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ABSTRACT This article presents two novel neural networkmodels based on recurrent neural network (RNN)

for radio frequency power amplifiers (RF PAs): instant gated recurrent neural network (IGRNN) model and

instant gated implict recurrent neural network (IGIRNN)model. In IGRNNmodel, two state control units are

introduced to ensure the linear transmission of hidden state and solve the problem of vanishing gradients of

RNN model. In contrast with conventional RNN model, IGRNN can better describe the long-term memory

effect of power amplifier, more in line with the physical distortion characteristics of power amplifier.

Furthermore the instantaneous gates are used to express the input information implicitly to reduce the

redundancy of the input information, and a simpler IGIRNN model is proposed. The complexity analysis

indicates that the proposed models have significantly lower complexity than other RNN-based variant

structures. A wideband Doherty RF PA excited by 100MHz and 120MHz OFDM signals was employed

to evaluate the performance. Extensive experimental results reveal that the proposed IGRNN and IGIRNN

models can achieve better linearization performance compared with RNNmodel and traditional GMPmodel,

and have comparable performance with lower computational complexity compared with the state-of-the-art

RNN-based variant models, such as gated recurrent unit (GRU) model.

INDEX TERMS Nonlinear RF PA, digital predistortion, recurrent neural network, instant gated, behavioral

modeling.

I. INTRODUCTION

With the arrival of the fifth-generation (5G) wireless commu-

nication system, the system capacity and communication rate

are expected to increase significantly [1], [2]. And in order to

meet the requirements of high capacity and high rate of the

system, the signal will have wider bandwidth and more com-

plex modulation, which will lead to a higher peak to average

ratio (PAPR) seriously affecting the linearity and efficiency of

radio frequency power amplifiers (RF PAs) with the inherent

nonlinear characteristics. There are many approaches aiming

to linearize the RF PA and keep a high efficency at the

same time, including feedback linearization [3], feedforward

linearization [4], analog predistortion and digital predistor-

tion (DPD) [5]. Among the linearization techniques, DPD is

The associate editor coordinating the review of this manuscript and

approving it for publication was Vittorio Camarchia .

generally believed to be the most powerful linearization tech-

nology for its flexibility and high performance. At present,

scholars and engineers are very interested in the accurate

modeling and linearization of wideband RF PA.

Lots of DPD models have been proposed to compensate

the nonlinearities of RF PAs [6]–[10]. Volterra-based models

such as memory polynomial (MP) [6], generalized mem-

ory polynomial (GMP) [7] and dynamic deviation reduction

Volterra (DDR) model [8] are the most widely used. In virtue

of the correlation of basis function of Volterra-based mod-

els, based on canonical piecewise-linear (CPWL) functions,

decomposed vector rotation (DVR) is proposed to model the

PAs with strong nonlinearity such as envelope tracking (ET)

PAs [9]. Although these models have a good performance in

narrowband, their linearization performance deteriorates to

some extent with the increase of signal bandwidth. In addi-

tion, to meet the needs of the industry, many advanced
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PA architectures have been proposed, such as out-phasing PA,

distributed PA and multistage Doherty PA. Some of them

may be quite different from the traditional PA in terms of

behavior characteristics, so more powerful models are needed

to describe different PAs behavior characteristics [10].

Because neural network has good nonlinear fitting abil-

ity [11], it is considered to be a potential DPD method.

Up to now, some DPD models based on neural network

have been developed [12]–[17]. A real-valued time-delay

neural network (RVTDNN) model based on multilayered

perceptron (MLP) structure is proposed [12], in which input

and output are divided into in-phase and quadrature (I/Q)

parts to avoid complex gradient operation. Another vector

decomposed time-delay neural network (VDTDNN) model

based on MLP network is proposed [13], which is char-

acterized by nonlinear operation only on the amplitude of

the input signal, and by linear weighting to recover the

phase information. However, when it comes to the wideband

communication scenarios, the memory effect and nonlinear-

ities of RF PAs will be much more severe and complex,

which leads to the relatively inferior linearization perfor-

mance with MLP architecture. It should be noted that the

memory effect of power amplifier will increase significantly

with the increase of bandwidth [15]. Recently, the recurrent

neural network (RNN) is used to model the behavior of the

PA [14], because of its ability of modeling memory effect.

However, there is a problem of vanishing gradients with the

RNN, implying that the model can not express long-term

memory effect well [18], [19]. Therefore, even though RNN

model has stronger modeling ability than MLP model in

theory, RNN model usually has weaker performance in mod-

eling the behavioral characteristics of wideband RF PAs in

practice. In order to solve the problem of gradient vanishing,

a few RNN based variant models have been proposed, such

as long short-termmemory (LSTM) network [20], [21], gated

recurrent unit (GRU) network [22], etc. These RNN-based

variant models have a fairly good performance, especially in

wideband digital predistortion [15]–[17].

Different neural network topologies are developed to real-

ize DPD. The structure of MLP based models are simple, but

the performance in wideband is limited. Many RNN-based

variant models have good expression ability in wideband

modeling, however, with quite high complexity. Therefore,

in this paper, we propose two new models based on RNN

model: instant gated recurrent neural network (IGRNN) and

instant gated implict recurrent neural network (IGIRNN).

Compared with RNN model, the two proposed models can

better describe the long-term memory effect, more in line

with the physical characteristics of power amplifier. At the

same time the structure is simpler and the model parameters

are less compared with other RNN-based variant structures,

such as GRU model. Furthermore, both theoretical analysis

and experimental results reveal that the proposed models

have better performance than RNN model and traditional

GMP model. Compared with the GRU model, they have

comparable performance, but the model parameters and com-

putational complexity are significantly reduced.

The rest of the paper is organized as follows. Section II

reviews the RNN network. The proposed IGRNN cell and

IGIRNN cell are described in Section III. The behavioral

models based on IGRNN and IGIRNN are introduced in

Section IV. A computational complexity comparison is ana-

lyzed in Section V. The experimental validation and a brief

conclusion are presented in Section VI and Section VII,

respectively.

II. REVIEW OF RECURRENT NEURAL NETWORK

RNN is a typical regression network dealing with nonlinear

problems. Because of its inherent memory mechanism, it has

been successfully applied in many fields. For the sake of

illustration, a classical RNN network with one RNN layer

and followed by a fully-connected layer is considered here,

where detailed architecture of the i-th hidden neuron in the

RNN layer is pictured in Fig. 1. The structure of the network is

similar to the standard multilayer perceptron (MLP), the dif-

ference is that RNN allows connection between hidden units

related to time delay. Through this connection, the model

can retain information about the past, so as to discover the

time correlation between events far away from the data. The

i-th hidden neuron of recurrent neural network, with input

vector xt and state hit−1for time step t , is given by:

uit = hit = tanh(Wixt + Uihit−1 + bi) (1)

where the superscript indicates the index of the i-th hidden

neuron and the subscript t represents the index of the time

step. Wi is the weight matrix for the current input vec-

tor xt and Ui is the weight matrix for the previous hidden

state hit−1. b
i is the bias terms. uit is the output vector of the

i-th hidden neuron for time step t .

FIGURE 1. The architecture of RNN cell.

When the output of RNN layer is obtained, on the one hand,

(u1t , · · · ,uit , · · · ,uN1
t ) are transmitted to the next time step

hidden state, on the other hand, (u1t , · · · ,uit , · · · ,uN1
t ) pass

the next fully-connected layer and it yields the final output
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yt = (y1t , · · · , ykt , · · · , yN2
t ). N1 and N2 are the number

of neurons of the RNN layer and the output layer, respec-

tively.The back-propagation through time (BPTT) algorithm

is usually adopted to train the model parameters [23]. Output

unit k’s target at time t is denoted by dkt , and the estimated

output is ykt . At the time step t , the cost function can be

defined as

Et =
1

2
(dkt − ykt )

2 (2)

The error of the whole network can be defined as

E =
∑

1≤t≤T

Et (3)

In the case of back propagation, the gradient loss of a time

step t is determined by the corresponding gradient loss of the

output of the current time step t and the gradient loss of the

next time step t + 1. Thus, the partial derivative of E with

respect to h
j
t

∂E

∂h
j
t

=

N2
∑

k

∂E

∂ykt

∂ykt

∂h
j
t

+

N1
∑

s

∂E

∂hst+1

∂hst+1

∂h
j
t

(4)

∂hst+1

∂h
j
t

=
∂hst+1

∂netst+1

∂netst+1

∂h
j
t

(5)

where

netst = Ws
hxt + Us

hh
s
t−1 + bsh (6)

With the above recurrence formula, we can get the gradient

of the τ -th time step, which can be expressed as

∂E

∂h
j
τ

=

N2
∑

k

∂E

∂ykτ

∂ykτ

∂h
j
τ

+

N1
∑

s

∂E

∂hst+1

∂hst+1

∂h
j
τ

(7)

∂hst+1

∂h
j
τ

=
∏

t≥i>τ

∂hsi+1

∂h
j
i

=
∏

t≥i>τ

UT diag(tanh′ (h
j
i)) (8)

The partial derivative of tanh is bounded, therefore, when

τ ≪ t + 1,

∥

∥

∥

∥

∂hst+1

∂h
j
τ

∥

∥

∥

∥

will go to zero or infinity [18].If
∥

∥

∥

∥

∂hst+1

∂h
j
τ

∥

∥

∥

∥

→ 0, the gradient will vanish, and it means that the

long-term memory will not influence the update of current

state parameters. Therefore the required parameters cannot

be updated accurately. If

∥

∥

∥

∥

∂hst+1

∂h
j
τ

∥

∥

∥

∥

→ ∞, this will lead to

the problem of gradient explosion. However, gradient clip-

ping can be used to solve the problem by transforming the

gradient value into an acceptable range. Therefore when

training long-term sequences, RNN networks may encounter

the problem of vanishing gradients, which will lead to the

difficulty to express long-term memory effects.

III. INSTANT GATED NOVEL NEURAL NETWORKS

In the field of digital predistortion and RF PAs behavioral

modeling, the application of neural network so far is mostly

based on MLP network. By reviewing the existing neural

network models, RNN model is a classical sequence regres-

sion model with simple structure. However, the classical

RNN not only suffers from gradient vanishing and explosion

problem when coefficients updating, but also is not strictly

in accordance with the nonlinear characteristics of RF PAs.

Consequently, its DPD linearization performance is relatively

limited. Particularly, although some RNN-based variant mod-

els, such as GRU, have been designed to avoid gradient

vanishing and explosion, these models are all designed for

specific application scenarios, such as natural language pro-

cessing, while still not conform with the RF PAs’ nonlinear

physical mechanisms. Considering the power consumption

and implementation cost, the direct application of GRU

model into DPD will lead to very high computation com-

plexity as well as long training time. Therefore, a high

performance and low complexity RNN-based model con-

forming with the nonlinear characteristics of RF PAs should

be proposed.

A. INSTANT GATED RECURRENT NEURAL NETWORK

The static nonlinearity of power amplifier is mainly con-

trolled and influenced by the current input signal. Moreover,

with the dynamic self-heating and self-biasing effects,

RF PAs shows very strong and complex long-term memory

effect under the excitation of high-order modulated broad-

band signals [24]. Accordingly, the newly-designed DPD

models need to better satisfy the nonlinear characteristics of

RF PAs, so that both the complex long-term memory effect

and the static characteristics under the current input could

be precisely reconstructed. For clarity, it is assumed that the

current state is h̃t , the memory state is ht−1 and the hidden

layer state is ht . Considering that the behavior characteristic

of power amplifier is the effect of superposition of memory

effect and static working state, the relationship between the

final hidden layer state input and these two states can be

expressed as follows

ht = W1 ⊗ ht−1 + W2 ⊗ h̃t

↑ ↑

memory state static state (9)

where W1 and W2 are weight matrices for the previous

hidden state and the current state, respectively.

In order to adaptively reconstruct the ratio of the static

nonlinear effect to dynamicmemory effect accurately, a novel

state control unit zt is introduce here, of which the mathemat-

ical expression is shown as:

zt = σ (Wzxt + bz) (10)

where Wz is the weight matrix for the current input xt . bz is

the corresponding bias term.

Since the static characteristics is mainly caused by the

RF PA excited by the current input signals, combining the

state control unit zt , the static state at instant t could be

characterized as followings:

W2 ⊗ h̃t = zt ⊗ h̃t (11)
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To get the optimal ht , the exponential weighted average

method in the optimization theory is introduced to adap-

tively control the ratio of the amount of static nonlinearity

to that of dynamic memory nonlinearity. The exponen-

tial weighted average method can ensure that ht is the

optimal value between ht−1 and h̃t . Correspondingly,

the memory state at instant t could be characterized as

followings:

W1 ⊗ ht−1 = (1 − zt ) ⊗ ht−1 (12)

Based on Equations (9)-(12), Equation (9) is further

rewritten as

ht = (1 − zt ) ⊗ ht−1 + zt ⊗ h̃t (13)

where ⊗ represents element-wise multiplication.

Since the designed network is based on RNN model, nat-

urally, the hidden state output of RNN cell can be assumed

as the current state of the cell. In that way, h̃t can be written

as

h̃t = tanh(Whxt + Uhht−1 + bh) (14)

To make the influence of the previous hidden state ht−1 on

update of the current cell state h̃t controllable, a memory state

control unit rt is also introduced here. Equation (14) is further

rewritten as

h̃t = tanh(Whxt + Uh(rt ⊗ ht−1) + bh) (15)

where

rt = σ (Wrxt + br ) (16)

where Wr is the weight matrix for the current input xt . br is

the corresponding bias term.

Combined with the analysis above, the forward propaga-

tion equation of the i-th hidden neuron of the new network

structure can be defined as the following form,

zit = σ (Wi
zxt + biz) (17)

rit = σ (Wi
rxt + bir ) (18)

h̃it = tanh(Wi
hxt + Ui

h(r
i
t ⊗ hit−1) + bih) (19)

uit = hit = (1 − zit ) ⊗ hit−1 + zit ⊗ h̃it (20)

where the superscript indicates the index of the i-th hidden

neuron and the subscript t represents the index of the time

step. Wi
z, W

i
r ,W

i
hand Ui

h are corresponding weight matrices.

biz, b
i
rand b

i
h are corresponding bias terms. uit is output vector

of the i-th hidden neuron for time step t .

Based on Equations (17)-(20), the architecture of the new

network model can be illustrated in Fig. 2. In the new struc-

ture, due to the introduction of two state control units, the state

transfer in the hidden layer has a linear relationship, and the

new model avoids the problem of RNN vanishing gradient.

We train the newmodel parameters through back propagation

FIGURE 2. The architecture of IGRNN cell.

algorithm. Similar to RNN model, we can get the gradient of

the hidden layer output,

∂E

∂h
j
t

=

N2
∑

k

∂E

∂ykt

∂ykt

∂h
j
t

+

N1
∑

s

∂E

∂hst+1

∂hst+1

∂h
j
t

(21)

∂hst+1

∂h
j
t

=
∂hst+1

∂h̃st+1

∂h̃st+1

∂netst+1

∂netst+1

∂h
j
t

+ (1 − z
j
t+1)|(s==j) (22)

where

netst = Whxt + Uh(rt ⊗ ht−1) + bh (23)

Equation (21) can be rewritten as

∂E

∂h
j
t

=

N2
∑

k

∂E

∂ykt

∂ykt

∂h
j
t

+

N1
∑

s

∂E

∂hst+1

∂hst+1

∂h̃st+1

∂h̃st+1

∂neth̃st+1

∂neth̃st+1

∂h
j
t

+
∂E

∂h
j
t+1

(1 − z
j
t+1) (24)

By comparing Equation (4) with Equation (24), it can be

found that Equation (24) adds linear transfer gradient as its

last term. If the long-term memory has effect on the current

state, the linear return term can ensure that the gradient

does not vanish. Therefore, compared with RNN network,

the new network solves the problem of vanishing gradients.

For Equation (24), the second term on the right hand side

can reflect the short-term memory effect, and the third term

on the right hand side can reflect the long-term memory

effect. Therefore, the new model is more consistent with the

behavioral characteristics of RF PA and more powerful to

reflect the long-term memory effect of RF PA compared with

RNN network.

The new model introduces two state control units, which

control the update of the current state and memory state to

the hidden layer state through the current input. Contrary to

that of GRU, the newly designed model is mainly based on

the nonlinear physical characteristics of RF PAs, so that the
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new network structure is more in line with the characteristics

of power amplifier, making it has excellent expression ability

and still with lower computational complexity. In the new

structure, the two state control units introduced here only

accept that of the current input information xt . Therefore,

these two state control units are called instant gated units. The

new network structure is called instant gated recurrent neural

network (IGRNN).

B. INSTANT GATED IMPLICT RECURRENT NEURAL

NETWORK

To meet the low cost and low power requirements of digi-

tal predistortion, we modify the IGRNN model to make it

simpler. From Equation (19), we can find that the update of

current state h̃it is through the input information xt , the instant

gated rit and the previous hidden stated h
i
t−1, and the update of

hidden state hit is through the instant gated z
i
t and the current

stated h̃t . It is observed that two instant gated z
i
t and r

i
t already

contain the information of current input xt , where r
i
t is used

for update h̃it directly and z
i
t is used for update h

i
t . As a result,

h̃it and h
i
t can indirectly get the input information xt through r

i
t

and zit . Hence, the current input information can be obtained

indirectly by the two gate control units when updating state

information. Considering this observation, the current input

information xit in Equation (19) can be removed. Since the

two instant gated units are used to express the input informa-

tion implicitly, this simplified structure is called instant gated

implict recurrent neural network (IGIRNN) model. Based on

the analysis above, the Equation(19) can be rewritten as

h̃it = tanh(Ui
h(r

i
t ⊗ hit−1) + biz) (25)

The architecture of IGIRNN is illustrated in Fig. 3. Here,

the two instant gated units of IGIRNN can be updated by

Equation (17) and (18). And the Equation (20) and (25) can

be used for the updated of the hidden state hit and the current

cell state h̃it , respectively.

FIGURE 3. The architecture of IGIRNN cell.

The IGIRNN still retains the characteristics of linear trans-

mission of hidden layer state, and reduces the redundancy

of the input information. Therefore, it can still reflect the

behavioral characteristics of RF PA and the influence of

long-term memory effect.

IV. BEHAVIORAL MODELING BASED ON IGRNN OR

IGIRNN

When we finished the network cell of IGRNN and IGIRNN

construction, the network cell can be expanded to a large one

with G hidden neurons in the hidden layer, as is depicted

in Fig. 4. The proposed architecture used for behavioral

modeling has four layers, namely an input layer, an recurrent

neural layer, a fully connected layer and an output layer,

as illustrated in Fig. 4.

FIGURE 4. The folded architecture of behavioral model.

It should be noted that the form of the input signals

of both IGRNN and IGIRNN are different from models

based on MLP. The input of the proposed models are a

sequence. At each time step, the current element of the

sequence enters the neural network cell. Due to the recurrent

mechanism, the model with a certain sequence length T

can model the memory effects to some degree. Further

more, to better model the memory effects of wideband

RF PAs, the input of the model at current time step n is

defined as xn = [x(n), x(n− 1), · · · , x(n−M )]T , the input

vector with memory depth of M , which is the same as

the input sequence of the real-valued models based on

MLP. Naturally, the input at the previous time step is

xn−1 = [x(n− 1), x(n− 2), · · · , x(n− 1 −M )]T , and so

forth. Since the memory terms at the past time steps, quanti-

fied as T , influence the current state by being processed and

transmitting the hidden state, these memory terms are called

indirect memory terms (IDMT) in this article. Oppositely,

the memory terms at the current time steps quantified as

M, directly influence the current state, and are called direct

memory terms (DMT). Because xn is a complex baseband

signal, as follows

xn = in + jqn (26)
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therefore the input sequence Inand Qn with IDMT and DMT

are expressed as:

In = [in, in−1, · · · , in−T ]

=

















i(n) i(n− 1) · · · i(n−M )
...

...
...

...

i(n− t) i(n−t − 1) · · · i(n−t −M
...

...
...

...

i(n− T ) i(n−T − 1) · · · i(n−T −M )

















(27)

and

Qn = [qn,qn−1, · · · ,qn−T ]

=

















q(n) q(n− 1) · · · q(n−M )
...

...
...

...

q(n− t) q(n−t − 1) · · · q(n−t −M
...

...
...

...

q(n− T ) q(n−T − 1) · · · q(n−T −M )

















(28)

To model the relationship between the input (In,Qn) and

the output (Iout (n),Qout (n)), we apply the sequence-to-one

regression mode to the proposed models, as shown in Fig. 5.

In this mode, based on forward propagation equation of

IGRNN or IGIRNN, the corresponding output, denoted by un
here can be calculated with the input In andQn. In the model

with G hidden neurons, un = [u1(1), y2(2), · · · , uG(n)] is the

cell’s output at the last time step and has a size of G × 1.

Then, the in-phase part Iout (n) and quadrature partQout (n) of

the corresponding cells output, can be obtained by conducting

fully connected layer on each element of cell’s output.

FIGURE 5. Sequence-to-one regression mode.

V. ANALYSIS AND COMPARISON OF COMPUTATIONAL

COMPLEXITY

In this part, we compare the complexity of different models.

Firstly, the complexity and modeling performance of the two

new proposed models are analyzed and compared. Secondly,

we compare the complexity and modeling performance of

the second model with GRU model.

A. COMPLEXITY COMPARISON OF IGRNN AND IGIRNN

Suppose the number of hidden layers and its hidden neurons

is 1 andG, respectively. Thememory depth of the input vector

isM . Since the input sequence length T does not bring change

to the total parameters, the total coefficients to be updated in

the IGRNN is:

N1 = 3 × 2 × (M + 1) × G+ G2 + 5 × G (29)

The total coefficients to be updated in the IGIRNN is:

N2 = 2 × 2 × (M + 1) × G+ G2 + 5 × G (30)

And it yields:

N1 − N2 = 2 × (M + 1) × G (31)

The visualization of the relationship between the N1 − N2

and its corresponding memory depth M and the number of

hidden neurons are illustrated in Fig. 6. Taking G = 100 and

M = 15 as an example, the total parameters of the IGRNN

and IGIRNN models are 20100 and 16900, respectively. The

corresponding modeling performance is listed in TABLE 1.

FIGURE 6. The relationship of (31).

TABLE 1. Performance comparison of modeling.

B. COMPLEXITY COMPARISON OF IGIRNN AND GRU

At present, there are many variant structures based on RNN

model, such as LSTM andGRUmodel. GRU has been proven

to have good model expression ability in many fields, and

it is easier to train with less parameters than LSTM model.
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So here GRU is adopted as a comparison model to show that

the IGIRNN model has the comparable performance with

lower computational complexity. The total coefficients to be

updated in the GRU is:

N3 = 3 × 2 × (M + 1) × G+ 3G2 + 5 × G (32)

And it yields:

N3 − N2 = 2 × (M + 1) × G+ 2 × G2 (33)

The visualization of the relationship between the N3 − N2

and its corresponding memory depth M and the number of

hidden neurons G are illustrated in Fig. 7. Generally, to real-

ize a relatively good modeling performance, the number of

hidden neurons G is much larger than the memory depth M

especially when modeling wideband signals. Therefore, with

the increase of G, the parameter of IGIRNN will obviously

decrease compared with the GRU model. Taking G = 100

and M = 15 as an example, the total parameters of the GRU

and the IGIRNN models are 40100 and 16900, respectively.

Also the corresponding modeling performance is listed in

TABLE 1.

FIGURE 7. The relationship of (33).

VI. EXPERIMENTAL VALIDATION

In order to compare the performance of the proposed models

and the existing models, various experimental tests were

conducted. The photograph of the experimental platform is

shown in Fig. 8. The platform is composed of a personal

computer (PC) with MATLB and pytorch softwares, a Vector

Signal Generator (SMW200A) from R&S, a linear driver

PA, a wideband Doherty PA operated at 2.4GHz, a 40 dB

RF attenuator and a Spectrum Analyzer (FSW43) also from

R&S. The flow diagram of the modeling procedure with

Iterative Learning Control (ILC) is depicted in Fig. 9. Firstly

the upconverted RF signals were generated by the Vector

Signal Generator under the control of PC. Secondly, after

the linear driver PA, the RF signals were amplified with the

Doherty PA operated at 2.4GHz. Thirdly, the attenuated PA

outputs were captured by the SpectrumAnalyzer and sent into

the PC. Finally, the parameters of the model are extracted and

trained in PC(Intel Core i5-9400 CPU, 16G RAM).

FIGURE 8. The photograph of the test bench.

The idea of ILC is to change the input of unknown system

through training, so as to minimize the error between the

output of actual system and the output of ideal system [25].

As shown in Fig. 9, ILC is applied to the parameter identifi-

cation of DPD. Firstly, through ILC algorithm, the ideal PA

input zideal can be obtained by iteration and this makes the

error of PA output y and the digital predistorter input x min-

imum, that is, zideal is the optimal predistortion signal zopt .

Then by choosing the appropriate model, the digital predis-

torter can be identified according to the input of the digital

predistorter and the best predistortion signal.

FIGURE 9. The flow diagram of the modeling procedure with ILC.

A. THE PERFORMANCE COMPARISON OF MODELING

To evaluate the modeling ability of the proposed models,

the conventional GMPmodel, the VDTDNNmodel, the RNN

model, the GRUmodel and BiLSTMmodel are used for com-

parison. The test signal is a 5-carrier 100MHz OFDM signal

and its PAPR is 6.6dB. Around 60,000 samples were recorded

with the sampling rate at 368.64MSPS. The first 50,000 sam-

ples were used to extract model coefficients and the remain-

ing samples were used for performance verification.

The test signal and the PA output signal are then used to

train the models. The configurations of different models are

described as follows: The nonlinear order and memory depth

of GMP model here are 13 and 9, respectively. The nonlinear

order and memory depth for the lagging and leading cross
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terms are 9 and 7, respectively. And the orders of lagging

and leading cross terms are both 7. The proposed models,

RNN, GRU and BiLSTM here have 1 layer with 100 hidden

neurons; The memory depths M of the input vectors of the

proposed models, RNN, GRU and BiLSTM are all 15, and

the input sequence length of the proposed models and GRU

model are 8. VDTDNN here has 2 layer with 100 hidden

neurons; The memory depths M of the input vectors of

VDTDNN is15. It should be noted that the configurations

of GMP here has already reached present the possible best

performance, although more coefficients can be selected. The

modeling performance, denoted by normalized mean square

error (NMSE) for the digital predistorter of different model

are listed in TABLE 1.

It is clear compared with GMP model, the VDTDNN and

the RNN, the two proposed novel models can improve NMSE

at least 1.92 dB for the validation performance. Therefore,

in wideband scenarios, the two novel models are promising

behavioral models for modeling digital predistorters and PAs.

In addition, GRU and BiLSTM have better performance than

proposed novel models, but those models complexity are

higher.

For the sake of further comparison the modeling perfor-

mance of different neural models, the number of hidden neu-

rons are changed to evaluate the performance. The number

of hidden neurons changes from 20 to 120 at an interval

of 20. It can be found from Fig. 10 that the performance

of traditional RNN structure modeling is poor. And with the

increase of the number of neurons, the performance of the

two proposed models are close to GRU and BiLSTM model.

When the number of neurons is small, the performance of

IGRNN model is better than that of IGIRNN model, but with

the increase of the number of neurons, the performance of

IGIRNN is close to or even better than IGRNN. The reason

for this phenomenonmay be that with the increase of neurons,

the ability of network structure expression is enhanced, which

may cause redundancy of input information.

FIGURE 10. Performance comparison modeling with varied number of
hidden neuron.

B. THE LINEARIZATION PERFORMANCE COMPARISON OF

GMP, VDTDNN, RNN, IGRNN AND IGIRNN

In part A of this section, the modeling performance of

different models was compared. Here the linearization per-

formance of different models is further compared. To make

the comparison clearer, this part B only compares the lin-

earization performance of GMP, VDTDNN, RNN and the

two proposed models. In the next part, the linearization

performance of GRU and the two proposed models will

be compared. All the settings in this part are the same as

part A.

The AM-AM and AM-PM characteristics without DPD

and with IGRNN model DPD are shown in Fig. 11.

The AM-AM and AM-PM characteristics without DPD

reflects the working state and distortion of the RF-PA.

The AM-AM and AM-PM characteristics with IGRNN

model DPD directly reflects the linearization performance

of IGRNN. The detailed NMSE and adjacent channel power

ratio (ACPR) are listed in TABLE 2. The power spectral

density (PSD) comparision is shown in Fig. 12.

FIGURE 11. AM-AM and AM-PM plots with and without DPD for a
100-MHz OFDM signal.

FIGURE 12. The power spectral density comparison of GMP, VDTDNN,
RNN, IGRNN and IGIRNN for 100-MHz OFDM signal.
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TABLE 2. Performance comparison of GMP, VDTDNN, RNN, IGRNN and
IGIRNN for 100-MHz OFDM signal.

According to TABLE 2 and Fig. 12, the NMSE of the

IGRNN and IGIRNN can be improved at least 2.15dB com-

pared with GMP, VDTDNN and RNN. The ACPR of the

IGRNN and IGIRNN at the lower sideband can be improved

at least 1.39dB, while the ACPR at the upper sideband can

be improved at least 3.06dB. The performance of IGIRNN

is equivalent to that of IGRNN, and at some frequencies the

performance of IGIRNN can be even slightly better than that

of IGRNN.

C. THE LINEARIZATION PERFORMANCE COMPARISON OF

GRU, IGRNN AND IGIRNN

In this part, the proposed models are compared with the RNN

variant based gate structure model, of which GRU model is

a typical one. In addition, it can be seen from part A that

BiLSTM has similar modeling performance to GRU, but the

complexity is too high, which is not practical in DPD exper-

iment. Therefore in this part, the linearization performance

of GRU and the two proposed models are compared. In this

experiment, a 120MHz OFDM signal was employed as the

test signal. Other experimental settings in this part are the

same as those in part A.

It can be seen from TABLE 3 and Fig. 13, all three models

have excellent predistortion performance. The linearization

performance of the proposed two models is comparable to

that of GRU model, and the number of parameters is sig-

nificantly reduced. When the number of neurons is 100 and

the memory depth is 15, the number of model parameters

of IGRNN and IGIRNN relative to GRU reduces 49.9 per-

cent and 57.8 percent, respectively. Besides, the characteistic

curves of the AM-AM and AM-PM without DPD and with

IGIRNN are shown in Fig. 14.

TABLE 3. Performance comparison of GRU, IGRNN and IGIRNN for
120-MHz OFDM signal.

FIGURE 13. The power spectral density comparison of GRU, IGRNN and
IGIRNN for 120-MHz OFDM signal.

FIGURE 14. AM-AM and AM-PM plots with and without DPD for a
120-MHz OFDM signal.

VII. CONCLUSION

In this study, two novel neural network models based on

the RNN model are proposed. Different from the traditional

RNN model, the two models proposed solve the problem

of vanishing gradients in RNN model training. Therefore,

can better describe the short-term and long-term memory

effect of RF-PA. Additionally they are more in line with

the physical distortion characteristics of power amplifiers.

Compared with other RNN-based variant models, such as

GRU model, the two proposed models are simpler and can

effectively reduce model parameters. The theoretical analysis

and various experimental results imply that the proposed

IGRNN and IGIRNN have excellent performance compared

with traditional DPDmodels such as GMPmodel, and signif-

icantly lower computational complexity compared with RNN

variant models such as GRU model.
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