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Abstract
In this paper we will show how we may, through the use of some extended product expressions for the
Gamma function on the characteristic functions of the negative logarithm of the product of particular in-
dependent Beta random variables, whose second parameters are rational and follow some amenable rules,
obtain in a single shot (i) simple expressions for both the probability density and cumulative distribution
functions of this product, as well as, concomitantly (ii) very simple and easy to compute alternative finite
form expressions for instances of the Meijer G and Fox H functions. These alternative expressions are based
on the expressions for the probability density and cumulative distribution functions of the generalized integer
Gamma distribution and are not used or recognized by the available softwares.

Keywords: characteristic function, distribution of likelihood ratio statistics, Fox H function, Generalized
Integer Gamma (GIG) distribution, sum of independent Gamma random variables.

1. Introduction

By using two extended multiplication formulas for the Gamma function we will be able to show the
equivalence of the distribution of two multiple products of independent Beta r.v.’s (random variables) with
rational second parameters, which follow some amenable rules, to the distribution of products of positive
powers of independent Beta r.v.’s with integer second parameters. Then, it will not be hard to establish the
equivalence of the distribution of such products to that of the exponential of a GIG (Generalized Integer
Gamma) distributed r.v. (Coelho, 1998, 1999). From this result we will then be able to establish the equiv-
alence between some instances of the Meijer G function and the Fox H function and between these and the
expressions for the p.d.f. (probability density function) and the c.d.f. (cumulative distribution function) of
the exponential of GIG distributed r.v.’s.

The establishment of these results is useful in helping to recognize a number of situations, not previously
identified, and as such, not able to be sorted out by the available softwares, in which the Meijer G and Fox
H functions have an alternative finite and consequently much more manageable representations, through the
p.d.f. and c.d.f. of a GIG distribution. This results in huge gains in computation time and precision.

A number of applications of the results obtained to the exact distribution of several l.r.t. (likelihood ratio
test) statistics are brought to the reader’s attention.
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2. Particular cases of the distribution of the product of independent Beta random variables with finite
representation for the exact distribution

2.1. Some preliminary results

It is not hard to show that the exact distribution of any product of any positive powers of independent
Beta distributed random variables with integer second parameters has a finite closed form representation.

Indeed, if

Z =

p∏
j=1

Xc j

j and W = − log Z , (2.1)

where c j are positive reals and X j ∼ Beta(a j, b j) with b j being positive integers, for all j = 1, . . . , p, then,
using the fact that for every integer n and complex number a we have

Γ(a + n)
Γ(a)

=

n−1∏
`=0

(a + `) ,

we may write the c.f. (characteristic function) of W = − log Z as

ΦW (t) =

p∏
j=1

Γ(a j + b j)
Γ(a j)

Γ(a j − c jit)
Γ(a j + b j − c jit)

=

p∏
j=1

b j−1∏
`=0

(a j + `) (a j + ` − c jit)−1

=

p∏
j=1

b j−1∏
`=0

a j + `

c j

(
a j + `

c j
− it

)−1

,

which is the c.f. of a sum of
p∑

j=1
b j independent Exponential r.v.’s with rate parameters a j+`

c j
(` = 0, . . . , b j − 1;

j = 1, . . . , p).
From this result we may then write, for the Beta r.v.’s in (2.1),

p∏
j=1

Xc j

j
d
≡

p∏
j=1

b j−1∏
`=0

e−W j` , or W
d
≡

p∑
j=1

b j−1∑
`=0

W j` (2.2)

where W j` ∼ Exp
(

a j+`

c j

)
(` = 0, . . . , b j − 1; j = 1, . . . , p) are independent r.v.’s.

In case some of the parameters a j+`

c j
are equal, then if there are for example g of the

p∑
j=1

b j parame-

ters a j+`

c j
which are different, let them be the elements of the set {dh : h = 1, . . . , g} and let then rh be

the number of times the parameter dh occurs. Then the exact distribution of W is a Generalized Integer
Gamma (GIG) distribution of depth g (Coelho, 1998, 1999), with rate parameters dh and shape parameters
rh (h = 1, . . . , g). Consequently, the distribution of Y = e−W is what Arnold et al. (2012) call an EGIG (Ex-
ponentiated Generalized Integer Gamma) distribution of depth g, with the same shape and rate parameters
of the corresponding GIG distribution. Both the p.d.f. and the c.d.f. of this distribution have finite form
representations not involving any series or unsolved integrals and are highly manageable, allowing for an
accurate and easy computation of quantiles and p-values.
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Based on this result and on some extended gamma product expressions, it is possible to show that the
exact distribution of a number of multiple products of independent Beta r.v.’s whose second parameter is
rational have finite form representations of this type.

However, in order for this to happen, both parameters of the whole set of Beta r.v.’s involved in the
product have to obey some amenable rules.

Such products are important since they not only allow us to devise finite form representations for particu-
lar instances of the Meijer G function, but also because particular cases of the more general forms presented
here yield the exact distributions of a number of l.r.t. statistics used in Multivariate Analysis, which then
have finite closed form representations for their p.d.f.’s and c.d.f.’s.

Two different kinds of such products are presented in subsection 2.2. In Section 4 we present a number
of l.r.t. statistics whose distributions may be represented in the form of these products and that, as such, have
closed finite forms for their p.d.f.’s and c.d.f.’s.

2.2. Two different multiple products of independent Beta r.v.’s which distributions have finite form represen-
tations

In this subsection we will show how by working on the c.f. of the negative logarithm of multiple products
of independent Beta r.v.’s, whose second parameters are rational and follow some rules, we are able to
establish that in these cases the distributions of these products have closed finite forms for their p.d.f.’s and
c.d.f.’s, with quite simple and much manageable expressions, actually in the form of p.d.f.’s and c.d.f.’s of
the exponential of GIG distributed r.v.’s.

In order to keep the notation simpler, in the following two Theorems we will denote the random variable
with a given Beta distribution by the corresponding distribution itself.

Theorem 1. For positive integers nν, kν` and mν` (ν = 1, . . . ,m∗; ` = 1, . . . , nν), and for aν >
pν

min{kν`}
, with

pν =
nν∑̀
=1

kν`,

Z =

m∗∏
ν=1

nν∏
`=1

kν∏̀
j=1

Beta
aν − j +

∑`−1
r=1 kνr

kν`
,

mν`

kν`

 d
≡

m∗∏
ν=1

nν∏
`=1

∑̀
r=1

kνr∏
j=1+

`−1∑
r=1

kνr

Beta
(
aν −

j
kν`

,
mν`

kν`

)
(2.3)

d
≡

m∗∏
ν=1

pν∏
j=1

Beta
(
aν −

j
kν j ∗

,
mν j ∗

kν j ∗

)
d
≡

m∗∏
ν=1

nν∏
`=1

(
Beta

(
aνkν` −

∑̀
r=1

kνr, mν`

))kν`
d
≡

m∗∏
ν=1

nν∏
`=1

mν`−1∏
i=0

e−Wν`i, (2.4)

or, for W = − log Z,

W
d
≡

m∗∑
ν=1

nν∑
`=1

mν`−1∑
i=0

Wν`i ,

where ’
d
≡’ stands for ’is equivalent in distribution to’, or ’is stochastically equivalent to’, and

Wν`i ∼ Exp

aν +

i −
∑̀
r=1

kνr

kν`

 ν = 1, . . . ,m∗; ` = 1, . . . , nν; i = 0, . . . ,mν` − 1 ,
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and where the Beta and exponential random variables involved in any product are all independent, with

j ∗ = 1 + # of elements in { j − kν} > 0 , kν =
{∑h

r=1 kνr, h = 1, . . . , nν
}
, ν = 1, . . . ,m∗ .

Proof. The equivalence in (2.3) is obtained only by reversing the indexation in j, but while the first equiva-
lence in (2.4) is obtained only by re-indexation, the second one needs the use of an extended version of the
usual multiplication formula for the Gamma function which, for any z, c ∈ C and n ∈ N, may be written as

n∏
j=1

Γ

(
z +

c − j
n

)
= Γ(nz + c − n) (2π)

n−1
2 n

1
2−nz−c+n . (2.5)

This extended multiplication formula may be very easily derived from the more common multiplication
formula for the Gamma function, which uses n ∈ N in place of c ∈ C and which, for any z ∈ C and n ∈ N,
may be written as

n∏
j=1

Γ

(
z +

j − 1
n

)
=

n∏
j=1

Γ

(
z +

n − j
n

)
= Γ(nz) (2π)

n−1
2 n

1
2−nz . (2.6)

Indeed, (2.5) may be immediately derived from (2.6) since we may write
n∏

j=1

Γ

(
z +

c − j
n

)
=

n∏
j=1

Γ

(
z +

c − n + n − j
n

)
.

Then, from the first expression in (2.3), using (2.5) in the c.f. of W = − log Z, this c.f. may be written as

ΦW (t) =

m∗∏
ν=1

nν∏
`=1

kν∏̀
j=1

Γ

(
aν −

j+
∑`−1

r=1 kνr
kν`

+
mν`

kν`

)
Γ

(
aν −

j+
∑`−1

r=1 kνr
kν`

) Γ

(
aν −

j+
∑`−1

r=1 kνr
kν`

− it
)

Γ

(
aν −

j+
∑`−1

r=1 kνr
kν`

+
mν`

kν`
− it

)

=

m∗∏
ν=1

nν∏
`=1

kν∏̀
j=1

Γ

(
aν +

mν`−
∑`

r=1 kνr
kν`

+
kν`− j

kν`

)
Γ

(
aν −

∑`
r=1 kνr
kν`

+
kν`− j

kν`

) Γ

(
aν −

∑`
r=1 kνr
kν`

+
kν`− j

kν`
− it

)
Γ

(
aν +

mν`−
∑`

r=1 kνr
kν`

+
kν`− j

kν`
− it

)
=

m∗∏
ν=1

nν∏
`=1

Γ
(
aνkν` + mν` −

∑`
r=1 kνr

)
Γ
(
aνkν` −

∑`
r=1 kνr

) Γ
(
aνkν` −

∑`
r=1 kνr − kν`it

)
Γ
(
aνkν` + mν` −

∑`
r=1 kνr − kν`it

)
which is the c.f. of the sum of the negative logarithm of the Beta r.v.’s in the second product in (2.4).

The last equivalence in (2.4) is then obtained by applying (2.2) and it shows that the exact distribution of
the original product of independent Beta r.v.’s is an EGIG distribution of depth at most

∑m∗
ν=1

∑nν
`=1 mν`. �

The particular case for kν` = kν and mν` = mν, for all ` = 1, . . . , nν yields the result in the following
Theorem.

Theorem 2. If in Theorem 1 we have kν` = kν and mν` = mν, for all ` = 1, . . . , nν, then with pν = nνkν,

Z =

m∗∏
ν=1

nν∏
`=1

kν∏
j=1

Beta
(
aν + 1 − ` −

j
kν
,

mν

kν

)
d
≡

m∗∏
ν=1

nν∏
`=1

kν∏̀
j=1+kν(`−1)

Beta
(
aν −

j
kν
,

mν

kν

)
(2.7)

d
≡

m∗∏
ν=1

pν∏
j=1

Beta
(
aν −

j
kν
,

mν

kν

)
d
≡

m∗∏
ν=1

nν∏
`=1

(
Beta

(
(aν − `)kν, mν

))kν d
≡

m∗∏
ν=1

mν+kν(nν−1)∏
j=1

e−Wν j , (2.8)
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or, for W = − log Z,

W
d
≡

m∗∑
ν=1

mν+kν(nν−1)∑
j=1

Wν j ,

where

Wν j ∼ Γ

(
rν j, aν − nν +

j − 1
kν

)
, ν = 1, . . . ,m∗; j = 1, . . . ,mν + kν(nν − 1) ,

with

rν j =

 hν j j = 1, . . . , kν

hν j + rν, j−k j = kν + 1, . . . ,mν + kν(nν − 1) ,
(2.9)

where

hν j = (# of elements in {pν,mν} ≥ j) − 1 , ν = 1, . . . ,m∗ , (2.10)

which shows that in this particular case the exact distribution is an EGIG distribution of depth at most∑m∗
ν=1 mν + kν(nν − 1), with shape parameters rν j and rate parameters aν − nν + j − 1kν (ν = 1, . . . ,m∗;

j = 1, . . . ,mν + kν(nν − 1)).

Proof. Because the result in this Theorem is a particular case of the one in Theorem 1, the main part of the
proof follows similar lines. Then the expression for the shape parameters rν j is obtained either by identifying
the different exponential c.f.’s that appear in the c.f. of W and counting how many of each of them occur, in
a manner in all similar to the one used by Coelho (1998, 2006) and by Arnold et al. (2012), or, equivalently,
by identifying the different poles through which the integration path used in the definition of the Meijer G
function in Section 3, passes through and by counting the number of times the path of integration passes
through each of these poles, as Wald and Brookner (1941) refer. �

A second type of multiple product of independent Beta r.v.’s with closed finite form representation for
their p.d.f. and c.d.f. is presented in Theorem 3.

Theorem 3. For positive integers kν, nν, non-negative integers sν and real aν>nνkν (ν=1, . . . ,m∗),

Z =

m∗∏
ν=1

nν∏
`=1

kν∏
j=1

Beta
(
aν−

(`−1)kν+ j
nν

,
j+(`−1)kν+`+sν−1

nν

)
(2.11)

d
≡

m∗∏
ν=1

nν∏
`=1

kν∏̀
j=1+kν(`−1)

Beta
(
aν−

j
nν
,

j+`+sν−1
nν

)
(2.12)

d
≡

m∗∏
ν=1

nνkν∏
j=1

Beta
(
aν−

j
nν
,

j+sν−1+Mod∗( j, nν)
nν

)
d
≡

m∗∏
ν=1

kν∏
j=1

(
Beta

(
aνnν−nν j, nν j+sν

))nν
(2.13)

d
≡

m∗∏
ν=1

nνkν+sν∏
j=1

e−Wν j , (2.14)
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or, for W = − log Z,

W
d
≡

m∗∑
ν=1

nνkν+sν∑
j=1

Wν j ,

where the Beta random variables involved in any double or triple product are all independent, as well as the
Wν j random variables , with

Mod∗( j, n) =

 Mod( j, n) if Mod( j, n) , 0

n if Mod( j, n) = 0 ,

and

Wν j ∼ Γ

(
rν j, aν +

sν − j
nν

)
, ν = 1, . . . ,m∗; j = 1, . . . , nνkν + sν ,

where, for ν = 1, . . . ,m∗,

rν j =

 kν j = 1, . . . , sν

kν + 1 +
⌊

sν− j
nν

⌋
j = sν + 1, . . . , nνkν + sν .

(2.15)

The exact distribution of Z is thus in this case an EGIG distribution of depth at most
∑m∗
ν=1 nνkν + sν, with

rate parameters aν −
sν− j
nν

and shape parameters rν j ( j = 1, . . . , nνkν + sν; ν = 1, . . . ,m∗).

Proof. The equivalence in (2.12) is obtained only by reversing the indexation in j, but while the first equiv-
alence in (2.13) is obtained only by re-indexation, the second one needs the use of an extended product
expression for the Gamma function.

This extended product expression for the Gamma function is

n∏
`=1

k∏
j=1

Γ

(
a −

` − 1
n

k −
j
n

)
=

k∏
j=1

{
Γ(an − n j) (2π)

n−1
2 n

1
2−(an−n j)

}

=


k∏

j=1

Γ(an − n j)

 (2π)
n−1

2 k n
k
2−kan+n k(k+1)

2 ,

which for k = 1 yields the usual product expression for the Gamma function and which when used on the
expression for the c.f. of W = − log Z obtained from (2.11) yields

ΦW (t) =

m∗∏
ν=1

nν∏
`=1

kν∏
j=1

Γ
(
aν + `−1

nν
+

sν
nν

)
Γ
(
aν −

(`−1)kν
nν
−

j
nν

) Γ
(
aν −

(`−1)kν
nν
−

j
nν
− it

)
Γ
(
aν + `−1

nν
+ s

nν
− it

)
=

m∗∏
ν=1

kν∏
j=1

Γ(aνnν + sν)
Γ(aνnν − nν j)

Γ(aνnν − nν j − nνit)
Γ(aνnν + sν − nνit)

.

which is the c.f. of the negative logarithm of the distribution in the second expression in (2.13). Then, using
the relation in (2.2) we obtain the distribution in (2.14).

The expression for the shape parameters rν j in (2.15) is, once again as in the previous subsection, ob-
tained either by identifying the different exponential c.f.’s that appear in the c.f. of W and then counting how
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many of each of them occur, in a similar manner to the one used by Coelho (1998, 2006) and by Arnold et
al. (2012), or, equivalently by identifying the different poles through which the integration path used in the
definition of the Meijer G function in Section 3, passes through and then counting the number of times the
path of integration passes through each of these poles, as Wald and Brookner (1941) refer. �

The particular case in Theorem 2 was studied by Coelho (2006) for m∗ = 1 and by Coelho (1998) and
Arnold et al. (2012) for kν = 2, while the particular case for m∗ = 1 in Theorem 3 was treated in Arnold et
al. (2012).

3. Instances of Fox H and Meijer G functions with alternative finite representations

Although Meijer (1936a,b) first defined the Meijer G function as a series, related to the generalized
hypergeometric function, a more encompassing definition, based on a Mellin-Barnes integral, was given
later by the same author (Meijer, 1941, 1946), and a distilled version of this definition is provided by Erdélyi
et al. (1953). We will use this latter definition.

Let N denote the set of positive integers and N0 denote the set of non-negative integers. For m, n, p, q ∈
N0, with m ≤ q and n ≤ p, and for ak − b j < N (k = 1, . . . , n; j = 1, . . . ,m) and z , 0, the Meijer G function
with arguments m, n, p, q ∈ N0, s ∈ C, and any real or complex a1, . . . , ap and b1, . . . , bq, is defined as

Gm,n
p,q

(
{a j} j=1,...,p
{b j} j=1,...,q

∣∣∣∣∣∣ z
)

=
1

2πi

∮
L

∏m
j=1 Γ(b j − s)

∏n
j=1 Γ(1 − a j + s)∏q

j=m+1 Γ(1 − b j + s)
∏p

j=n+1 Γ(a j − s)
zs ds , (3.1)

where an empty product is taken as evaluating to 1.
In (3.1) there are three different possible paths of integration L. These are listed in Section 5.3 of Erdélyi

et al. (1953).
The definition in (3.1) is a Mellin-Barnes type integral and it allows us to view the Meijer G function as

an inverse Mellin transform. Indeed, taking the Mellin transform of the r.v. X as E(Xs−1), for any s ∈ C, for
p = q = m and n = 0, the integrand in (3.1), excluding the power of z, is, for a j, b j > 0, the Mellin transform
of a product of p independent Beta(a j, b j) random variables. Indeed, from the definition of the Meijer G
function in (3.1) and from the inversion formula for the Mellin transform of the product of p independent
Beta(a j, b j) random variables we may immediately derive the result in Section 4.4.2 of Springer (1979),
which states that the p.d.f. of the r.v. Z in (2.1), for all c j = 1 and for any positive real a j and b j is given by

p∏
j=1

Γ(a j + b j)
Γ(a j)

 Gp,0
p,p

(
{a j + b j − 1} j=1,...,p
{a j − 1} j=1,...,p

∣∣∣∣∣∣ z
)
, (3.2)

where z ∈]0, 1] denotes the running value of the r.v. Z.
Then, by simple integration, it is easy to see that the corresponding c.d.f. will be given by

p∏
j=1

Γ(a j + b j)
Γ(a j)

 Gp,1
p+1,p+1

(
{1, a j + b j} j=1,...,p
{a j, 0} j=1,...,p

∣∣∣∣∣∣ z
)
,

The same author states then in Theorem 4.4.1 that there is a finite form representation for the p.d.f. in
(3.2) when all a j and b j are integer. However, this is indeed true if just the b j’s are positive integers. In
addition it is true when the a j’s and b j’s are rationals which satisfy certain relations. It is this latter case that
we address here.
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Although indeed in order to address the distribution of the r.v. Z in (2.1), for the general case where
the a j and b j are just positive reals, we need to resort to the use of Fox H function, it is easy to show that
whenever the b j are positive integers then there is a simple finite representation for the Fox H function. Fox
(1961) defined the H function, for m, n, p, q, s, a j and b j as in (3.1), and positive reals α j and β j, as

Hm,n
p,q

(
{(a j, α j)} j=1,...,p
{(b j, β j)} j=1,...,q

∣∣∣∣∣∣ z
)

=
1

2πi

∮
L

∏m
j=1 Γ(b j − β js)

∏n
j=1 Γ(1 − a j + α js)∏q

j=m+1 Γ(1 − b j + β js)
∏p

j=n+1 Γ(a j − α js)
zs ds . (3.3)

It is then easy to see that the H function reduces to the G function if all α j and β j equal 1. Also, when all
α j = β j = c, it is easy to see that

Hm,n
p,q

(
{(a j, c)} j=1,...,p
{(b j, c)} j=1,...,q

∣∣∣∣∣∣ z
)

=
1
c

Gm,n
p,q

(
{a j} j=1,...,p
{b j} j=1,...,q

∣∣∣∣∣∣ z1/c
)
.

Yet, as Mathai (2007, Sec. 1.9) remarks, when all a j and b j are rationals it is always possible to reduce the
Fox H function to a Meijer G function.

Then, for general positive real a j, b j and c j, in (2.1), the p.d.f. of Z is given by
p∏

j=1

Γ(a j + b j)
Γ(a j)

 Hp,0
p,p

(
{(a j + b j − 1, c j)} j=1,...,p
{(a j − 1, c j)} j=1,...,p

∣∣∣∣∣∣ z
)
, (3.4)

and the c.d.f. by
p∏

j=1

Γ(a j + b j)
Γ(a j)

 Hp,1
p+1,p+1

(
{(1, 1), (a j + b j + c j − 1, c j)} j=1,...,p
{(a j + c j − 1, c j), (0, 1)} j=1,...,p

∣∣∣∣∣∣ z
)
, (3.5)

but there are a number of interesting situations where the b j are positive integers, many of which yield the
exact distribution of a number of l.r.t. statistics. These are exactly the situations described in the previous
section.

Indeed, although the Fox H and Meijer G functions yield very handy representations for the p.d.f.’s and
c.d.f.’s of several distributions and distributions of products of independent r.v.’s, they are not computation-
ally efficient and most of the time not even utilizable in practice because of serious difficulties found in their
efficient computational implementation, even when using the most up-to-date software. This way, looking
for alternative representations, namely finite form ones, is a most useful and desirable goal.

It happens that, based on the results in the previous section, this aim is rendered easy for a number of
situations in which the Fox H function always has a simple finite form representation and which seems to
have been overlooked by other authors. This is when all b j in (3.3) are positive integers. Indeed, based on
the result in (2.2), using the notation in Appendix A, we may write, for positive integer b j,

Hp,0
p,p

(
{(a j + b j − 1, c j)} j=1,...,p
{(a j − 1, c j)} j=1,...,p

∣∣∣∣∣∣ z
)

=


p∏

j=1

Γ(a j)
Γ(a j + b j)

 f GIG

− log z

∣∣∣∣∣∣∣{{1}} j=1:p
`=0:b j−1

;
{{

a j + `

c j

}}
j=1:p
`=0:b j−1

; g ≤
∑p

j=1 b j

 1
z
,

(3.6)
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and

Hp,1
p+1,p+1

(
{(1, 1), (a j + b j − 1 + c j, c j)} j=1,...,p
{(a j − 1 + c j, c j), (0, 1)} j=1,...,p

∣∣∣∣∣∣ z
)

=


p∏

j=1

Γ(a j)
Γ(a j + b j)

 FGIG

− log z

∣∣∣∣∣∣∣{{1}} j=1:p
`=0:b j−1

;
{{

a j + `

c j

}}
j=1:p
`=0:b j−1

; g ≤
∑p

j=1 b j

 ,
(3.7)

where {{
a j + `

c j

}}
j=1:p
`=0:b j−1

= {dh}h=1:g (3.8)

denotes the ’contraction’ of the set on the left, that is, the set of the g ≤
∑p

j=1 b j different rate parameters a j+`

c j

(` = 0, . . . , b j − 1; j = 1, . . . , p) and

{{1}}
j=1:p
`=0:b j−1

= {rh}h=1:g

denotes the ’contraction’ of the set on the left, corresponding to the contraction of the set on the left hand
side of (3.8), that is, the set of the corresponding shape parameters rh corresponding to the rate parameters
dh, with rh =

∑rh
k=1 1, being the number of times the value dh in (3.8) occurs.

It also happens that, based on the results in the previous section, obtaining a finite closed form for
the Meijer G function is also rendered easy for a number of situations. These situations are when the a j

and b j are rational and comply with some rules, which are the ones described in Subsections 2.2 and 2.3
of the previous section, situations which, as it may be seen from the results in these subsections, always
correspond to situations which may also be represented by a H function with all integer b j parameters
(which are different from the b j parameters in the corresponding representation of the Meijer G function).

These situations are summarized in the next two Corollaries. In these two Corollaries we use the notation
in (3.1) and (3.3) for the Meijer G and Fox H functions and the notation in (3.6) and (3.7) for the p.d.f. and
c.d.f. of the EGIG distribution.

Corollary 1. For the more general case in Theorem 1 we may write the p.d.f. of Z as,


m∗∏
ν=1

nν∏
`=1

kν∏̀
j=1

Γ

(
aν −

j−mν`+
∑`−1

r=1 kνr
kν`

)
Γ

(
aν −

j+
∑`−1

r=1 kνr
kν`

)
 Gp∗,0

p∗,p∗



{
aν −

j−mν`+
∑`−1

r=1 kνr
kν`

− 1
}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν`{

aν −
j+

∑`−1
r=1 kνr

kν`
− 1

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z



=


m∗∏
ν=1

nν∏
`=1

Γ
(
aνkν` + mν` −

∑`
r=1 kνr

)
Γ
(
aνkν` −

∑`
r=1 kνr

)
 Hp∗∗,0

p∗∗,p∗∗


{
(aνkν` + mν` −

∑`
r=1 kνr − 1, kν`)

}
ν=1,...,m∗
`=1,...,nν{

(aνkν` −
∑`

r=1 kνr − 1, kν`)
}
ν=1,...,m∗
`=1,...,nν

∣∣∣∣∣∣∣∣∣∣∣∣ z
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= f GIG

− log z

∣∣∣∣∣∣∣{{1}}ν=1:m∗
`=1:nν
i=0:mν`−1

;


aν +

i −
∑`

r=1 kνr
kν`


ν=1:m∗
`=1:nν
i=0:mν`−1

; g ≤
m∗∑
ν=1

nν∑̀
=1

mν`


1
z
,

where

p∗ =

m∗∑
ν=1

nν∑
`=1

kν` , and p∗∗ =

m∗∑
ν=1

nν ,

and the c.d.f. by


m∗∏
ν=1

nν∏
`=1

kν∏̀
j=1

Γ

(
aν −

j−mν`+
∑`−1

r=1 kνr
kν`

)
Γ

(
aν −

j+
∑`−1

r=1 kνr
kν`

)
 Gp∗,1

p∗+1,p∗+1



{
1, aν −

j−mν`+
∑`−1

r=1 kνr
kν`

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν`{

aν −
j+

∑`−1
r=1 kνr

kν`
, 0

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z



=


m∗∏
ν=1

nν∏
`=1

Γ
(
aνkν` + mν` −

∑`
r=1 kνr

)
Γ
(
aνkν` −

∑`
r=1 kνr

)
 Hp∗∗,1

p∗∗+1,p∗∗+1


{
(1, 1), (aνkν` + mν` −

∑`
r=1 kνr + kν` − 1, kν`)

}
ν=1,...,m∗
`=1,...,nν{

(aνkν` −
∑`

r=1 kνr − 1 + kν`, kν`), (0, 1)
}
ν=1,...,m∗
`=1,...,nν

∣∣∣∣∣∣∣∣∣∣∣∣ z


= 1 − FGIG

− log z

∣∣∣∣∣∣∣{{1}}ν=1:m∗
`=1:nν
i=0:mν`−1

;


aν +

i −
∑`

r=1 kνr
kν`


ν=1:m∗
`=1:nν
i=0:mν`−1

; g ≤
m∗∑
ν=1

nν∑̀
=1

mν`

 ,
while for the particular case in Theorem 2 we may write the p.d.f. of Z as


m∗∏
ν=1

nν∏
`=1

kν∏
j=1

Γ
(
aν + 1 − ` +

mν− j
kν

)
Γ
(
aν + 1 − ` − j

kν

)
 Gp∗,0

p∗,p∗



{
aν + 1 − ` +

mν− j
kν
− 1

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν{

aν + 1 − ` − j
kν
− 1

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z


=

 m∗∏
ν=1

nν∏
`=1

Γ ((aν − `)kν + mν)
Γ ((aν − `)kν)

 Hp∗∗,0
p∗∗,p∗∗


{
((aν − `)kν + mν − 1, kν)

}
ν=1,...,m∗
`=1,...,nν{

((aν − `)kν − 1, kν)
}
ν=1,...,m∗
`=1,...,nν

∣∣∣∣∣∣∣∣∣∣∣∣ z


= f GIG

− log z

∣∣∣∣∣∣∣{{rν j}}ν=1:m∗
j=1:mν+kν(nν−1)

;
{{

aν − nν +
j − 1
kν

}}
ν=1:m∗
j=1:mν+kν(nν−1)

; g ≤
m∗∑
ν=1

mν + kν(nν − 1)

 1
z
,
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and the c.d.f. as


m∗∏
ν=1

nν∏
`=1

kν∏
j=1

Γ
(
aν + 1 − ` +

mν− j
kν

)
Γ
(
aν + 1 − ` − j

kν

)
 Gp∗,1

p∗+1,p∗+1



{
1, aν + 1 − ` +

mν− j
kν

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν{

aν + 1 − ` − j
kν
, 0

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z


=

 m∗∏
ν=1

nν∏
`=1

Γ ((aν − `)kν + mν)
Γ ((aν − `)kν)

 Hp∗∗,1
p∗∗+1,p∗∗+1


{
(1, 1), ((aν − `)kν + mν − 1 + kν, kν)

}
ν=1,...,m∗
`=1,...,nν{

((aν − `)kν − 1 + kν, kν), (0, 1)
}
ν=1,...,m∗
`=1,...,nν

∣∣∣∣∣∣∣∣∣∣∣∣ z


= 1 − FGIG

− log z

∣∣∣∣∣∣∣{{rν j}}ν=1:m∗
j=1:mν+kν(nν−1)

;
{{

aν − nν +
j − 1
kν

}}
ν=1:m∗
j=1:mν+kν(nν−1)

; g ≤
m∗∑
ν=1

mν + kν(nν − 1)

 ,
for

p∗ =

m∗∑
ν=1

nνkν , and p∗∗ =

m∗∑
ν=1

nν ,

and where 0 < z ≤ 1 represents the running value of the r.v. Z, rν j is given by (2.9)-(2.10), and

{{rν j}}ν=1:m∗
j=1:mν+kν(nν−1)

is the vector which h-th component (h = 1, . . . , g ≤
∑m∗
ν=1 mν + kν(nν − 1)) is the sum of all rν j associated with

rate parameters aν − nν +
j−1
kν

with the same value as the h-th component of the vector{{
aν − nν +

j−1
kν

}}
ν=1:m∗
j=1:mν+kν(nν−1)

.

Proof. Since this is a Corollary of Theorems 1 and 2 in the previous section, there is indeed no need for a
formal proof. One only has to keep in mind the results in those two Theorems and the definition of the Meijer
G function in (3.1), or rather, its relation with the expression for the p.d.f. of the product of independent Beta
r.v.’s in (3.2), together with the definition of Fox H function in (3.3), or rather, its relation with the expression
for the p.d.f. of the product of independent Beta r.v.’s in (3.4), and the definition of the p.d.f. for the GIG
distribution in (A.1) in Appendix A together with the notation used in (3.6). �

Corollary 2. For the case in Theorem 3 we may write the p.d.f. of Z, for 0 < z ≤ 1, as


m∗∏
ν=1

nν∏
`=1

kν∏
j=1

Γ
(
aν +

`+sν−1
nν

)
Γ
(
aν −

(`−1)kν+ j
nν

)
 Gp∗,0

p∗,p∗



{
aν +

`+sν−1
nν
− 1

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν{

aν −
(`−1)kν+ j

nν
− 1

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z
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=

 m∗∏
ν=1

nν∏
`=1

Γ (aνnν + sν)
Γ (aνnν − nν j)

 Hp∗∗,0
p∗∗,p∗∗


{
(aνnν + sν − 1, kν)

}
ν=1,...,m∗
j=1,...,kν{

(aνnν − nν j − 1, kν)
}
ν=1,...,m∗
j=1,...,kν

∣∣∣∣∣∣∣∣∣∣∣∣ z


= f GIG

− log z

∣∣∣∣∣∣∣{{rν j}}ν=1:m∗
j=1:nνkν+sν

;
{{

aν +
sν − j

nν

}}
ν=1:m∗
j=1:nνkν+sν

; g ≤
m∗∑
ν=1

mν + kν(nν − 1)

 1
z
,

and the c.d.f. as


m∗∏
ν=1

nν∏
`=1

kν∏
j=1

Γ
(
aν +

`+sν−1
nν

)
Γ
(
aν −

(`−1)kν+ j
nν

)
 Gp∗,1

p∗+1,p∗+1



{
1, aν +

`+sν−1
nν

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν{

aν −
(`−1)kν+ j

nν
, 0

}
ν=1,...,m∗
`=1,...,nν
j=1,...,kν

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z



=

 m∗∏
ν=1

nν∏
`=1

Γ (aνnν + sν)
Γ (aνnν − nν j)

 Hp∗∗,1
p∗∗+1,p∗∗+1


{
(1, 1)(aνnν + sν − 1 + kν, kν)

}
ν=1,...,m∗
j=1,...,kν{

(aνnν − nν j − 1 + kν, kν), (0, 1)
}
ν=1,...,m∗
j=1,...,kν

∣∣∣∣∣∣∣∣∣∣∣∣ z


= 1 − FGIG

− log z

∣∣∣∣∣∣∣{{rν j}}ν=1:m∗
j=1:nνkν+sν

;
{{

aν +
sν − j

nν

}}
ν=1:m∗
j=1:nνkν+sν

; g ≤
m∗∑
ν=1

mν + kν(nν − 1)

 ,
for

p∗ =

m∗∑
ν=1

nνkν , and p∗∗ =

m∗∑
ν=1

kν ,

rν j given by (2.15) and where

{{rν j}}ν=1:m∗
j=1:mν+kν(nν−1)

has a similar definition to the corresponding vector in Corollary 1.

Proof. As for Corollary 1, there is no need for a formal proof. It is enough to keep in mind the same remarks
made in the proof of Corollary 1. �

4. Examples of l.r.t. statistics whose distributions are represented by the products in Section 2

Some particular cases of the products of independent Beta r.v.’s in Theorems 1-3 in Section 2 yield the
exact distribution of a number of l.r.t. statistics used in Multivariate Analysis. In this section we present
some of these statistics.
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4.1. Likelihood ratio test statistics whose distributions correspond to the products in Theorems 1 and 2 and
that have p.d.f. and c.d.f. given by Corollary 1

The products of independent Beta r.v.’s in Theorems 1 and 2, yield,

• for m∗ = 1, k1 = 2, and a1 =
n−p2

2 , for some positive integer n > p2 + 2n1, the exact distribution
of the (2/n)-th power of the l.r.t. statistic to test the independence of two groups of variables, with
p1 = 2n1 and p2 = m1 variables, based on a sample of size n from a multivariate Normal, elliptically
contoured or left orthogonal-invariant distribution, or the distribution of the (2/n)-th power of the
l.r.t. statistic to test the equality of p2 + 1 mean vectors of dimension p1, from a multivariate Normal,
based on a set of p2 + 1 independent samples with a combined size of n, or, equivalently, the (2/n)-
th power of the l.r.t. statistic to test the equality of p1 + 1 mean vectors of dimension p2, based on
a set of p1 + 1 independent samples with a combined size of n from a set of multivariate Normal,
elliptically contoured or left orthogonal-invariant distributions, assuming the equality of the population
covariance matrices, since any of these statistics has, under the corresponding null hypothesis, the
same distribution as (using the same ’abuse of notation’ used in Theorems 1-3)

p1∏
j=1

Beta
(n − p2 − j

2
,

p2

2

)
d
≡

p2∏
j=1

Beta
(n − p1 − j

2
,

p1

2

)
,

where all the Beta distributed r.v.’s are independent (see Anderson (2003, Chap. 8,9); Anderson et al.
(1986); Anderson and Fang (1990); Jensen and Good (1981); Kariya (1981); Marques et al. (2011);
Arnold et al. (2012)); the p.d.f. and c.d.f. are thus given by Corollary 1 (see Coelho (1998, 1999));

• for kν = 2, mν = 2(nν+1 + . . . + nm∗ ) + pm∗+1 and aν =
n−mν

2 , for ν = 1, . . . ,m∗, where pm∗+1 and n are
positive integers, with n > pm∗+1 + 2

∑m∗
ν=1 nν, the exact distribution of the (2/n)-th power of the likeli-

hood ratio test statistic used to test the independence of m∗ + 1 sets of variables, the ν-th of which has
pν = 2nν variables (ν = 1, . . . ,m∗) and the last one pm∗+1 variables, based on a sample of size n from a
multivariate Normal, elliptically contoured or left orthogonal-invariant distribution, since this statistic
has, under the null hypothesis of independence of the m∗ + 1 sets of variables, the same distribution
as (using the same ’abuse of notation’ used in Theorems 1-3)

m∗∏
ν=1

pν∏
j=1

Beta
(n − mν − j

2
,

mν

2

)
,

where all the Beta distributed r.v.’s are independent (see Anderson (2003, Chap. 9); Anderson et al.
(1986); Anderson and Fang (1990); Jensen and Good (1981); Kariya (1981); Marques et al. (2011);
Arnold et al. (2012)); the p.d.f. and c.d.f. are thus given by Corollary 1; in this case, given the relations
that exist between aν, mν and nν, it is even possible to obtain simpler expressions for the rate and shape
parameters, with the rate parameters given by{{

aν − nν +
j − 1
kν

}}
ν=1:m∗
j=1:mν+kν(nν−1)

=

{
n − j − 2

2

}
j=1:p−2

and shape parameters

r j =

 h j + (−1) j j = 1, 2

r j−2 + h j j = 3, . . . , p − 2
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with

h j = (# of pν (ν = 1, . . . ,m∗ + 1) ≥ j) − 1 , j = 1, . . . , p − 2 ,

where p =
∑m∗+1
ν=1 pν (see Coelho (1998, 1999); Marques et al. (2011));

4.2. Likelihood ratio test statistics whose distributions correspond to the product in Theorem 3 and that
have p.d.f. and c.d.f. given by Corollary 2

The product of independent Beta r.v.’s in Theorem 3 yields,

• for m∗ = 1, n1 = 2, k1 =
p−1

2 , a1 = n−1
2 and s1 = 0, the exact distribution of the (2/n)-th power of

the l.r.t. statistic to test circularity of the covariance matrix, based on a sample of size n from a p-
multivariate Normal distribution, for the case of odd p (see Sec. 3.3 of Olkin and Press (1961));

• for m∗ = 1, n1 = 2, k1 =
p−1

2 , a1 = n−1
2 and s1 = 1, the exact distribution of the (2/n)-th power of the

l.r.t. statistic to test simultaneously the circularity of the covariance matrix and the equality of the p
means, based on a sample of size n from a p-multivariate Normal distribution, for the case of odd p
(see Sec. 5.2 of Olkin and Press (1961));

• for nν = 2, kν =
pν−1

2 , aν = n−1
2 and sν = 0 (ν = 1, . . . ,m∗), the exact distribution of the (2/n)-th power

of the l.r.t. statistic to test circularity of the m∗ pν×pν covariance matrices in a set of m∗ subsets
of variables with a joint p-multivariate Normal distribution (p =

∑m∗
ν=1 pν), the ν-th subset with pν

variables, assuming the independence of these m∗ subsets of variables, with all pν odd, and based on
a sample of size n;

• for nν = 2, kν =
pν−1

2 , aν = n−1
2 and sν = 1 (ν = 1, . . . ,m∗), the exact distribution of the (2/n)-th power

of the l.r.t. statistic to test simultaneously the circularity of the m∗ pν×pν covariance matrices and the
equality of the pν means in each subset of a set of m∗ subsets of variables with a joint p-multivariate
Normal distribution (p =

∑m∗
ν=1 pν), the ν-th subset with pν variables, assuming the independence of

these m∗ subsets of variables, with all pν odd, and based on a sample of size n.

4.3. Likelihood ratio test statistics whose distributions correspond to a multiplication of the products in The-
orems 1 or 2 and in Theorem 3 and that have p.d.f. and c.d.f. given by a combination of the expressions
in Corollaries 1 and 2

There are several likelihood ratio test statistics, whose exact distribution may be obtained from the prod-
uct of the products of independent Beta r.v.’s in Theorems 1 or 2 and the product in Theorem 3. The exact
p.d.f. and c.d.f. of these statistics is still the p.d.f. and c.d.f. of the exponential of a GIG distributed r.v., given
by the adequate combination of the p.d.f.’s and c.d.f.’s given in Corollaries 1 and 2 in Section 3, that is, by
building one only p.d.f. or c.d.f. by adequately merging the vectors of rate parameters and then adding the
corresponding shape parameters. Some of these statistics are:

• the (2/n)-th power of the l.r.t. statistic to test, for even p, simultaneously the circularity of the covari-
ance matrix and equality of the p means, based on a sample of size n from a p-multivariate Normal
distribution, whose exact distribution is obtained from the multiplication of the product in Theorem
3 for m∗ = 1, n1 = 2, k1 =

p
2 − 1, a1 = n−1

2 and s1 = 2 by the product in Theorems 1 or 2 for m∗ = 1,
n1 = 1, k1 = 2, a1 = n+1

2 and m1 = 1, with p.d.f. and c.d.f. respectively given by

f GIG

− log z

∣∣∣∣∣∣{r j} j=1:p;
{

n + 1 − j
2

}
j=1:p

; p
 1

z
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and

1 − FGIG

− log z

∣∣∣∣∣∣{r j} j=1:p;
{

n + 1 − j
2

}
j=1:p

; p
 ,

where

r j =


p
2 − 1 j = 1
p
2 +

⌊
2− j

2

⌋
j = 2, . . . , p ;

• the (2/n)-th power of the l.r.t. statistic, based on a sample of size n, used to test simultaneously the
circularity of the pν×pν covariance matrices and the equality of the pν means from each of m∗ subsets,
the ν-th of which with pν variables (ν = 1, . . . ,m∗), of a set with a joint (

∑m∗
ν=1 pν)-multivariate Normal

distribution, where we assume all pν even and the independence of all these m∗ subsets of variables;
we obtain the exact distribution of this statistic from the multiplication of the product in Theorem 3,
for nν = 2, kν =

pν
2 − 1, aν = n−1

2 and sν = 2 (ν = 1, . . . ,m∗), and the product in Theorem 2 for nν = 1,
kν = 2, aν = n+1

2 and mν = 1 (ν = 1, . . . ,m∗), with p.d.f. and c.d.f. respectively given by

f GIG

− log z

∣∣∣∣∣∣∣∣{r j} j=1: max
1≤ν≤m∗

pν ;
{

n + 1 − j
2

}
j=1: max

1≤ν≤m∗
pν

; max
1≤ν≤m∗

pν

 1
z

(4.1)

and

1 − FGIG

− log z

∣∣∣∣∣∣∣∣{r j} j=1: max
1≤ν≤m∗

pν ;
{

n + 1 − j
2

}
j=1: max

1≤ν≤m∗
pν

; max
1≤ν≤m∗

pν

 , (4.2)

where

r j =

m∗∑
ν=1

rν j ( j = 1, . . . , max
1≤ν≤m∗

pν) ,

with,

rν j =


pν
2 − 1 j = 1
pν
2 +

⌊
2− j

2

⌋
j = 2, . . . , pν

0 j = pν + 1, . . . ,max1≤ν≤m∗ pν ;

(4.3)

• the (2/n)-th power of the l.r.t. statistic, based on a sample of size n, used to test simultaneously the
circularity of the pν×pν covariance matrices and the equality of the pν means from each of q = q1 + q2
subsets, the ν-th of which with pν variables (ν = 1, . . . , q), of a set with a joint (

∑q
ν=1 pν)-multivariate

Normal distribution, where we assume, without any loss of generality, the first q1 of the pν’s even and
the last q2 of them odd, and the independence of all these q subsets of variables; we obtain the exact
distribution of this statistic from the multiplication of a first product of the type of the one in Theorem
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3, with m∗ = q1, nν = 2, kν =
pν
2 , aν = n−2

2 and sν = 2 (ν = 1, . . . , q1), a second product of this type,

with m∗ = q2, nν = 2, kν =
pν+q1−1

2 , aν = n−1
2 and sν = 1 (ν = 1, . . . , q2), and also a third product of the

type of the one in Theorem 2, with m∗ = q2, nν = 1, kν = 2, aν = n
2 and mν = 1 (ν = 1, . . . , q2), with

p.d.f. and c.d.f. respectively given by (4.1) and (4.2), with depth max1≤ν≤q pν and

r j =

q1∑
ν=1

rν j +

q2∑
ν=1

r∗ν j ( j = 1, . . . , max
1≤ν≤q

pν) ,

where rν j ( j = 1, . . . ,max1≤ν≤q pν) are given by (4.3), with m∗ replaced by q, and

r∗ν j =


pν−1

2 −
⌊
|2− j|

2

⌋
j = 1, . . . , pν

0 j = pν + 1, . . . ,max1≤ν≤q pν ;
(ν = 1, . . . , q2) ;

• the (2/n)-th power of the l.r.t. statistic used to test, based on a sample of size n, simultaneously: (i)
the independence of q sets of variables, the ν-th of which with pν variables (ν = 1, . . . , q), (ii) the
circularity of each of the q covariance matrices of dimension pν×pν, and (iii) the equality of the pν
means in the mean vector of each of the q subsets of a set with a joint

(∑q
ν=1 pν

)
-multivariate Normal

distribution, assuming all the pν even and n >
∑q
ν=1 pν, whose exact distribution is obtained from the

product of two instances of the product of independent Beta r.v.’s in Theorem 2, one with m∗ = q − 1,
kν = 2, nν = pν/2, mν = pν+1 + . . . + pq, aν =

n−mν

2 for ν = 1, . . . , q − 1, and the other one with m∗ = q,
kν = 2, nν = 1, mν = 1 and aν = n+1

2 for ν = 1, . . . , q, multiplied by one instance of the product in
Theorem 3 with m∗ = q, nν = 2, kν =

pν
2 − 1, sν = 2 and aν = n−1

2 , for ν = 1, . . . , q;

• the (2/n)-th power of the l.r.t. statistic used for a similar test to the one described above, in a situation
where all but one of the q subsets of variables have an even number of variables, assuming, without
any loss of generality, that the subset with an odd number of variables is the q-th subset, whose exact
distribution is given by the product of two instances of the product in Theorem 2, the first one with
the same parameters as the corresponding instance above, and a second instance, also with the same
parameters as the corresponding instance above, but now only for ν = 1, . . . , q − 1, and two instances
of the product in Theorem 3, the first one being similar to the instance of the corresponding product
considered above, now for ν = 1, . . . , q − 1 and another instance with m∗ = 1, k1 =

pq−1
2 , n1 = 2, s1 = 1

and a1 = (n − 1)/2.

5. Conclusions

Through a technique that uses some detailed work on the c.f. of the negative logarithm of two multiple
products of independent Beta r.v.’s whose parameters are all rational and follow some rules we were able to
establish a number of situations where the Meijer G function has finite closed form representations through
the expressions for the p.d.f. and c.d.f. of the GIG distribution, or, more precisely, through the p.d.f. and
c.d.f. of what Arnold et al. (2012) call an EGIG (Exponentiated GIG) distribution.

By using two extended multiplication formulas for the Gamma function the authors also show that these
instances of the Meijer G function are indeed equivalent to Fox H functions with integer b j parameters. Such
instances of Fox’s H function are shown to have always finite closed form representations through the p.d.f.
or the c.d.f. of the EGIG distribution.
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Particular cases of the multiple products of independent Beta r.v.’s in Theorems 1-3 in Section 2 yield
the exact distribution of a number of l.r.t. statistics whose p.d.f.’s and c.d.f.’s can thus be expressed in finite
closed forms, through the p.d.f. and c.d.f. of EGIG distributions.

These finite closed form representations are much more manageable than the representations obtained
through the use of Meijer G or Fox H functions and entail enormous gains in terms of computation time
and sometimes also in precision, as it may be seen by analyzing the tables in Appendix B. As such, these
representations for the c.d.f.’s enable a quick, easy and accurate computation of exact quantiles and p-values.
Mathematica©R and R modules to implement the GIG/EGIG p.d.f. and c.d.f. are provided in Appendix C,
together with an example.
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Appendix A. Notation and expressions for the probability density and cumulative distribution func-
tions of the Gamma, GIG and GNIG distributions

This appendix is used to settle the notation used concerning the p.d.f. of the GIG (Generalized Integer
Gamma) distribution.

We say that the r.v. (random variable) X has a Gamma distribution with shape parameter r (> 0) and rate
parameter λ (> 0), and we will denote this fact by X ∼ Γ(r, λ), if the probability density function of X is

fX(x) =
λr

Γ(r)
e−λx xr−1 (x > 0) .

Let X j ∼ Γ(r j, λ j) ( j = 1, . . . , p) be a set of p independent r.v.’s and consider the r.v.

Z =

p∑
j=1

X j .

In case all the r j ∈ N, the distribution of Z is what we call a GIG distribution (Coelho, 1998, 1999). If all the
λ j are different, Z has a GIG distribution of depth p, with shape parameters r j and rate parameters λ j, with
p.d.f.

fZ(z) = f GIG(z | {r j} j=1:p; {λ j} j=1:p; p) = K
p∑

j=1

P j(z) e−λ jz , (z > 0) (A.1)

and c.d.f.

FZ(z) = FGIG(z | {r j} j=1:p; {λ j} j=1:p; p) = 1 − K
p∑

j=1

P∗j(z) e−λ jz , (z > 0)

where

K =

p∏
j=1

λ
r j

j , P j(z) =

r j∑
k=1

c j,k zk−1
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and

P∗j(z) =

r j∑
k=1

c j,k(k − 1)!
k−1∑
i=0

zi

i! λk−i
j

,

with

c j,r j =
1

(r j − 1)!

p∏
i=1
i, j

(λi − λ j)−ri , j = 1, . . . , p , (A.2)

and

c j,r j−k =
1
k

k∑
i=1

(r j − k + i − 1)!
(r j − k − 1)!

R(i, j, p)c j,r j−(k−i) , (k = 1, . . . , r j − 1; j = 1, . . . , p) (A.3)

where

R(i, j, p) =

p∑
k=1
k, j

rk(λ j − λk)−i (i = 1, . . . , r j − 1) . (A.4)

In case some of the λ j assume the same value as other λ j’s, the distribution of Z still is a GIG distribution,
but in this case with a reduced depth. In this more general case, let {λ`; ` = 1, . . . , g(≤ p)} be the set of
different λ j’s and let {r`; ` = 1, . . . , g(≤ p)} be the set of the corresponding shape parameters, with r` being
the sum of all r j ( j ∈ {1, . . . , p}) which correspond to the λ j assuming the value λ`. In this case Z will have
a GIG distribution of depth g, with shape parameters r` and rate parameters λ` (` = 1, . . . , g).

Appendix B. Tables with computation times and values for the Meijer G function and the EGIG p.d.f.
for the results in Corollaries 1 and 2

All computations were done with Mathematica©R, version 7.0.0, as the only software running on an Intel©R

Core(TM)2 Duo CPU P8700 at 2.53GHz, with 4GB of RAM, running the Windows 7 Home Premium 64-bit
operating system.

All computing times are reported in seconds and all computing times greater than 1 hour are reported as
>3600 (seconds).

In Tables B.2 and B.4 the following abbreviations were used:

Scen. – Scenario
p.d. – precision digits
c. time – computing time
(b)/(a) – the ratio of the computing times for the Mathematica implementations

of the Meijer G function and the GIG/EGIG p.d.f. (it is not computed
when the result obtained with the Meijer G function implementation is
clearly wrong)

We may easily see the huge gains in computing time obtained with the GIG/EGIG implementation and
also the gain in precision for some of the scenarios in Tables B.1 and B.2.
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Table B.1 – Description of the scenarios used for the result in Corollary 1

Scen. m∗ nν and aν kν` and mν` z

I.1 3 nν = {3, 5, 4} kν` = {{3, 1, 4}, {2, 5, 3, 2, 2}, {4, 1, 2, 5}} 2.0
aν = {16.3, 18.6, 15.3} mν` = {{2, 2, 3}, {1, 5, 2, 4, 3}, {1, 3, 4, 5}}

I.2 1 nν = {3} kν` = {{3, 1, 4}} 1.1
aν = {16.3} mν` == {{2, 2, 3}}

I.3 3 nν = {3, 4, 2} kν` = {{2, 2, 2}, {2, 2, 2, 2}, {2, 2}} 70.5
aν = {4, 8, 10} mν` = {{17, 17, 17}, {9, 9, 9, 9}, {5, 5}}

I.4 2 nν = {3, 5} kν` = {{6, 6, 6}, {3, 4, 5, 6, 7}} 0.4
aν = {45.3, 25.6} mν` = {{2, 2, 3}, {2, 2, 3, 3, 4}}

I.5 2 nν = {3, 4} kν` = {{6, 6, 6}, {3, 3, 3, 4}} 0.4
aν = {45.3, 12.3} mν` = {{2, 2, 3}, {4, 4, 5, 3}}

I.6 3 nν = {3, 2, 3} kν` = {{6, 6, 6}, {3, 3}, {3, 4, 5}} 0.4
aν = {45.3, 12.3, 22.3} mν` = {2, 2, 3}, {4, 4}, {2, 1, 3}}

I.7 3 nν = {3, 5, 4} kν` = {{3, 1, 4}, {2, 5, 3, 2, 2}, {4, 1, 2, 5}} 0.2
aν = {16.3, 18.6, 15.3} mν` = {{2, 2, 3}, {1, 5, 2, 4, 3}, {1, 3, 4, 5}}

I.8 3 nν = {3, 2, 2} kν` = {{3, 1, 4}, {2, 5}, {4, 1}} 0.2
aν = {12.3, 8.6, 5.3} mν` = {{2, 2, 3}, {1, 5}, {1, 3}}

I.9 3 nν = {3, 2, 2} kν` = {{6, 6, 6}, {3, 3}, {3, 2}} 0.4
aν = {45.3, 12.3, 22.3} mν` = {{2, 2, 3}, {4, 4}, {5, 3}}

I.10 3 nν = {3, 2, 3} kν` = {{6, 6, 6}, {3, 3}, {1, 2, 3}} 0.4
aν = {45.3, 12.3, 22.3} mν` = {{2, 2, 3}, {4, 4}, {2, 3, 4}}

I.11 3 nν = {3, 2, 3} kν` = {{3, 4, 6}, {2, 3}, {1, 2, 3}} 0.4
aν = {45.3, 12.3, 22.3} mν` = {{4, 2, 3}, {4, 5}, {2, 3, 4}}

I.12 4 nν = {3, 4, 3, 5} kν` = {{3, 4, 6}, {2, 3, 3, 5}, {1, 2, 3}, {2, 3, 4, 5, 2}} 0.4
aν = {45.3, 12.3, 22.3, 67.3} mν` = {{4, 2, 3}, {4, 5, 2, 3}, {2, 3, 4}, {3, 4, 7, 2, 3}}

I.13 5 nν = {3, 4, 3, 5, 4} kν` = {{3, 4, 6}, {2, 3, 3, 5}, {1, 2, 3}, {2, 3, 4, 5, 2}, {1, 2, 3, 4}} 0.2
aν = {45.3, 12.3, 22.3, 67.3, 34.5} mν` = {{4, 2, 3}, {4, 5, 2, 3}, {2, 3, 4}, {3, 4, 7, 2, 3}, {4, 3, 2, 1}}

Table B.2 – Computing times (in seconds) for the Meijer G function and the EGIG p.d.f. implementations
in Mathematica, for the scenarios in Table B.1, relative to the results in Corollary 1

EGIG Meijer G

Scen. p.d. c. time result p.d. c. time result (b)/(a)
(a) (b)

I.1 60 0.016 1.1359433007676998×10+00 1000 5.522 0.0×10−960 ——
I.2 27 < 0.010 4.4643963452245869×10−01 1000 0.047 0.0×10−992 ——
I.3 92 0.047 2.5922538594634323×10−01 92 737.182 0.0×10−15 ——
I.4 33 0.016 3.4123807297252911×10+00 34 915.101 3.4123807297252911×10+00 57,193.8
I.5 35 0.015 2.3420495104295541×10−01 35 103.507 2.3420495104295541×10−01 6,900.5
I.6 26 0.016 2.9172600291608775×10+00 27 2945.330 2.9172600291608775×10+00 184,083.1
I.7 49 0.015 3.2209740218339274×10−01 49 (> 3600) ——— (> 240,000.0)
I.8 25 < 0.010 7.2492494683426487×10−02 25 2538.480 7.2492494683426487×10−02 > 253,848.0
I.9 26 < 0.010 2.1427071831326017×10+00 26 15.522 2.1427071831326017×10+00 > 1,552.2
I.10 27 < 0.010 1.6978283154473830×10+00 28 21.325 1.6978283154473830×10+00 > 2,132.5
I.11 30 0.015 8.9124157730052532×10−01 31 941.154 8.9124157730052532×10−01 62,743.6
I.12 39 0.031 1.2110730587266316×10−04 39 (> 3600) ——— (> 116,129.0)
I.13 35 0.047 2.2636145605264793×10−01 35 (> 3600) ——— (> 76,595.7)
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Table B.3 – Table with the scenarios used for the result in Corollary 2

Scenario m∗ nν aν kν sν z
II.1 2 {2,2} {45.3,12.3} {3,2} {2,3} 0.40
II.2 2 {4,2} {45.3,12.3} {3,5} {2,3} 0.10
II.3 3 {4,2,2} {45.3,12.3,22.3} {3,4,5} {2,3,3} 0.05
II.4 3 {3,3,3} {45.3,12.3,22.3} {4,4,4} {2,2,2} 0.05
II.5 3 {3,2,2} {45.3,12.3,22.3} {2,3,2} {2,2,2} 0.40
II.6 3 {3,2,2} {45.3,12.3,22.3} {2,3,2} {2,4,2} 0.40
II.7 3 {3,2,3} {45.3,12.3,22.3} {2,3,2} {2,4,2} 0.40
II.8 3 {3,2,4} {45.3,12.3,22.3} {2,3,2} {2,4,2} 0.40
II.9 3 {3,2,5} {45.3,12.3,22.3} {2,3,2} {2,4,2} 0.40
II.10 4 {3,2,5,6} {45.3,12.3,22.3,34.2} {5,4,5,6} {2,4,3,6} 10−5

II.11 4 {3,2,2,3} {45.3,12.3,22.3,34.2} {5,4,3,2} {2,4,3,6} 10−4

II.12 4 {3,2,2,3} {45.3,12.3,22.3,34.2} {2,3,3,2} {2,3,3,2} 0.01
II.13 4 {3,2,4,3} {45.3,12.3,22.3,34.2} {2,3,3,4} {2,3,3,4} 0.01
II.14 4 {3,2,4,3} {45.3,12.3,22.3,34.2} {2,3,3,2} {2,3,3,2} 0.01
II.15 5 {3,2,5,6,7} {45.3,12.3,22.3,34.2,76.8} {5,4,5,6,7} {2,4,3,6,7} 10−5

II.16 3 {3,2,3} {45.3,12.3,12.3} {2,3,2} {2,4,2} 0.10
II.17 3 {3,2,3} {45.3,12.3,12.3} {2,3,3} {2,4,2} 0.10
II.18 3 {3,4,3} {45.3,12.3,12.3} {2,3,2} {2,4,2} 0.10

Table B.4 – Computing times (in seconds) for the Meijer G function and the EGIG p.d.f. implementations
in Mathematica, for the scenarios in Table B.3, relative to the results in Corollary 2

EGIG Meijer G

Scen. p.d. c. time result p.d. c. time result (b)/(a)
(a) (b)

II.1 30 0.016 8.7930569156048830×10−01 31 0.561 8.7930569156048830×10−01 35.1
II.2 61 0.031 2.6185313989828837×10−05 63 380.845 2.6185313989828837×10−05 12,285.3
II.3 66 0.063 6.7325883118341056×10−06 66 1298.900 6.7325883118341056×10−06 20,617.5
II.4 73 0.078 7.4514940226549799×10−08 74 11.154 7.4514940226549799×10−08 143.0
II.5 45 0.016 7.0684660196762765×10−05 45 19.297 2.3442049510429554×10−01 1,206.1
II.6 53 0.016 9.7772597037140489×10−08 53 16.910 9.7772597037140489×10−08 1,056.9
II.7 55 0.016 6.2226599844952503×10−09 56 46.520 6.2226599844952503×10−09 2,907.5
II.8 57 0.031 3.3607577941794188×10−10 58 117.827 3.3607577941794188×10−10 3,800.9
II.9 60 0.031 1.5483311810263276×10−11 60 380.315 1.5483311810263276×10−11 12,268.2
II.10 145 0.608 8.0216912447426785×10+02 145 (> 3600) ——— (> 5,921.1)
II.11 32 0.109 2.4354016174353771×10−01 32 (> 3600) ——— (> 33,027.5)
II.12 32 0.031 5.7301671577955366×10+00 32 367.258 5.7301671577955366×10+00 11,847.0
II.13 52 0.078 5.9256771376197300×10+01 52 (> 3600) ——— (> 46,153.8)
II.14 37 0.062 3.7925500531027583×10+01 37 1856.320 3.7925500531027583×10+01 29,940.6
II.15 216 2.012 9.8955059987453691×10−09 216 (> 3600) ——— (> 1,789.3)
II.16 55 0.016 5.3493904518838389×10−01 55 106.252 5.3493904518838389×10−01 6,640.8
II.17 71 0.031 8.4934555803875667×10−04 71 (> 3600) ——— (> 116,129.0)
II.18 75 0.015 3.9150062308329812×10−04 75 3268.390 3.9150062308329812×10−04 217,892.7

Appendix C. Modules for the computation of the GIG and EGIG p.d.f. and c.d.f.

Appendix C.1. Mathematica©R modules for the computation of the GIG/EGIG p.d.f. and c.d.f.

In this part of the Appendix we present the Mathematica©R modules used to compute the GIG/EGIG p.d.f.
and c.d.f. and the set of commands used to compute the values for scenario I.6 in Tables B.1 and B.2.
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Makec[r_,l_,p_]:=Module[{c},

c=Table[Table[1,{j,1,Max[r]}],{i,1,p}];

Table[c=ReplacePart[c,(Product[(l[[j]]-l[[i]])ˆ(-r[[j]]),{j,1,i-1}]*

Product[(l[[j]]-l[[i]])ˆ(-r[[j]]),{j,i+1,p}])/(r[[i]]-1)!,{i,r[[i]]}],

{i,1,p}];

Table[Table[c=ReplacePart[c,Sum[((r[[i]]-k+j-1)!*(Sum[r[[h]]/(l[[i]]-l[[h]])ˆj,

{h,1,i-1}] + Sum[r[[h]]/(l[[i]]-l[[h]])ˆj,{h,i+1,p}])*

c[[i]][[r[[i]]-(k-j)]])/(r[[i]]-k-1)!,{j,1,k}]/k,{i,r[[i]]-k}],

{k,1,r[[i]]-1}],{i,1,p}];

c ]

Figure C.1 – Mathematica©R module used to compute the coefficients c j,k (k = 1, . . . , r j; j = 1, . . . , p) in the
GIG p.d.f. and c.d.f.

GIGpdf[r_,li_,z_]:=Module[{p,l,c},

If[Count[r,_Integer]==Length[r]&&And@@NonNegative[r]&&And@@Positive[li]&&

Length[r]==Length[li],

p=Length[r]; l=Rationalize[li,0]; c=Makec[r,l,p];

P[w_]:=Table[Sum[c[[j]][[k]]*wˆ(k-1),{k,1,r[[j]]}],{j,1,p}];

Product[l[[j]]ˆr[[j]],{j,1,p}]*Sum[P[z][[j]]*Exp[-l[[j]]*z],{j,1,p}] ]]

GIGcdf[r_,li_,z_]:=Module[{p,l,c},

If[Count[r,_Integer]==Length[r]&&And@@Positive[r]&&And@@Positive[li]&&

Length[r]==Length[li],

p=Length[r]; l=Rationalize[li,0]; c=Makec[r,l,p];

P[w_]:=Table[Sum[c[[j]][[k]]*(k-1)!*Sum[wˆi/(i!*l[[j]]ˆ(k-i)),{i,0,k-1}],

{k,1,r[[j]]}],{j,1,p}];

1-Product[l[[j]]ˆr[[j]],{j,1,p}]*Sum[P[z][[j]]*Exp[-l[[j]]*z],{j,1,p}] ]]

Figure C.2 – Mathematica©R modules used to compute the GIG p.d.f. and c.d.f.

The module Makec in Figure C.1 is used to compute the coefficients c j,k (k = 1, . . . , r j; j = 1, . . . , p) in
the GIG p.d.f. and c.d.f. and, as such, is called by the modules GIGpdf and GIGcdf in Figure C.2, which are
the final modules used to compute the values for the GIG p.d.f. and c.d.f..

Both these modules have three arguments which are, in this order, a list with the shape parameters, a list
with the rate parameters and the value for the running variable.

In Figure C.3 we have the set of commands used to compute the values for scenario I.6. The command
right before the last two which compute the Mathematica©R implementation of the Meijer G function and of
the GIG/EGIG p.d.f. uses a call to the module Screen2 in Figure C.4, which is used to scan the vector of
rate parameters for the GIG/EGIG p.d.f. and c.d.f., looking for repeated values in the rate parameters list.
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ms=3;

z=40/100;

a={453/10,123/10,223/10};

n={3,2,3};

k={{6,6,6},{3,3},{3,4,5}};

m={{2,2,3},{4,4},{2,1,3}};

av=Table[Table[Table[a[[nu]]-(j+Sum[k[[nu,r]],{r,1,ell-1}])/k[[nu,ell]],

{j,1,k[[nu,ell]]}],{ell,1,n[[nu]]}],{nu,1,ms}];

bv=Table[Table[Table[m[[nu,ell]]/k[[nu,ell]],{j,1,k[[nu,ell]]}],{ell,1,n[[nu]]}],

{nu,1,ms}];

K1=Product[Product[Product[Gamma[av[[nu,ell,j]]+bv[[nu,ell,j]]]/Gamma[av[[nu,ell,j]]],

{j,1,k[[nu,ell]]}],{ell,1,n[[nu]]}],{nu,1,ms}];

lvf=Flatten[Table[Table[Table[a[[nu]]+(-Sum[k[[nu,r]],{r,1,ell}]+i)/k[[nu,ell]],

{i,0,m[[nu,ell]]-1}],{ell,1,n[[nu]]}],{nu,1,ms}]];

rvf=Table[1,{j,1,Length[lvf]}]; vec=Screen2[lvf,rvf]

Timing[SetPrecision[K1*MeijerG[{{},Flatten[av+bv]-1},{Flatten[av]-1,{}},z],26]]

Timing[SetPrecision[GIGpdf[vec[[2]], vec[[1]], -Log[z]]*1/z, 26]]

Figure C.3 – Mathematica©R instructions used to compute the Meijer G function and the GIG/EGIG p.d.f.
implementation for scenario I.6.

Screen2[v1_,v2_]:=Module[{v2s,v1s,n,nv1,nv2},

v2s=v2[[Ordering[v1]]]; v1s=Sort[v1];

n=Length[v1];

nv1={v1s[[1]]}; nv2={v2s[[1]]}; isc=1;

Do[If[v1s[[i]]==v1s[[i-1]],{nv2[[isc]]=nv2[[isc]]+v2s[[i]]},

{isc=isc+1,nv1=Append[nv1,v1s[[i]]],nv2=Append[nv2,v2s[[i]]]}],

{i,2,n}];

{nv1,nv2} ]

Figure C.4 – Mathematica©R module used to scan the vectors of rate parameters for the GIG/EGIG p.d.f.
and c.d.f., looking for repeated values.

Appendix C.2. R functions for the computation of the GIG/EGIG p.d.f. and c.d.f.

In this part of the Appendix we present a set of functions programed in R, which may be used, alterna-
tively to the Mathematica©R modules, to compute the GIG/EGIG p.d.f. and c.d.f. and the values for the p.d.f.
and c.d.f. in Corollaries 1 and 2.

This set of function requires the use of the Rmpfr package, in order to allow for computations with
arbitrary precision, since quite often we need to use more than double precision in the computations of the
GIG/EGIG p.d.f. and c.d.f., as it is the case with the computations in Appendix B.
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makec<-function(r,ll,p,prec)

{rr<-mpfr(r,prec)

cv<-array(mpfr(1,prec),c(p,max(r)))

for (j in 1:p) cv[j,r[j]]<-prod(((ll-ll[j])ˆ(-rr))[-j])/factorial(rr[j]-1)

rrr<-array(mpfr(0,prec),c(p,max(r)-1))

for (j in 1:p) {if (r[j]>1) for (i in 1:(r[j]-1))

rrr[j,i]<-sum((rr*((ll[j]-ll)ˆ(-i)))[-j])}

for (j in 1:p) {if (r[j]>1) for (k in 1:(r[j]-1)) cv[j,r[j]-k]<-1/mpfr(k,prec)*

sum(factorial(rr[j]-k-1+(1:k))/factorial(rr[j]-k-1)*cv[j,r[j]-(k-(1:k))]

*rrr[j,1:k])}

cv}

Figure C.5 – R function used to compute the coefficients c j,k (k = 1, . . . , r j; j = 1, . . . , p) in the GIG p.d.f.
and c.d.f.

GIGpdf<-function(r,l,z,prec)

{p<-length(r)

rr<-mpfr(r,prec)

if (is.real(l)) ll<-mpfr(l*10ˆ7,prec)/10ˆ7 else ll<-l

if (is.real(z)) zz<-mpfr(z*10ˆ7,prec)/10ˆ7 else zz<-z

cvc<-makec(r,ll,p,prec)

pj<-rep(mpfr(0,100),p)

for (j in 1:p) pj[j]<-sum(cvc[j,1:r[j]]*zzˆ((1:r[j])-1))

prod(llˆrr)*sum(pj*exp(-ll*zz))}

GIGpdfn<-function(r,ln,ld,z,prec)

{p<-length(r)

rr<-mpfr(r,prec)

ll<-mpfr(ln,prec)/ld

if (is.real(z)) zz<-mpfr(z*10ˆ7,prec)/10ˆ7 else zz<-z

cvc<-makec(r,ll,p,prec)

pj<-rep(mpfr(0,100),p)

for (j in 1:p) pj[j]<-sum(cvc[j,1:r[j]]*zzˆ((1:r[j])-1))

prod(llˆrr)*sum(pj*exp(-ll*zz))}

Figure C.6 – R functions used to compute the GIG p.d.f..

The function makec in Figure C.5 is used to compute the coefficients c j,k (k = 1, . . . , r j; j = 1, . . . , p) in
the GIG p.d.f. and c.d.f. and, as such, is called by the functions GIGpdf, GIGpdfn, GIGcdf and GIGcdfn in
Figures C.6 and C.7, which are the final modules used to compute the values for the GIG p.d.f. and c.d.f..

The functions GIGpff and GIGcdf have four arguments each, which are, in this order, a list with the
shape parameters, a list with the rate parameters, the value for the running variable and the number of
precision bits. For example if one wants a precision of 26 digits, since 26 ∗ Log102 ≈ 86.37, a value of at
least 87 or 88 should be given for this last argument.

The functions GIGpdf and GIGcdf are to be used when we give the values for the rate parameters as
reals. However, in this case, given the way the programming is done, the rate parameters should note have
more than seven decimal places, in order to assure that precision is kept.
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GIGcdf<-function(r,l,z,prec)

{p<-length(r)

rr<-mpfr(r,prec)

ll<-mpfr(l*10ˆ7,prec)/10ˆ7

zz<-mpfr(z*10ˆ7,prec)/10ˆ7

cvc<-makec(r,ll,p,prec)

pjk<-array(mpfr(0,prec),c(p,max(r)))

for (j in 1:p) {for (k in 1:r[j]) pjk[j,k]<-sum(zzˆ(0:(k-1))/(ll[j]ˆ(k-0:(k-1))

*factorial(mpfr(0:(k-1),prec))))}

pj<-rep(mpfr(0,prec),p)

for (j in 1:p) pj[j]<-sum(cvc[j,1:r[j]]*factorial(mpfr((1:r[j])-1,prec))

*pjk[j,1:r[j]])

mpfr(1,prec)-prod(llˆrr)*sum(pj*exp(-ll*zz))}

GIGcdfn2<-function(r,ln,ld,z,prec)

{p<-length(r)

rr<-mpfr(r,prec)

ll<-mpfr(ln,prec)/ld

zz<-mpfr(z*10ˆ7,prec)/10ˆ7

cvc<-makec4n(r,ll,p,prec)

pjk<-array(mpfr(0,prec),c(p,max(r)))

for (j in 1:p) {for (k in 1:r[j]) pjk[j,k]<-sum(zzˆ(0:(k-1))/(ll[j]ˆ(k-0:(k-1))

*factorial(mpfr(0:(k-1),prec))))}

pj<-rep(mpfr(0,prec),p)

for (j in 1:p) pj[j]<-sum(cvc[j,1:r[j]]*factorial(mpfr((1:r[j])-1,prec))

*pjk[j,1:r[j]])

mpfr(1,prec)-prod(llˆrr)*sum(pj*exp(-ll*zz))}

Figure C.7 – R functions used to compute the GIG c.d.f..

In case we need to use rate parameters with more decimal places or in case we only want to give them as
rationals, then due to the use of the arbitrary precision package Rmpfr for the computations, we have to use
functions GIGpdfn and GIGcdfn. Both of these functions have a set of five arguments, the first one being
a list with the shape parameters, and the second and third, two lists, the first one with the numerators of the
rate parameters and the second one with the denominators. Both these lists have to be lists of integers. The
two last argumnets are the same as the two last arguments of GIGpdf or GIGcdf.

In Figure C.8 we have the function scenI, which once given the values for the parameters nν, mν`, kν` and
aν in Theorems 1 or 2, it computes the lists of shape and rate parameters for the corresponding GIG/EGIG
p.d.f. or c.d.f. in Corollary 1. This function calls the function screen2, also in Figure C.8, which is used to
scan the vector of rate parameters for the GIG/EGIG p.d.f. and c.d.f., looking for repeated values in the rate
parameters list.

In Figure C.9 we have the function pdfscenI and cdfscenI, which, being given the values for the pa-
rameters nν, mν`, kν` and aν in Theorems 1 or 2, compute the p.d.f. or the c.d.f. corresponding to Corollary 1.

In Figure C.10 we may see an example of a set of commands which may be used in R to obtain, with
the help of function pdfscenI in Figure C.9, the result in Table B.2 in Appendix B for the GIG/EGIG p.d.f.
for scenario I.6. Note that we actually need to use a precision of 88 bits in order to obtain a result which is
correct to rounding at the 16th decimal place. This actually closely agrees with the need to use a precision
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of 26 decimal places in the computation of the GIG/EGIG p.d.f. in Mathematica, as indicated in Table B.2,
since as already remarked above, 26 ∗ Log102 ≈ 86.37.

scenI3<-function(k,m,a,z,prec)

{ms<-length(k); ll<-rep(0,ms)

for (i in 1:ms) ll[i]<-length(k[[i]])

llm<-max(ll); n<-rep(0,ms)

for (i in 1:ms) n[i]<-length(k[[i]])

zz<-mpfr(z*10ˆ7,prec)/10ˆ7

kk<-cbind(append(k[[1]],rep(0,llm-ll[1])))

if (ms>1) for (i in 2:ms) kk<-cbind(kk,append(k[[i]],rep(0,llm-ll[i])))

kk<-mpfr(kk,prec)

mm<-cbind(append(m[[1]],rep(0,llm-ll[1])))

if (ms>1) for (i in 2:ms) mm<-cbind(mm,append(m[[i]],rep(0,llm-ll[i])))

aa<-mpfr(a*10ˆ7,prec)/10ˆ7

vv<-c(mpfr(1,prec))

for (nu in 1:ms) {for (ell in 1:n[nu]) {for (i in 0:(mm[ell,nu]-1))

vv<-append(vv,aa[nu]+(i-sum(kk[1:ell,nu]))/kk[ell,nu])}}

vv[-1]}

screen2<-function(v1,v2)

{n<-length(v1); v2s<-v2[order(v1)]; v1s<-sort(v1)

nv1<-v1s[1]; nv2<-v2s[1]; isc<-1;

for (i in (2:n)) if (v1s[i]==v1s[i-1]) nv2[isc]<-nv2[isc]+v2s[i] else

{isc<-isc+1;nv1<-append(nv1,v1s[i]);nv2<-append(nv2,v2s[i])}

cbind(nv1,nv2)}

Figure C.8 – R functions scenI and screen2 used to compute the parameters for the GIG/EGIG p.d.f. and
c.d.f. implementations corresponding to Corollary 1.

pdfscenI<-function(k,m,a,z,prec)

{vl<-scenI3(k,m,a,z,prec)

vr<-rep(1,length(vl))

mm<-screen2(vl,vr)

zz<-mpfr(z*10ˆ7,prec)/10ˆ7

GIGpdfn(as.real(mm[,2]),mm[,1],-log(zz),prec)*1/zz}

cdfscenI<-function(k,m,a,z,prec)

{vl<-scenI3(k,m,a,z,prec)

vr<-rep(1,length(vl))

mm<-screen2(vl,vr)

zz<-mpfr(z*10ˆ7,prec)/10ˆ7

GIGcdfn(as.real(mm[,2]),mm[,1],-log(zz),prec)*1/zz}

Figure C.9 – R functions used to compute the GIG/EGIG p.d.f. and c.d.f. implementations corresponding
to Corollary 1.
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> k<-list(c(6,6,6),c(3,3),c(3,4,5))

> m<-list(c(2,2,3),c(4,4),c(2,1,3))

> a<-c(45.3,12.3,22.3)

> pdfscenI(k,m,a,.4,88)

1 ’mpfr’ number of precision 88 bits

[1] 2.91726002916087746544719932

Figure C.10 – Example of a set of R commands used to obtain the value for the GIG/EGIG p.d.f. for
scenario I.6 in Appendix B and corresponding result obtained.
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