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Instant diagnosis of gastroscopic biopsy via deep-
learned single-shot femtosecond stimulated Raman
histology
Zhijie Liu1,10, Wei Su 2,10, Jianpeng Ao1,10, Min Wang3,10, Qiuli Jiang4, Jie He4, Hua Gao4, Shu Lei5,

Jinshan Nie6, Xuefeng Yan7, Xiaojing Guo8, Pinghong Zhou 2✉, Hao Hu 2,9✉ & Minbiao Ji 1✉

Gastroscopic biopsy provides the only effective method for gastric cancer diagnosis, but the

gold standard histopathology is time-consuming and incompatible with gastroscopy. Con-

ventional stimulated Raman scattering (SRS) microscopy has shown promise in label-free

diagnosis on human tissues, yet it requires the tuning of picosecond lasers to achieve che-

mical specificity at the cost of time and complexity. Here, we demonstrate that single-shot

femtosecond SRS (femto-SRS) reaches the maximum speed and sensitivity with preserved

chemical resolution by integrating with U-Net. Fresh gastroscopic biopsy is imaged in <60 s,

revealing essential histoarchitectural hallmarks perfectly agreed with standard histopathol-

ogy. Moreover, a diagnostic neural network (CNN) is constructed based on images from 279

patients that predicts gastric cancer with accuracy >96%. We further demonstrate semantic

segmentation of intratumor heterogeneity and evaluation of resection margins of endoscopic

submucosal dissection (ESD) tissues to simulate rapid and automated intraoperative diag-

nosis. Our method holds potential for synchronizing gastroscopy and histopathological

diagnosis.
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Gastric cancer (GC) is one of the most prevalent malignant
carcinomas worldwide, and gastroscopy is considered to
be the most effective screening method1. Pathological

examination of gastroscopic biopsy is the only method for precise
GC diagnosis, determining treatment strategies and patient
prognoses2. However, gold standard staining-based pathological
workflow is incompatible with gastroscopy, due to the labor- and
time- intensive processes including fixation, sectioning and
staining3. Moreover, traditional histological methods require
well-trained pathologists to interpret tissue slides, which is not
only impractical for timely intraoperative consultation, but also
constrained by the wide variation among pathologists in the
diagnosis and grading of tumor subtypes. Therefore, advanced
technique for rapid and automated intraoperative histopathology
of gastroscopic biopsy and resection specimen is essential to
improve patient treatments and surgical outcomes.

Stimulated Raman scattering (SRS) microscopy is a fast-
growing technology with the capabilities of rapid and chemical-
specific imaging of native biomolecules based on their fingerprint
vibrational spectra4–13. These advantages have enabled label-free
histopathology of fresh tissue specimens, revealing key diagnostic
histological features of various types of human solid tumors and
diseases14–21. Stimulated Raman histology (SRH) images the
distributions of lipids and protein selectively with picosecond
laser pulses to provide sufficient spectral/chemical resolution,
using either narrow band sources14,15,18,21,22, or broadband
chirped pulses23–25. However, multi-color picosecond SRS (pico-
SRS) requires the tuning of wavelength/time-delay or complex
optical engineering8,16,26–29, sacrificing sensitivity and imaging
speed (several minutes on ~2 × 2mm2 specimens). In contrast,
femtosecond SRS (femto-SRS) generates a single image with
much higher signal-to-noise ratio (SNR) and faster imaging speed
because of the greater pulse peak power, but is hardly used
directly because it lacks spectral resolution for chemical
imaging30,31. Recent advances in deep-learning neural networks
have enabled the extraction of spatially correlated spectra from
femto-SRS images by training with picosecond hyperspectral SRS
data32,33, but the full spectral information is redundant for his-
tological imaging and inefficient for intraoperative diagnosis.

Here, we leveraged the advantage of U-Net based neural net-
work to project the single-shot femto-SRS image to the dual-
channel picosecond ones with recovered biomolecular contrast
and sub-minute imaging time. Femto-SRH of fresh gastroscopic
biopsy successfully revealed the same histological hallmarks as
traditional hematoxylin and eosin (H&E) staining. Moreover, a
second deep-learning architecture based on convolutional neural
network (CNN) was developed for the classification of non-
cancer, differentiated cancer and undifferentiated cancer, yielding
high diagnostic accuracy and concordance with conventional
H&E. Finally, semantic segmentation was realized on femto-SRH
to visualize the heterogeneous distribution of tumor subtypes
within a biopsy, which was further used to evaluate resection
margins of endoscopic submucosal dissection (ESD) tissues to
simulate intraoperative diagnosis.

Results
Experimental design and dual-mode SRS microscope. The goal
of our study was to verify the possibility of prompt histologic
imaging on fresh gastroscopic biopsy using femto-SRS micro-
scope (Fig. 1a). To fully exploit the advantages of femto-SRS (high
speed and SNR) and circumvent its inability in chemical selec-
tivity, we constructed a dual-mode SRS microscope, capable of
imaging the same FOVs with femto- and pico-SRS (Fig. S1). The
optical path of femto-SRS simply uses the transform-limited
femtosecond pulses (~120 fs) to generate single-channel SRS

images at zero time-delay without chemical resolution. In con-
trast, spectral-focusing based pico-SRS requires the chirping of
femtosecond pulses to ~2–4 picoseconds through dispersive
optics, yielding SRS images at different Raman frequencies by
varying the inter-pulse time delays (Fig. 1b). Traditional pico-SRS
takes raw images at two Raman frequencies (ω1= 2845 cm−1 for
CH2, ω2= 2930 cm−1 for CH3) to extract lipid/protein distribu-
tions and generate histological images. The two SRS modes share
most of the optical components except the pulse stretching parts,
and could be switched by shutters to image the same FOVs
without noticeable sample shifts. Therefore, large datasets of the
corresponding femto- and pico-SRS images could be harvested to
train the deep neural networks, so that single-shot femto-SRS
could be converted to dual-channel pico-SRS without complex
optical engineering or physical tuning of detection frequencies.
Moreover, imaging speed could be doubled with about half the
laser power. We also include second harmonic generation (SHG)
of collagen fibers to generate composite multi-color SRS images,
as well as false-colored SRH images to reveal histological features
and for further analysis (Fig. 1c).

Chemical imaging via U-Net based Femto-SRS. The chemical
resolution of SRS essentially results from its spectral resolution to
distinguish molecules of different vibrational spectra. Note that
femto-SRS integrates the spectral-domain information into a
single image, whereas pico-SRS generates hyperspectral images
dispersed in the spectral or time domain (Fig. 1b). Therefore, it is
the inverse problem of recovering discrete spectral images from
the summed image by deep learning algorithms.

We applied a U-shaped fully convolutional network (U-Net) to
project single-shot femto-SRS images to dual-channel pico-SRS
images with preserved spatio-chemical information. Live HeLa
cells and fresh gastric tissues were imaged with both femto- and
pico-SRS on the same FOVs. The differences between the two
imaging modes could be clearly visualized. For instance, in live
cell images pico-SRS revealed high intensity of CH3 (2930 cm−1)
and low intensity of CH2 (2845 cm−1) vibrations in the protein-
rich cell nucleus, while lipid-rich organelles and droplets showed
high intensities at both Raman frequencies (Fig. 2a). These are
known from the spectral differences between lipids and protein14.
In strong contrast, femto-SRS offered a single image with
integrated spectral intensity within the CH stretch window,
including the two Raman channels imaged with pico-SRS.

For the training of U-Net, 50 FOVs of HeLa cells and 100
FOVs of gastric tissues were used, with the ratio of training and
test data size set to 4:1. After training and optimization, the
U-Net was able to convert the raw femto-SRS image to dual-
channel images that resembled the pico-SRS at the corresponding
Raman frequencies. The high conversion accuracy could be seen
by the similarity between the measured pico-SRS (ground truth)
and U-Net predicted femto-SRS images of the same Raman
frequencies (Fig. 2a). The intensity profiles along the line-cuts
through the live cell images further confirmed the accuracy of
U-Net conversion, as well as the recovered chemical contrast as
highlighted in the nucleus regions (Fig. 2b). The dual-channel
SRS images were processed to form colored composite images of
cells and tissues, demonstrating almost identical results between
pico-SRS and deep learned femto-SRS (Fig. 2c, d and Fig. S2).

Processing of femto-SRH images. After U-Net conversion into
dual-channel SRS images, chemical decomposition was applied to
yield the images of lipids and protein by simple linear algebra14.
Collagen fibers were represented by SHG signal directly. In tra-
ditional multi-color SRS imaging, collagen, lipid and protein are
false-colored red, green and blue, respectively (Fig. 2c, d).
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To simulate the coloring scheme of H&E, we created the
pseudo-color of SRS to generate SRH that was more familiar to
pathologists18. The contents of lipid, protein and collagen were
projected to light pink, dark purple and magenta, respectively,
forming SRH images more akin to traditional histopathology
(Fig. 1c and Fig. 3). Although the lipid/protein-based contrast of
SRH was not identical to traditional H&E, it revealed important
pathological features highly similar to H&E.

Femto-SRH reveals key diagnostic features of fresh gastric
tissues. Rapid imaging of femto-SRS was achieved on fresh gas-
troscopic biopsy (~2 × 2 mm2) within 1 min, followed by real-
time U-Net conversion and pseudo coloring to generate multi-
color femto-SRS and femto-SRH images (Movies S1 and S2). All
the important normal and neoplastic gastric tissue histoarchi-
tectures were clearly shown, highly consistent with the findings of
standard H&E. The results of typical non-cancerous tissues are
shown in Fig. 3. SRS readily showed the regular arrangement of
gastric epithelial cells and surrounding basement membrane in
normal glands (Fig. 3a). In adenomas, SRS clearly showed mild to
moderate dysplasia of the glandular epithelium, with nuclei
locating at the base and maintaining polarity, cigar-shaped

features (Fig. 3b). For intestinal metaplasia, in which intestinal-
type epithelium replaces normal gastric mucosa, SRS could
identify the cup-shaped cells within the metaplastic epithelium,
whose secreted mucus was shown as large round compartments
with moderate protein content (Fig. 3c, arrows). In addition, SRS
also provided a clear view of the extraductal and surrounding
mesenchyme. In the case of inflammation, SRS identified infil-
tration of inflammatory cells within the lamina propria, which
was characterized by small, dense, irregularly arranged nuclei
(Fig. 3d).

For neoplastic lesions, femto-SRH showed distinct histopatho-
logic features of adenocarcinoma with different degrees of
differentiation. In well-differentiated adenocarcinomas, SRS
depicted abnormal glands composed of cells with prominent
atypia, enlarged nuclei, loss of polarity, and extension toward the
luminal surface (Fig. 4a). In moderately differentiated adenocar-
cinomas, SRS clearly showed disorganized neoplastic cells and
distorted ducts, such as irregular, extended, angular, and
abnormally fused glandular ducts in tubular adenocarcinomas
(Fig. 4b) and elongated finger-like processes lined by columnar or
cuboidal cell supported by fibrovascular connective tissue cores in
papillary adenocarcinomas (Fig. 4c). As for poorly differentiated
adenocarcinoma, SRS showed malignant epithelial cells in a single
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or nest-like distribution without forming tubular structures
(Fig. 4d). In addition, SRS was even able to differentiate signet
ring cell components similar to that of H&E staining, showing
abundant intracellular mucus pushing the nucleus to one side
(Fig. 4e).

Despite the overall high agreement between SRS and H&E, a
few discrepancies remain and are noteworthy. First of all, SRS
maps out the distributions of lipids and protein, whereas H&E
mainly stains nucleic acid and protein. Secondly, we demon-
strated SRS images on fresh tissues in comparison with H&E
staining on thin sections. Although SRS images create thin
optical sections of ~1 μm thickness due to the nonlinear
property of optical signal5,34, they showed slightly different

structural features from that of H&E. For instance, the core of
the glandular ducts usually appeared hollow in H&E but filled
in SRS (Fig. 3a, b and 4a), which is likely due to the loss and
dissolution of contents during the sectioning and deparaffiniza-
tion processes of H&E. And the dehydration process might
result in denser cellular patterns in H&E. Therefore, SRS might
reveal more intact and better preserved histoarchitectures of
fresh gastric tissues (Fig. S3). Furthermore, label-free SRS is free
from the large staining variation of H&E as seen in
the different colorings among tissues (Figs. 3 and 4). The more
consistent appearance of SRS images may help reduce the
uncertainty and improve the accuracy of machine learning
based diagnosis.
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Deep-learning assisted diagnosis and classification. To reduce
the workload of pathologists and provide potentially more
objective diagnosis for intraoperative histopathology, we eval-
uated the performance of deep-learning based diagnosis on
femto-SRS images from 279 patients (Table S1). The preferred
CNN was Inception-ResNet-V2, composed of an inception
module and a ResNet module. The CNN was trained to classify
the images into three categories: non-cancer, differentiated cancer
and undifferentiated cancer. Labeling of the image data for
supervised learning was based on the pathology of each gastric
biopsy: normal, adenoma, intestinal metaplasia and gastritis cases
were labeled as “non-cancer”; among cancerous tissues, well or
moderately differentiated tubular and papillary adenocarcinomas
were labeled as “differentiated cancer”; poorly differentiated
adenocarcinomas, mucinous adenocarcinoma and signet ring cell
carcinomas were labeled as “undifferentiated cancer”35,36. Two
neural networks with binary outputs were used for the classifi-
cation, the first one categorized the dataset into the non-
cancerous and cancerous lesions, and the second one further
classified the cancer group into subgroups of differentiated and
undifferentiated cancer.

The femto-SRS image data set was divided into training/
validation set and test set. The training/validation images were
sliced into standard tiles of 300 × 300 pixels, and further divided
into the training set and validation set with a ratio of 4:1 using
fivefold cross validation. The number of cases and tiles for all the
data subsets are shown in Table S2. The training input of each
CNN was a patch of tiles, and output the prediction value for
each tile (Fig. 5a and Fig. S4). The test images were kept
independent from the training process, and the subsequent
prediction value was made for individual patient cases based on
the classification percentage of the whole SRS image with a
threshold of ~0.516,18, as determined by the Youden’s index from
the training results (Fig. S5).

For the CNN that classified non-cancer/cancer, the training
curves, test results and receiver operating characteristic (ROC)
curves demonstrated high performance (Fig. 5b, c and Fig. S5),
with the area under the curve (AUC) of 98.8%. Among the 55 test
cases, 2 non-cancer cases were mis-classified as cancer (Fig. 5b
and Fig. S6). For the network that classified differentiated/
undifferentiated cancer, slightly degraded performances are
shown (Fig. 5d, e and Fig. S5), with the AUC of 94.2%. And of
the 17 test cases, 1 differentiated case was mis-classified as
undifferentiated (Fig. 5d and Fig. S6). The overall confusion
matrix of the CNN-based femto-SRH in differentiating the three
diagnostic categories is shown in Fig. 5f. We then quantitatively
evaluated the diagnostic results of the CNN-predictions on
femto-SRH images and the rating of four professional patholo-
gists on the H&E sections of the corresponding specimens with
the ground truth being the results of clinical pathology (Table 1).
Our results indicated that CNN-based SRH has near-perfect
diagnostic performance in determining cancerous lesions (96.4%
accuracy), and a high level of concordance with the true
pathology (κ= 0.899). The statistical differences between CNN-
SRH and the pathologists were subtle in the diagnosis of
cancerous lesions (Table S3). For the subtyping of differentiated
and undifferentiated cancers, CNN-SRH demonstrated better
performance (94.1% accuracy) than the pathologists (85.3% mean
accuracy), and maintained a high diagnostic concordance with
true pathology (κ= 0.85). Despite the few errors, our trained
CNN models exhibit excellent capability of providing automated
and accurate diagnosis on femto-SRH images of fresh gastric
tissues.

Semantic segmentation of intratumoral heterogeneity. The
highly heterogeneous development of tumor results in the uneven
intratumoral histoarchitectures, which offers critical information
of tumor malignancy. To further visualize the heterogeneous
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Fig. 3 Femto-SRS and femto-SRH reveal typical histopathological features of non-cancerous tissues. a Normal gastric gland; b Adenoma; c Intestinal
metaplasia with the characteristic large cup-shaped cells (arrows); dModerate mucosa inflammation. Green: lipids; blue: protein; red: collagen fibers. Scale
bars: 50 µm. Source data are provided in the Source data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31339-8 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:4050 | https://doi.org/10.1038/s41467-022-31339-8 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


distribution of tumor subtypes and levels of differentiation, we
developed a semantic segmentation algorithm based on the above
CNNs, with the operations of flip-expansion, shifting FOVs and
scoring (see Methods and Fig. S7). High-resolution predictions
were made to generate the diagnostic probability maps of non-
cancer, non-diagnostic, differentiated and undifferentiated can-
cers (Fig. 6a). The prediction probabilities were colored and
superimposed onto the SRH images, showing the spatial char-
acteristics of the diagnostic histological heterogeneity within a
gastroscopic biopsy (Fig. 6b).

To illustrate the performance of the algorithm, we demon-
strated the results of a typical tumorous tissue imaged with femto-
SRH (Fig. 6b). The red color represents the high probability
regions of predicted undifferentiated cancer, with low differentia-
tion, poor maturity and high malignancy. The blue color
represents the differentiated tissue regions with well or moder-
ately differentiated carcinoma, and lower degree of malignancy.
The green regions are predicted non-cancer, with gastritis
symptoms and regularly patterned histology. And the gray areas
do not provide useful diagnostic information, mainly consisting
of the empty regions. From the segmentation results, we could
clearly see that this particular tissue was mainly composed of
poorly differentiated tumors with very few sites that remained
moderate differentiation, which agreed with the pathological
result of the patient. Moreover, representative FOVs of these
subtyped areas are magnified (Fig. 6c) and verified by
pathologists, confirming the accuracy of the semantic segmenta-
tion algorithm in generating diagnoses with high spatial

resolution. Pixel-level prediction accuracy is difficult to achieve
at current stage, since corresponding SRH and H&E results could
not be generated on fresh tissues.

Intraoperative evaluation of resection margins for ESD. In
addition to the application of deep learned femto-SRH in rapid
diagnosis of fresh gastroscopic biopsy, we also demonstrated its
potential in evaluating resection margins for endoscopic sub-
mucosa dissection (ESD), whose goal was to achieve maximal
removal of tumor tissues and preservation of healthy parts. We
simulated intraoperative diagnosis on ESD specimens taken at
three locations: the tumor core, the visual margin and the normal
tissue ~8mm away from the margin (Fig. 7a). After resection and
non-invasive imaging with femto-SRH, the fresh tissues were
subsequently sent to the pathology department for standard
histopathological examinations as the ground truths.

The femto-SRH image of each tissue was evaluated based on
the diagnostic histological features and semantic segmentation
using the deep learning models we have developed (Fig. 7b),
highlighting the areas predicted as non-cancer (blue) and cancer
(red). For the intra-tumor tissue, SRH revealed well-differentiated
tubular adenocarcinoma within most of the tissue areas, well-
agreed with the traditional pathology. At the tumor margin, a
clear boundary between the normal and tumorous tissues could
be identified, with differentiated tubular adenocarcinoma in the
predicted tumor region. As for the adjacent normal tissue, the
overall tissue histoarchitecture appeared non-cancerous with only
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Fig. 4 Characteristic femto-SRH images of neoplastic fresh gastroscopic biopsies. Differentiated carcinomas include: (a) well-differentiated
adenocarcinoma, (b) moderately differentiated tubular adenocarcinoma, and (c) differentiated papillary adenocarcinoma with fibrovascular connective
tissue cores. Undifferentiated carcinomas include: (d) poorly differentiated adenocarcinoma, and (e) signet ring cell (arrowheads) carcinoma. Scale bars:
50 µm. Source data are provided in the Source data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31339-8

6 NATURE COMMUNICATIONS |         (2022) 13:4050 | https://doi.org/10.1038/s41467-022-31339-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a small amount of infiltrated cup-shaped cells, which agreed with
the diagnosed chronic atrophic gastritis with intestinal metapla-
sia. A diagnosis accuracy of ~93.3% was reached among the five
studied ESD cases (Fig. 7b). Rapid evaluation of resection margins
with femto-SRH may assist the decision-making during ESD and
help improve patient care.

Discussion
In the current study, we have developed a U-Net based femto-SRS
imaging method to realize label-free tissue histology with a simple
optical layout and improved SNR, without the need to manipulate
in the frequency or time domain. The recovered flavors of che-
mical contrast provide necessary histological details for both
human and machine-learning model to reach high diagnostic

accuracy. And the cost of these advances is mainly in the training
of the deep neural network, which requires the designed dual-
mode system to generate paired femto- and pico-SRS images. In
general, the training should be done separately for different types
of tissues, including gastric, brain, breast etc., while the dual-
mode imaging system could be shared. It could in principle
provide the highest imaging speed with the optimum laser
scanning schemes, such as resonant glavo-mirrors5. And com-
bined with advanced tissue sliding technique37, 2 × 2 mm2 spe-
cimens may be imaged with <30 s, which will be a significant
improvement of rapid histology to minimize the perturbation on
ordinary gastroscopic examination process. The optical simpli-
city, stability and speed improvement of our method may become
more advantageous for clinical translation.
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Fig. 5 Automated diagnosis with deep convolutional neural networks (CNNs) on femto-SRH images. a Schematics of CNN predictions; b, c Training,
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Table 1 Diagnostic comparison between femto-SRH and pathologists.

SRH H&E

CNN Pathologist 1 Pathologist 2 Pathologist 3 Pathologist 4 Combined accuracy (%)

Correct Wrong Correct Wrong Correct Wrong Correct Wrong Correct Wrong

Non-cancer vs. Cancer
Non-cancer 41 2 40 3 42 1 42 1 43 0 96.7
Cancer 12 0 11 1 12 0 10 2 11 1 93.3

Total 53 2 51 4 54 1 52 3 54 1 95.9
Accuracy (%) 96.4 92.7 98.2 94.5 98.2
Concordance 0.899 0.799 0.948 0.835 0.945
Cancerous lesion
Differentiated 12 1 12 1 11 2 11 2 13 0 90.8
Undifferentiated 4 0 3 1 3 1 3 1 2 2 75

Total 16 1 15 2 14 3 14 3 15 2 87.1
Accuracy (%) 94.1 88.2 82.4 82.4 88.2
Concordance 0.85 0.673 0.549 0.549 0.605
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Recent progress of AI-assisted diagnosis based on conventional
pathological tissue sections has shown great promise38–40. How-
ever, the time-consuming preparation steps of conventional sec-
tions do not fully meet the needs of endoscopic biopsy and
diagnosis. The label-free chemical imaging advantage of SRS
provides the unique capability of diagnosing fresh tissues in near
real-time. Given the lack of an intraoperative diagnostic tool for
gastroscopic biopsy, deep learning based femto-SRH may add a
critical component to gastroscopic examinations, providing
endoscopists with important references for making treatment
decisions, and a critical time window for the patients’ psycholo-
gical preparation. Moreover, the non-invasive imaging method
allows the specimens to be reusable for subsequent histopatho-
logical tests to avoid duplicated sampling, such as immunohis-
tochemistry, FISH, PCR, etc.

Experienced pathologists from different hospitals were recrui-
ted to include diagnostic variation among different interpreta-
tions of pathological criteria. Our findings showed that the
diagnostic ability of femto-SRH was comparable to that of
experienced pathologists in distinguishing cancerous from non-
cancerous lesions, but slightly superior in determining the degree
of differentiation (Fig. S6). Two undifferentiated cases were

incorrectly diagnosed as differentiated by pathologists (patients
#106 and #120), and three differentiated cases were incorrectly
rated as undifferentiated (patients #57, #58 and #164). In con-
trast, CNN based femto-SRH showed better agreement with
ground truth. These results indicate that femto-SRH may provide
more objective and uniform diagnostic criteria to minimize var-
iation among pathologists due to differences in the training
experience21. Moreover, imaging of fresh specimens could avoid
tissue processing artifacts and provide more consistent and intact
tissue histoarchitectures for improved diagnosis. For the two
misclassified non-cancer cases by CNN (Fig. S8), we found the
tiles with tissue degradation (#54) or inflammation with dense
macrophage-like cells (#186) were more likely to be mis-predicted
as cancer. We also noticed that the slightly more collagen fibrosis
tended to appear in cancer cases than non-cancer ones (Fig. S9).
Although collagen fibers are known to correlate with tumor
structures and metastasis41–43, in our CNN model, the collagen
channel was found to have minimal effect on prediction accuracy,
in accord with that collagen was not the key histological feature
for cancer diagnosis.

The diagnosis of progressive gastric cancer could also be rea-
lized with conventional white-light endoscopy (WLE) by the
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Fig. 6 Semantic segmentation reveals intratumor heterogeneity. a Spatial distribution of the prediction probabilities of each category; b Femto-SRH
image and the segmented distributions of non-cancer (green), differentiated cancer (blue), undifferentiated cancer (red) and non-diagnostic (gray)
regions; c Magnified view of each category. Scale bars: 100 µm. Source data are provided in the Source data file.
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evident morphologically features. However, the diagnosis of early
gastric cancer (EGC) is challenging. To evaluate the performance
of femto-SRH, we tested a total of 15 samples from 3 different
sites on 5 ESD specimens with nearly 100% accuracy using CNN
based femto-SRH. It can successfully display the cancerous and
non-cancerous areas and delineate the boundaries between them,
which is essential for curative endoscopic resection. Although
magnifying endoscopy with narrow-band imaging (ME-NBI) has
been applied to preoperatively delineate the endoscopic resection
margins of EGC, it was found to be inaccurate in 12% of EGC
patients44. Our future work may evaluate the performance of
femto-SRH in delineating the EGC cases in comparison with ME-
NBI.

Aside from the demonstrated capabilities, our method could be
further improved in several aspects. First, the current CNN pre-
diction was based on a percentage threshold of the small tiles,
which differed from the pathologists’ criteria with only a few
cancer sites identified on a slide to judge a cancer case. More
advanced deep-learning models (such as the weakly-supervised
learnings) will be needed to reduce labeling workload, weaken

labeling errors, and improve the accuracy of identifying key
diagnostic sites. Second, the SRH coloring performance relies on
the biochemical compositions of tissues, such as lipid/protein ratio
and collagen content45,46. In gastric tissues, we found quite con-
sistent chemical compositions among all the cases studied
(Fig. S9), ensuring consistent SRH qualities. Future work will
include deep-learning based SRH to automatically generate images
more akin to H&E. Third, we had not included rare types of
gastric cancer to develop deep femto-SRH because of the limited
cases and data size. Increasing the number of the rare types of
gastric cancer would help to refine the networks for classifying
more tumor subtypes. Moreover, the current diagnostic CNN was
based on endoscopic forceps biopsy, training and prediction dis-
crepancies may exist between forceps biopsy and resected speci-
mens. Finally, the current SRS system is large and non-portable,
future work will focus on the miniaturized and portable instru-
ment for clinical translation18, even toward the endoscopic SRS to
integrate with the current gastroscopy devices47–49.

In summary, we have developed a U-Net based femto-SRS
imaging technique with improved speed and preserved chemical
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specificity, capable of rapid histological imaging on fresh gastric
tissues. Further combined with CNN, femto-SRH enabled not only
automated diagnosis with high accuracy, but also semantic seg-
mentation to reveal the heterogeneous distribution of diagnostic
groups and tumor subtypes. These capabilities provide promise in
near real-time intraoperative diagnosis on gastroscopic biopsy and
evaluation of resection margins of endoscopic dissections.

Methods
Patients and tissue specimens. The study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the Ethics Review Board
of the Zhongshan hospital (B2021-122R2). Written informed consent was obtained
from each patient. The patients were included if they met the criteria: (1) 18–70 years
of age; (2) American Society of Anesthesiologists class 1–3; (3) single stomach lesion.
The exclusion criteria were: (1) history of allergies; (2) previous abdominal surgery;
(3) pregnant woman.

Fresh gastroscopic biopsies were taken by endoscopic forceps (Alton, AF-
D2416BTC, China) with typical size of ~2 × 2mm2. Surgical tissues from ESD
specimens were obtained at three sites/areas with an approximate size of
2 × 2 mm2: (1) intra-tumor; (2) tumor margin; (3) adjacent normal area ~8 mm
away from the margin. The freshly excised tissues were transported to our
microscopy lab within 2 h, sandwiched between the glass slide and coverslip with a
200 µm spacer, and imaged immediately by SRS with ~50 s without additional
processing. The same specimens were then transported to the pathology
department for routine histopathologic analysis.

Pico/femto dual-mode SRS microscope. In order to generate pico-SRS and
femto-SRS on the same field of view (FOV) for training the deep learning algo-
rithms, we added the femto-SRS optical path to the conventional pico-SRS part
(Fig. S1). A single femtosecond laser (OPO, Insight DS+ , Newport) with a fixed
Stokes beam (1040 nm, ~200 fs) and a tunable pump beam (680–1300 nm, ~150 fs)
was used for the dual-mode SRS. Each beam was split into two, sending to the
corresponding pico and femto parts of the setup.

The pico-SRS system functioned under the “spectral focusing” mode, both the
pump and Stokes beams were linearly chirped to picoseconds through SF57 glass
rods23,26. The Stokes beam was modulated by an electro-optical modulator at
20MHz and combined with the pump beam using a dichroic mirror (DMSP1000,
Thorlabs). The collinearly overlapped beams were tightly focused onto the sample
through the laser scanning microscope (FV1200, Olympus) and an objective lens
(UPLSAPO 25XWMP2, NA 1.0 water, Olympus). The transmitted stimulated
Raman loss signal was detected by a Si photodiode demodulated by a lock-in
amplifier (HF2LI, Zurich Instruments), and generated SRS images as the laser spot
raster scanned across the sample. The target Raman frequency was selected by
adjusting the time-delay between the two pulses. For histological imaging, we
imaged at the two delay positions corresponded to 2845 cm−1 and 2930 cm−1,
respectively. Then the raw images were decomposed into the distributions of lipid
and protein using the numerical algorithm to yield two-color SRS images17,26.
Laser powers at the sample were kept as: pump 50 mW and Stokes 50 mW.

In the femto-SRS part, the beams simply by-passed the glass rods and traveled
through the rest of the optical components, maintaining femtosecond pulse width
and generated femto-SRS images for the same FOVs. The splitting and
recombination of the pico- and femto- paths were realized by a polarizing beam
splitter, and a quarter-wave plate before the retro-reflection mirror for each beam.
Shutters were used to switch between the two modes. Femtosecond laser powers at
the sample were kept as: pump 20 mW and Stokes 20 mW, which were below the
photodamage threshold of femto-SRS imaging for live cells31. In addition, SHG
signal was simultaneously harvested using a narrow band pass filter (FF01-405/10-
25, Semrock) and a photomultiplier tube in the epi mode. All the images used the
same setting of 512 × 512 pixels with a pixel dwell time of 2 µs. To image a large
area of tissue, mosaicing and stitching were performed to merge the small FOVs
into a large flattened image.

Deep U-Net for femto- to pico-SRS image conversion. The neural network for
the conversion of femto-SRS to pico-SRS was realized based on U-Net50. Python
language (https://www.python.org) and Pytorch deep learning framework (https://
pytorch.org) were used to build the U-Net. The network was composed of a full
convolution layer, five down-sampling layers and five up-sampling layers with a
pooling layer in each. The optimizer uses ‘RMSprop’ optimizer with the following
parameters: learning rate= 0.001, weight decay= 1e−8, momentum= 0.9. and
‘BCEWithLogitsLoss’ was chosen as the loss function. We took the single-channel
femto-SRS images and dual-channel pico-SRS images of the same FOVs for
training and validation. Femto-SRS images were taken at the zero time-delay
between pump and Stokes pulses, whereas the pico-SRS images were taken at
2845 cm−1 and 2930 cm−1 Raman frequencies. 50 groups of femto/pico-SRS
images of HeLa cells and 100 groups of gastric tissues were collected. The size ratio
between training and test datasets was set to 4:1. The ability of U-Net to split single
femto-SRS image to dual-channel pico-SRS images was verified by the minimum
difference between the converted and measured pico-SRS images (ground truth).

Coloring of SRH images. Conventional coloring of multi-color SRS images uses
RGB colormap to represent collagen, lipids and protein, extracted from SHG
channel and SRS images of 2845 cm−1 and 2930 cm−1. To generate virtual H&E
like SRH images, color conversion was conducted. For the lipid channel, we select a
similar to eosin color of the lookup table to map it to pink; for protein gray-scale
image, we select a similar to hematoxylin color of the lookup table to map it to dark
purple; for collagen, we select the common pathological orange to map. It should
be noted that the color projections are all linear mapping. After the three individual
channels were color converted, they were merged to form an SRH image similar to
H&E. Femto-SRS images were converted to pico-SRS of lipids and protein, and
then false colored to femto-SRH images for demonstration, grading and further
training.

Convolutional neural network for histopathological diagnosis. To diagnose
based on femto-SRS with deep learning algorithms and classify the results into
different subtypes, we designed two layers of networks to: (1) classify non-cancer
vs. cancer; (2) further classify differentiated vs. undifferentiated cancers within the
cancer group according to the Japanese Classification of Gastric Carcinoma
(JCGC)51. The “differentiated cancer” includes well or moderately differentiated
papillary adenocarcinoma and tubular adenocarcinoma. And the “undifferentiated
cancer” includes poorly differentiated adenocarcinoma, mucinous adenocarcinoma
and signet ring cell carcinoma. Both the neural networks were built based on
Inception-Resnet-V2 structure52, using Python language and Pytorch deep learning
framework. Inception-Resnet-V2 is a special type of CNN consisted of the concept
layer, the ResNet layers and the full connection layers of 1536 units with a depth of
572, including the following sequence: (1) input layer; (2) stem layer; (3) Inception-
ResNet-A; (4) Reduction-A; (5) Inception-Resnet-B; (6) Reduction-B; (7) Incep-
tion-Resnet-C; (8) average pooling layer; (9) full connection layer.

Gastroscopic tissues from 279 patients were imaged with femto-SRS, and the
U-Net converted multi-channel SRS images were used for training the CNN. In the
current work, all the CNN classifications were performed on multi-color SRS
images, while the corresponding SRH images were mainly used for visual validation
by pathologists. The SRS images were annotated by 2 experienced pathologists (ZS
Hospital) based on the clinical histopathology result of each patient case, as the
“ground truth” for the whole piece of biopsy. The macroscopic and common
histological types were defined according to the JCGC classification51.

The image dataset was randomly divided into training/validation cohort and
test cohort with a ratio of 7:3. The training/validation cohort was further divided
into 5 equal-sized portions, 1 of which was used as validation data and the other 4
as training data. The choice of validation dataset was rotated among the 5 portions,
resulting in fivefold cross validation. Before feeding into the network, the input
images were normalized by a Z-Score with the mean of (0.485, 0.456, 0.406) and
the standard deviation of (0.229, 0.224, 0.225). The full-sized images were sliced
into tiles of 300 × 300 pixels each. The optimizer used ‘Adam’ optimizer with the
following parameters: learning rate= 0.001, betas= (0.9, 0.999), eps= 1e−8,
weight_decay= 1e−4. The scheduler used ‘MultiStepLR’ scheduler with the
following parameters: milestones= [200,400,500], gamma= 0.5. And
‘CrossEntropyLoss’ was chosen as the loss function.

Patient-level diagnosis with deep-learning models was performed in two stages.
Each test image was sliced into small tiles of the same size as the training tiles. The
first CNN predicted on each tile as normal or tumor, and the tissue-level
classification was made by calculating the percentage of tiles that were predicted as
cancer, dividing all the test dataset into groups of “non-cancer” and “cancer”. The
second CNN further classified the “cancer” group into subtypes of “differentiated”
and “undifferentiated” following the same method. The optimum thresholds were
determined in the training cohort using Youden’s index (Fig. S5), indicating a
percentage threshold of 0.476 for cancer vs. non-cancer, and 0.505 for
differentiated vs. undifferentiated.

Semantic segmentation and prediction heatmaps. Probability heatmaps gen-
erated prediction probabilities of the classified subtypes and spatial heterogeneity of
histological grades within each imaged tissue. High-resolution semantic segmen-
tation was performed as follows:

1. The full femto-SRS image was sliced to tiles of size 300 × 300 pixels, and the
image was extended by a margin of one tile’s width, flipped from the
edge tiles.

2. Each tile was fed into the first CNN, generating output probabilities
(between 0 and 1) of non-cancer and cancer with the sum of 1. The tile was
classified as non-cancer if the output probability of non-cancer was above
40%, classified as cancer if the probability of cancer was above 40%, and
otherwise classified as non-diagnostic. The model classification was
insensitive to the threshold in the range of 0.25–0.4.

3. For the tiles classified as cancer, the second CNN was applied for further
subtyping. If the differentiated-cancer probability was greater than the
undifferentiated, it was classified as differentiated, otherwise it was classified
as undifferentiated.

4. Shift the intercepted area to the right by 50 pixels, and repeat steps 2–3 to
run the classification. If it had been moved to the edge, shift down 50 pixels
and continue moving in the reversed direction.
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5. Each sub-tile of 50 × 50 pixels within the original image was classified 36
times. Count the times it was classified into each subtype (normal, low-
grade, high-grade and non-diagnostic), and divide by 36 to represent the
probability of prediction for the subtypes.

6. Remove the extended margin, and recover the image to the original size.
Then the probability of each subtype was color-coded and superimposed
onto the femto-SRH image to generate the heatmap.

Comparison between femto-SRH plus CNN and pathologists. Each fresh gas-
troscopic biopsy was first imaged with femto-SRS without any processing, and then
the tissue was sent for H&E staining. The SRH images were rated by CNNs. Four
experienced pathologists from four different hospitals (WH, TX, SR, and XM) were
asked to review the H&E images from the testing cohort and give their independent
pathological judgment without knowing any clinical information or pathological
results. The results were then compared with those of the CNN-predictions on
SRH images of the corresponding specimens.

Statistics and reproducibility. The ROC, the AUC, accuracy, specificity (Sp),
sensitivity (Sn), positive predictive value, and negative predictive value were cal-
culated to evaluate the performance of the CNNs. For each pathologist, we cal-
culated Cohen’s kappa statistic to evaluate the level of diagnostic agreement
between femto-SRH and H&E results. Cohen’s kappa was also calculated for CNN
based SRH vs. ground truth (traditional pathology of the same tissue). The
McNemar test or Chi-square was applied to compare the diagnostic results. Two-
side statistical tests were conducted and the p value was regarded as statistical
significance. The analyses were run on SPSS (version 9.0) and R software for
Windows (version 3.5.1; http://www.r-project.org). Figures 1c; 3a–d; 4a–e are
representative of twenty independent experiments. Figures 2a, c–d; 6b; are repre-
sentative of five independent experiments. Figure 7b is representative of two
independent experiments.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are provided in Supplementary
Movies S1–S2, Supplementary Tables S1–S3 and Supplementary Figs. S1–S9. Data used
for training and test the deep-learning models are available under open access at [https://
zenodo.org/record/6582765]. Source data are provided with this paper.

Code availability
Source code, comprehensive documentation, use-case tutorials and hyperparameters to
perform U-Net and CNN based results presented in this manuscript can be found at
https://zenodo.org/record/6582765 under open access.
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