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Abstract

We describe and illustrate a simple procedure for identifying a liquid interface from atomic

coordinates. In particular, a coarse grained density field is constructed, and the interface is defined

as a constant density surface for this coarse grained field. In applications to a molecular dynamics

simulation of liquid water, it is shown that this procedure provides instructive and useful pictures

of liquid-vapor interfaces and of liquid-protein interfaces.
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The Interface

Definitions of soft-matter interfaces at a molecular level can be ambiguous [1, 2]. Due to

molecular motions, interfacial configurations change with time, and the identity of molecules

that lie at the interface also change with time. Generally useful procedures for identifying

interfaces must accommodate these motions. Here, we present a simple and intuitive pro-

cedure for doing so. The procedure is based upon spatial coarse graining, it applies to

reasonably arbitrary geometries, and it can be applied at any point in time so that it can

be used to interpret time dependent phenomena and fluctuations. We find the procedure to

be useful in a variety of contexts, a few of which are illustrated in this and the next section.

The basic idea begins with the instantaneous density field at space-time point r, t,

ρ(r, t) =
∑

i

δ (r− ri(t)) , (1)

where ri(t) is the position of the ith particle at time t, and the sum is over all such particles

of interest. Rendering this field directly provides only vague impressions of interfaces. A

more manageable field can be formed through coarse graining. Our choice of spatial coarse

graining is a convolution with the normalized Gaussian functions

φ(r; ξ) = (2πξ2)−d/2 exp(−r2/2ξ2), (2)

where r is the magnitude of r, ξ is the coarse graining length, and d stands for dimensionality.

Applied to ρ(r, t) we have the coarse grained density field

ρ̄(r, t) =
∑

i

φ (|r− ri(t)|; ξ) . (3)

The choice of ξ will depend upon the physical conditions under considerations. With ξ set,

we define interfaces to be the (d− 1)-dimensional manifold r = s for which

ρ̄(s, t) = c, (4)

where c is a constant. In other words, we define instantaneous interfaces to be points in

space where the coarse grained density field has the value c. This coarse grained density

changes with time as molecular configurations change with time, i.e., s = s(t) = s({ri(t)}).
For a given molecular configuration, {ri(t)}, Eq. (4) can be solved quickly through inter-

polation on a spatial grid. 1 illustrates what is found for one configuration of a slab of liquid
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FIG. 1: (a)A snapshot of a slab of liquid water with the instantaneous interface s rendered as a blue

mesh on the upper and lower phase boundary. The slab is periodically replicated in the horizontal

directions. (b)The time correlation function governing the spatial fluctuations in the intrinsic

interface s. Here angle brackets represent an equilibrium average and δsz(t) ≡ (s(t) · ẑ − 〈s〉 · ẑ)

where s(t) is the position of the interface at time t and ẑ is the unit vector in the z direction (as

is indicated in Panel (a)).

water at conditions of water-vapor coexistence. Details of our simulations are described be-

low in the Methods section. We have taken {ri(t)} to refer to the positions of all the oxygen

atoms in the system, and because the bulk correlation length of liquid water is about one
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FIG. 2: Snapshots of an assembling pair of melittin dimers. (a)Snapshot at t = 0 showing explicit

solvent and melittin dimers rendered as green and yellow ribbons. (b)Snapshot at t = 0 excluding

the explicit solvent with the instantaneous interface s rendered as a blue mesh. (c)Snapshots of

interface at t = 240ps, t = 377ps, and t = 743ps. Red, blue, and white bands illustrate cross-

sections in s as seen from the top in (d).

molecular diameter, we have used use ξ = 2.4Å; further, we have used c = 0.016Å−3, which

is approximately one-half the bulk density.

The pictured instantaneous water-vapor interface s resembles a wavy sheet dividing the

liquid and vapor-like regions. In accordance with the predictions of capillary wave theory [3,

4, 5], the undulating height fluctuations in s exhibit transverse correlations that extend

across the system. As shown in 1, for the size system pictured, these fluctuations de-correlate

on time-scales of tens of picoseconds.

This approach belongs to a broader class of interface identification algorithms that build

upon the assumption that the interface is well described as a molecularly sharp d − 1 di-

mensional manifold that is made rough by collective thermal fluctuations [1, 2, 4, 6, 7, 8, 9].

Our procedure is distinguished by being independent of an interfacial reference plane or
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presumed symmetry. This feature is particularly useful for studying liquid interfaces near

non-planar substrates and irregularly shaped solutes like biopolymers. We turn to such an

application in 2, which shows the instantaneous interfaces of water during a trajectory of

two hydrated melittin dimers. This example has no obvious spatial symmetries.

Melittin dimers have hydrophobic domains that are exposed to solvent until they assemble

to form a stable tetramer. In this assembly, the hydrophobic domains undergo a dewetting

induced hydrophobic collapse [10, 11, 12]. The rendered interfaces in 2 show how this

aggregation is highly collective. The concerted motions of water molecules that underlie

what is pictured would be hard to detect without viewing the instantaneous interfaces. In

the specific trajectory illustrated, the dimers first come into contact on one end. Collapse

proceeds through a zipper-like motion during which water is squeezed out of the cavity

away from the ends of the dimers that have already associated. This process is aided by

the intermittent formation of vapor-tunnels bridging the unassociated ends of the dimers

(examples of these vapor tunnels are shown at t = 240ps and t = 377ps in 2). Due to

these vapor tunnels, there is an unbalancing of solvent-induced forces, and this unbalancing

accelerates assembly [13, 14, 15].

Contrasting Mean and Instantaneous Interfaces

To quantify molecular properties associated with interfaces, it is useful to carry out av-

erages in terms of the positions and orientations of molecules with respect to the location of

the interface. In such considerations, the distinction between mean and instantaneous inter-

faces is significant. This is because interfacial fluctuations can be large, so that a molecule

located at the position of the mean interface can be often distant from the instantaneous

interface. Using the mean density or mean interfacial profile to specify the reference surface

will therefore obscure the true molecular nature of interfacial properties. To illustrate the

significance, we have examined a few properties associated with the liquid-vapor interface.

In this case, the mean interface is essentially the fixed reference frame of the Gibbs dividing

surface [16].

In either frame of reference, we let ai(t) denote the proximity of the ith water molecule

to the surface. That is,

ai(t) = {[s(t)− ri(t)] · n(t)}|s(t)=s∗i (t), instantaneous, (5)
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or

ai(t) = [〈s〉 − ri(t)] · 〈n〉, mean. (6)

The angle brackets denote equilibrium average; s∗i (t) is the point on s(t) nearest ri(t); n(t)

is the unit vector normal to the instantaneous interface at s(t), i.e., the unit vector in the

direction of ∇ρ̄(r, t)|r=s(t); 〈n〉 is the unit vector normal to the mean surface, 〈s〉; ai(t) is

positive if molecule i is on the vapor side of the interface and negative if molecule i is on the

liquid side of the interface. [While we are here considering specifically liquid-gas coexistence,

where the mean interface has planar symmetry, the proximity ai(t) defined in Eq. (5) is

more generally applicable.]

With this notation, the mean density profiles with respect to either the instantaneous

water-vapor interface or the mean water-vapor interface is

n(x) =
1

L2

〈∑
i

δ(ai − x)

〉
, (7)

where L is the length of the simulation cell parallel to the mean interface. 3 juxtaposes

the density profile when ai is in reference to the instantaneous interface, Eq. (5), with that

when ai is in reference to the mean interface, Eq. (6). The profile relative to the fluctuating

instantaneous interface exhibits oscillations indicative of a layering of the atomistic solvent.

This layering while not without precedent [6, 17, 18, 19] represents a significant departure

from the more familiar sigmoidal density profile observed relative to the mean dividing

surface. It is evident from this result that the liquid-vapor phase boundary is indeed well

described as a sharp surface (with a width of approximately a single molecular diameter)

dividing the bulk liquid and vapor phases. In this perspective, proposed by Stillinger [3] and

later treated extensively by Widom [20] and Weeks [4], the sigmoidal feature seen in the mean

solvent density profile (3) is a manifestation of thermal fluctuations in the position of the

intrinsic surface. An important consequence arises in the context of extended hydrophobic

interfaces whose density profiles are often drawn to resemble those of a liquid-vapor interface,

meaning they including a region of depleted solvent density between the hydrophobic surface

and the bulk liquid. It has been shown that for extended hydrophobic solutes that interact

with water through even weak dispersive interactions that the solvent density profile is often

not sigmoidal but exhibits layering [21, 22, 23, 24, 25, 26, 27]. This observation has been

used to conclude [21, 23, 27] that water near such hydrophobic surfaces is not like water
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FIG. 3: The mean density profile n(x)(solid line) and the mean orientational property m(x)(dashed

line) plotted as functions of the distance x relative to either the Gibbs dividing surface (top) or

the instantaneous interface (bottom). The quantity ρ is the value of bulk liquid density and m is

the magnitude of the dipole moment of a single water molecule in the simulation.

near a liquid-vapor interface. 3 shows that such a conclusion is not justified. In particular,

the mean water density proximal to the instantaneous liquid-vapor interface is layered. The

layering thus seen in the mean density near hydrophobic surfaces indicates that dispersive

attractions are sufficient to locate the water-vapor interface on average adjacent to the

surface. Without those weak attractions the interface would wander.

Not only does the layering indicate that the instantaneous s neatly divides the vapor and

liquid phases, the modulation in the solvent density has a significant effect on the orientations

of water molecules in the vicinity of the water-vapor interface. This orientational structure is

washed out when the Gibbs or mean surface is used as the reference. Consider, for instance
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the dipole moment of the ith water molecule, mi, for which the conditional mean of its

projection parallel to the instantaneous or mean interface is given by

m(x) =
1

L2n(x)

〈
N∑

i=1

mi δ(ai − x)

〉
. (8)

where either

mi = (mi · n) |s=s∗i
, instantaneous (9)

or

mi = mi · 〈n〉, mean. (10)

These quantities are plotted alongside their respective density profiles in 3. In the frame of

reference of the instantaneous interface, oscillations of m(x) with respect to x reflects the

correlations between molecular orientation and proximity to the interface. These correlations

are not nearly so evident or interpretable in the frame of reference of the mean interface.

Indeed, orientational structure is sufficiently vivid in the reference frame of the instanta-

neous interface that we find it informative to also consider quantities like the joint conditional

distribution

P (u, u′|x) ∝ 1

n(x)

〈∑
i

δ
(
u− cos(θ

(1)
i )
)
δ
(
u′ − cos(θ

(2)
i )
)
δ (ai − x)

〉
, (11)

where θ
(1)
i is the angle between the instantaneous surface normal at s∗i and one of the two

O-H bond vectors of the ith water molecule, and θ
(2)
i is similarly defined for the other O-H

bond vector of that same molecule. This distribution at several values of x, where proximity

ai is defined with reference to the instantaneous interface, is shown in 4.

The panels of that figure show how water molecules near the instantaneous liquid-vapor

interface adopt orientations consistent with locally favorable hydrogen bond patterns. In

the first layer of liquid, where n(x) has its first peak (x ≈ 1.7Å), the figure shows that

water molecules most likely adopt orientations where both OH bonds are aligned to donate

hydrogen bonds to other water molecules residing in that first layer. The geometry of a

water molecule makes it impossible for a molecule in the first layer to donate in two such

hydrogen bonds when x . 0.8Åand x & 2.6Å. Due to this constraint, the population of

water molecules at x ≈ 0.8Åmost likely orient only one O-H to donate hydrogen bond to the

first layer of liquid while the other OH bond pointed into the vapor phase (` ≈ 1). Similarly,
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FIG. 4: The joint probability distribution P (u, u′|x) governing the orientations of each OH bond

of water molecules with x = 0(a), x = 0.8Å(b), x = 1.2Å(c), and x = 2.0Å(d). A value of ` = 1,

` = 0, or ` = −1 refer to OH bonds that are oriented parallel, perpendicular, or anti-parallel to

the local surface normal respectively. The normalizing factor P (u, u′|∞) is the value of the joint

probability distribution in an isotropic environment.
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water molecules near x ≈ 2.6Åmost likely donate one hydrogen bond into the first layer and

another into the second layer.

While not illustrated explicitly here, we find that orientational structure extends from the

instantaneous interface into the bulk liquid as far as 8Å. For x & 8Å, the solvent orientational

structure ceases to exhibit the influence of the interface.

Methods

The numerical simulation study consisted of SPC/E water molecules [28] in a 36× 36×
100Å3 simulation cell periodically replicated in the x and y Cartesian directions. At a tem-

perature of 298 K the 1387 water molecules in the simulation cell form a liquid slab spanning

the periodic boundaries that is approximately 36Å thick (in the z Cartesian direction). The

liquid-vapor phase boundaries present in the simulation serve as a natural barostat and

therefore the liquid can be regarded as a system being held at constant pressure. Electro-

static interactions are treated with two-dimensional Ewald summation [29], and molecular

constraints are enforced with the RATTLE algorithm [30]. Statistics were generated through

six independently equilibrated molecular dynamics simulations each run with a time step of

2.4fs for about 1ns with nuclear coordinates written out every 50 time steps.

To identify the water-vapor interface the density field ρ̄(r, t) was computed on a cubic

lattice with a lattice spacing of 1Å. For the spatial coarse-graining of the density field, φ(r; ξ)

was truncated and shifted to be both continuous and zero at a distance of 3ξ. The Gaussian

width ξ was selected by first computing a measure of the average amount of interfacial area

in the system,

A =

〈
1

L2

∫
Θ[ρ̄(r, t)− c]Θ[c− ρ̄(r + lẑ, t)]dr

〉
, (12)

where Θ(x) is the Heaviside function which is given by,

Θ(x) =

 1, if x ≥ 0,

0, if x < 0.

We have found that a value of l = 1Åis sufficiently small to ensure an accurate measurement

of A. For small values of ξ the quantity A decreases with increasing ξ, eventually reaching

a constant value of A = L2 the projected area of a single planar interface. For large values

of ξ, A = L2, the projected area of a single planar interface. For smaller values of ξ,
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A > L2, which happens when the density field ρ̄(r, t) in the liquid contains cavities and/or

the planar interface develops overhangs. We find that a value of ξ = 2.4Åis large enough

to essentially eliminate the occurrence of interface overhangs and bubbles within the liquid

phase. Computing the entire density field in this manner for a single configuration (time

step) took 3.4 seconds on a single processor of a modern desktop computer.
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