

space where the relative difficulty of the UCI instances and algorithm performances across
the space are visualized. This includes a new dimension reduction methodology that has
been developed to improve the interpretability of the visualizations. Section 7 shows how
the instance space can be used for objective assessment of algorithm performance, and to
gain insights into strengths and weaknesses. Section 8 then presents a proof-of-concept for a
new method for generating additional test instances in the instance space, and illustrates how
an augmented UCI repository could be developed. Finally, Sect. 9 presents our conclusions
and outlines suggestions for further research. Supplementary material1 that provides more
detail about the developed features and all datasets and code2 used to calculate the features
are available online.

2 Methodological framework

The methodology used in this study extends upon the Algorithm Selection Problem frame-
work of Rice (1976), shown in the blue box of Fig. 1. It has been extended to enable more

1 http://users.monash.edu.au/~ksmiles/matilda/machinelearning/supplementary.pdf.
2 http://users.monash.edu.au/~ksmiles/matilda/classification.zip.

123

http://users.monash.edu.au/~ksmiles/matilda/machinelearning/supplementary.pdf
http://users.monash.edu.au/~ksmiles/matilda/classification.zip

112 Mach Learn (2018) 107:109–147

Fig. 1 Methodological framework, extending Rice’s Algorithm Selection Problem shown within the blue box

than performance prediction of algorithms given instance features: the extended framework
(Smith-Miles et al. 2014) enables visualization of the instance space, instance difficulty,
algorithm performance, and objective measurement of algorithmic power. The framework is
composed of several spaces, which are described further below.

The problem space, P , is composed of instances of a given problem for which we have
computational results for a given subset I. In this paper, I contains the classification datasets
from the UCI repository. The feature space, F , contains multiple measures characterizing
properties (correlating with difficulty) of the instances in I. The algorithm space, A, contains
a portfolio of selected algorithms to solve the problem, in this case, classification algorithms.
The performance space, Y , contains measures of performance for the algorithms in A evalu-
ated on the instances in I. For a given problem instance x ∈ I and a given algorithm α ∈ A,
a feature vector f(x) ∈ F and algorithm performance metric y(α, x) ∈ Y are measured. By
repeating the process for all instances in I and all algorithms in A, the meta-data {I, F, A, Y}

are generated. Within the framework of Rice (1976), we can now learn, using regression or
more powerful supervised learning methods, the relationship between the features and the
algorithm performance metric, to enable performance prediction. Full details of this meta-
data for the domain of classification, including the choice of features, will be provided in
Sect. 3.

The aim of the extended methodology shown in Fig. 1 however is to gain insights into
why some algorithms might be more or less suited to certain instance classes. In our extended
framework, the meta-data is used to learn the mapping g(f(x), y(α, x)), which projects the
instance x from a high-dimensional feature space to a 2-dimensional space. The resulting
2-dimensional space, referred to as instance space, is generated in such a way as to result in
linear trend of features and algorithm performance across different directions of the instance

123

Mach Learn (2018) 107:109–147 113

space, increasing the opportunity to infer how the properties of instances affect difficulty.
A new approach to achieving an optimal 2-D projection has been proposed for this paper,
and the details are presented in “Appendix A”. Following the optimal projection of instances
to a 2-D instance space, each classification dataset is now represented as a single point in
R

2, so the distribution of existing benchmark instances can be viewed across the instance
space, and their diversity assessed. Further, the distribution of features and performance
metrics for each algorithm can also be easily viewed to provide a snapshot of the adequacy
of instances and features to describe algorithm performance. Instances are adequate if they
are diverse enough to expose areas where an algorithm performs poorly, as well as areas
where an algorithm performs well. Features are adequate if they allow accurate predic-
tion of algorithm performance while explaining critical similarities and differences between
instances.

The 2-dimensional instance space, color-coded with algorithm performance, is then inves-
tigated to identify in which region each algorithm α is expected to perform well. Such a region
is referred to as the algorithm’s footprint. The area of the footprint can be calculated to objec-
tively measure each algorithms’ expected strength across the entire instance space, rather
than on chosen test instances. The resulting measure is the algorithmic power.

The 2-dimensional instance space is further investigated to seek explanation as to why
algorithm α performs well (or poorly) in different regions of the instance space. Since the
projection has been achieved in a manner that creates linear trends across the space for
features and algorithm performance, footprint areas can more readily be described in terms
of the statistical properties of the instances found in each footprint.

The final component of the proposed methodology involves revisiting the distribution of
the existing instances I in the instance space, and identifying target points where it would
be useful to have additional instances created from the space of all possible instances P .
A methodology for evolving instances has previously been proposed for generating graphs
with controllable characteristics for graph coloring problems (Smith-Miles and van Hemert
2011), but will be adapted in this paper to generate new classification datasets that lie at
specific locations in the instance space.

In summary, the proposed methodology requires:

(i) Construction of the meta-data, including a set of candidate features (see Sect. 3);
(ii) Selection of a subset of candidate features (see Sect. 4);
(iii) Justification of selected features using performance prediction accuracy (see Sect. 5);
(iv) Creation of a 2-D instance space for visualization of instances and their properties (see

Sect. 6);
(v) Objective measurement of algorithmic power (see Sect. 7); and

(vi) Generation of new test instances to fill the instance space (see Sect. 8).

Each of these steps in this general methodology requires considerable innovation and
thought when tailored to a new application domain. The following six sections will describe
these steps in more detail for our classification study.

3 Meta-data for supervised classification algorithms

Let Xi = [xi
1 xi

2 . . . xi
p] ∈ R

q×p be the data matrix, where p is the number of observations

and q is the number of attributes; then let ci ∈ {1, . . . , K }p , K ≥ 2 be the class vector taking
on K ∈ N labels.

123

114 Mach Learn (2018) 107:109–147

A supervised learning problem, referred to as problem instance, consists of a collection
of (x j , c j) pairs. In this work, the input x j is a q-dimensional input vector that may comprise
of binary, nominal and numeric values; the output label c j (class) takes on one of K labels.
The focus is therefore on binary and multi-class classification. Typically, the data matrix Xi

is divided into a training set and a test set. The learning task is to infer, from the training set,
an approximating function relating the attributes to the class labels. The inferred function
is then used to predict the labels in the test set, which consists of input vectors previously
unseen by the learning algorithm. The performance of the learning algorithm is measured by
a metric comparing true and predicted labels. The lower the degree of discrepancy between
true and predicted labels, the better the algorithm performance.

The focus in meta-learning is to study how measurable features of the problem instances
(Xi , ci) affect a given learning algorithm’s performance metric. Problem instances I, learning
algorithms A, and performance metrics Y , are three of the four elements composing the meta-
data {I, F, A, Y}. We will briefly describe these elements of the meta-data used in this study
below, before presenting a more extensive discussion about the critical choice of features F .

3.1 Problem instances I

The problem instances we have used in this research consist of classification datasets compris-
ing of one or more input variables (attributes) and one output variable (class). Datasets have
been downloaded from two main sources, namely the University of California Irvine (UCI)
repository (Lichman 2013) and the Knowledge Extraction Evolutionary Learning (KEEL)
repository (Alcalá et al. 2010); additionally, a few datasets from the Data Complexity library
(DCol—http://dcol.sourceforge.net/) have been used.

KEEL and DCol datasets rely on a convenient common format, the KEEL format. It orig-
inates from the ARFF format employed in the popular Waikato Environment for Knowledge
Analysis (WEKA) suite (Holmes et al. 1994). Along with the dataset itself, KEEL and ARFF
files carry information about dataset name, attributes name and type, and values taken on
by both nominal and class attributes; additionally, the class attribute always occupies the
last column of the data matrix. The use of this common format facilitates standardization
and minimizes errors deriving from data manipulation; this is particularly true when many
datasets need to be analyzed and automatic procedures are employed.

In constrast, UCI data files vary greatly in their format. Often, multiple files have to be
merged to generate the final dataset; sometimes, information about the data themselves is
not (clearly) available. UCI classification datasets have been extensively investigated and
detailed information has been provided for the pre-processing of 166 datasets (Macia and
Bernadó-Mansilla 2014) which we have adopted in this study.

Overall, we have used a total of 235 problem instances comprising 210 UCI instances, 19
KEEL instances and 6 DCol instances. A list of the problem instances and links to the files
are provided in Sect. 1 of the Supplementary Material.

The selected 235 problem instances have up to 11,055 observations and up to 1558
attributes. Larger instances could have been selected, but were excluded due to the need
to impose some computational constraints when deriving the features and running the algo-
rithms described below.

Multiple datasets present missing values. For these datasets, two problem instances are
derived. In the first problem instance the missing values are maintained, whereas in the second
problem instance the missing values are estimated. The estimating procedure is as follow.
Let k be the class label of an instance with missing value(s). If the missing value pertains
to a numeric attribute, the missing value is replaced with the average value of the attribute

123

http://dcol.sourceforge.net/

Mach Learn (2018) 107:109–147 115

computed over all the instances with class label k. For a nominal attribute, the mode is used
(Orriols-Puig et al. 2010). This class-based imputation approach has been shown to efficiently
achieve good accuracy and outperform other more complex methodologies (Fujikawa and
Ho 2002; Young et al. 2011). For those cases where missing values are the only available
data for a given class, imputation through global average/mode is used. Finally, instances
with missing values in the class attribute are omitted. Note that all algorithms use the same
data, hence, any unintended advantage due to the chosen imputation approach will be shared
by all algorithms.

3.2 Algorithms A

We consider a portfolio of ten popular supervised learners representing a comprehensive range
of learning mechanisms. The algorithms are Naive Bayes (NB), Linear Discriminant (LDA),
Quadratic Discriminant (QDA), Classification and Regression Trees (CART), J48 decision
tree (J48), k-Nearest Neighbor (KNN), Support Vector Machines with linear, polynomial
and radial basis kernels (L-SVM, poly-SVM, and RB-SVM respectively), and random forests
(RF). NB, J48, CART and RF are expected to give uncorrelated errors while providing a good
diversity of classification mechanisms (Lee and Giraud-Carrier 2013); LDA and QDA are
expected to further extend the diversity of the algorithm portfolio, whereas KNN and SVM
are considered because of their popularity. The R packages employed are e1071 (Meyer
et al. 2015) (NB, L-SVM, poly-SVM, RB-SVM, RF), MASS (Venables and Ripley 2002)
(LDA, QDA), rpart (Therneau et al. 2014) (CART), RWeka (Holmes et al. 1994) (J48)
and kknn (Hechenbichler 2014). For all of the packages, the default parameters value are
used.

3.3 Performance metric Y

There exist various measures of algorithm performance focusing on either prediction accu-
racy/error or computation time/cost. In this work, we consider measures of prediction
accuracy/error which evaluate how well or poorly the labels are classified. The performance
of a supervised learner is derived by comparing labels in the problem instance (data labels)
and labels predicted by the algorithm (predicted labels).

In a binary classification, where the class labels are either positive or negative, the compar-
ison is based on four counts. The counts are the number of (i) positive labels that are correctly
classified (true positives tp), (ii) negative labels that are wrongly classified (false positives
fp), (iii) negative labels that are correctly classified (true negatives tn), and (iv) positive
labels that are wrongly classified (false negatives fn) (Sokolova and Lapalme 2009). The pro-
portion of incorrectly classified labels is the Error Rate. The proportion of positive predicted
labels that are correctly classified is the Precision. The proportion of positive data labels
that are correctly classified is the Recall. The harmonic mean of precision and recall is the
F1-measure.

In multi-class classification, problem instances with K class labels are usually decomposed
into K binary problem instances. For each of the K problem instances, counts are derived
and used to calculate an overall performance measure. There exist two different strategies to
derive the overall performance measure. One strategy is to calculate K performance measures
(one for each sub-problem) and average them out. This is referred to as macro-averaging and
generates measures such as macro-Precision, macro-Recall and macro-F1. The other strategy
is to obtain cumulative counts of the form tp =

∑K
k=1 tpk and use them to calculate the overall

performance value. This is referred to as micro-averaging and generates measures such as

123

116 Mach Learn (2018) 107:109–147

Table 1 Overview of performance measures for both binary and multi-class classification

Measure Formula

Binary Multi-class

Error Rate (ER) f p+ f n
n

∑K
k=1 ERk · wk

Precision tp
tp+ f p

∑K
k=1 Precisionk · wk

Recall tp
(tp+ f n)

∑K
k=1 Recallk · wk

F1-measure (Fm) (β2 + 1) · Precision·Recall
β2·Precision+Recall

∑K
k=1 Fmk · wk

Here, β is a non-negative real value that we set to 1

micro-Precision, micro-Recall and micro-F1 (Tsoumakas and Vlahavas 2007; Sokolova and
Lapalme 2009). While macro-averaging treats all classes equally, micro-averaging favours
bigger classes (Sokolova and Lapalme 2009) biasing the overall performance toward the
performance on the bigger classes. Overall, the choice of the most suitable averaging strategy
depends on the purpose of the study.

In the current work, the purpose is to assess algorithm performance by adopting a broad
perspective and targeting a whole range of problem instances. Therefore, we do not wish
to place too much emphasis on algorithms that perform particularly well for large classes;
similarly, we do not wish to disregard class size information completely. Therefore, we adopt
an intermediate strategy consisting of averaging class-based performance measures (similarly
to macro-averaging) but using weights that are proportional to the class size (i.e. wk = nk/n,
where nk denotes the number of instances with label k).

In addition to the aforementioned metrics other performance measures exist (e.g. Break
Even Point, Area Under the Curve—AUC); however, they are either a function of other
measures or metrics that are not well developed for multi-class classification (Sokolova
and Lapalme 2009). Because our problem instances embrace both binary and multi-class
classification, we restrict our attention to Error Rate (ER), Precision, Recall and F1-measure
using a weighted macro-average strategy, shown in Table 1.

3.4 Features F

Useful features of a classification dataset are measurable properties that (i) can be computed
in polynomial time and (ii) are expected to expose what makes a classification problem hard
for a given algorithm.

It is well known for example that problems in high-dimensions tend to be hard for
algorithms like nearest neighbor (Vanschoren 2010); indeed, the density of the data points
decreases exponentially as the number of attributes increases and point density is an impor-
tant requirement for nearest neighbor. Similarly, problems with highly unbalanced classes
tend to be hard for algorithms like unpenalized Support Vector Machines and Discriminant
Analysis (Ganganwar 2012); indeed, the algorithms’ assumptions (e.g. equal distribution of
data within the classes, balanced dataset) are not met. In the above mentioned cases, simple
examples of relevant features are number of instances in the dataset, number of attributes,
and percentage of instances in the minority class.

Features for classification problems have a relatively long history in the meta-learning
field, with the first studies dating back to the early 1990s (Rendell and Cho 1990; Aha 1992;
Brazdil et al. 1994; Michie et al. 1994; Gama and Brazdil 1995). Over the following years,

123

Mach Learn (2018) 107:109–147 117

many authors used existing features and investigated new features based on either metrics
(Perez and Rendell 1996; Vilalta 1999; Pfahringer et al. 2000a; Smith et al. 2002; Vilalta
and Drissi 2002; Goethals and Zaki 2004; Ali and Smith 2006; Segrera et al. 2008; Song
et al. 2012) or model fitting (Bensusan and Giraud-Carrier 2000; Peng et al. 2002; Ho and
Basu 2002). Various manuscripts have provided a snapshot of the most popular features over
the years (Castiello et al. 2005; Smith-Miles 2008; Vanschoren 2010; Balte et al. 2014). As
the development of new features emerged, it became common practice to classify the meta-
features into eight different groups: (i) simple, (ii) statistical, (iii) information theoretic,
(iv) landmarking, (v) model-based, (vi) concept characterisation, (vii) complexity, and (viii)
itemset-based meta-features.

An overview of these groups of features is reported below:

1. Simple features measure basic aspects related to dimensionality, type of attributes, miss-
ing values, outliers, and class attribute. They have been regularly adopted in meta-learning
studies since the pioneering works by Rendell and Cho (1990) and Aha (1992).

2. Statistical features make use of metrics from descriptive statistics (e.g. mean, standard
deviation, skewness, kurtosis, correlation), hypothesis testing (e.g. p-value, Box’s M-
statistic) and data analysis techniques (e.g. canonical correlation, Principal Component
Analysis) to extract information about single attributes as well as multiple attributes
simultaneously.

3. Information theoretic features quantify the information present in attributes that are inves-
tigated either alone (e.g. entropy) or in combination with class label information (e.g.
mutual information).

4. Landmarking features are performance measures of simple and efficient learning algo-
rithms (landmarkers) such as Naive Bayes, Linear Discriminant, 1-Nearest Neighbor
and single-node trees (Pfahringer et al. 2000a, b). The idea behind the approach is that
landmarker performance can shed light on the properties of a given problem instance
(Bensusan and Giraud-Carrier 2000). For example, good performance of a linear dis-
criminant classifier indicates that the classes are likely to be linearly separable; on the
contrary, bad performance indicates probable non-linearly separable classes. In a meta-
learning study, multiple and diverse landmarkers are used, so that each landmarker can
contribute an area of expertise. The collection of areas of expertise to which a problem
instance belongs, can then be used to characterize the problem instance itself (Bensusan
and Giraud-Carrier 2000). There exist multiple variants of the landmarking approach.
One such variant that is relevant for the current work and not yet herein implemented,
is sampling landmarking (Fürnkranz and Petrak 2001; Soares et al. 2001; Leite and
Brazdil 2008). Sampling landmarking considers computationally complex algorithms
and evaluates their performance on a collection of data subsets. The use of data subsets
allows saving computational time without affecting results significantly; indeed, running
an algorithm on the full dataset or on a collection of data subsets is expected to give a
similar profile of algorithm expertise (Fürnkranz and Petrak 2001).

5. Model-based features aim to characterize problem instances using the structural shape
and size of decision trees fitted to the instances themselves (Peng et al. 2002). Examples
are number of nodes and leaves, distribution of nodes at each level and along each branch,
width and depth of the tree.

6. Concept characterization features measure the sparsity of the input space and the irregu-
larity of the input-output distribution (Perez and Rendell 1996; Vilalta and Drissi 2002).
Irregular input-output distributions occur when neighboring examples in the input space
have different labels in the output space. Concept characterization features were shown

123

118 Mach Learn (2018) 107:109–147

to provide much information about the difficulty of problem instances (Vilalta 1999;
Robnik-Šikonja and Kononenko 2003). Unfortunately, they have a high computational
cost because they require the calculation of the distance matrix.

7. Complexity features measure the geometrical characteristics of the class distribution and
focus on the complexity of the boundary between classes (Ho and Basu 2002). The
aim is to identify problem instances having ambiguous classes. The ambiguity of the
class attribute might be an intrinsic property of the data or might derive from inadequate
measurements of the attributes; class ambiguity is likely to be influenced by sparsity and
high-dimensionality (Ho and Basu 2002; Macia and Bernadó-Mansilla 2014). In general,
complexity features investigate (i) class overlap measured in the input space, (ii) class
separability, and (iii) geometry, topology and density of manifolds (Macià et al. 2010).

8. Itemsets- and association rules-based features measure the distribution of values of
both single attributes and pairs of attributes, as well as characteristics of the interesting
variable relations (Song et al. 2012; Burton et al. 2014). In this approach, the original
problem instance is transformed into a binary dataset. For nominal attributes, each distinct
attribute value in the original data generates a new attribute in the binary data. For numeric
attributes a discretization method is applied first. The frequency of each binary attribute
is then measured, as well as the frequency of pairs of binary attributes.

Concept characterization features and, in the large majority, statistical features are suit-
able for numerical attributes only; information theoretic features are suitable for nominal
attributes. To allow for all the features to be calculated on all the attributes, the original
attributes can be pre-processed. On the one hand, we convert nominal attributes into numeric
attributes by replacing labels (e.g. {A, B, C}) with numbers (e.g. {1, 2, 3}). Despite being
not ideal for standard statistical analysis, this approach is of value for the purpose of the
current study because it allows us to take into account potentially important relationships
between numeric and nominal attributes. Note that the aforementioned transformation is
not applied to the class attribute which remains unaltered throughout the analysis. On the
other hand, we discretize numeric attributes using ten intervals of equal width, thus obtaining
nominal attributes with ten categories. Discretization using a fixed interval width is one of
the many discretization approaches existing in the literature [e.g. equal frequencies, given
interval boundaries, k-means clustering, Fayyad and Irani method (Fayyad and Irani 1992)].
The motivation behind our choice lies in the simplicity and consistency of the approach
throughout the problem instances. By using ten categories we discretize the original attribute
without losing too much information.

When deriving features values it is possible to obtain a single number (e.g. number of
instances, number of attributes), a vector (e.g. vector of attributes’ entropies) or a matrix
(e.g. absolute correlation matrix). When the output is a vector or matrix, further processing
is required. A typical procedure is to generate a single feature value by calculating the mean
of the vector or matrix; however, this can result in a considerable loss of information. To
preserve a certain degree of distributional information, several authors have proposed the
use of summary statistics (Michie et al. 1994; Brazdil et al. 1994; Lindner and Studer 1999;
Soares and Brazdil 2000). We adopt this approach and calculate minimum, maximum, mean,
standard deviation, skewness and kurtosis from the vector/matrix values. Therefore, for each
vector or matrix property we obtain six new features.

Most of the statistical and information theoretic features can be calculated on the attributes
either independently or in conjunction with the information in the class attribute. We name
features belonging to the second case with the suffix ‘by class’. For example, assume our
problem instance has two numeric attributes, X1 and X2, and the class attribute C takes on

123

Mach Learn (2018) 107:109–147 119

labels {c1, c2}; further assume that we want to calculate the feature ‘mean standard deviation
of attributes’. In the first case (calculation independent of class attribute) we (i) calculate the
standard deviation of attribute X1 and the standard deviation of attribute X2, and (ii) average
the two numbers; the resulting value is our feature ‘mean standard deviation of attributes’.
In the second case (calculation in conjunction with class attribute), we calculate (i) the
standard deviation of attribute X1 computed over all the instances that predict class c1,
(ii) the standard deviation of attribute X1 computed over all the instances that predict class
c2, (iii) the standard deviation of attribute X2 computed over all the instances that predict
class c1, (iv) the standard deviation of attribute X2 computed over all the instances that
predict class c2. The four values are then averaged and we obtain our final feature ‘mean
standard deviation of attributes by class’.

In this study we have generated a set of 509 features derived from the eight types of
features. Not all of these will be interesting for the challenge of understanding how features
affect the performance of our chosen algorithms across our selected set of test instances.
Our goal is to represent the instances in a feature space, generated to maximize our chances
of gaining insights via visualization. The process of selecting relevant features from this
candidate set of 509 features will be discussed in the following section.

4 Feature selection

The candidate set of 509 features derived from the available literature contains much redun-
dancy, with many features measuring aspects of a problem instance that are either similar
or not relevant to expose the hardness of the classification task itself. Thus, a small set of
relevant features must be selected. To identify relevant features, we deliberately alter the
hardness of the classification task and observe how the feature values react to such alteration.
Overall, the procedure we adopt to select a relevant set of features is as follows:

1. Identify broad characteristics that are either known or expected to make a classification
task harder (classification challenges);

2. Alter a problem instance to deliberately vary the hardness of the classification task based
on the challenges identified in the previous step (instance alteration);

3. Calculate all 509 features on both original and altered problems;
4. Use a statistical procedure to compare features values of original and altered problems

(statistical test);
5. Identify the set of relevant features as those most responsive to the challenges;
6. Evaluate the adequacy of the relevant features via performance prediction.

Classification challenges The algorithms listed in Sect. 3.2 are known to perform better under
certain circumstances. Such circumstances broadly relate to algorithm assumptions (e.g. nor-
mality, equal covariance within classes) or characteristics of the data (e.g. numeric and/or
nominal, presence of missing values). Based on previous investigations of classification algo-
rithms (Lessmann et al. 2015; Sokolova and Lapalme 2009; Kotsiantis 2007; Kotsiantis et al.
2006; Vilalta 1999; Michie et al. 1994) we identify 12 challenging circumstances. They are:

– Non-normality within classes instances belonging to the same class do not follow a
multivariate normal distribution;

– Unequal covariances within classes instances belonging to the same class follow a multi-
variate normal distribution; however, the variance-covariance matrices of the distributions
are different;

123

120 Mach Learn (2018) 107:109–147

– Redundant attributes two or more attributes carry very similar information;
– Type of attributes the problem instance comprises both numeric and nominal attributes;
– Unbalanced classes at least one class has a considerably different number of instances;
– Constant attribute within classes for at least one attribute, all the instances belonging to

the same class assume the same (numeric or categorical) value;
– (Nearly) Linearly dependent attributes at least one numeric attribute is (nearly) a linear

combination of another two or more numeric attributes;
– Non-linearly separable classes there exists no hyperplane that well separates the classes;
– Missing values a considerable number of instances present missing values for one or

more attribute;
– Data scaling the scale of one or more attributes is very different from the scale of the

remainder attributes;
– Redundant instances there exist a considerable number of repeated instances;
– Lack of information a limited number of instances is available.

Instance alteration Based on the above challenges, we alter a problem instance to change
the difficulty of the classification task. For each challenge we obtain two problem instances
that we want to compare; they are the original and altered datasets. The altered dataset is
either more or less challenging in terms of a specific classification challenge. As an example,
consider the challenge of non-linearly separable classes. We alter each dataset to make it
more linearly separable by fitting a hyperplane through the data using linear regression, and
then altering the class labels so that each side of the hyperplane contains only one class.
The altered dataset is therefore less challenging than the original, and we will be able to see
which features are different when compared to the original dataset and therefore correlate
with non-linear separability. Each challenge is treated in a similar manner. Details of the
applied alterations and comparisons are reported in Sect. 2 of the Supplementary Material.
Table 2 reports the identified challenges and highlights which ones are likely to be relevant
for the investigated algorithms.
Statistical test Original and altered datasets are compared in terms of their values of the 509
candidate features. For a given feature, its value is calculated on both the original and altered
problem. A statistically significant difference in values suggests that the applied alteration
(cause) results in a change of the feature value (effect) and that the feature is relevant to
measuring the degree of the challenge presented by an instance. Furthermore, the bigger the
difference, the higher the discriminating ability of the feature. We consider only one single
challenge at a time as the aim is to identify features that are in a cause-effect relationship
with classification hardness.

To draw statistically sound conclusions, a distribution of feature values is required for
both the original and altered problem. For the altered problem, multiple values naturally
arise by running the alteration process multiple times; due to the intrinsic randomness of the
alteration process, a different altered problem is obtained in each simulation run. Instead, for
the original problem no intrinsic randomness exists. Therefore, we introduce a small source
of variability by randomly removing one observation (i.e. dataset row) from the problem
instance in each simulation run. For consistency, the same observation is removed before
applying the alteration process.

The two distributions of feature values are compared through a two-sided t-test with
unequal variances. Unequal variances are considered because the feature values derived
from the original problem are usually less variable than the feature values derived from the
altered problems. It is well known that two types of errors can occur when performing a
statistical test. On the one hand, assume we are testing a feature that has no cause-effect

123

Mach Learn (2018) 107:109–147 121

Table 2 Classification challenges specific to the investigated algorithms

Challenge Challenged algorithm

NB LDA QDA CART-J48 KNN SVM RF

Non-normality within classes ✓ ✓

Unequal covariance within classes ✓

Redundant attributes ✓

Type of attributes ✓ ✓ ✓

Unbalanced classes ✓ ✓ ✓

Constant attribute within classes ✓ ✓

(Nearly) Linearly dependent attributes ✓ ✓

Non-linearly separable classes ✓

Missing values ✓ ✓ ✓

Data scaling ✓ ✓

Redundant instances ✓

Lack of information ✓ ✓ ✓ ✓ ✓ ✓ ✓

Algorithms for which a specific challenge is expected to be relevant, based on their model
assumptions, are highlighted with the symbol ✓

relationship with a given challenge; the error we can make is to conclude that the feature
is relevant (Type I error, α). On the other hand, assume we are testing a feature that has a
cause-effect relationship with a given challenge; the error we can make is to conclude that
the feature is not relevant (Type II error, β). Before implementing the test, the value of α is
fixed and the desired value of β is specified. Additionally, a third value needs to be specified;
this is the change in the feature value (�) that we want to detect when comparing original
and altered problems. The specified values of α, β and � are used to determine a suitable
sample size, namely the number of repeats or simulation runs, required to simultaneously
control Type I and II errors. When fixing the value of α it is important to consider that we
are performing a large number of tests. 509 features are tested on 12 challenges, resulting in
a total of ntests = 6108 tests. Assuming that none of the features is relevant (i.e. no cause-
effect relationship with the challenge), a test with α = 0.01 would still select 123 features as
relevant. To avoid this, a smaller value of α must be used in the test. Such a value is typically
determined through a correction. Among the available corrections, we choose the Bonferroni
correction α∗ = α/ntests, where α∗ is the corrected value. Such a value is typically very
small and results in a restrictive test. This well serves our purpose to identify a small set of
suitable features.

Overall, we set α∗ = 1.64e−6, β = 0.1, � = 3 and obtain the optimal sample size
nruns = 14 through power analysis (Cohen 1992). In this context, the sample size is the
number of comparisons required and corresponds to the number of simulated altered problem
instances generated. Based on these settings, the test has (i) 99% chance to correctly discard
a feature that has no cause-effect relationship with the challenge, and (ii) 90% chance to
correctly select a feature that has a cause-effect relationship with the challenge. Features
with |p-value| < α∗ are identified as significant. For each single challenge, significant

123

122 Mach Learn (2018) 107:109–147

features are sorted in ascending order based on their p-value, with the most relevant features
appearing at the top of the list for each challenge.
Set of relevant features The procedure described above applies to a single problem instance
and its alterations. To ensure consistency of results, we repeat the procedure and apply it to six
different problem instances selected from those described in Sect. 3.1. The selected problem
instances are (1) balloons, (2) blogger, (3) breast, (4) breast with 2 attributes only, (5) iris,
and (6) iris with two attributes only. All of these are relatively small problems with up to 699
instances and up to 11 attributes. The choice is motivated by both theoretical and practical
aspects. From a theoretical point of view, the procedure is based on relative comparisons and
it is not supposed to be influenced by problem dimensionality. From a practical point of view,
the procedure can be time-prohibitive if applied to large problems.

For each single challenge, the aim is to select one single feature that has the highest chance
to detect the given challenge when measured on a new problem instance. For each challenge,
the output of the procedure is composed of six sorted lists (one list per tested problem instance)
of significant features. We compare these six lists and select the features that most frequently
appear at the top of the lists. The selected features are (i) standard deviation of class proba-
bilities, (ii) proportion of instances with missing values, (iii) mean class standard deviation,
(iv) maximum coefficient of variation within classes, (v) mean coefficient of variation of
the class attribute, (vi) minimum skewness of the class attribute, (vii) mean skewness of the
class attribute, (viii) minimum normalized entropy of the attributes, (ix) maximum normal-
ized entropy of the attributes, (x) standard deviation of the joint entropy between attributes
and class attribute, (xi) skewness of the joint entropy between attributes and class attribute,
(xii) standard deviation of the mutual information between attributes and class attribute,
(xiii) mean concept variation, (xiv) standard deviation of the concept variation, (xv) kurto-
sis of the concept variation, (xvi) mean weighted distance, (xvii) standard deviation of the
weighted distance, (xviii) skewness of the weighted distance.

Along with these features associated with specific challenges, we have also considered
features that are frequently used in meta-learning studies. Based on a literature review over
the 1992–2015 period (Aha 1992; Brazdil et al. 1994; Gama and Brazdil 1995; Michie et al.
1994; Vilalta 1999; Bensusan and Giraud-Carrier 2000; Pfahringer et al. 2000a; Peng et al.
2002; Smith et al. 2002; Castiello et al. 2005; Ali and Smith 2006; Vanschoren 2010; Reif
et al. 2012, 2014; Reif and Shafait 2014; Garcia et al. 2015) we identify 21 features. The
details are reported in Table 3. A short explanation regarding the meaning of the symbols
used in this table can be found in Table 4. Finally, we consider complexity measures (Ho
and Basu 2002) because they explicitly aim to characterize the difficulty of the classification
task.

All of the identified features are combined in a single list and further processed. The
aim is to identify uncorrelated features that are linearly related to algorithm performance;
thus we select features having feature-to-feature correlation less than |0.7| and feature-to-
performance correlation greater than |0.3|. The final set of relevant features is as follows,
with further details of each feature and the correlation matrix presented in Sect. 3 of the
Supplementary Material:

1. H(X)
′

max—maximum normalized entropy of the attributes
2. H

′

c—normalized entropy of class attribute
3. MC X —mean mutual information of attributes and class
4. DNE R—error rate of the decision node
5. SD(ν)—standard deviation of the weighted distance
6. F3—maximum feature efficiency

123

Mach Learn (2018) 107:109–147 123

T
a

b
le

3
F

re
qu

en
tf

ea
tu

re
s

se
le

ct
ed

fr
om

th
e

li
te

ra
tu

re
ov

er
th

e
pe

ri
od

19
92

–2
01

5

F
ea

tu
re

A
ha

(1
99

2)
B

ra
zd

il
et

al
.

(1
99

4)

G
am

a
an

d
B

ra
zd

il
(1

99
5)

M
ic

hi
e

et
al

.
(1

99
4)

B
en

su
sa

n
an

d
G

ir
au

d-
C

ar
ri

er
(2

00
0)

P
fa

hr
in

ge
r

et
al

.
(2

00
0a

)

P
en

g
et

al
.

(2
00

2)
S

m
it

h
et

al
.

(2
00

2)

C
as

ti
el

lo
et

al
.

(2
00

5)

A
li

an
d

S
m

it
h

(2
00

6)

V
an

sc
ho

re
n

(2
01

0)
R

ei
f

et
al

.
(2

01
2)

R
ei

f
et

al
.

(2
01

4)
R

ei
f

an
d

S
ha

fa
it

(2
01

4)

G
ar

ci
a

et
al

.
(2

01
5)

p
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

q
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

q
nu

m
✓

✓
✓

✓
✓

✓
✓

q
no

m
✓

✓
✓

✓
✓

✓
✓

r n
om

✓
✓

✓
✓

✓
✓

K
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

γ
1

✓
✓

✓
✓

✓
✓

✓
✓

✓

γ
2

✓
✓

✓
✓

✓
✓

✓
✓

✓

ρ
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

c
a

n
C

o
r 1

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

f
r
a

c 1
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

H
X

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

H
c

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

H
C

X
✓

✓
✓

✓
✓

✓
✓

M
C

X
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

E
N

X
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

S
N

R
−

1
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

D
N

E
R

✓
✓

✓
✓

✓
✓

✓

W
N

E
R

✓
✓

✓
✓

✓
✓

N
B

E
R

✓
✓

✓
✓

✓
✓

✓

L
D

E
R

✓
✓

✓
✓

✓
✓

123

124 Mach Learn (2018) 107:109–147

Table 4 Description of the
attributes used in Table 3 Attribute Description

p number of observations

q number of attributes

qnum number of numeric attributes

qnom number of nominal attributes

rnom proportion (ratio) of nominal attributes

K number of classes

γ 1 mean skewness

γ 2 mean kurtosis

ρ mean absolute correlation

canCor1 first canonical correlation

f rac1 fraction of the variance retained by the
first principal component

HX mean entropy of attributes

Hc class entropy

HC X mean joint entropy

MC X mean mutual information

E NX equivalent number of attributes

SN R−1 noise-to-signal ratio

DNE R error rate of the decision node

W NE R error rate of the worst node

N BE R error rate of the Naive Bayes

L DE R error rate of the linear discriminant

7. F4—collective feature efficiency
8. L2—training error of linear classifier
9. N1—fraction of points on the class boundary

10. N4—nonlinearity of nearest neighbor classifier

5 Assessing adequacy of the feature set via performance prediction

The set of ten selected features is adequate for our purposes if it exposes the strengths and
weaknesses of algorithms. To achieve this, a prerequisite is that algorithm performance can
be accurately predicted based on the selected set of features. We adopt an approach based on
model fitting and evaluation of model accuracy.

We fit flexible models to (fi , yi) pairs where fi ∈ R
m is a input vector comprising of

the selected features and yi ∈ R measures the algorithm performance, with i = 1, . . . , 235
instances and m = 10 features. We consider two cases. In the first case, the output is a
measure of algorithm performance, namely the error rate ER; it varies continuously in [0, 1]

123

Mach Learn (2018) 107:109–147 125

and gives rise to a regression problem. In the second case, the output is a measure of problem
difficulty that we derive from ER:

h(E R) =

{
0 if E R ≤ 0.2

1 if E R > 0.2;
(1)

which takes on labels {0, 1} (corresponding to easy and hard instances respectively) and gives
rise to a binary classification problem. For both regression and classification problems, we
use a Support Vector Machine (SVM) model with Gaussian Radial Basis Function (RBF)
kernel k(f, f ′) = exp(γ ‖f −f ′‖2). The type of SVM used is ǫ-regression and C-classification
respectively. Both ǫ-regression and C-classification present two parameters; they are the cost
C in the regularization term and the RBF hyper-parameter γ . An additional parameter ǫ

is used in ǫ-regression to tolerate small approximation errors (Vapnik 1995). We tune C

and ǫ through grid search in [1, 10] and [0, 1] respectively; we estimate a good value of
the RBF hyper-parameter γ based on the 0.1 and 0.9 quantile of ‖f − f ′‖2 (Caputo et al.
2002). We use tenfold cross validation to train the model and assess the model generalization
ability. The cross-validated Mean Squared Error (cv-MSE) and Error Rate (cv-ER) are used
as estimates of the model generalization ability in regression and classification, respectively.
The described procedure relies on the R packages e1071 (Meyer et al. 2015) and kernlab
(Karatzoglou et al. 2004).

Table 5 reports values of SVM parameters and cross-validated error for both regression
and classification studies; for the regression problem the table reports also the coefficient of
determination R2 as a measure of goodness-of-fit; R2 = (cor (y, ŷ))2, where y and ŷ are
the observed and estimated algorithm performance. SVM models for LDA and QDA tend
to present the largest errors indicating that additional features might be required to capture
the challenges that instances provide for those algorithms. Overall, the small values of the
cross-validated errors and the large R2 values indicate that the selected features are adequate
to accurately predict algorithm performance and problem difficulty, although there is always
room for improvement through additional feature creation.

6 Creating an instance space

The final aim of the current research is to expose strengths and weaknesses of classification
algorithms and provide an explanation for the good or bad performance based on features of
the problem instances. The quality of the problem instances to support these insights must
be evaluated. A critical step is the visualization of the instances, their features and algorithm
performance in a common space, the instance space.

Both problem instances and features play a critical role in determining a suitable instance
space. Instances must be diverse and dense enough to uniformly cover a wide degree of
problem difficulty; for all algorithms there must exist both easy and hard instances, and
the transition from easy to hard should be densely covered. On the other hand, features
must correlate to algorithm performance, measure diverse aspects of the problem instances,
and be uncorrelated with one another. The feature set should be small in size, yet it should
comprehensively measure aspects of the problem instances that either challenge algorithms
or make their task easy.

How we choose to project the instances from a high-dimensional feature vector to a 2-D
instance space is also a critical decision that affects the usefulness of the instance space
for further analysis. The ideal instance space maps the available problem instances to a 2-

123

126 Mach Learn (2018) 107:109–147

Table 5 Parameters values and performance of the SVM models approximating the functional relationship
between selected features and (i) algorithm performance (regression case), (ii) problem difficulty (classifi-
cation case)

Algorithm ǫ-regression C-classification

γ C ǫ cv-MSE R2 γ C cv-ER

NB 0.104 9 0.14 0.006 0.91 0.102 2 0.157

LDA 0.081 4 0.04 0.029 0.72 0.102 1 0.161

QDA 0.117 8 0.21 0.023 0.93 0.093 3 0.145

CART 0.095 2 0.17 0.004 0.91 0.105 1 0.099

J48 0.090 4 0.05 0.003 0.94 0.099 2 0.106

KNN 0.098 3 0.00 0.002 0.97 0.092 6 0.073

L-SVM 0.106 2 0.07 0.006 0.85 0.095 1 0.086

Poly-SVM 0.098 3 0.02 0.006 0.89 0.089 5 0.127

RBF-SVM 0.129 2 0.13 0.005 0.90 0.082 7 0.085

RF 0.099 3 0.37 0.027 0.63 0.092 1 0.132

dimensional representation in such a way that both features and algorithm performance vary
smoothly and predictably across the space. This exposes trends in features and algorithm
performance, and helps to partition the instance space into easier and harder instances, and
show how the features support those partitions. The comparison can give an instant perception
of why a given algorithm performs well or poorly in a given area of the instance space. We
will focus here on finding projections that result in linear trends, but the general approach
can be extended to encompass more complex interplays including pair-wise interactions and
non-linear relationships.

Since existing problem instances are limited in number and are not necessarily represen-
tative of a broader population of classification problems, the first instance space we generate
may not be capable of the insights we seek. If we generated additional instances, our choice
of features might also need to be updated to explain their performance. Clearly, the instance
space generation is an iterative process that might require multiple adjustments to identify an
optimal subset of features and a suitable set of instances. The steps that we have implemented
to generate the instance space are:

1. Select a set of relevant features and evaluate their adequacy;
2. Generate an instance space and evaluate the adequacy of the instances;
3. If the instance space is inadequate, artificially generate new instances and return to Step

1.

With strong evidence that the relevant features accurately predict algorithm performance
and problem difficulty, we now build an instance space to inspect the relationships between
problem instances—their features and their difficulty for the chosen algorithms—and objec-
tively assess algorithm performance across the broadest space of instances P rather than just
I. In previous work in graph coloring (Smith-Miles et al. 2014), we used Principal Compo-
nent Analysis to project graph features into a 2-dimensional space. However, the PCA model
was somewhat unsatisfactory to predict performance, since PCA is only concerned with
maximizing variance explained in the features with no regard for projecting to show trends

123

Mach Learn (2018) 107:109–147 127

in difficulty. Therefore, we reformulate the dimensionality reduction problem to consider an
optimal projection for our purpose below.

6.1 A new interpretable projection approach

Given the feature data matrix F = [f1 f2 . . . fn] ∈ R
m×n and algorithm performance vector

y ∈ R
n , where m is the number of features and n is the number of problem instances, we

achieve an ideal projection of the instances if we can find Ar ∈ R
d×m , Br ∈ R

m×d and
cr ∈ R

d which minimizes the approximation error

‖F − F̂‖2
F + ‖y⊤ − ŷ⊤‖2

F (2)

such that

Z = Ar F (3)

F̂ = Br Z (4)

ŷ⊤ = c⊤
r Z. (5)

with d = 2 being the target dimension. Without loss of generality we assume that the feature
data F and y are centered, m < n and F is full row rank, i.e. rank (F) = m. If F is not full
dimensional then we consider the problem in a subspace spanned by F.

Thus, we have the following optimization problem

min ‖F − Br Z‖2
F +

∥∥∥y⊤ − c⊤
r Z

∥∥∥
2

F

s.t. Z = Ar F (6)

(D) Ar ∈ R
d×m

Br ∈ R
m×d

cr ∈ R
d

In Appendix A we prove the existence of a global optimum for D, and that such optimum
has infinitely many solutions. A lower bound for D is given by the two largest principal

components of the matrix F̄ =
(
F⊤y

)⊤
, which would correspond to the solution if FF⊤

is invertible, otherwise the solution is numerically unstable and the method provides an
approximation. The results from Appendix A also hold for a matrix of performances Y,
meaning that a joint instance space can be calculated for a group of algorithms. Performance
is now estimated as Ŷ = Cr Z, Cr ∈ R

·×d , where · represents the number of algorithms.
Let F ∈ R

10×235 be a matrix whose rows correspond to the ten relevant features from
Sect. 4, and its columns correspond to the 235 UCI/KEEL/DCol instances. Each feature was
transformed as follows: F4 was scaled to [− 0.99999, 0.99999] and tanh−1-transformed,{

H
′

C , MC X , DNer , SD(ν), F3, L2, N1
}

were root-squared. Let Y ∈ R
10×235 be a matrix

whose rows correspond to root-squared error rate of the ten algorithms in Table 5. Both
features and error rates were normalized to N (0, 1). Using Corollary 1 from Appendix A,
we found that the lower bound is 1.7216×103. Furthermore, FF⊤ was found to be right-side
invertible only; hence, the error when using Eq. (13) is equal to 1.8749 × 103. Error values
are large, as they correspond to the sum of the error per instance, feature and algorithm. The
mean error rate per instance, feature and algorithm is 0.36.

We solve numerically (D) using BIPOP-CMA-ES, a stochastic, iterative, variable metric
method with demonstrated effectiveness in middle sized optimization problems (Hansen
2009). To use this method, we represent {Ar , Br , Cr } as a column vector by concatenating

123

128 Mach Learn (2018) 107:109–147

the matrix columns. We run 30 times BIPOP-CMA-ES starting from random positions, using
the default parameters and a maximum of 105 evaluations of (D). The average error from
the runs was of 1.8658 × 103 with a standard deviation of 2.0758 × 10−12, which can be
considered within numerical precision, meaning that all runs converged to the same error.
On the other hand, if Ar is set to be the two largest principal components of F as in Smith-
Miles et al. (2014), the average error from 30 runs of BIPOP-CMA-ES is 2.0403 × 103

with an standard deviation of 8.0996 × 10−13, meaning that PCA is a suboptimal solution
of (D). Given the Theorem 2 from “Appendix A”, we can conclude that BIPOP-CMA-
ES converged to a global optimum. The ratio between the lower bound and the numerical
solution was 0.9227. To select the best solution from these thirty runs, we define a measure
of topological preservation as the Pearson Correlation between the distances in the feature
space,

∥∥fi − f j

∥∥, and the distances in the instance space,
∥∥zi − z j

∥∥ (Yarrow et al. 2014). The
chosen transformation of instances from the 10-D feature space to the 2-D instance space,
with the highest topological preservation of 0.8026, is:

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.070 0.180
0.094 0.618

− 0.277 − 0.052
0.114 0.192
0.045 − 0.100

− 0.128 0.151
− 0.045 0.077

0.184 0.017
0.449 0.223
0.132 − 0.112

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤ ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(X)
′

max

H
′

c

MC X

DNE R

SD(ν)

F3
F4
L2
N1
N4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

6.2 Instance space results

Figures 2, 3 and 4 show the instance space resulting from Eq. (7). Figure 2 enables us to
visualize the instances described by their features selected in Sect. 4, while Fig. 3 shows the
Error Rate (E R) of each algorithm in Sect. 3.2 distributed across the instance space. Both the
features and the error rate were scaled to [0, 1] using their maximum and minimum. The fit of
the projection model given by {Ar , Br , Cr } is evaluated using the coefficient of determination
R2, defined as in Sect. 4. Recall that our objective for projection was to achieve linearity
across the instance space for each feature as well as performance of each algorithm, as much
as possible simultaneously. For the features, the best fit is obtained for N1

(
R2 = 0.910

)
,

and the worst fit for H(X)
′

max

(
R2 = 0.116

)
. For the error rate, the best fit is obtained for

KNN
(
R2 = 0.805

)
, and the worst fit for QDA

(
R2 = 0.367

)
. The median R2 is equal to

0.650, meaning that the projection model describes a linear trend between most features and
algorithms.

If the linear fit across the instance space of a feature is poor, it is simply visualizing that
the feature plays no significant part in explaining the instance space (it has a low coefficient
in linear combinations that create the principal component axes). So we cannot expect to
describe the location of instances in terms of such features. If there is a poor linear fit for
an algorithm’s performance however, this tells us that the features do not suggest a good
linear relationship with algorithm performance. For some algorithms, the choice of features
may be better than for others. We have chosen a common feature set that performs well on
average across all algorithms, but some algorithms may benefit from their own set of features

123

Mach Learn (2018) 107:109–147 129

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i
)

(j
)

F
ig

.
2

D
is

tr
ib

ut
io

n
of

no
rm

al
iz

ed
fe

at
ur

es
on

th
e

pr
oj

ec
te

d
in

st
an

ce
sp

ac
e

123

130 Mach Learn (2018) 107:109–147

-2
0

2

z
1

-3-2-10123

z
2

N
B

 |
 R

2
=

0
.5

7
4

(a
)

-2
0

2

z
1

-3-2-10123
L

D
A

 |
 R

2
=

0
.3

9
8

(b
)

-2
0

2

z
1

-3-2-10123
Q

D
A

 |
 R

2
=

0
.3

6
7

(c
)

-2
0

2

z
1

-3-2-10123
C

A
R

T
 |

 R
2
=

0
.7

9
1

(d
)

-2
0

2

z
1

-3-2-10123
J

4
8

 |
 R

2
=

0
.7

8
8

00
.2

0
.4

0
.6

0
.8

1

(e
)

-2
0

2

z
1

-3-2-10123

z
2

K
N

N
 |

 R
2
=

0
.8

0
5

(f
)

-2
0

2

z
1

-3-2-10123
L

-S
V

M
 |

 R
2
=

0
.7

5
4

(g
)

-2
0

2

z
1

-3-2-10123
P

o
ly

-S
V

M
 |

 R
2
=

0
.7

4
6

(h
)

-2
0

2

z
1

-3-2-10123
R

B
F

-S
V

M
 |

 R
2
=

0
.7

8
7

(i
)

-2
0

2

z
1

-3-2-10123
R

F
 |

 R
2
=

0
.4

5
6

00
.2

0
.4

0
.6

0
.8

1

(j
)

F
ig

.
3

N
or

m
al

iz
ed

er
ro

r
ra

te
of

ea
ch

cl
as

si
fi

ca
ti

on
al

go
ri

th
m

on
th

e
pr

oj
ec

te
d

in
st

an
ce

sp
ac

e

123

Mach Learn (2018) 107:109–147 131

-2 0 2

z
1

-3

-2

-1

0

1

2

3

z
2

Observations (log
10

 scale)

1e+01

1e+02

1e+03

1e+04

(a)

-2 0 2

z
1

-3

-2

-1

0

1

2

3

z
2

Attributes (log
10

 scale)

1e+01

1e+02

1e+03

(b)

-2 0 2

z
1

-3

-2

-1

0

1

2

3

z
2

Classes (log
10

 scale)

1e+01

1e+02

(c)

Fig. 4 Sizes of the instances in terms of the number of observations (p), attributes (q), and classes (K). All
have been log10-scaled

that explain performance. We see this mirrored also in the performance prediction results in
Table 5.

Figure 4 illustrates the size of the instances by the number of (a) observations, (b) attributes,
and (c) classes. We report that 2.5% of the instances have less than 50 observations, 5.9%
having less than 100, and only 1.7% have more than 10,000. The majority of instances (66.1%)
have between 100 and 2000 observations. In terms of attributes, 33.5% of the instances have
less than ten attributes, 76.7% have less than 50, and only 2.5% have more than 500. In terms
of classes, 53.8% of the instances have two classes, 14.8% have three classes. Only 5.9% of
the instances have more than ten classes, with the largest being 102. In general, the selected
UCI/KEEL/DCol set is skewed towards binary problems with a middle sized number of
observations and attributes. It should be noted that we omitted very large datasets due to
computational constraints when evaluating 509 features for the statistical study, but we don’t
believe this limits our conclusions except for the absence of huge big-data problems. We
should still be able to understand how the features of a dataset combine to create complexity
even for moderate-sized datasets.

From these figures we can conclude that, for our selected 235 instances, the number of
observations per instance increases from top to bottom, while the number of classes from
right to left. There is no trend emerging from the number of attributes; hence, it does not
influence the performance of the algorithms as much as the number of observations or classes.
Those algorithms whose R2 is above 0.500 tend to find easier the instances on the bottom left
side of the space, whereas the remaining algorithms tend to find easier those in the bottom
center of the space. This means that most of the instances with a high number of observations
and classes are relatively easier for most algorithms, with the exception of LDA and QDA. In
general, high values of H(X)

′

max, DNE R and N1 tend to produce harder instances for most
algorithms.

7 Objective assessment of algorithmic power

Our method for objective assessment of algorithmic power is based on the accurate estimation
and characterization of each algorithm’s footprint—a region in the space of all possible
instances of the problem where an algorithm is expected to perform well based on inference
from empirical performance analysis.

We have previously reported methods for calculation and analysis of algorithm footprints
as a generalized boundary around known easy instances. For example, in Smith-Miles and

123

132 Mach Learn (2018) 107:109–147

Table 6 Footprint analysis of the algorithms using Eq. (1) and β = 0.5

E R ≤ 0.2 Best algorithm

αN (%) dN (%) p (%) αN (%) dN (%) p (%)

NB 43.5 115.0 97.4 0.3 516.7 100.0

LDA 40.2 131.8 98.4 0.0 0.0 0.0

QDA 8.5 238.3 97.9 0.0 0.0 0.0

CART 57.6 114.5 98.7 5.2 74.9 77.8

J48 63.7 108.9 98.1 6.5 178.9 81.5

KNN 62.4 109.2 98.1 0.6 292.6 100.0

L-SVM 53.1 125.1 98.7 5.4 112.4 85.7

poly-SVM 37.1 126.6 98.2 0.0 0.0 0.0

RBF-SVM 55.5 126.6 96.9 0.0 0.0 0.0

RF 50.4 129.0 95.4 15.9 197.3 75.3

β-easy 52.3 128.5 98.7

β-hard 19.7 140.2 90.6

αN is the area, dN the density and p the purity. The footprint areas (and their density and
purity) are shown where algorithm performance is good (E R ≤ 0.2) and best

Tan (2012) we used the area of the convex hull created by triangulating the instances where
good performance was observed. The convex hull was then pruned by removing those tri-
angles whose edges exceeded a user-defined threshold. However, there may be insufficient
evidence that the remaining triangles actually represent areas of good performance. In Smith-
Miles et al. (2014), unconnected triangles were generated by finding the nearest neighbors
and maintaining a taboo list. The triangles were merged together if the resulting region ful-
filled some density and purity requirements. However, randomization steps in the triangle
construction process lead to some triangles becoming exceedingly large. In this paper, we
use an improved approach (Muñoz and Smith-Miles 2017) described by the two algorithms
presented in Appendix B.

Algorithm 1 constructs the footprints following these steps: (i) measuring the distances
between all instances, while marking for elimination those instances with a distance lower
than a threshold, δ; (ii) calculating a Delaunay triangulation with the remaining instances; (iii)
finding the concave hull, by removing any triangle with edges larger than another threshold,
�; (iv) calculating the density and purity of each triangle in the concave hull; and, (v)
removing any triangle that does not fulfill the density and purity limits.

The parameters for Algorithm 1 are: the lower and upper distance thresholds, {δ,�}, set
to 1 and 25% of the maximum distance respectively. The density threshold, ρ, is set to 10,
and the purity threshold, π , is set to 75%. Algorithm 2 removes the contradictions that could
appear when two conclusions could be drawn from the same section of I due to overlapping
footprints, e.g., when comparing two algorithms. This is achieved by comparing the area lost
by the overlapping footprints when the contradicting sections are removed, while maintaining
the density and purity thresholds.

Table 6 presents the results from the analysis using Eq. (1) to define the instance hardness.
The best algorithm is the one such that ER is the lowest for the given instance. In addition,

123

Mach Learn (2018) 107:109–147 133

an instance is also defined as β-hard with β = 0.5 if 50% of the algorithms have an error
rate higher than 20%. The results have been normalized over the area (11.6685) and density
(19.8827) of the convex hull that encloses all instances. Further results are also illustrated in
Fig. 5, which shows the instances whose error rate is below 20% as blue marks and above
20% as red marks. The footprint for QDA has a normalized area of 8.5%, making QDA the
weakest algorithm in the portfolio, while J48 with an area of 63.7% could be considered the
strongest. However, given the lack of diversity on the UCI/KEEL/DCol set, most algorithms
fail in similar regions of the space, and we lack instances that reveal more subtle differences
in performance. In fact, over half of the instance space is considered to have β-easy instances,
while β-hard instances occupy only 20% approximately, for β = 0.5. Besides, large empty
areas are visible. For example, a single instance is located at z = [0.744, 2.833], with the next
closest located at z = [0.938, 2.281]. This single instance has E R > 20% for all algorithms
except J48, whereas the nearby instances have E R > 20% for all algorithms. Therefore,
more instances are needed to conclude whether this region represents a strength for J48.

Figure 6 illustrates in the instance space for each instance (a) their best algorithm and (b)
their β-hardness. Inspection of the best algorithm explains the results observed in Table 6 for
the best algorithm, in which case LDA, QDA, poly-SVM and RBF-SVM footprints cover 0%
of the instance space. This means there is no dense concentration of instances for which these
algorithms are the best, although they are still competitive across a broad part of the instance
space. Instead, the location of instances for which these algorithms are best are scattered
throughout the space limiting our ability to construct a footprint of confidence. Of course,
default parameters have been used for all algorithms, and the footprint calculation could be
different with parameter tuning to allow each algorithm to maximize its footprint. We also
observe less than ideal purity is present for most algorithms, due to significant overlap between
footprints. Overall, the selection of the best algorithm seems to be more related to the number
of attributes than any other feature. Furthermore, β-hardness of the UCI/KEEL/DCol set of
instances is consistent with the conclusions drawn from Figs. 3 and 5, which show that most
of these algorithms have similar performances on the problem set I. Despite our extensive
efforts to generate an instance space to provide visual insights into algorithm strengths and
weaknesses—using a rigorous feature selection process and optimized projection to 2-D—
we believe that the instances in UCI/KEEL/DCol are not sufficiently diverse to reveal the
kinds of insights we seek.

8 Generation of artificial problem instances

While most of the UCI/KEEL/DCol instances are based on real-world data, the results from
Sects. 6 and 7 demonstrate the limitations of this set for refined algorithm evaluation. Most
instances elicit similar performance from fundamentally different algorithms, such as KNN,
RBF-SVM and RF. Furthermore, there are a few areas in the instance space in which the
number of instances is scarce. For example, the single instance at z = [0.744, 2.833], for
which only J48 achieved E R ≤ 20%. These limitations provide an opportunity to generate
new instances that (i) may produce different performance from existing algorithms, such that
their strengths and weaknesses can be better understood; (ii) have features that will place
them in empty areas within the space, or that help push the boundaries currently known; and
(iii) represent modern challenges in machine learning classification.

Perhaps the most common way to artificially generate test instances is to select and sample
an arbitrary probability distribution. However, this approach lacks control, as there is no

123

134 Mach Learn (2018) 107:109–147

F
ig

.
5

Fo
ot

pr
in

ts
of

th
e

al
go

ri
th

m
s

in
th

e
in

st
an

ce
sp

ac
e

123

Mach Learn (2018) 107:109–147 135

(a) (b)

Fig. 6 Overall performance of the algorithm portfolio, with the best algorithm for each instance shown in
(a), while b shows blue marks representing β-easy instances, and red marks representing β-hard instances

guarantee that the resulting dataset will have specific features. In Macia and Bernadó-Mansilla
(2014), an alternative method is proposed, in which a “seed” dataset is adjusted by evolving
each observation. However, this approach resulted in very little change in the features of
the dataset (merely a small magnitude perturbation), which makes it unsuitable for our task
of exploring empty areas or pushing the boundaries of the instance space. Furthermore, as
the number of observations increases, the evolution process becomes quickly intractable. An
alternative is provided in Soares (2009), where new datasets are obtained by switching an
independent attribute with the class vector. Assuming q categorical attributes, it is possible to
obtain q new derived datasets. However, this approach is susceptible to missing target values,
skewed class distributions, or difficulties when the new class is completely uncorrelated to
the independent variables.

So we present in this paper a proof-of-concept for a new method to generate test instances
by evolving datasets to lie at target locations in the instance space. Before describing this
method though, we first consider whether selecting other datasets beyond the UCI repository,
KEEL and DCoL would have given a more diverse instance space. A recent popular addi-
tion to classification dataset repositories comes from the OpenML project (Vanschoren et al.
2013). Figure 7 shows the results of projecting a set of OpenML datasets into our instance
space. The blue marks represent the original UCI/KEEL/DCoL set, while the red marks are
a selection of OpenML datasets of similar size to those in the UCI/KEEL/DCoL set, that is,
those with less than 50 classes, 100 features and 104 observations, with no missing values.3

This resulted in 247 datasets, 49 of which are also in the UCI/KEEL/DCoL set. The figure
shows that a large portion of the OpenML datasets fall within the areas currently covered
by the UCI/KEEL/DCoL set. However, a number of datasets cover previously empty areas
in the upper left corner of the space. This suggests that there is some additional diversity
created by considering OpenML datasets within the problem sizes considered in this study.
Although relaxing the size restrictions used in this example may improve the diversity, com-
plexity should be increased without resorting to expanding the dataset size. Therefore, there
is substantial scope to generate more complex datasets of similar sizes.

3 To extract the relevant datasets, we follow the example in https://mlr-org.github.io/Benchmarking-mlr-
learners-on-OpenML/, which are listed in Sect. 1 of the supplementary material.

123

https://mlr-org.github.io/Benchmarking-mlr-learners-on-OpenML/
https://mlr-org.github.io/Benchmarking-mlr-learners-on-OpenML/

136 Mach Learn (2018) 107:109–147

Fig. 7 Location of 247 instances
from OpenML in the constructed
instance space. The blue marks
represent the original
UCI/KEEL/DCoL set, while the
red marks are those OpenML
problems with less than 50
classes, 100 features and 104

observations, without missing
values

-2 0 2

z
1

-3

-2

-1

0

1

2

3

z
2

UCI

OpenML

8.1 Generating datasets by fitting Gaussian mixture models

To generate instances with a desired target vector of features, fT , we tune a Gaussian mixture
model (GMM) until the mean squared error (MSE) between fT and the feature vector of a
sample from the GMM, fS , is zero, assuming that the GMM is sampled using a fixed seed
to guarantee some level of repeatability. Let us define our GMM as having κ components on
q attributes; therefore, the probability of an observation x, being sampled from the GMM is
defined as:

pr (x) =

κ∑

k=1

φkN (µk, k)

where
{
φk ∈ R,µk ∈ R

q , k ∈ R
q×q

}
are the weight, mean vector, and covariance matrix

of a q-variate normal distribution respectively. For simplicity, we set κ to be a mul-
tiple of the number of labels, K , and φk = κ−1 for all components. Tuning the
GMM can be thought of as a continuous black-box minimization problem; therefore,
we use BIPOP-CMA-ES (Hansen 2009) as in Sect. 6.1. To use this method, we must
represent the GMM parameters,

{
µ1, . . . ,µκ , 1, . . . , κ

}
, as a vector θ . Since k

must be a positive semi-definite matrix, we can assume the existence of its Cholesky
decomposition, i.e., an upper triangular matrix Ak such that k = A⊤

k Ak . There-
fore, θ is defined as

[
μ1,1, . . . , μq,1, . . . , μ1,κ , . . . , μq,κ , a1,1,1, . . . , a1,q,1, a2,2,1, . . . ,

a2,q,1, . . . , aq,q,1, . . . , a1,1,κ , . . . a1,q,κ , a2,2,κ , . . . , a2,q,κ , . . . , aq,q,κ

]⊤
, where μ·,k are the

elements of the vector µk , and a·,·,k are the non-zero elements of Ak . A dataset is completely
defined by setting the number of observations, p. This approach has a number of advan-
tages: (i) it is scalable by increasing the number of attributes, observations and classes; (ii)
it allows additional flexibility, by setting the values of κ and φk ; (iii) it enables control over
the covariance between attributes, as σ 2

·,·,k can be set permanently to a constant value, even
zero, which also has the advantage of reducing the length of θ ; (iv) it produces immediately a
model of the data distribution, which is a solution to the classification and clustering problem;
and (v) the optimization problem is unconstrained. Nevertheless, this approach does have
some limitations: (i) a GMM produces datasets whose attributes are Gaussian distributed real
values, eliminating the possibility of more complex variable types, such as categorical; (ii)
the fitting problem is known to have local optima; and (iii) it can be can be computationally
expensive for very large datasets, or inaccurate for very small ones.

Nevertheless, to test this proposed generation approach, we define two experiment types.
The first one is aimed at validation, where we create datasets whose features mimic those of the

123

Mach Learn (2018) 107:109–147 137

well known Iris dataset. Given that the instances can be described in the high dimensional
feature space or in its 2-dimensional projection, two experiments of this type in total are
carried out. The purpose of this experiment is to test whether the generation mechanism
can converge to a set of target features. Furthermore, this experiment provides additional
evidence of the instance space being a good representation, by confirming that a dataset with
similar features produces similar response from the algorithms. For simplicity, we fix the
dataset size to p = 150, q = 4, K = 3 and κ = 3K , and carry out ten repetitions with a
soft bound of 104 function evaluations, i.e., the number of times a GMM is tested. Under
these conditions, θ has a length of 84. The values of θ are sampled at random from a uniform
distribution between [− 10, 10].

For the second experiment, we aim to generate instances located elsewhere in the instance
space, with target feature vectors determined by a latin hyper-cube sample (LHS) in the 2-D
instance space, with bounds determined by the largest and smallest values for Z. Again we
use Iris as a template problem, i.e., p = 150, q = 4, K = 3, but we try to evolve the dataset
so that its features match a different target vector. We should note that fixing the size limits
our ability to achieve MSE=0, due to the relationships observed in Fig. 4 between {p, q, K }

and the instance location. However, this experiment will give us an indication of the location
bounds of Iris-sized problems in the space and their complexity. We set the value of κ = 3K ,
and select the values of θ at random from a uniform distribution between [− 10, 10]. Under
these conditions, θ has a length of 126. We carry out ten repetitions with a soft bound of 104

function evaluations.

8.2 Results

The results of the first experiment are presented in Table 7, as the ER of the test algorithms,
with the target defined in either the high-dimensional feature space (H) or the 2-D instance
space (L), et denotes the MSE to target per dimension, and ρe,p is the Pearson correlation
between et and the error rate of an algorithm. The generated instances were sorted from the
lowest to the highest et . In boldface are those instances whose difference in ER to Iris is higher
than the average difference in ER, which is presented in parenthesis below AVG. The table
shows that as et increases, the difference in ER to Iris increases, as demonstrated by ρe,p ,
with the exception of KNN, and to a lesser extent to CART. On average, the performance of
the generated instances differs by 3.0% compared to Iris. The location of the Iris dataset and
the newly generated Iris-like datasets in the instance space are shown in Fig. 8a and confirm
that the new instances indeed have similar features to Iris. These results demonstrate that our
generation approach can produce instances with controlled feature values—like Iris features
in this case—and those new instances elicit similar performance from the algorithms.

Figure 8b shows the results for the second experiment. Grey marks represent the
UCI/KEEL/DCol problems, blue marks represent the LHS targets, green marks represent
the starting location, red marks represent the stopping location, and the black mark repre-
sents the Iris problem. The black lines represent the trajectory of the evolution process, while
the red line represents the boundaries of the instance space considering the largest and small-
est observed values of X, and the correlation between features.4 These results demonstrate
that by randomly initializing an Iris-sized dataset and setting targets at different locations in
the instance space we can generate datasets that are located away from Iris, and have different
features despite having the same number of observations, attributes and classes. The evolu-
tion process converges towards distant targets, although not all targets were reachable within

4 Available in the supplementary material.

123

138 Mach Learn (2018) 107:109–147

Table 7 Error rate of the test algorithms over the Iris-matching instances, with the target defined in the feature
space (H) or its 2-D projection (L)

et NB LDA QDA CART J48 KNN L-SVM Poly-
SVM

RBF-
SVM

RandF

H 0.015 2.5 4.0 2.6 8.6 5.1 3.0 3.0 6.1 2.5 1.6

0.017 4.1 9.1 3.9 5.8 6.8 2.8 5.3 6.3 3.1 4.9

0.021 3.5 3.9 3.9 9.8 8.8 3.2 3.9 8.4 2.2 4.1

0.029 4.0 6.5 4.5 6.3 6.1 1.9 6.5 12.0 3.3 4.4

0.032 5.2 4.9 3.7 2.1 1.9 2.7 3.5 6.6 3.7 2.0

0.033 5.2 4.7 4.2 9.3 6.3 3.6 5.2 8.7 3.1 3.6

0.034 5.0 5.3 3.8 7.5 7.9 2.5 1.2 9.6 1.3 5.3

0.047 5.6 7.8 3.0 9.3 7.9 1.5 7.6 12.0 4.4 5.2

0.067 5.1 7.8 5.6 8.0 7.8 4.0 6.9 11.9 3.0 4.7

0.139 6.2 13.5 4.2 8.9 5.5 4.8 13.5 17.3 3.8 4.2

L 0.000 3.1 10.8 0.5 4.8 4.3 3.2 6.3 10.2 3.7 2.2

0.000 1.6 4.5 2.2 3.6 3.2 1.8 1.3 5.5 1.2 2.1

0.000 1.2 3.0 1.2 0.9 0.9 2.0 0.7 3.9 1.5 0.9

0.000 5.5 4.8 2.0 13.3 6.0 1.5 2.0 11.2 1.5 5.0

0.030 3.9 5.6 3.7 6.7 6.6 2.1 3.7 11.6 0.8 2.5

0.040 6.9 7.1 6.7 7.3 7.2 0.7 6.5 15.8 2.9 6.0

0.100 12.5 14.6 3.7 10.4 9.6 2.2 14.6 18.3 2.7 4.2

0.100 11.9 18.2 5.3 12.3 5.1 0.9 10.7 19.7 3.5 2.9

0.160 11.3 15.3 9.2 10.4 12.8 4.4 12.2 25.9 5.7 8.6

0.230 12.1 8.3 6.7 10.2 10.6 3.3 9.5 16.2 5.3 9.2

AVG 0.031 4.6 6.7 3.9 7.6 6.4 3.0 5.7 9.9 3.1 4.0

(3.1) (6.6) (2.4) (4.3) (3.1) (1.5) (4.1) (6.3) (1.2) (1.8)

Target 3.1 1.3 1.8 4.0 4.0 4.0 2.7 5.8 2.2 3.1

ρe,p 0.821 0.609 0.718 0.461 0.624 0.401 0.762 0.765 0.708 0.708

The symbol et denotes the average squared error per dimension, AVG denotes the average
per column or row, and ρe,p is the Pearson correlation between et and the error rate
In boldface are those instances whose difference in E R to Iris is higher than the average
difference in E R, which is presented in parenthesis below AVG
Instances are sorted from the lowest to the highest et

a reasonable computational time through our generation mechanism for Iris-sized problems.
At this point, we do not know whether this is due to the natural boundary that Iris-sized prob-
lems can feasibly occupy in the instance space given their range of features and correlations,
or if they could be forced to continue with a larger computational budget. More theoretical

123

Mach Learn (2018) 107:109–147 139

-5 0 5

z
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

z
2

UCI

Iris-H

Iris-L

Iris

BND

(a)

-5 0 5

z
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

z
2

UCI

HIST

START

END

TARGET

IRIS

BND

(b)

Fig. 8 Instance space showing Iris dataset (black) and attempts to generate new datasets that are a similar to
Iris, b Iris-sized instances located elsewhere (red) based on target features (blue)

work is needed to establish the instance space boundary for different sized problems, but the
potential of the method for generating new test instances has been demonstrated.

9 Conclusions

This paper addresses the issue of objective performance evaluation of machine learning
classifiers, and examines the criticality of test instances to support conclusions. Where we
find that well-studied test instances are inadequate to evaluate the strengths and weaknesses of
algorithms, we must seek methods to generate new instances that will provide the necessary
insights. A comprehensive methodology has been developed to enable the quality of the
UCI repository and other test instances used by most machine learning researchers to be
assessed, and for new classification datasets to be generated with controllable features. The
creation of a classification instance space is central to this methodology, and enables us to
visualize classification datasets as points in a two-dimensional space, after suitable projection
from a higher-dimensional feature space. In this paper we have proposed a new dimension
reduction technique ideally suited to our visualization objective, one that maximizes our
ability to visualize trends and correlations in instance features and algorithm performances
across the instance space. The visualization reveals pockets of hard and easy instances, shows
the (lack of) diversity of the set of instances, and enables an objective measure of the relative
performance of each algorithm—its footprint in the instance space where the algorithm is
expected to do well. Quantitative metrics, such as the area of the footprint, provide objective
measures of the relative power and robustness of an algorithm across the broadest range of
test instances.

The results presented in this paper demonstrate the lack of diversity of the benchmark
instances, as most algorithms had similar footprints, suggesting that either the algorithms are
all essentially the same (at least with default parameter settings), that the instances are not
revealing the unique strengths and weaknesses of each algorithm as much as is desired, or
that the features may not be discriminant enough. For this last case, it is also possible that
totally new features are required in order to describe the performance of some algorithms

123

140 Mach Learn (2018) 107:109–147

more effectively. Furthermore, there is significant bias on the sizes and types of problems
in the repository. Therefore, we proposed a method to generate new test instances, aiming
to enrich the repository’s diversity. Our method modifies a template probability distribution
until the features of a sample match a target, which can represent either an existing dataset,
or an arbitrary point in the space.

In addition to the contributions made in this paper to developing new methodologies—
instance generation and dimensional reduction—to support our broader objectives, this paper
has also contributed to the meta-learning literature through its comprehensive examination of
a collection of 509 features, to determine which ones can identify the presence of conditions
that challenge classification algorithms. The feature set was reduced to the ten most statisti-
cally significant features after analyzing the correlation between features and a measure of
algorithm performance. However, it should be noted that our final feature set is based on our
current data, the selected UCI/KEEL/DCol datasets; hence, the selected features may change
with a larger repository.

9.1 Future research

While there are theoretical and computational issues that limit our ability to extensively
explore and fill the gaps in the instance space at this time—e.g., the lack of precise theoretical
bounds of the instance space—our method shows significant promise. Further research on this
topic will develop theoretical upper and lower bounds on the features and their dependencies
to enable the theoretical boundary of the instance space to be defined more tightly than the
one shown in Fig. 8. We will also continue to examine the most efficient representation of a
dataset to ensure scalability and enable the instance space to be filled with new instances of
arbitrary size. Of course, once we have succeeded in generating a large number of new test
instances, we will need to verify that they are more useful for meta-learning, not just that
they have different features and live in unique parts of the instance space.

The methodology developed in this paper is an iterative one and will need to be repeated
as we accumulate more datasets with a diversity of features that really challenge algorithms.
In fact, the OpenML repository (Vanschoren et al. 2013) provides an excellent collection of
meta-data and additional features and algorithms from OpenML can be considered. Sampling
landmarking provides relevant meta-features to further extend our current feature set, whereas
meta-learning techniques such as those proposed by Lee and Giraud-Carrier (2013) provide
valuable resources to select a more comprehensive set of algorithms. New features may
need to be selected from the extended set of meta-features to explain the challenges of
new instances, and the statistical methodology we have presented can be applied again,
perhaps with even more altered datasets than used in this study. Conquering the computational
challenges exposed by this proof-of-concept study, and repeating the methodology on the
broadest set of instances—to determine the features that best explain the performance of
different portfolios of algorithms, and creating the definitive instance space—will enable
insights into the strengths and weaknesses of machine learning classifiers to be revealed.

Acknowledgements This work is funded by the Australian Research Council through Australian Laureate
Fellowship FL140100012. We gratefully acknowledge the support of NVIDIA Corporation with the donation
of the Tesla K40 GPU used for this research.

123

Mach Learn (2018) 107:109–147 141

Appendix A: Projection methodology

We consider the optimal solution to the projection problem:

min ‖F − Br Z‖2
F +

∥∥∥y⊤ − c⊤
r Z

∥∥∥
2

F

s.t. Z = Ar F

(D) Ar ∈ R
d×m

Br ∈ R
m×d

cr ∈ R
d (8)

Theorem 1 (D) has at least one global minimum.

Proof The problem can be presented as minimization of coercive function

f (Ar , Br , cr) = ‖F − Br Ar F‖2
F + ‖y⊤ − c⊤

r Ar F‖2
F .

Thus, (D) must have at least one global minimum. ⊓⊔

Theorem 2 (D) has infinitely many optimal solutions.

Proof If we neglect the constraint (8) and treat Z as an independent variable then we get the
following relaxation of the problem (D)

min ‖F − Br Z‖2
F +

∥∥∥y⊤ − c⊤
r Z

∥∥∥
2

F

s.t. Br ∈ R
m×d

(R) cr ∈ R
d

Z ∈ R
d×n

which can be rewritten as

min ‖F̄ − VZ‖2
F

(R
′

) s.t. Z ∈ R
d×n

V ∈ R
(m+1)×d

where

F̄ =

(
F

y⊤

)
and V =

(
Br

c⊤
r

)
∈ R

(m+1)×d (9)

From any feasible solution (V̄, Z̄) of (R
′
) we can construct a feasible solution of (D)

(
B̄r

c̄⊤
r

)
= V̄ (10)

Ār = Z̄F⊤(FF⊤)−1 (11)

with the same objective value. In other words, the relaxed problem (R
′
) provides an exact

lower bound to (D). Moreover, from any optimal solution to (R
′
) we can construct an optimal

solution to (D)—see Corollaries 1 and 2 below.
From PCA, we know that (R

′
) has infinitely many alternative solutions. Consequently,

(D) has infinitely many alternative solutions. ⊓⊔

123

142 Mach Learn (2018) 107:109–147

Corollary 1 An optimal solution to (D) can be constructed from eigenvectors of F̄F̄⊤. Pre-

cisely,
(

B̃r

c̃⊤
r

)
= Ṽ (12)

Ãr = Ṽ⊤

(
F

y⊤

)
F⊤(FF⊤)−1 (13)

where columns of Ṽ are the d eigenvectors of F̄F̄⊤ corresponding to the d largest eigenvalues.

Proof Immediate from PCA that eigenvectors of F̄F̄⊤ provide an optimal solution to (R
′
)

where columns of Ṽ are the d eigenvectors of F̄F̄⊤ corresponding to the d largest eigenvalues
and

Z̃ = Ṽ⊤F̄. (14)

⊓⊔

Note that the matrix Ṽ obtained from eigenvectors has orthonormal columns.
Due to the rank factorization, the problem (D) is equivalent to the following problem

min ‖F − RF‖2
F + ‖y⊤ − s⊤F‖2

F

(D
′

) s.t. rank

(
R

s⊤

)
= d

R ∈ R
m×m

s ∈ R
m (15)

Corollary 2 Let (R̃, s̃) be an optimal solution to (D
′
). Then the system

{
R̃ = Br Ar

s̃⊤ = c⊤
r Ar

(16)

is feasible and any solution of the system is an optimal solution to (D).

Proof Immediate from rank factorization. ⊓⊔

Corollary 1 provides a lower bound to the dimensionality reduction problem, which numer-
ically holds iif FF⊤ is invertible, otherwise the solution is numerically unstable. Otherwise,
Ṽ⊤F̄ �= ÃF meaning that the solution is unstable; hence, this analytic method is potentially
an approximation in the presence of numerical instability issues.

123

Mach Learn (2018) 107:109–147 143

Appendix B: Algorithms for footprint analysis

Input: A set of instances in the instance space, X, with their performance labels, y, and the purity, π , density, ρ, and
distance, {δ,�}, thresholds.

Output: An algorithm footprint composed of a triangulation, T, and a set of areas for each triangle t ∈ T, a.
// Generate a candidate list for triangulation

1 XGOOD =
{
xi : xi ∈ X, yi = GOOD

}
, N = |XGOOD|, e = {FALSE}N , a = {∅};

2 for i ← 1 to N do // Remove a candidate if
∥∥xi − x j

∥∥ < δ

3 for j ← 1 to N do

4 if
∥∥xi − x j

∥∥ < δ then

5 if ei = FALSE then e j = TRUE else e j = FALSE;
6 end

7 end

8 end

9 XTRI ←
{
xi : xi ∈ XGOOD, ei = FALSE

}
;

// Calculate the concave hull

10 T ← Delaunay (XTRI); // Find the Delaunay triangulation for XGOOD
11 for i ← 1 to |T| do // Remove any triangle with a side greater than �

12 if
∥∥xa − xb

∥∥ > � ∨
∥∥xb − xc

∥∥ > � ∨ ‖xc − xa‖ > � then T ← T −
{
ti

}

13 end

14 for i ← 1 to |T| do // Calculate the purity, density and area of each triangle

15 ai = AreaOfTriangle
(
ti

)
;

16 di = InstancesInTriangle
(
ti , X

)
/ai ;

17 pi = InstancesInTriangle
(
ti , XGOOD

)
/InstancesInTriangle

(
ti , X

)
;

// Remove the triangle if it does not meet the density and purity

requirements

18 if di < ρ ∨ pi < π then T ← T −
{
ti

}
else a ← a + ai ;

19 end

Algorithm 1: Calculation of an algorithm footprint using concave hulls with minimum
density and purity requirements. A triangle t is defined by a set of vertices {xa, xb, xc} ∈

XTRI.

Input: A base and test footprints, {Tbase, abase} and {Ttest, atest}.
Output: A recalculated base footprint.

1 α∣∣Tbase
∣∣×1 = 0; // Area of contradiction

// Determine if a base triangle is intercepted and measure its area of

contradiction

2 for i ← 1 to
∣∣Tbase

∣∣ do

3 for j ← 1 to |Ttest| do

4 if PolygonIntersection
(
tbase,i , ttest, j

)
is TRUE then αi = αi + atest, j ;

5 end

6 end

// Remove a base triangle if its area of contradiction is larger than its area

7 for i ← 1 to
∣∣Tbase

∣∣ do

8 if αi > abase,i then Tbase ← Tbase −
{
tbase,i

}
, abase ← abase −

{
abase,i

}

9 end

Algorithm 2: Footprint contradiction detection using polygon intersection. The algo-
rithm tests whether a base and a test footprint contradict each other. Then, it removes
the contradicting sections on the base footprint depending on the size of the area of
contradiction, i.e., the area lost by the test footprint when the contradicting triangles are
removed.

123

144 Mach Learn (2018) 107:109–147

References

Aha, D. W. (1992). Generalizing from case studies: A case study. In Proceedings of the 9th international

conference on machine learning (pp. 1–10).
Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., et al. (2010). Keel data-mining software

tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of

Multiple-Valued Logic and Soft Computing, 17(2–3), 255–287.
Ali, S., & Smith, K. A. (2006). On learning algorithm selection for classification. Applied Soft Computing,

6(2), 119–138.
Balte, A., Pise, N., & Kulkarni, P. (2014). Meta-learning with landmarking: A survey. International Journal

of Computer Applications, 105(8), 47–51.
Bensusan, H., & Giraud-Carrier, C. (2000). Discovering task neighbourhoods through landmark learning

performances. In D. A. Zighed, J. Komorowski, & J. Żytkow (Eds.), Principles of data mining and

knowledge discovery: 4th European conference, PKDD 2000 Lyon, France, September 13–16, 2000
Proceedings (pp. 325–330). Berlin, Heidelberg: Springer.

Brazdil, P., Carrier, C. G., Soares, C., & Vilalta, R. (2008). Metalearning: Applications to data mining. Berlin:
Springer Science & Business Media.

Brazdil, P., Gama, J., & Henery, B. (1994). Characterizing the applicability of classification algorithms using
meta-level learning. In Machine learning: ECML-94 (pp. 83–102). Springer.

Burton, S. H., Morris, R. G., Giraud-Carrier, C. G., West, J. H., & Thackeray, R. (2014). Mining useful
association rules from questionnaire data. Intelligent Data Analysis, 18(3), 479–494.

Caputo, B., Sim, K., Furesjo, F., & Smola, A. (2002). Appearance-based object recognition using SVMS:
Which kernel should I use? In: Proceedings of NIPS workshop on statistical methods for computational

experiments in visual processing and computer vision, Whistler (Vol. 2002).
Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). An overview of machine learning. In R. S.

Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach

(pp. 3–23). Berlin, Heidelberg: Springer.
Castiello, C., Castellano, G., & Fanelli, A. M. (2005). Meta-data: Characterization of input features for meta-

learning. In V. Torra, Y. Narukawa, & S. Miyamoto (Eds.), Modeling decisions for artificial intelligence:

Second international conference, MDAI 2005, Tsukuba, Japan, July 25–27, 2005 Proceedings (pp. 457–
468). Berlin, Heidelberg: Springer.

Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98–101.
Culberson, J. C. (1998). On the futility of blind search: An algorithmic view of “no free lunch”. Evolutionary

Computation, 6(2), 109–127.
Fayyad, U. M., & Irani, K. B. (1992). On the handling of continuous-valued attributes in decision tree gener-

ation. Machine Learning, 8(1), 87–102.
Flach, P. (2012). Machine learning: The art and science of algorithms that make sense of data. Cambridge:

Cambridge University Press.
Fujikawa, Y., & Ho, T. (2002). Cluster-based algorithms for dealing with missing values. In Pacific-Asia

conference on knowledge discovery and data mining (pp. 549–554). Springer
Fürnkranz, J., & Petrak, J. (2001). An evaluation of landmarking variants. In Working notes of the ECML/PKDD

2000 workshop on integrating aspects of data mining, decision support and meta-learning (pp. 57–68).
Gama, J., & Brazdil, P. (1995). Characterization of classification algorithms. In C. Pinto-Ferreira & N. J.

Mamede (Eds.), Progress in artificial intelligence: 7th Portuguese conference on artificial intelligence,
EPIA ’95 Funchal, Madeira Island, Portugal, October 3–6, 1995 Proceedings (pp. 189–200). Berlin,
Heidelberg: Springer.

Ganganwar, V. (2012). An overview of classification algorithms for imbalanced datasets. International Journal

of Emerging Technology and Advanced Engineering, 2(4), 42–47.
Garcia, L. P., de Carvalho, A. C., & Lorena, A. C. (2015). Noise detection in the meta-learning level. Neuro-

computing, 176, 14–25.
Goethals, B., & Zaki, M. J. (2004). Advances in frequent itemset mining implementations: Report on FIMI’03.

ACM SIGKDD Explorations Newsletter, 6(1), 109–117.
Hansen, N. (2009). Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed. In GECCO

’09 (pp. 2389–2396). ACM. https://doi.org/10.1145/1570256.1570333
Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: Data mining,

inference and prediction. The Mathematical Intelligencer, 27(2), 83–85.
Hechenbichler, K. S. K. (2014). kknn: Weighted k-nearest neighbors. http://CRAN.R-project.org/package=

kknn. R package version 1.2-5.
Ho, T. K., & Basu, M. (2002). Complexity measures of supervised classification problems. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 24(3), 289–300.

123

https://doi.org/10.1145/1570256.1570333
http://CRAN.R-project.org/package=kknn
http://CRAN.R-project.org/package=kknn

Mach Learn (2018) 107:109–147 145

Holmes, G., Donkin, A., & Witten, I. H. (1994). Weka: A machine learning workbench. In Proceedings of

the 1994 second Australian and New Zealand conference on intelligent information systems, 1994 (pp.
357–361). IEEE.

Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine

Learning, 11(1), 63–90.
Igel, C., & Toussaint, M. (2005). A no-free-lunch theorem for non-uniform distributions of target functions.

Journal of Mathematical Modelling and Algorithms, 3(4), 313–322.
Jordan, M., & Mitchell, T. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245),

255–260.
Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab—An S4 package for kernel methods in

R. Journal of Statistical Software, 11(9), 1–20.
Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31,

249–268.
Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: A review of classification and

combining techniques. Artificial Intelligence Review, 26(3), 159–190.
Langley, P. (2011). The changing science of machine learning. Machine Learning, 82(3), 275–279.
Lee, J. W., & Giraud-Carrier, C. (2013). Automatic selection of classification learning algorithms for data

mining practitioners. Intelligent Data Analysis, 17(4), 665–678.
Leite, R., & Brazdil, P. (2008). Selecting classifiers using metalearning with sampling landmarks and

data characterization. In Proceedings of the planning to learn workshop (PlanLearn 2008), held at

ICML/COLT/UAI (pp. 35–41).
Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification

algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1),
124–136.

Lichman, M. (2013). UCI machine learning repository. http://archive.ics.uci.edu/ml
Lindner, G., & Studer, R. (1999). AST: Support for algorithm selection with a CBR approach. In J. M. Żytkow

& J. Rauch (Eds.), Principles of data mining and knowledge discovery: Third European conference,
PKDD’99, Prague, Czech Republic, September 15–18, 1999 Proceedings (pp. 418–423). Berlin, Heidel-
berg: Springer.

Macia, N., & Bernadó-Mansilla, E. (2014). Towards UCI+: A mindful repository design. Information Sciences,
261, 237–262.

Macià, N., Orriols-Puig, A., Bernadó-Mansilla, E. (2010). In search of targeted-complexity problems. In
Proceedings of the 12th annual conference on genetic and evolutionary computation (pp. 1055–1062).
ACM.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2015). e1071: Misc functions of the

Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien (2015). http://CRAN.
R-project.org/package=e1071. R package version 1.6-7.

Michie, D., Spiegelhalter, D. J., Taylor, C. C., & Campbell, J. (Eds.). (1994). Machine learning, neural and

statistical classification. Upper Saddle River, NJ: Ellis Horwood.
Muñoz, M. A., & Smith-Miles, K. A. (2017). Performance analysis of continuous black-box optimization

algorithms via footprints in instance space. Evolutionary Computation, 25(4), 529–554.
Orriols-Puig, A., Macia, N., & Ho, T. K. (2010). Documentation for the data complexity library in c++ (Vol.

196). La Salle: Universitat Ramon Llull.
Peng, Y., Flach, P. A., Soares, C., & Brazdil, P. (2002). Improved dataset characterisation for meta-learning.

In S. Lange, K. Satoh, & C. H. Smith (Eds.), Discovery science: 5th international conference, DS 2002
Lübeck, Germany, November 24–26, 2002 Proceedings (pp. 141–152). Berlin, Heidelberg: Springer.

Perez, E., & Rendell, L. A. (1996). Learning despite concept variation by finding structure in attribute-based
data. In Proceedings of the thirteenth international conference on machine learning. Citeseer.

Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. (2000a). Meta-learning by landmarking various learning
algorithms. In Proceedings of the seventeenth international conference on machine learning (pp. 743–
750). San Francisco, CA: Morgan Kaufmann Publishers Inc.

Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. (2000b). Tell me who can learn you and I can tell you who
you are: Landmarking various learning algorithms. In Proceedings of the 17th international conference

on machine learning (pp. 743–750).
Ramakrishnan, N., Rice, J. R., & Houstis, E. N. (2002). Gauss: An online algorithm selection system for

numerical quadrature. Advances in Engineering Software, 33(1), 27–36.
Reif, M., & Shafait, F. (2014). Efficient feature size reduction via predictive forward selection. Pattern Recog-

nition, 47(4), 1664–1673.
Reif, M., Shafait, F., & Dengel, A. (2012). Meta-learning for evolutionary parameter optimization of classifiers.

Machine Learning, 87(3), 357–380.

123

http://archive.ics.uci.edu/ml
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071

146 Mach Learn (2018) 107:109–147

Reif, M., Shafait, F., Goldstein, M., Breuel, T., & Dengel, A. (2014). Automatic classifier selection for non-
experts. Pattern Analysis and Applications, 17(1), 83–96.

Rendell, L., & Cho, H. (1990). Empirical learning as a function of concept character. Machine Learning, 5(3),
267–298.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.
Robnik-Šikonja, M., & Kononenko, I. (2003). Theoretical and empirical analysis of relieff and rrelieff. Machine

Learning, 53(1–2), 23–69.
Rudin, C., & Wagstaff, K. L. (2014). Machine learning for science and society. Machine Learning, 95(1), 1–9.
Salzberg, S. L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining

and Knowledge Discovery, 1(3), 317–328.
Segrera, S., Pinho, J., & Moreno, M. N. (2008). Information-theoretic measures for meta-learning. In E. Cor-

chado, A. Abraham, & W. Pedrycz (Eds.), Hybrid artificial intelligence systems: Third international

workshop, HAIS 2008, Burgos, Spain, September 24–26, 2008 Proceedings (pp. 458–465). Berlin, Hei-
delberg: Springer.

Smith, K. A., Woo, F., Ciesielski, V., & Ibrahim, R. (2002). Matching data mining algorithm suitability to data
characteristics using a self-organizing map. In A. Abraham & M. Köppen (Eds.), Hybrid information

systems (pp. 169–179). Heidelberg: Physica-Verlag.
Smith-Miles, K., Baatar, D., Wreford, B., & Lewis, R. (2014). Towards objective measures of algorithm

performance across instance space. Computers & Operations Research, 45, 12–24.
Smith-Miles, K., & Bowly, S. (2015). Generating new test instances by evolving in instance space. Computers

& Operations Research, 63, 102–113.
Smith-Miles, K., & van Hemert, J. (2011). Discovering the suitability of optimisation algorithms by learning

from evolved instances. Annals of Mathematics and Artificial Intelligence, 61(2), 87–104.
Smith-Miles, K., & Lopes, L. (2012). Measuring instance difficulty for combinatorial optimization problems.

Computers & Operations Research, 39(5), 875–889.
Smith-Miles, K., & Tan, T. (2012). Measuring algorithm footprints in instance space. In IEEE CEC ’12 (pp.

3446–3453).
Smith-Miles, K., & Tan, T. T. (2012) Measuring algorithm footprints in instance space. In 2012 IEEE congress

on evolutionary computation (CEC) (pp. 1–8). IEEE.
Smith-Miles, K., Wreford, B., Lopes, L., & Insani, N. (2013). Predicting metaheuristic performance on graph

coloring problems using data mining. In E. Talbi (Ed.), Hybrid metaheuristics (pp. 417–432). Berlin,
Heidelberg: Springer.

Smith-Miles, K. A. (2008). Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM

Computing Surveys (CSUR), 41(1), 6.
Soares, C. (2009). UCI++: Improved support for algorithm selection using datasetoids. In Advances in knowl-

edge discovery and data mining: 13th Pacific-Asia conference, PAKDD 2009 Bangkok, Thailand, April
27–30, 2009 Proceedings (pp. 499–506). https://doi.org/10.1007/978-3-642-01307-2_46.

Soares, C., & Brazdil, P. B. (2000). Zoomed ranking: Selection of classification algorithms based on relevant
performance information. In D. A. Zighed, J. Komorowski, & J. Żytkow (Eds.), Principles of data mining

and knowledge discovery: 4th European Conference, PKDD 2000 Lyon, France, September 13–16, 2000
Proceedings (pp. 126–135). Berlin, Heidelberg: Springer.

Soares, C., Petrak, J., & Brazdil, P. (2001). Sampling-based relative landmarks: Systematically test-driving
algorithms before choosing. In Portuguese conference on artificial intelligence (pp. 88–95). Springer.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks.
Information Processing & Management, 45(4), 427–437.

Song, Q., Wang, G., & Wang, C. (2012). Automatic recommendation of classification algorithms based on
data set characteristics. Pattern Recognition, 45(7), 2672–2689.

Therneau, T., Atkinson, B., & Ripley, B. (2014). rpart: Recursive partitioning and regression trees. http://
CRAN.R-project.org/package=rpart. R package version 4.1-8.

Tsoumakas, G., Vlahavas, I. (2007). Random k-labelsets: An ensemble method for multilabel classification.
In European conference on machine learning (pp. 406–417). Springer.

Vanschoren, J. (2010). Understanding machine learning performance with experiment databases. PhD thesis,
Katholieke Universiteit Leuven – Faculty of Engineering.

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2013). Openml: Networked science in machine learning.
SIGKDD Explorations, 15(2), 49–60. https://doi.org/10.1145/2641190.2641198.

Vapnik, V. N. (1995). The nature of statistical learning theory. New York, NY: Springer-Verlag.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer, New York.

http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0

123

https://doi.org/10.1007/978-3-642-01307-2_46
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
https://doi.org/10.1145/2641190.2641198
http://www.stats.ox.ac.uk/pub/MASS4

Mach Learn (2018) 107:109–147 147

Vilalta, R. (1999). Understanding accuracy performance through concept characterization and algorithm anal-
ysis. In Proceedings of the ICML-99 workshop on recent advances in meta-learning and future work (pp.
3–9).

Vilalta, R., & Drissi, Y. (2002). A characterization of difficult problems in classification. In M. A. Wani, H. R.
Arabnia, K. J. Cios, K. Hafeez, & G. Kendall (Eds.), Proceedings of the 2002 international conference on

machine learning and applications - ICMLA 2002, June 24–27, 2002, Las Vegas, Nevada (pp. 133–138).
Wagstaff, K. (2012). Machine learning that matters. arXiv preprint arXiv:1206.4656
Weerawarana, S., Houstis, E. N., Rice, J. R., Joshi, A., & Houstis, C. E. (1996). Pythia: A knowledge-based

system to select scientific algorithms. ACM Transactions on Mathematical Software (TOMS), 22(4),
447–468.

Yarrow, S., Razak, K. A., Seitz, A. R., & Seriès, P. (2014). Detecting and quantifying topography in neural
maps. PLoS ONE, 9(2), 1–14. https://doi.org/10.1371/journal.pone.0087178.

Young, W., Weckman, G., & Holland, W. (2011). A survey of methodologies for the treatment of missing values
within datasets: Limitations and benefits. Theoretical Issues in Ergonomics Science, 12(1), 15–43.

123

http://arxiv.org/abs/1206.4656
https://doi.org/10.1371/journal.pone.0087178

	Instance spaces for machine learning classification
	Abstract
	1 Introduction
	2 Methodological framework
	3 Meta-data for supervised classification algorithms
	3.1 Problem instances mathcalI
	3.2 Algorithms mathcalA
	3.3 Performance metric mathcalY
	3.4 Features mathcalF

	4 Feature selection
	5 Assessing adequacy of the feature set via performance prediction
	6 Creating an instance space
	6.1 A new interpretable projection approach
	6.2 Instance space results

	7 Objective assessment of algorithmic power
	8 Generation of artificial problem instances
	8.1 Generating datasets by fitting Gaussian mixture models
	8.2 Results

	9 Conclusions
	9.1 Future research

	Acknowledgements
	Appendix A: Projection methodology
	Appendix B: Algorithms for footprint analysis

	References

