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Abstract

Instantaneous planar pressure determination from

particle image velocimetry

Forces on flapping or rotating wings, like flapping wings of micro air

vehicles or blades of wind turbines are of great interest to engineers.

To investigate the ways birds and insects fly, forces created by flapping

wings are of importance to biologists. The pressure field, combined

with the velocity field, gives a complete description of the (incompress-

ible) flow dynamics. Furthermore the pressure field is the main contrib-

utor to the aerodynamic loading of bodies immersed in the fluid.

Traditional techniques to determine pressure and forces rely on the

determination of surface pressure and integral loads by point pressure

and force balance measurements. In situations where it is difficult (or

impossible) to instrument the body, using particle image velocimetry

(PIV) velocity data to determine forces and pressure poses an interest-

ing alternative to the existing approaches to determine sectional load-

ing.

The operating principle of obtaining pressure from PIV-data, using

either a Eulerian or a Lagrangian approach, is covered and, based on

the current implementation, theoretical considerations lead to estimates

of the limitations of the method. These estimates are checked using a

performance analysis on a synthetic flow field, comprised of an advect-

ing Gaussian vortex, as well as on an experimental test-case, the flow

around a square cylinder. All results indicate that in order to perform

successful pressure-PIV the following criteria should be met:

The spatial resolution needed to successfully (based on peak mod-

i



ii

ulation smaller than 10%) perform pressure-PIV is WS/λx < 0.2 (WS

is the interrogation window size and λx is the spatial wavelength(s)

present in the flow) and was found to be the same for both the Eule-

rian and the Lagrangian approach.

The temporal resolution needed to successfully perform pressure-

PIV is facq > 10× f f low ( facq is the acquisition frequency and f f low is

the frequency/frequencies in the flow). For the Eulerian approach f f low

is related to the Eulerian time scales. For the Lagrangian approach f f low

is related to the Lagrangian time scales. Depending on the problem at

hand one method might be more suitable than the other.

Addition of the third component is necessary in order to success-

fully obtain the pressure from the velocity field in 3D flow. The influ-

ence of measurement noise could not be observed in the current analysis

of the experimental results.

The description of the pressure field around and loading on a square

cylinder showed that the vortices, emanating from the shear-layer insta-

bility change the flow around the cylinder significantly. Pressure load-

ing and pressure fluctuations along the side of the cylinder can increase,

depending on Reynolds number. An increase in amplitude of estimated

periodic lift for ReD = 9,500 compared with ReD = 6,000 and 19,000

of > 10% was found. Together with the slight change in location of the

Kármán-like vortex in the wake this suggest an intimate (and complex)

relationship exists between the side-wall pressure, shear-layer, separa-

tion region, and near-wake, which changes significantly with Reynolds

number.



Samenvatting

Instantane drukbepaling in een vlak met

“particle image velocimetry”

Krachten op klappende of roterende elementen, zoals klappende vleugels

van “micro air vehicles” of de bladen van een windturbine, zijn van

groot belang voor ingenieurs. Om te onderzoeken hoe vogels en in-

secten vliegen zijn de krachten geproduceerd door klappende vleugels

belangrijk voor biologen. Het drukveld, samen met het snelheidveld,

geeft een complete beschrijving van de (incompressibele) stromingsdy-

namiek. Verder levert het drukveld de hoofdbijdrage aan de krachten

die een stroming op een lichaam uitoefent.

Traditionele technieken om druk en krachten te bepalen, vertrouwen

op oppervlaktedruk en integrale belasting op basis van punt druk en

krachtenbalans metingen. In situaties waar het moeilijk (of onmogelijk)

is om het voorwerp te instrumenteren kan het gebruik van PIV om sec-

tiegewijze krachten en druk te bepalen een uitkomst bieden.

De basis principes voor drukbepaling van PIV-data, door middel

van een Eulerian of een Lagrangian methode, wordt beschreven. The-

oretische afwegingen leiden, op basis van de huidige implementatie,

tot afschattingen van de beperkingen van de methode. Deze afschat-

tingen zijn getest met een prestatie analyse op een synthetische stro-

ming, bestaande uit een met de stroming meebewegende Gaussische

wervel, en tevens met een experimentele test-case, de stroming rondom

een vierkante balk. Alle resultaten geven aan dat er aan een aantal cri-

teria voldaan moet worden om succesvol druk te bepalen uit PIV-data.

Deze criteria zijn:
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De benodigde ruimtelijke resolutie voor succesvolle (gebaseerd op

een piekmodulatie kleiner dan 10%) drukbepaling is WS/λx < 0.2 en is

hetzelfde voor zowel de Eulerian als de Lagrangian methode.

De benodigde tijdsresolutie is facq > 10× f f low. Voor de Eulerian

methode is f f low gerelateerd aan de Eulerian tijdschalen en voor de La-

grangian methode aan de Lagrangian tijdschalen. Afhankelijk van het

probleem dat onderzocht wordt kan de ene methode beter geschikt zijn

dan de andere.

Toevoeging van de derde component is noodzakelijk om succesvol

druk te bepalen van het snelheidsveld in 3D stromingen. De invloed van

meetruis kan niet worden waargenomen met de huidige analyse van de

experimentele resultaten.

Het experiment op de vierkante balk laat zien dat wervels, die ont-

staan vanuit de “shear-layer” instabiliteit, een significant invloed hebben

op het stromingsveld rondom de balk. Druk belasting en druk fluctu-

aties langs de zijkant van de balk kunnen toenemen, afhankelijk van het

Reynolds getal. Een toename in amplitude voor (benaderde) periodieke

lift van > 10% is gevonden voor ReD = 9,500 in vergelijking met ReD =
6,000 en 19,000. Dit, samen met de subtiele verandering van de locatie

van de Kármán-achtige wervel, suggereert dat er een intieme (en com-

plexe) relatie bestaat tussen de druk op de zijkant, de “shear-layer”, het

losgelaten gebied en het zog. Deze relatie verandert significant met een

verandering van het Reynolds getal.
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Chapter 1

Introduction

The pressure field in a fluid is of great interest in both fluid mechanics

and engineering. Combined with the velocity field, the pressure field

gives a complete description of the (incompressible) flow dynamics.

Furthermore the pressure field is the main contributor to the aerody-

namic loading of bodies immersed in the fluid.

Traditional techniques to determine pressure and forces rely on the

determination of surface pressure and integral loads by point pressure

and force balance measurements. These methods have their advantages

and disadvantages. Using PIV velocity data to determine forces and

pressure poses a interesting complementary method to the existing ap-

proaches, since it potentially can be used in regimes where direct force

and pressure measurements are problematic or impossible. Think of

pressure fields around and forces on flapping wings of birds, insects

or micro air vehicles, see e.g. figure 1.1. Also for rotating structures,

like wind turbines and propellers, where it is difficult to instrument the

body, this technique could pose a rather straightforward alternative in

determining sectional loading.

Apart from addressing techniques to extract pressure fields from

velocity measurements, the thesis also considers its application in the

analysis of bluff body flow. This introduction provides a brief historical

sketch of fluid dynamics, followed by a description of the current state

of technology with regards to force and pressure determination from ve-

locity data. The flow around bluff bodies is interesting and challenging,

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Damselfly (Beautiful Demoiselle, left). Flapping micro air

vehicle, DelFly II, in hovering flight (right, de Clercq et al. 2009)

and it is difficult to understand and to fully capture its behaviour, due

to the complex unsteady and three-dimensional behaviour, especially at

moderate to high Reynolds numbers. Therefore the square cylinder was

used as an experimental test bed. The square cylinder flow problem

is introduced. Next, the aims and objectives of this thesis are stated.

Finally the outline of the thesis will be given.

1.1 Short historical sketch

This short historical sketch is intended to give a global and concise view

of the scientific context of the research described in this thesis. For more

complete descriptions on history and theory the reader is referred to

standard fluid dynamic text books, such as White (1991) and Anderson

(1991), whose works were the basis of this sketch.

The forces exerted on a body immersed in a (viscous) fluid are of

great interest for engineering applications. The related theory dates

back to the work of Archimedes (287-212 B.C.) with his two postu-

lates of buoyancy. However, it took a long time before a mathematical

sound description of fluid flow (and therefore the forces acting on a

body immersed in it) was formulated. Having its origin in the work

of Newton’s Principia it took over a century before the form of the

fluid flow equations we know today took shape. Various contributions
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n

S

F

∂S

Figure 1.2: Control volume. Adapted from van Oudheusden et al.

(2007)

with varying importance and elegance were made by Bernoulli, Euler,

Lagrange, Laplace, Gerstner, Navier, Cauchy, Poisson, St. Venant and

Stokes, which finally resulted in the Navier-Stokes (momentum) equa-

tions

ρ
Du

Dt
= ρ

{
∂u

∂ t
+(u · ∇ )u

}
= ρfb − ∇ p+µ ∇ 2u, (1.1)

where Du/Dt is the material acceleration, ∂u/∂ t is the local accelera-

tion, u · ∇ the advective operator, fb the body force (like gravitational

acceleration), ∇ p the pressure gradient, µ the fluid viscosity, and ∇ 2u

the Laplacian of the velocity.

Forces acting on a body immersed in a fluid can be described by a

control volume approach (see Anderson 1991) using the integral form

of the momentum equations (with omission of the body force term)

F =
∫

S
ρ

∂u

∂ t
dV +

∫

∂S
{ρ (u ·n)u− pn+ τ ·n}dA, (1.2)

where τ is the viscous stress tensor, S the control volume, ∂S the exte-

rior boundary of the control volume and n the normal to ∂S, see figure

1.2.

Representing the forces on a body as a function of the flow around it

is convenient, for measuring pressure and friction forces directly on the
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body surface poses significant instrumentation challenges. This form is

therefore widely used in solving engineering problems.

The momentum equations pose considerable difficulties in handling,

due to their inherent nonlinearity and complexity. To date there is still

no unique general analytic solution to these equations. With the ad-

vent of computational fluid dynamics the Navier-Stokes equations can

be solved explicitly for a specific problem, but only on a limited domain

and for a limited range of Reynolds numbers. Especially the simulation

capability for high Reynolds number flows with transitional and turbu-

lent effects remains limited in accuracy. Since the means of describing

flow theoretically and numerically are limited, experiments are needed

to validate the theory and numerics, as well as to gain understanding in

the areas where theory and numerics are unable to capture the correct

physics.

With the development and success of particle image velocimetry

(PIV, see e.g. Adrian 2005, Raffel et al. 2007), a nonintrusive flow di-

agnostic technique, new potentials have emerged to gain insight in flow

physics by determining complete (instantaneous planar) velocity fields.

With cameras and lasers obtaining higher and higher acquisition fre-

quencies, more and more flows can be captured time-resolved. PIV

has proven its capability in characterizing instantaneous velocity fields

and derived quantities such as vorticity, whereas its use in determining

forces and pressure fields, using equation 1.1 and equation 1.2, just has

started to be explored.

1.2 State-of-technology

Considerable effort has been put into deriving forces from velocity-

fields (such as delivered by PIV-data) and even though the pressure field

is an integral part of the forces that are exerted on the body immersed

in the fluid, most efforts try to avoid calculating the pressure explicitly.

Lin & Rockwell (1996) show the link between vortical structures in the

wake of a circular cylinder and the forces on it, using the impulse con-

cept as introduced by Lighthill (1986). Noca et al. (1997, 1999) rewrite

the integrals in equation 1.2 in such a way that pressure is not explic-

itly needed and in this way extending the impulse approach. Unal et al.
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Figure 1.3: Time-averaged forces determined from PIV compared with

forces determined from surface and wake pressure measurements (van

Oudheusden et al. 2008).

(1997) apply this method to a computational and experimental compar-

ison. Birch & Dickinson (2003) and Birch et al. (2004) show the appli-

cation of the extended impulse approach on a flapping wing, showing

influences of wing wake and leading edge vortex contributions, respec-

tively.

Using an explicit determination of the pressure along a contour, van

Oudheusden et al. (2006), van Oudheusden et al. (2007), and van Oud-

heusden et al. (2008) show various applications of force determination

from PIV ranging from average forces on an aerofoil in incompressible

flow (see figure 1.3) and in supersonic flow to time-averaged forces on a

square cylinder. Ragni et al. (2009) determines time-averaged forces on

an aerofoil in transonic flow. Kurtulus et al. (2007) use a time-resolved

PIV system to determine unsteady local (sectional) forces on a square

cylinder. David et al. (2009) apply time resolved PIV to determine the
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Figure 1.4: Instantaneous forces on a 2D wing (David et al. 2009). Left:

three vorticity fields at different time instances. Right: time evolution

of the force and the different contributions to the force.

instantaneous forces on a flapping two-dimensional (2D) wing, see fig-

ure 1.4

With the explicit calculation of the pressure, the (relative) impor-

tance of this term can be determined with respect to the advective mo-

mentum and acceleration terms. As seen in figure 1.4 the pressure has

an important role in the drag determination, largely balancing with the

advective (convective) term. For the lift determination, the pressure

contribution is almost nonexistent. On the other hand, van Oudheus-

den et al. (2007) show that for their choice of control volume (closer to

the aerofoil) the contribution of the pressure to the lift and drag were

83% and 92%, respectively. The amount to which the pressure along

the contour will contribute therefore seems to be largely dependent on
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the contour taken. This is not surprising, since the lift and drag can be

determined by the integration of the pressure and friction forces along

the surface of the body. For correct determination of the forces on bod-

ies immersed in a fluid, the pressure is therefore important, whether one

explicitly or implicitly uses its contribution.

Now we turn our attention to the pressure field itself. Gurka et al.

(1999) derived from a steady velocity field the pressure distribution in

a channel flow. Concurrently, Baur & Köngeter (1999) explored deter-

mination of instantaneous pressure from time-resolved data, addressing

the local pressure reduction in the vortices shed from a wall-mounted

obstacle, using a 2D approach. Hosokawa et al. (2003) used PIV-data to

obtain the pressure distribution around single bubbles, while Fujisawa

et al. (2005) derived pressure fields around and fluid forces on a circular

cylinder. Liu & Katz (2006) show the application of pressure determi-

nation from PIV on a cavity flow. Fujisawa et al. (2006) apply pressure

reconstruction on a micro channel using micro-PIV data. Pressure eval-

uation from PIV-data has even found its extension into the compressible

regime as demonstrated by van Oudheusden (2008).

Haigermoser (2009) shows the application of the method of Liu &

Katz (2006) to predict the acoustic emission using a rectangular cavity

in water. Koschatzky et al. (2011) extends the use of acoustic emission

prediction to air and compares the results to microphone measurements.

Several studies have explored the possibility to obtain the pressure

field and have assessed the impact of using different methods (Eulerian

or Lagrangian, i.e. fixed and moving reference frame) to determine the

fluid acceleration and the subsequent integration of the pressure gradi-

ent, as well as the effect of the most important experimental parameters

(notably spatial and temporal resolution and noise).

Charonko et al. (2010) compare different approaches in a Eulerian

basis applied on two ideal sample flow fields and show an application to

an oscillating flow in a diffuser. They investigate the influence of tem-

poral and spatial resolution, but do not include the filtering effect that

PIV has on both the velocity-field and the measurement noise (in com-

bination with overlap this will lead to correlated noise, whereas they

use uncorrelated noise). Violato et al. (2011) compare a Eulerian ap-

proach with a Lagrangian approach on a rod-aerofoil configuration and

found that the Lagrangian approach is less prone to measurement noise.
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Figure 1.5: Pressure fluctuations in a rectangular cavity derived from

PIV (Haigermoser 2009).
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Figure 1.6: Instantaneous pressure derivation from PIV in a diffusor

(Charonko et al. 2010). Top: instantaneous pressure field. Bottom:

instantaneous pressure from PIV compared with phase-averaged trans-

ducer measurements.
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Christensen & Adrian (2002) found that for their advecting turbulence

experiment the material acceleration was about one order of magnitude

smaller than the time change of the velocity at one point, which would

also promote the use of a Lagrangian approach. On the other hand,

Jakobsen et al. (1997) found that, for waves impinging on a vertical

wall, their Lagrangian approach had limitations and showed bias ef-

fects, resulting in a worse performance than their Eulerian approach.

These contradictory results show the need of a direct comparison of the

two approaches.

1.3 Square cylinder flow

As an experimental test bed for the pressure determination we have

adopted the square cylinder. This is a relatively simple and well docu-

mented flow geometry and time-averaged forces and pressure field un-

der similar flow conditions have been determined by van Oudheusden

et al. (2007), see figure 1.7.

However, it is well know that this wake flow is highly unsteady

(due to vortex shedding) and that at higher Reynolds numbers (larger

than 160, Luo et al. 2007) the wake behind square cylinders becomes

three-dimensional (3D). Figure 1.8 shows that for ReD = 155 the wake

is still 2D, but for ReD = 188 and higher Reynolds numbers the wake is

clearly 3D.

Computation by Sheard et al. (2009) showed similar structures as

depicted in figure 1.9. For increasing Reynolds numbers the complexity

(and therefore the three-dimensionality) of the flow is only expected

to increase. So far computational restrictions have stopped DNS from

reaching moderate to high values of Reynolds numbers (e.g 10,000 and

higher).

LES has potential for reaching higher Reynolds numbers, but is lim-

ited by the assumptions made by the modelling of the smallest scales,

where it is still unclear how these small scales behave. Nevertheless

LES calculations can give us an idea of what we can expect for the

large scales. Farhadi & Rahnama (2005) performed LES calculation

on the flow around a square cylinder at a Reynolds number of 22,000.

Figure 1.10 show the results they obtained and, here, the 3D nature of
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Figure 1.7: Time-averaged forces on and pressure field around a square
cylinder at ReD = 10,000 (van Oudheusden et al. 2007). (a) Velocity
magnitude and pressure field. (b) Different contributions to the pressure
gradient. (c) Lift and drag forces with α .
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Figure 1.8: Dye visualizations of a square cylinder wake at different

Reynolds numbers. 3D instabilities are clearly present from ReD = 188

(Luo et al. 2007).
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Figure 1.9: DNS calculation of the three-dimensional structure of the

wake behind a square cylinder at ReD = 300. The vortex street is iden-

tified by contours of (white) positive and (black) negative out-of-plane

velocity plotted on the y = 0 plane. Isosurfaces of streamwise vorticity

with levels ±1U/D are shaded light and dark. Flow is from left to right

and, the cylinder (not shown) is located at the left. (Sheard et al. 2009).
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Figure 1.10: LES calculation of the flow around a square cylinder, ReD

= 22,000. Instantaneous isocontours of the second invariant of velocity

gradient, Q (Farhadi & Rahnama 2005).

the flow is also readily apparent.

For Reynolds numbers of 5,000 to 20,000 the flow shear-layer sep-

arating from the leading edge of the square cylinder starts to develop

Kelvin-Helmholtz type instabilities along the side of the cylinder. To

quantify and describe the flow around a square cylinder at these Reynolds

numbers, we need to turn to experimental techniques. However, exper-

iments come with their own problems, e.g. the control of the bound-

ary conditions, and limitations, e.g. no (instantaneously) simultaneous

full field velocity and pressure measurements. In this Reynolds num-

ber regime, there have been a few investigations looking into the large

scale motions and into fluctuations around these large scale motions,

see Durao et al. (1988), Lyn & Rodi (1994), Lyn et al. (1995), and van
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Oudheusden et al. (2005). They focus on the large scale motions and

their relation to turbulent quantities or their relation to angle of inci-

dence. The relationship between the large scale motions, small scale

motions and the pressure field has not yet been investigated.

1.4 Aims and objectives

So far, no method can instantaneously measure both the velocity and

pressure field. Although several studies have explored the possibility

to derive the pressure field from velocity data by use of the Navier-

Stokes equations, relatively little attention has been given to system-

atic analysis of experimental aspects that determine the accuracy of the

pressure determination. Essential elements are the spatial and temporal

resolution of the velocity measurements, as well as the different ap-

proaches (Eulerian or Lagrangian) to determine the fluid acceleration

and the subsequent integration of the pressure gradient.

Next to this, the velocity-data used as input is primarily obtained

from planar PIV, therefore most of these studies are hampered by the

restriction of 2D (average) flow or necessarily making 2D flow assump-

tions, where it is not obvious what the impact of this assumption can be.

Also, no complete comprehensive analysis of the experimental param-

eters (PIV settings, such as interrogation window-size, overlap-factor,

etc.) that will determine the success of pressure-PIV has been reported

yet.

Furthermore, previous efforts to validate the pressure determina-

tion have given little attention to advecting vortices, whereas they are

characteristic features occurring in many fluid dynamic problems (e.g.

turbulence, vortex shedding). Also a direct experimental validation for

instantaneous pressure is still lacking.

The aim of this work is to assess the performance of a Eulerian

and Lagrangian approach in pressure determination for turbulent flows.

First the operating principles are introduced together with theoretical

considerations to estimate frequency response (both truncation and pre-

cision effects) and expected limitations of the approaches. Next, the

different approaches are tested on a synthetic flow field, an advecting

Gaussian vortex, from which influences of different flow parameters
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are determined (e.g. advective velocity, vortex strength). From both

the theoretical considerations and the assessment on the synthetic flow

field, conclusions regarding the proper application of the approaches

will be drawn. To show experimental viability of pressure evaluation

methods, stereoscopic PIV (stereo-PIV) and tomographic-PIV (tomo-

PIV) experiments on a square cylinder are performed, employing sur-

face pressure data for validation. Pressure dominated flows around bluff

bodies pose relevant and challenging test-cases for pressure evaluation

from planar-PIV, due to the complex time-evolving three-dimensional

(3D) nature of the flow field, especially at moderate to high Reynolds

numbers (see e.g. Williamson 1996). Furthermore the use instantaneous

pressure determination from PIV allows for describing the link between

velocity and pressure.

1.5 Outline

Starting with some fundamental concepts that support the understand-

ing of the following analyses are given in chapter 2. The basics of

PIV are explained in chapter 3. Chapter 4 explains in detail how to

derive pressure from PIV velocity data. The performance of pressure-

PIV is assessed on a synthetic flow field in chapter 5. The experimental

arrangement and procedures are given in chapter 6, followed by the

assessment of pressure-PIV on the square cylinder flow in chapter 7.

Chapter 8 describes the pressure around and loading on a square cylin-

der, highlighting the link between velocity and pressure. Finally, the

work will be summarised and conclusions will be drawn in chapter 9

The theory and findings that are covered in chapters 4-7 have been

published in Exp. Fluids (de Kat & van Oudheusden 2011).



Chapter 2

Terminology & tools

Before we embark on a journey exploring the determination of pres-

sure from PIV and exploring the flow around a square cylinder at a

(moderate to) high Reynolds number, we need to ascertain a theoreti-

cal foundation to properly convey the points that will be made. First,

some terminology, like the reference frame, is defined. Next, a descrip-

tion of data analysis procedures is given. Finally, the principles of the

uncertainty analysis used throughout this thesis is described.

2.1 Terminology

The reference system is a stationary cartesian coordinate system with

x-, y-, and z-coordinates indicating the directions. The x-direction is in

streamwise direction. The velocity components are u, v, and w in x-, y-,

and z-direction, respectively.

Equation 1.1 gives two different ways of looking at the change of

momentum. We can either follow a fluid parcel and look at the change

of momentum it experiences (as expressed by the material acceleration)

or we can look at a fixed point in space and observe the acceleration of

the fluid in and the advection of momentum through this point. These

two different ways of looking at the change of momentum are generally

referred to as a Lagrangian and a Eulerian reference frame of the mo-

mentum, respectively. As described in the introduction these different

ways of looking at the momentum change have different consequences

17
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in their interpretation.

Another issue with the flow equations is that they are posed in a

continuous form, whereas experimental data is generally acquired in

points and therefore have a discrete nature, e.g. PIV results are grids

with a finite number of vectors instead of a continuous description of

the flow.

The analysis in this thesis assumes spatially uniform spaced grids,

i.e. ∆x = ∆y = ∆z = h. However, all procedures can be easily extended

to nonuniform spaced grids.

Derivatives of discretely sampled data can be approximated by the

technique of finite differences. Consider the Taylor expansion in time

for function f :

f (x, t +∆t) = f (x, t)+
∂ f

∂ t
(x, t)∆t + . . .+

∂ n f

∂ tn
(x, t)

∆tn

n!
, (2.1)

for n → ∞. This expansion can be used to derive estimates for the gra-

dient (in time or space). One common estimate of the gradient (here in

time) is the central finite difference, given as

∂ f

∂ t
(x, t)≈ f (x, t +∆t)− f (x, t −∆t)

2∆t
, (2.2)

which is obtained taking the difference between the Taylor expansion

for t +∆t and t −∆t and neglecting higher order derivatives (second

order and higher).

The pressure coefficient, Cp, is defined to be

Cp =
p− p∞
1
2
ρU2

, (2.3)

where p is the local pressure, p∞ is the free-stream pressure, ρ the den-

sity, and U the free-stream velocity.
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2.2 Data analysis procedures

2.2.1 Statistical tools

Time-average

A time-dependent quantity under investigation, say the velocity field

u(x, t), may decomposed into

u(x, t) = u(x)+u′ (x, t) , (2.4)

where u(x) is the (global) long-time-averaged velocity and u′ (x, t) is

the fluctuating velocity around the time-average. The time-averaged

component is formally defined by

u(x) = lim
T→∞

1

T

∫ T

0
u(x, t)dt, (2.5)

where T is the length of the time-series data. Practically, an ensemble-

average of a discrete time-series signal is determined by

〈u(x)〉= 1

N

N

∑
n=1

u(x, tn) , (2.6)

which for a (on average) stationary flow is equal to the time-average,

u(x) = 〈u(x)〉. Note that the notation used to indicate the ensemble-

average is only used as such here. Further on in this thesis, this notation

is reserved for a phase-average (which is a special case or an ensemble-

average).

In analogous manner the spatial average can be determined.

Root-mean-square

To indicate the fluctuations around the (time-)average a common mea-

sure is the root-mean-square (RMS). For the temporal fluctuations around

the time-average it is defined by

σu (x) =

√
1

N

N

∑
n=1

(u(x, tn)−u(x))2 =

√
1

N

N

∑
n=1

(u′ (x, tn))
2. (2.7)

In analogous manner the spatial RMS can be determined.
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(Co)variance

The covariance of two signals, f and g, is defined as

cov( f ,g) =
1

N

N

∑
n=1

f ′ng′n. (2.8)

The covariance of a signal with itself (variance) is equal to its RMS

square:

var ( f ) = cov( f , f ) = σ2
f . (2.9)

Correlation coefficient

The correlation coefficient is a measure for alignment of the fluctuations

of two signals around their respective means and is defined as:

ρc ( f ,g) =
cov( f ,g)

σ f σg

(2.10)

It indicates whether the fluctuations (variance-contributions) of one sig-

nal are aligned with the fluctuations of the other signal (in time or

space). However, it does not indicate anything about the (dis)similarity

in amplitude of the two signals.

Power spectrum

To show the frequency content of a signal (in time or space) the power

per frequency can be determined by determining the power spectrum.

The power spectrum is defined as

Pu′u′( f ) =Y ∗
u′( f )Yu′( f ) (2.11)

where Y ′
u is the Fourier transform of u′ (as function in time or space) as

a function of frequency f and Y ∗
u′ its complex conjugate.

Co-spectrum

The co-spectrum is defined as

Pu′v′( f ) =Y ∗
u′( f )Yv′( f ) (2.12)
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where Y ∗
u′ is the complex conjugate of the Fourier transform of u′ and

Yv′ the Fourier transform of v′.

Dynamic correlation

Normalising the co-spectrum with the respective power spectra results

in the coherence, which is a measure for the amount the two signals

match per frequency and also includes phase information in the imagi-

nary part. Taking only the real part of the coherence gives information

about the match between two signals at zero phase difference and this

we define to be the dynamic correlation. The dynamic correlation is

given by

Dyn.Corr. = ℜ
(

Pu′v′√
Pu′u′Pv′v′

)
(2.13)

It describes the match (correlation) between the signals per frequency.

2.2.2 Phase-averaging

As introduced by Hussain & Reynolds (1970), for certain phenomena,

the fluctuating component, u′, may be further decomposed into a peri-

odic fluctuation and a random fluctuation around this periodic fluctua-

tion, resulting in a triple decomposition

u(x, t) = u(x)+ ũ(x, t)+ û(x, t) , (2.14)

where ũ(x, t) is the periodic component with zero mean, and û(x, t)
is the fluctuating velocity around the periodic component. The phase-

average is the combination of the time-averaged and periodic compo-

nents, such that

u(x, t) = 〈u(x,φ(t))〉+ û(x, t) , (2.15)

where 〈u(x,φ(t))〉 is the phase-averaged velocity at any point in space

at a given phase φ(t). The phase-averaged velocity field is defined by

〈u(x,φ(t))〉= 1

N

N−1

∑
n=0

u(x,φ(t +nτ )) , (2.16)
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where τ is the period of the periodic component and nτ is the ensemble

over which the phase-average is made. In this representation, phase-

averaging is akin to Reynolds-averaging, except that the averaging is

performed over an ensemble nτ rather than the complete data.

2.2.3 Phase determination

For phenomena where the periodicity is enforced (e.g. by being driven

with a prescribed frequency) the phase determination is quite obvious.

However, for natural occurring quasi-periodic phenomena (like vortex

shedding), there can be significant frequency and amplitude modula-

tions throughout time. A relatively simple and robust method of identi-

fying the phase variable can be found using the Hilbert transform (see

Huang et al. 1998). A major advantage of the Hilbert transform is that

it constructs an analytic signal from the measured one, thereby provid-

ing the amplitude and phase variables directly. It thereby constitutes

an unambiguous and robust method of determining φ(t). In the Hilbert

approach, the Hilbert transformation H{p(t)} of the signal p(t) is for-

mally defined as

H{p(t)}= 1

π
P

∫ ∞

−∞

p(τ )
t − τ

dτ , (2.17)

where P is the Cauchy principal value defined by

P =

∫ ∞

−∞
f (x)dx ≡ lim

R→∞

∫ R

−R
f (x)dx. (2.18)

The Cauchy principal value is required because of the possibility

of a singularity in H{p(t)} at t = τ . With the definition of the Hilbert

transform, H{p(t)} and p(t) form a complex conjugate pair, such that

we can define a (complex) analytic signal Z(t) using

Z(t) = p(t)+ iH{p(t)}, (2.19)

where i is the imaginary number (i2 =−1). To introduce the phase vari-

able φ(t), we recast the analytic signal in terms of exponential notation

by writing

Z(t) = a(t)eiφ(t), (2.20)
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where a(t) is the amplitude and φ(t) is the phase of the analytic func-

tion. These are given respectively by

a(t) =
√

p(t)2 +H{p(t)}2, (2.21)

φ(t) = tan−1

(
H{p(t)}

p(t)

)
. (2.22)

Thus, in this representation, the analytic function is nothing more

than a local fit of an amplitude and phase varying trigonometric function

to p(t) (see Huang et al. 2003), and we therefore have a suitable method

for determining φ(t) that can cope with modulation in frequency and

amplitude.

2.3 Uncertainty analysis

2.3.1 Statistical uncertainty estimation

Benedict & Gould (1996) describe how to estimate the uncertainty of

turbulence statistics, such as mean and RMS values derived from an

ensemble of N uncorrelated observations. The uncertainty on the mean

can be expressed as

εu =
σu√

N
(2.23)

The uncertainty on the RMS can be expressed as

εσu
=

σu√
2N

(2.24)

The uncertainty on the variance can be expressed as

ε
u′2 =

2σ2
u√

2N
(2.25)

The uncertainty on the covariance can be expressed as

εu′v′ =

√
1+ρc(u,v)σuσv√

N
, (2.26)

where the uncertainty on the correlation coefficient can be expressed as
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ερc(u,v) =
1−ρc(u,v)√

N
. (2.27)

2.3.2 Linear uncertainty propagation

Following the basis principles of linear uncertainty propagation as laid

down by Kline & McClintock (1953) (for a detailed explanation, see

Stern et al. 1999), one can estimate the uncertainty of a single sample

measurement based on the uncertainties of the measurement techniques

on which it is based. If a value of a quantity y depends on a series of n

uncorrelated variables x, such that

y = f (x1,x2, . . . ,xn), (2.28)

then its uncertainty can be estimated as

εy =

√(
∂ f

∂x1

εx1

)2

+

(
∂ f

∂x2

εx2

)2

+ . . .+

(
∂ f

∂xn

εxn

)2

, (2.29)

where ∂ f/∂xn is the sensitivity coefficient of f with respect to xn and

εxn
is the uncertainty to the measurement of xn.

To illustrate the use of this approach the uncertainty of the spatial

gradient in x-direction ε∂ f/∂x of the function f with uncertainty ε f is

estimated. The central finite difference equation

∂ f

∂x
=

f (x+∆x)− f (x−∆x)

2∆x
, (2.30)

gives the following sensitivity coefficients

∂ (∂ f/∂x)

∂ f (x+∆x)
=

1

2∆x
, (2.31)

∂ (∂ f/∂x)

∂ f (x−∆x)
=− 1

2∆x
. (2.32)

This results in the uncertainty estimate to be

ε∂ f/∂x =

√
2

2

ε f

∆x
. (2.33)



Chapter 3

Particle image velocimetry

This chapter aims at setting out the basics of PIV and the implemen-

tations used in this thesis. This knowledge is a prerequisite to under-

standing the value of the extension of the method to deriving pressure

from the PIV velocity data. Detailed studies have been performed on

the workings of PIV and all its implementations and deeper understand-

ing is still created in ongoing research. Interested readers are referred

to Raffel et al. (2007) and references therein for further reading.

3.1 General working principles

PIV is an imaging based measurement method that uses tracer particles.

A schematic representation of a PIV setup is depicted in figure 3.1. It

consists of a laser system with laser optics to create a laser-light sheet,

light-scattering tracer particles in the flow, and a lens-camera combi-

nation (imaging optics and image plane) to record the location of the

particles at different times. PIV is a non-intrusive technique when it

uses tracer particles that (1) do not influence the flow, (2) follow the

flow exactly, and (3) do not interact with each other (Westerweel 1997).

Although these requirements cannot be met completely, PIV is gener-

ally considered a non-intrusive technique.

Using tracer particles is an inherently Lagrangian measurement of

the fluid flow, where we have no control over what path the particles

will take (this is purely dictated by the flow around the particle) and
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Light sheet optics Mirror

Light sheet

Laser

Flow with
tracer particles

Illuminated
particles

Imaging optics

Image plane

Flow direction

First light pulse at t-δt/2
Second light pulse at t+δt/2

t+δt/2
t-δt/2

y

x

Figure 3.1: Schematic representation of a PIV-setup. Modified from
Raffel et al. (2007)

therefore what areas of the flow will be covered during measurement
(for an insightful essay, see Price 2006). The only way to measure
the complete region of interest is to have enough particles and let the
flow take them everywhere we want to measure. The particles are il-
luminated by a laser-light sheet and subsequently captured by a digital
camera. The camera records two images within a short time interval
(laser-pulse separation, δ t). The displacement of the particles between
the two recordings can be used to determine the velocity of particle
using a (central) finite difference

up (t) =
xp (t+δ t/2)−xp (t−δ t/2)

δ t
+O

(

δ t2
)

, (3.1)
where up is the particle velocity and xp the particle location. The loca-
tion where the particle has this velocity is estimated to be

xp (t)≈
xp (t+δ t/2)+xp (t−δ t/2)

2 . (3.2)
Instead of applying this principle to each particle image pair in-

dividually and afterwards interpolating the velocity field onto a carte-
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sian grid, PIV uses a statistical analysis technique, cross-correlation,

to determine the (average) displacement of a group of particles images

within an interrogation window. This approach has the advantages that

it can be applied such that no explicit particle detection is required and

that no additional interpolation is needed to represent the results on a

cartesian grid. The resulting field can represent the Eulerian velocity

field, since at a given point in space and moment in time the Eulerian

and Lagrangian velocities are the same.

3.1.1 Tracer particles

The (non-)intrusiveness of PIV and the accuracy with which the par-

ticles follow the flow is primarily influenced by the choice of tracer

particles. The particles need to be large enough to scatter enough light

for imaging, but small (and light) enough to follow the flow. Melling

(1997) describes an estimate for the response of heavy particles in air

to be

dup

dt
=C (u f −up) , (3.3)

where up is the particle velocity, u f is the fluid velocity (at the particle

location) and C is the characteristic frequency of the particle motion,

which can be estimated using Stokes drag law as

C =
18µ f

ρpd2
p

, (3.4)

where µ f is the fluid viscosity, ρp is the particle density and dp is the

particle diameter. The frequency response of the particles in a fluctuat-

ing (turbulent) flow can be estimated using the characteristic frequency

and

u2
p

u2
f

=
(

1+
ωc

C

)−1

, (3.5)

where ωc is the highest frequency of interest.

Melling (1997) indicates that for a frequency response of 10 kHz

in air the particle diameter should not exceed 1µm. More recent work
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by Ragni et al. (2010) shows that particle smaller than 1 µm have a

frequency response exceeding 10 kHz (up to 500 kHz).

3.1.2 Particle imaging

The image of the tracer particles is focussed on an imaging plane using

photographic lenses. Starting from Gauss’s lens formula (assuming all

lenses are thin and all angles are small)

1

f
=

1

z0

+
1

Z0

, (3.6)

where f is the focal length of the lens, z0 is the image plane distance

to the lens and Z0 is the object distance to the lens. Next we define the

magnification, M, and the focal ratio or f-number, f#, to be

M =
z0

Z0

; f# =
f

Da

, (3.7)

where Da is the aperture diameter of the lens. It is fairly straight forward

to show that the depth of field, δz, is

δz =
2 f#c(M+1)

M2 −
(

f#c
f

)2
≈ 2 f#c

M+1

M2
, (3.8)

where c is the circle of confusion. A schematic drawing of this is shown

in figure 3.2. The second term in the denominator can be neglected,

since for PIV purposes it is very small compared to the magnification

term.

Finite aperture lenses are diffraction limited. This means that point

sources will show up as Airy disk and rings on the imaging plane (see

Raffel et al. 2007). The size of this disk, ddiff can be estimated by

ddiff = 2.44 f#λ (M+1) , (3.9)

where λ is the wavelength of the the light passing through the lens.

The minimal image-size of a particle (for an aberration-free lens) now

becomes

dτ =

√
(Mdp)

2 +
(
ddiff

)2
, (3.10)
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Figure 3.2: Schematic representation of depth of field. Modified from
Raffel et al. (2007)

for small particles this means dτ ≈ ddiff .

Typically the circle of confusion is determined by the desired print
size and viewing distance of an image combined with an estimate for
human visual acuity. However, for digital sensors it is more straightfor-
ward to use the pixel pitch as the circle of confusion. In PIV the ddiff
(aimed to be 2-3 pixels) is generally used to estimate the depth of field
and the estimate of δz becomes

δz = 4.88 f
2
# λ

(

M+1

M

)2
. (3.11)

For experiments λ is determined by the laser, dp is determined by the
desired frequency response and M the desired field-of-view, leaving f#
as only adjustable parameter. Using f# to optimize the particle image
size is important for the accuracy of PIV, since the error in velocity
measurement and the amount of light captured on the sensor depend on
it (see Raffel et al. 2007).
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3.1.3 Image analysis

Only the basic operating principle of cross-correlation is explained. For

a more detailed description the reader is referred to Raffel et al. (2007).

The process is illustrated in figure 3.3. First, the particle images

recordings are divided into smaller regions, the interrogation windows.

Next, these smaller regions are cross-correlated with the correspond-

ing interrogation window, one for time instant t +δt/2 and one or time

instant t − δt/2. The basic cross-correlation approach determines the

covariance of the overlap of the interrogation windows for different in-

teger pixel-shifts. The maximum of this cross-correlation map is the

most likely displacement. However, this approach can introduce a bias

error due to the changing overlap between the two interrogation win-

dows and differences between the two laser-pulses. The bias can be

corrected for by using a normalized cross-correlation approach, where

the cross-correlation values are based on the correlation coefficient for

each different shift.

ρcc(δs) = ρc (I (WS, t −δt/2) , I (WS+δs, t +δt/2)) , (3.12)

where WS indicates the interrogation window area and δs is the shift of

the interrogation window. The velocity is then determined using the dis-

placement corresponding to the maximum correlation, δs = δs|max(ρcc)

and the laser-pulse time separation

u =
δs

δt
, (3.13)

This procedure is repeated for all interrogation windows.

Subpixel accuracy can be achieved by applying a three-point Gaus-

sian fit or by finding the centroid of the correlation peak. Where the

former is less sensitive to pixel-locking (see Raffel et al. 2007). The

accuracy can further be improved by applying iterative window defor-

mation techniques (see e.g. Scarano & Riethmuller 2000, Schrijer &

Scarano 2008), which not only increase the subpixel accuracy, but also

reduces the spatial modulation of the cross-correlation technique.

To give more assurance on the validity of a vector validation a me-

dian filter can be applied (see Westerweel & Scarano 2005). The me-

dian filter compares the difference of the vector to be validated with



3.1. GENERAL WORKING PRINCIPLES 31

t-δt/2 t+δt/2

(b) Cross-correlation

(a) Recording

δs

(c) Resulting vector-field

Figure 3.3: Schematic representation of the cross-correlation proce-

dure. Coloring of the particle images has no physical significance and

is purely for clarity. Modified from de Kat (2007)
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Velocity from camera 2
Velocity from camera 1
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Figure 3.4: Schematic representation of a stereoscopic-PIV setup.

its neighbouring vectors to the RMS of the neighbouring vectors. If

this difference is larger than three times the RMS of the neighbouring

vectors the vector is generally rejected.

3.1.4 Calibration

Following the work of Soloff et al. (1997), images can be corrected

for off-axis viewing, lens-abberations, and imperfect optical windows

using a third order polynomial fit. The calibration procedure consists of

aligning a calibration target with the laser-light sheet, taking images of

the calibration target, fitting the third order polynomial to the acquired

images, and correct the images. The calibration target typically consists

of a black metal plate with white dots or crosses at a know distribution.

Using the knowledge of the physical (relative) locations of the dots,

the image plane coordinates (xi,yi) mapping onto a physical coordinate

system (X ,Y,Z) can be determined.

3.2 Stereoscopic-PIV

The basic PIV setup gives us a two component velocity field in the

laser sheet plane. If we now also want to know the third component

of the velocity we can add a camera to the setup to make the setup
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stereoscopic. The two cameras both look at the measurement plane at a

different angle, therefore ‘seeing’ a different projection of the particle

displacement. This translates into different projections of the velocity

as shown in figure 3.4. With these two projections the three components

of the real velocity can be reconstructed using the viewing angles of the

cameras (Prasad 2000). Two parallel calibration planes are needed to

incorporate the viewing angle into the equations for the reconstruction.

An interesting use of having (a minimum of) two cameras is that

the calibration can be improved using the fact that both cameras look at

the same particles at the same time. Using this extra information from

multiple views can reduce the calibration error significantly, see e.g.

Wieneke (2005).

One minor disadvantage of stereo-PIV is the loss of image area

due to the back projection of the recordings on the measurement plane

(Willert 1997), as the views of the two cameras on the measurement

plane do not overlap completely.

3.3 Tomographic-PIV

In tomographic-PIV the particles are captured by multiple cameras (typ-

ically four), then reconstructed in 3D using a tomographic reconstruc-

tion technique and then the resulting 3D light intensity distributions are

correlated to obtain a volume with 3D velocity information (Elsinga

et al. 2006). This process is illustrated in figure 3.5.

The 3D light-intensity distributions is reconstructed using the mul-

tiplicative algebraic reconstruction technique (MART, see Herman &

Lent 1976). The relation between the 3D light-intensity distribution E

and the image I is given by

I (xi,yi) ,= ∑
j∈Ni

wi, jE (X j,Yj,Z j) (3.14)

where wi, j is the weighting coefficient that describes the contribution of

the jth voxel intensity E (X j,Yj,Z j) to the ith pixel intensity I (xi,yi). Ni

is the total number of voxels in the line-of-sight corresponding to the ith

pixel. The 3D light-intensity distribution is solved for iteratively using
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t-δt/2

t+δt/2

t-δt/2 t+δt/2

Figure 3.5: Schematic representation of the tomographic-PIV proce-

dure. From Humble (2008), based on Elsinga et al. (2006)

Ek+1 (X j,Yj,Z j) = Ek (X j,Yj,Z j)×
(

I (xi,yi)

Ik (xi,yi)

)µwi, j

, (3.15)

where µ ∈ (0,1) is a relaxation factor. A schematic represenation of the

reconstruction process is shown in figure 3.6.

Similar to the planar self-calibration for stereo-PIV, the calibration

of the volume for tomo-PIV can be improved using particle pairing and

triangulation (see Wieneke 2008).

3.4 Uncertainty estimates

Following the methodology explained in §2.3, the uncertainty estimates

of the statistical quantities are straightforward to determine. The uncer-

tainty for the instantaneous results require some derivation. The un-

certainty estimate for the instantaneous streamwise velocity component

(as determined by equation 3.13) becomes
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Figure 3.6: Schematic representation the tomopraphic reconstruction

procedure. From Elsinga et al. (2006)

εu =

√
(εδx

δt

)2

+

(
δx

δt

εδt

δt

)2

, (3.16)

where εδx is the uncertainty on the displacement in streamwise direction

and εδt the uncertainty on the time separation. The error on the time

separation is generally small (can be estimated as the laser pulse width,

which is small with respect to the laser pulse time separation).

Uncertainty in magnification influences εδx and can be estimated by

κ =
lc

nc

; εκ = κ

√(
εlc

lc

)2

+

(
εnc

nc

)2

, (3.17)

where κ is the magnification, lc the physical distance between calibra-

tions points, nc the number of pixels spanning lc, εκ is the uncertainty

on the magnification, εlc is the uncertainty on the distance between cali-

bration points, and εnc
is the uncertainty on number of pixels. The value

of εκ is generally very small (see e.g. Humble 2008).
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Now, the uncertainty in the particle displacement can be estimated

by

εδx =

√
(κεcc)

2 +
(

δx
εκ

κ

)2

, (3.18)

where εcc is the uncertainty in the cross-correlation.

The uncertainty on the x-component of the gradient of the stream-

wise velocity, when based on central finite differences (and neglecting

the influence of εκ ), can be estimated as

ε∂u/∂x =
√

2
εu

2h
, (3.19)

where h is the grid spacing (see equations 2.30 and 2.33).

The uncertainty on acceleration (similar as the uncertainty on the

velocity gradient) follows directly from the central finite differencing

uncertainty,

ε∂u/∂ t =
√

2
εu

2∆t
, (3.20)

where ∆t is the time separation between two successive velocity fields.

The uncertainty on the vorticity can be estimated using the uncer-

tainties on the velocity gradient,

εωz
=

√
ε2

∂v/∂x
+ ε2

∂u/∂y
. (3.21)



Chapter 4

Pressure from PIV

Pressure evaluation from PIV velocity data involves two steps. First,

the pressure gradient is evaluated from locally applying the momentum

equation in differential form. The second step is to spatially integrate

the pressure gradient to obtain the pressure field. These steps can be

performed in different ways, where each way has its own characteristics

and associated limitations as will be described in this section.

4.1 Operating principle

The incompressible momentum equation can give the relation between

the pressure gradient and the velocity data in two different forms: the

Eulerian form and the Lagrangian form, given as

∇ p = −ρ
{

∂u
∂ t

+(u · ∇ )u−ν ∇ 2u
}

or

∇ p = −ρ
{

Du
Dt

−ν ∇ 2u
}
, (4.1)

respectively. Du/Dt is the material acceleration, ∂u/∂ t is the local

acceleration, u · ∇ the advective operator, ∇ p the pressure gradient, µ
the fluid viscosity, and ∇ 2u the Laplacian of the velocity. Although

the viscous term can be determined, its effect on the pressure gradient

can generally be neglected and will therefore be omitted in the follow-

ing discussion (see van Oudheusden et al. 2007, show found the vis-

37
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cous contribution to be two orders of magnitude smaller for a similar

Reynolds number).

In case of 2D flow, planar time-resolved PIV will suffice for deter-

mining the pressure gradients, but for 3D flow all components of the ve-

locity and velocity-gradient are needed, which may be accomplished by

a time-resolved tomo-PIV procedure, for example (see Schröder et al.

2008).

We will concentrate on the procedure to determine the pressure in a

cross-sectional plane in the flow. To evaluate the pressure in the plane

(here defined as the x-y-plane) only the two pressure gradient compo-

nents in this plane are needed. The reader should note however that

these in-plane pressure gradient components contain in- and out-of-

plane components of the velocity and velocity-gradient.

To obtain the pressure, the pressure gradient can be spatially inte-

grated using a direct spatial integration of the pressure gradient or using

a Poisson formulation. In the latter approach the in-plane divergence of

the pressure gradient (equation 4.2) is taken and subsequently integrated

by a Poisson solver. The in-plane divergence of a vector function, g, is

∇ xy · g = ∂gx/∂x+ ∂gy/∂y, where gx and gy are the components in x-

direction and y-direction respectively.

∇ xy · ∇ p =
∂ 2 p

∂x2
+

∂ 2 p

∂y2
=−ρ fxy (4.2)

where fxy is a function of the velocity field obtained by taking the in-

plane divergence of equation 4.1 and dividing by −ρ, resulting in

fxy = f2D + f3D =

{(
∂u

∂x

)2

+2
∂v

∂x

∂u

∂y
+

(
∂v

∂y

)2
}
+ (4.3)

{
∂ (∇ xy ·u)

∂ t
+(u · ∇ )(∇ xy ·u)+

∂w

∂x

∂u

∂ z
+

∂w

∂y

∂v

∂ z

}

where f2D indicates the part caused by the in-plane part of the flow and

f3D indicates the additional terms for 3D flow.

Now, even for 3D flow, most of the extra terms that appear can

be extracted from planar-PIV-data, see equation 4.3. The additional

3D flow contributions contain the in-plane divergence of the velocity,

which can be derived from planar PIV-data. 3D velocity information is

needed for the parts containing an out-of-plane gradient.
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4.2 Numerical implementation

For the numerical implementation we choose to split the problem in

two. First we determine the pressure gradient field and subsequently we

determine the pressure field by integrating the pressure gradient field.

This makes it easier to pinpoint where the errors in the pressure deter-

mination arise. In the following discussion ∆t refers to the vector field

time separation (1/ facq) as distinct from the laser pulse time separation

for which we will use δt.

4.2.1 Pressure gradient determination

As reflected by the two alternative formulations for the momentum

equation (see equation 4.1), the pressure gradient can be computed in

two different ways: a Lagrangian form where all quantities are evalu-

ated with respect to an element moving with the flow and in a Eulerian

form where everything is taken relative to a fixed spatial location. For

the Eulerian approach we use second-order central finite differences in

space and time, as expressed by

∂u

∂x
(x,y,z, t) = u(x+h,y,z,t)−u(x−h,y,z,t)

2h
+O(h2) (4.4)

∂u

∂ t
(x,y,z, t) = u(x,y,z,t+∆t)−u(x,y,z,t−∆t)

2∆t
+O(∆t2), (4.5)

respectively. u is the velocity component in x-direction, h is the grid

spacing, and ∆t is the time separation between consecutive velocity

fields. The description of space and time is therefore not linked in com-

putation or formulation (see equation 4.1).

For the Lagrangian approach we need to reconstruct the fluid-parcel

trajectory. In the present study the fluid trajectory is reconstructed us-

ing a pseudo-tracking approach, which is derived from velocity fields

rather than particle locations (see Liu & Katz 2006). A second-order

fluid path is reconstructed using an iterative approach (indicated by the

superscript k) given by

xk
p (t,τ ) = x+u(x, t)τ + 1

2
Du
Dt

k
(x, t) τ 2 (4.6)

Du

Dt

k+1

(x, t) =
u(xk

p(t,∆t),t+∆t)−u(xk
p(t,−∆t),t−∆t)

2∆t
(4.7)
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where xp is the fluid-parcel location. equation 4.6 is the second order

expansion of the particle location with time interval τ relative to time

instance t.

Although for the Lagrangian form the description of space and time

seems not to be linked, based on the formulation in equation 4.1, it is

clearly linked in the computation (equation 4.6).

The pressure gradient field is then determined using equation 4.1.

Both approaches use linear forward or backward schemes at domain

edges.

4.2.2 Pressure integration

Pressure integration is done by a Poisson solver that solves the in-plane

Poisson formulation (equation 4.2) directly using a standard 5-point

scheme (second order central finite differences),

pi+1, j + pi−1, j + pi, j+1 + pi, j−1 −4pi, j

h2
=−ρ fi, j, (4.8)

where h is the grid spacing (uniform, ∆x = ∆y = h). The forcing term

is determined with

f = fxy =− 1

ρ

(
∂
∂x

(
∂ p

∂x

∣∣∣∣
PIV

)
+

∂
∂y

(
∂ p

∂y

∣∣∣∣
PIV

))
. (4.9)

To verify the proper working of this approach, we compared it to two

alternative approaches for the integration of the pressure gradient: the

omnidirectional integration approach used by Liu & Katz (2006) and

a least-squares approach. A third approach, a direct spatial integration

approach, was tested (see de Kat et al. 2008), but was excluded from

this comparison because of its unfavorable directional dependence (see

van Oudheusden 2008).

The differences in peak and noise response of the methods were

found to be well below 1%, when tested on a stationary Gaussian vor-

tex (see chapter 5) on a grid of 60 × 90 points. Furthermore, Charonko

et al. (2010) found that, when sufficiently sampled, different integra-

tion techniques all give adequate results, even for different inputs (e.g.

neglecting parts in equation 4.3). Based on these findings, the Poisson

approach was selected for the following analyses.
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(a) (b)

Figure 4.1: Boundary condition performance for a advecting Gaussian

vortex. Ua = 1 WS/∆t, Vθ = 0.5 WS/∆t, rc = 8 WS, OF = 75%, α = 0◦,

β = 0◦. (a) Difference between the Bernoulli pressure (equation 4.10)

and the analytic pressure, ∆pB. (b) Difference between pressure from

equation 4.13 and the analytic pressure, ∆pN . See chapter 5 for details

on the Gaussian vortex

4.2.3 Boundary conditions

Boundary conditions are enforced on all edges of the pressure evalua-

tion domain and consist of a reference boundary condition in a point or

domain (pressure is prescribed) and Neumann conditions (pressure gra-

dient is prescribed) on the remaining edges. The Neumann boundary

conditions make use of equation 4.1 and are implemented using ghost-

points. The reference boundary condition ideally would be placed in

the inviscid outer-flow, where the Bernoulli equation can be used (i.e.

incompressible, steady, irrotational and inviscid part of the flow),

p+
1

2
ρ (u ·u) = p∞ +

1

2
ρV 2

∞. (4.10)

However, due to the limited measurement domain of PIV, the boundary

conditions need to be enforced within the disturbed flow domain. Start-

ing from the line integral of the momentum equations (equation 1.1)

and assuming irrotational and inviscid flow without body forces gives
∫ B

A

{
ρ

∂u

∂ t
+ ∇

(
ρ

u ·u
2

+ p
)}

ds = 0. (4.11)
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Now using the Reynolds decomposition together with the assumptions

of purely advective perturbations (Du′/Dt = 0) and a small mean ve-

locity gradient, the acceleration can be rewritten as

∂u

∂ t
=

∂u′

∂ t
≈−(u · ∇ )u′ ≈−∇

(
u′ ·u

)
. (4.12)

The reference pressure can then be computed with

p+
1

2
ρ
(
u ·u+u′ ·u′)= p∞ +

1

2
ρV 2

∞. (4.13)

This expression can be seen as an extended version of the Bernoulli

equation that it is corrected for the unsteady advective perturbations.

The improvement of this formulation over the standard Bernoulli is

shown in figure 4.1, where they are compared on an advecting Gaussian

vortex (see chapter 5). Figure 4.1(a) clearly shows that the Bernoulli

pressure (equation 4.10) does not work and shows large differences with

the analytic pressure over the complete domain. These differences are

mainly due to the fact that the velocity field is not steady and correspond

to the inclusion of the u′ · u term. With the acvective velocity in x-

direction the error should resemble the u-component of velocity, which

is readily apparent when comparing figure 4.1(a) with figure 5.3(a).

Figure 4.1(b) shows that the pressure from equation 4.13 only gives a

difference in the rotational core of the vortex (cf. figure 5.3(c)), which

is expected given the assumption of irrotational flow. Approximately

one vortex radius from the center the error has dropped below 5%pre f

and when the distance is larger than three vortex radii from the center

the error has become negligible (∆pN < 0.01%pre f ).

4.3 Frequency response

A key feature of an experimental technique used to measure turbulent

flow is its frequency response. The frequency response of the measure-

ment procedure and subsequent data-analysis are affected in both space

and time by truncation and precision errors. The influence of the trun-

cation error is estimated using (simple) theoretical considerations. The

influence of the precision error is estimated using linear error propaga-

tion.
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Although we set out to start from a velocity field with its corre-

sponding uncertainty, we need to know how PIV filters the velocity

field and the noise on it, in order to know what the starting point of the

pressure derivation is. PIV acts similarly to a moving average (see e.g.

Schrijer & Scarano 2008, who also show improvements can be achieved

with iterative schemes), resulting in a response (figure 4.2) to a 2D sig-

nal as given by

TPIV,2D = sinc2

(
WS

λx

)
(4.14)

where TPIV,2D denotes the transfer function of PIV to a 2D signal, sinc (x)=
sin(πx)/πx, WS is the interrogation window size, and λx is the spatial

wavelength of the input signal (flow structure). Foucaut et al. (2004)

show that noise is also affected by this low-pass filter behaviour.

PIV also has a limited temporal response, which is related to the

laser pulse time separation, δt, and restricts the frequencies of flow

phenomena that can be captured in individual velocity fields. This,

however, is generally less restrictive than the limitation by the acqui-

sition frequency (∆t ≥ δt) and we will therefore focus on the influence

of the acquisition frequency.

The current implementation of the determination of the pressure

gradient field involves taking central finite differences. These central

finite differences act as a low-pass filter due to the truncation error (see

e.g. Foucaut & Stanislas 2002), with a response given in equation 4.15

(figure 4.2).

TCD = sinc

(
2h

λx

)
(4.15)

where TCD denotes the transfer function of the central finite differences,

h is the grid-spacing. When applied in time the filter response is the

same, i.e. replace h with ∆t and λx with λt .

A numerical test and theoretical analysis indicates also that the

Poisson solver acts as a low-pass filter with a amplitude response as

given in equation 4.16 (figure 4.2).

TPS =
1+ cos

(
π2h

λx

)

2 · sinc
(

2h
λx

) (4.16)
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Figure 4.2: Amplitude response of PIV, central finite differences (CD)

and the Poisson solver (PS). PIV: l∗ =W S/λx; CD and PS: l∗ = 2h/λx.

PS is shown till l∗ = 1, which is the Nyquist limit of PS and CD.

where TPS denotes the transfer function of the Poisson solver.

For the pressure derived using the Eulerian form of the pressure

gradient this means the filter due to the central finite differences acts in

space and time separately and the filter of the Poisson solver in space.

When using the Lagrangian form of the pressure gradient, the low-pass

filter due to the central finite differences only acts in time and the filter

of the Poisson solver in space. However, for the Lagrangian approach,

the reconstruction of the trajectory of the fluid parcel path also has an

additional effect on the spatial frequency response (see equation 4.6).

Violato et al. (2011) state the temporal limitation of a Eulerian ap-

proach to be related to the acceleration being measured on the same

structure, leading to the expression given by

∆tEul <
1

4

λx

Ua

(4.17)

where ∆tEul is the time separation between consecutive velocity fields
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for the Eulerian approach, λx is the spatial wavelength, and Ua is the

advective velocity.

However, this is only a part of the terms needed for the pressure

gradient (see equation 4.1) and therefore does not state how strong the

impact of this improper sampling will be. Following similar reasoning,

i.e. a vortex should not exceed half a turn during the evaluation of the

material acceleration, an equivalent expression can be derived for the

temporal limitation of the Lagrangian approach,

∆tLag <
1

4

2πr

Vθ
(4.18)

where ∆tLag is the time separation between consecutive velocity fields

for the Lagrangian approach, r is the radius, and Vθ is the tangential

velocity.

Here the expression is linked directly to the pressure gradient and its

effect is expected to influence the complete domain. Also the domain

should be large enough for the fluid path to be reconstructed. However,

it is not possible to accurately capture these effects in simple theoretical

considerations and therefore they will be assessed on a synthetic flow

field in §5.

To have an estimate for the sensitivity to noise (precision error) of

both approaches we follow a linear error propagation procedure as laid

down by Kline & McClintock (1953) (see e.g. Stern et al. 1999, for

a more thorough exposition). The error is assumed to be uncorrelated

and to have a normal distribution. The error on a single sample can

be estimated by the RMS value of the noise of the measurement tool

and the error on a derived quantity can then be estimated as the root

of the sum of the square of the uncertainties of the samples where it

was derived from multiplied by their respective sensitivity. The noise

propagation from the velocity field to the pressure field for the Eulerian

form gives

εpEul
∝ εu

√
h2

2∆t2
+ |∇ u|2h2 +

|u|2
2

(4.19)

where εpEul
is the (estimated RMS) error for the pressure based on the

Eulerian approach, εu is the noise on the velocity, h is the grid spacing,

∆t is the velocity field time separation, |∇ u| is the magnitude of the
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gradient of the streamwise component of the velocity, and |u| is the

velocity magnitude.

For the estimation of the noise sensitivity of the Lagrangian method,

the fluid path reconstruction is simplified and taken to be linear (i.e.

equation 4.6 and equation 4.7 are only used once). The result of the

noise propagation then is

εpLag
∝ εu

√
h2

2∆t2
+

|∇ u|2h2

2
(4.20)

where εpLag
is the error for the pressure based on the Lagrangian ap-

proach.

These results indicate that when the (advective) velocity of the flow

is small (with respect to the other terms in equation 4.19 and equation

4.20) both methods will react similarly to noise, whereas when the (ad-

vective) velocity is large the Eulerian approach will suffer, while the

Lagrangian approach remains insensitive.

Due to the nonlinearity (with respect to the velocity field) of the

pressure gradient determination, the exact behaviour of both methods

is not available. Also the noise propagation procedure is limited to un-

correlated noise, whereas Foucaut et al. (2004) show that the (spatial)

scales in the noise are effected by the PIV processing, especially appar-

ent when using higher overlap-factors (OF). Furthermore the filtering

effect of PIV is known to be different for 1D and 2D signals (see e.g.

Schrijer & Scarano 2008).

Nevertheless, the considerations presented in this section provide a

good indication of the parameters that will influence the performance

of the pressure determination from PIV and what effect they may have.

In summary, the Eulerian approach is expected to be more sensitive

to noise and advective motion, whereas the Lagrangian should have

difficulties capturing rotational flow, because this complicates the flow

path reconstruction.

To substantiate and quantify these theoretical considerations on the

performance of pressure determination, different methods are applied

to a synthetic flow field, where the input velocity field has a known

pressure distribution.
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Performance assessment

Vortices are arguably the most relevant flow structures occurring in

practise, likely to be encountered in many fluid dynamic studies where

pressure is of interest (e.g. separated flow, bluff body flows). The ad-

vection of a Gaussian vortex is taken to serve as an theoretical test-case

for the pressure evaluation procedures. The analytic expression for the

velocity field is used to generate synthetic PIV velocity fields and the

theoretical pressure field is used as a reference to validate the pressure

field computed from the synthetic PIV velocity fields. In the simulated

experiments the influence of resolution in space and time is considered,

as well as noise and spatial filtering caused by PIV, and the effects of

3D (out-of-plane) flow.

5.1 Synthetic flow field

The synthetic flow field consists of a linear combination of a Gaussian

vortex and a uniform velocity field in x-direction, Ua (corresponding

to the advection velocity of the vortex). The flow field relative to the

vortex centre is described by the tangential velocity, Vθ , in a cylindrical

polar coordinate system aligned with the vortex axis and moving with

the vortex. The radius where Vθ reaches its maximum, Vp, is defined

as the core radius, rc (see figure 5.1). The velocity distribution and

corresponding pressure distribution (relative to p∞ = 0) are given in

47
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Figure 5.1: Synthetic tangential velocity distribution and corresponding

pressure distributions.
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equation 5.1 and 5.2,

Vθ =
Γ

2πr

(
1− e

− r2

cθ

)
(5.1)

where Γ is the circulation, cθ = r2
c/γ, and γ= 1.256431 is a constant to

have Vp at rc. The corresponding pressure distributions is

p =−1

2
ρV 2

θ +

∫ ∞

r
Vθ (s)ωz (s)ds (5.2)

where ρ is the density. The first term on the right hand side is the

irrotational contribution to the pressure where the second term is the

contribution of the rotational part. The second term can be evaluated as

∫ ∞

r
Vθ (s)ωz (s)ds =− ρΓ2

4π2cθ

(
E1

(
r2

cθ

)
−E1

(
2r2

cθ

))
, (5.3)

where E1 is the exponential integral defined as

E1 (x) =

∫ ∞

x

e−t

t
dt, (5.4)

and the minimum pressure is limr→0 p =−ρΓ2 ln2/
(
4π2cθ

)
=−pre f .

3D flow is simulated by tilting the vortex-axis at an angle with the

x-y-plane, α , where the orientation of this angle with respect to the y-

direction is set by a second angle, β (see figure 5.1).

5.2 Numerical implementation

Velocity volumes were created by mapping equation 5.1 onto a carte-

sian grid (with the vortex axis placed at the centre of the domain) and

adding the Ua, resulting in a grid with values for the u, v, and w com-

ponents of velocity and corresponding pressure. The same procedure is

followed to create velocity volumes for ∆t and −∆t, where the vortex

axis is moved the corresponding distance along the advection direction

(i.e. Ua∆t and −Ua∆t).

Nine random noise volumes were created and used in three sets of

three (each time one for −∆t, 0 and ∆t). In this way we assured that the
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effects of varying parameters is not influenced by the use of different

noise volumes (from case to case) and, by using three sets, we reduce

the influence of having a specific response to a single noise volume set.

To account for the filtering effect PIV has on the velocity field and

the noise in the velocity field (see Foucaut et al. 2004), the velocity vol-

ume and separate random noise volumes were filtered using a moving-

average filter over the interrogation window-size (WS) simulating an

overlap-factor (OF) of 75%. After filtering the volumes were cropped

to avoid end-effects of the filtering procedure. The final volumes were

257 × 257 × 33 points, representing a volume of 65 × 65 × 9 indepen-

dent WS. The thickness of these volumes was sufficient to reconstruct

3D paths for the 3D flow assessment. For the lower OF values a sub-

set of this velocity volume was taken. For each case, the noise level

was scaled to give the desired root-mean-square (RMS) values, εu, as a

percentage of the maximum (theoretical) velocity occurring in the flow

field, in line with PIV-practise.

In the current analysis, influences on PIV accuracy due to acceler-

ation and flow-field curvature were not taken into account in the mod-

elling. Hain & Kähler (2007) show that these can have significant ef-

fects on the accuracy of PIV. Despite this omission, the current analysis

should allow to find the range in which pressure determination from

PIV is possible. Only when the effects of acceleration and flow-field

curvature are large, like in strong vortices, the actual pressure results

derived from PIV are likely to be worse than this analysis will indicate.

From the velocity fields, the pressure gradient fields were deter-

mined using either the Eulerian or Lagrangian approach and subse-

quently integrated using the Poisson approach, with Dirichlet condi-

tions on the lower side of the domain and Neumann conditions on the

remaining edges, see figure 5.2.

The resulting pressure fields were assessed in two different ways.

First, the peak response was determined by taking the ratio of the peak

calculated pressure, pp, and the peak of the theoretical pressure, pre f

(see figure 5.1). Second, the noise response, εp, was determined by tak-

ing the (spatial) RMS of the difference between the pressure calculated

from the velocity field with noise and the pressure calculated from the

velocity field without noise (if the theoretical pressure is used, the peak

response will influence the RMS, which is unwanted). Each value of
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Ua

Vortex moving 

along the boundary

Vortex moving 
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Figure 5.2: Schematic of the computational domain. Indicated are the

primary vortex location, the vortex moving along the boundary of the

domain, and the vortex moving across the boundary of the domain.

the noise response presented is an average of the results of the three

sets of noise used.

To investigate the effects of the vortex moving along or across the

boundary of the domain (see figure 5.2 for a schematic representation),

the vortex centre was placed at different distances from the boundary

(ranging from the centre to the boundary of the domain). The influence

is determined by taking the difference between the pressure determina-

tion for a stationary vortex and an advecting vortex for each location.

The maximum perturbation of all distances is then taken to represent

the influence of that advection velocity.

5.3 Results

Figure 5.3 shows an example of the input for and the result from the cal-

culations. Contours of velocity are shown in 5.3(a) and 5.3(b). The ef-

fect of addition of noise is clearly present when comparing the contours

to the overlaid black lines that correspond to the analytic velocity field.

The corresponding vorticity field in figure 5.3(c) also demonstrates this

clearly. The outer overlaid black line indicates that the analytic vortic-
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(a) (b)

(c) (d)

Figure 5.3: Example of the velocity field, vorticity field, and pressure

field. Overlaid are black lines of the corresponding analytic field. Ua =
1 WS/∆t, Vθ = 0.5 WS/∆t, rc = 8 WS, OF = 75%, α = 0◦, β = 0◦,

εu = 1%Umax. (a) u-component of velocity. Overlay from 0.55 to 1.45

in steps of 0.05. (b) v-component of velocity. Overlay from -0.45 to

0.45 in steps of 0.05. (c) Out-of-plane vorticity, ωz. Overlay from 0 to

0.2 in steps of 0.05. (d) Pressure field from Eulerian pressure gradient.

Overlay from -0.9 to -0.1 in steps of 0.1.
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ity is negligible (ωz∆t < 0.01%) for radii larger than three vortex core

radii. Figure 5.3(d) shows the resulting pressure field obtained by inte-

grating the Eulerian pressure gradient. The noise clearly has an effect

on the pressure field, but the signature of the pressure of the vortex is

still present.

Figure 5.4-5.6 show the peak and noise responses for different spa-

tial and temporal resolutions. The temporal resolution is split into two

contributions, one related to the advection of the vortex and one related

to the strength of the vortex. The variations were taken with respect to

a noncritical base-line (see figure 5.3).

Figure 5.4 shows the variation of the peak response and noise re-

sponse with the spatial resolution. The trend for the peak response in

figure 5.4(a) is in good agreement with the trend in figure 4.2, show-

ing an increase in modulation as the ratio WS/rc increases. The Eu-

lerian and Lagrangian approach perform nearly identical. Increasing

the OF shows significant improvement for poor spatial resolutions (big

WS). However, this improvement is limited, since increasing OF im-

proves the description of the signal (sampling), but does not overcome

the filtering effects of the moving-average behaviour of PIV. As the

spatial resolution increases the improvement obtained with higher OF,

becomes less pronounces. The results for 50% and 75% overlap are

very similar over the complete range investigated and for WS/rc smaller

than 0.5 their modulation is smaller than 10% (peak response > 0.9).

For WS/rc < 0.25 all OF give a modulation of smaller than 5% (peak

response > 0.95). This indicates that when sampling at a spatial fre-

quency ten times higher than the spatial frequency in the flow (WS/λx <
0.1, λx ≈ 2rc) the modulation will be smaller than 5% and that when

sampling at a spatial frequency five times higher (WS/λx < 0.2) the

modulation for 50% and 75% OF is smaller than 10%. The noise re-

sponse is hardly affected by changes in spatial resolution or OF, see

figure 5.4(b). The Eulerian approach has a higher value of noise, εp ≈
4.5%pre f , than the Lagrangian approach, εp ≈ 3.5%pre f .

The response to change in temporal resolution is divided in two

influences, response to an advective velocity, Ua, and response to the

pean tangential velocity, Vp, of the vortex. Figure 5.5 shows the influ-

ence of the advective velocity on the peak response and noise response.

Changing the advective velocity has no influence for the Eulerian ap-
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Figure 5.4: Influence of spatial resolution on peak and noise response.

Ua = 1 WS/∆t, Vθ = 0.5 WS/∆t, α = 0◦, β = 0◦; for the noise response:

εu = 1%Umax. (a) Peak response. (b) Noise response.
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Figure 5.5: Influence of advective velocity on peak and noise response.

Unless indicated otherwise: Vθ = 0.5 WS/∆t, rc = 8 WS, OF = 75%,

α = 0◦, β = 0◦; for the noise response: εu = 1%Umax. (a) Peak re-

sponse. (b) Noise response.
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Figure 5.6: Influence of tangential velocity on peak and noise response.

Unless indicated otherwise: Ua = 1 WS/∆t, rc = 8 WS, OF = 75%, α =
0◦, β = 0◦; for the noise response: εu = 1%Umax. (a) Peak response.

(b) Noise response.
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proach and the Lagrangian approach, their response is identical, see

figure 5.5(a). This response is expected for the Lagrangian approach

and although this seems in contrast with equation 4.17 for the Eulerian

approach, it can be explained. Since the flow is 2D and the acceleration

is completely absent in the 2D part of equation 4.3, the only way that

this improper time sampling can affect the results is via the accelera-

tion at the boundaries of the domain. This influence will be covered

later. Figure 5.5(b) shows the noise response to a change in advec-

tive velocity. The Eulerian approach is affected more by the noise than

the Lagrangian approach. The Eulerian approach shows a trend with

increasing advective velocity that agrees well with equation 4.19. It is

approximately a quadratic increase, since εu ∝ Ua (εu is given in %Umax,

where Umax =Ua +Vp) and the square root term also is ∝ Ua. The La-

grangian approach shows a linear increase with increasing advective

velocity, which is in good agreement with equation 4.20, where only εu

is proportional to Ua.

Figure 5.6 shows peak responses and noise responses for changes in

tangential velocity, Vp. The peak response of the Eulerian approach is

unaffected by a change in Vp, whereas the Lagrangian approach drops

off at different values of Vp for different rc (figure 5.6(a)). Based on

the equation 4.18 we expect a decrease of the Lagrangian approach for

increasing Vθ/r. When plotted with a measure for the vortex turnover-

time, Vp∆t/2πrc (figure 5.7(a)), a drop off for Vp∆t/2πrc > 0.1 is clearly

visible. For temporal resolutions higher than Vp∆t/2πrc ≈ 0.1 no sig-

nificant effect is present. This means that for a temporal resolution

ten times higher than the Lagrangian time scale (vortex turnover time,

Vp∆t/2πrc < 0.1) the Lagrangian approach will work properly. For

poorer temporal resolutions severe modulation is expected. Figure 5.6(b)

shows an unexpected decreasing trend for the noise responses of the

Eulerian and Lagrangian approach with increasing tangential velocity.

However, it can be shown that pre f ∝ V 2
p and therefore εp/pre f ∝ 1/Vp,

which explains the trend observed.

Figure 5.7(b) shows a linear behaviour of the noise on the pressure

with increasing noise on the velocity field, which is in agreement with

equation 4.19 and 4.20. For Ua = 0 WS/∆t the Eulerian and Lagrangian

approach have similar noise responses, when there is an advective ve-

locity the Eulerian approach performs worse, see figure 5.5(b).
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Figure 5.7: Influence of vortex turnover time and noise level. Unless

indicated otherwise: Ua = 1 WS/∆t, Vθ = 0.5 WS/∆t, rc = 8 WS, OF

= 75%, α = 0◦, β = 0◦; for the noise response: εu = 1%Umax. (a)

Peak response of the Lagrangian approach with vortex turnover time.

(b) Noise response with noise level.
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Figure 5.8: Influence of the inclination angle of the vortex on the peak

response. Ua = 1 WS/∆t, Vθ = 0.5 WS/∆t, rc = 8 WS, OF = 75%, β =
0◦.

Figure 5.8 shows the influence of the angle between the vortex axis

and the plane-normal, α , for 2D input and 3D input. The 2D input is

a subset of the 3D input without the out-of-plane components, which

simulates planar and stereo-PIV. The reader should note that although

stereo-PIV does give the out-of-plane velocity component, the out-of-

plane velocity gradient is needed to make use of the out-of-plane veloc-

ity component (see equation 4.3), hence making it equivalent to planar-

PIV for pressure determination. It is clear that the peak response is very

similar to cos(α ). No effect associated to β was found.

As indicated earlier the Eulerian approach is expected to suffer from

the limitation given in equation 4.17 on the edges of the domain. The

maximum influence was found to be located at the boundaries and the

influence propagated reciprocally with the distance from the boundary

into the domain. Figure 5.9 and figure 5.10 show the results from the

assessment of the edge effects. Figure 5.9 shows the error introduced
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Figure 5.9: Edge effects. Pressure error for the Eulerian approach on the

boundary of the domain shown in black. Analytic Eulerian acceleration

shown in grey. Top: vortex moving along a boundary. Bottom: vortex

moving across a boundary. Unless indicated otherwise: Ua = 1 WS/∆t,

Vθ = 0.5 WS/∆t, rc = 8 WS, OF = 75%, α = 0◦, β = 0◦.

along the edge together with the corresponding acceleration for a vor-

tex moving along the boundary (top) and for a vortex moving across a

boundary (bottom). The error is clearly related to the acceleration.

To quantify the influence of Ua and rc the maximum deviation due

to the edge effect is determined and plotted with Ua∆t/rc. For the

Eulerian approach the edge effect error shows a rapid increase of the

error starting at Ua∆t/rc ≈ 0.2, which is in line with equation 4.17,

for both the case where the vortex moves along the boundary (figure

5.10(a)) and the case where the vortex moves across the boundary (fig-

ure 5.10(b)). The Lagrangian approach reacts as expected with only a

minor influence for the case where the vortex moves across the bound-

ary (figure 5.10(b)), which can be attributed to the switch to the for-

ward/backward scheme at the boundary.
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Figure 5.10: Influence of advective velocity on the edge effects. Vθ =
0.5 W S/∆t, OF = 75%, α = 0◦, β = 0◦. (a) Absolute maxima of the

error on the edge for a vortex moving along a boundary. (b) Absolute

maxima of the error on the edge for a vortex moving across a boundary.
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5.4 Summary

Although the present evaluation is not directly comparable to the results

of Charonko et al. (2010), since they did not split the influences of trun-

cation and precision effects, the trends of the peak and noise responses

combined show similar trends in their results.

Successful determination of pressure from PIV data needs to com-

ply with a number of criteria. For both approaches it applies that the WS

should be sufficiently small with respect to the flow structures. A larger

OF does increase the quality of the pressure determination, but the ef-

fect of OF is less pronounced when the WS is sufficiently small. For

spatial sampling frequencies larger than ten times the spatial frequency

(taking λx ≈ 2rc) in the flow (WS/λx < 0.1) the peak modulation is less

than 5%. For spatial sampling frequencies larger than five times the

spatial frequency in the flow (WS/λx < 0.2) the peak modulation is less

than 10% for OF or 50% and 75%.

Complete 3D velocity measurements are needed to properly capture

the pressure in 3D flow. Omitting out-of-plane components results in a

peak response error that behaves like cos(α ), where α is the angle of

the vortex axis with the measurement plane.

Reducing the measurement noise on the velocity fields directly im-

proves the pressure determination for both approaches.

The Eulerian approach suffers more from measurement noise than

the Lagrangian approach, especially when advection velocity is present,

and is furthermore limited by the advection of flow structures over

the boundary. The time separation between subsequent velocity fields

needs to be sufficiently small to correctly capture the acceleration on the

boundaries. Time separation should be ∆t < 0.2rc/Ua, which means

that the acquisition frequency needs to be ten times larger than the

largest frequency at a given point in the flow (i.e. the Eulerian time

scales), facq > 10× f f low (λx ≈ 2rc).

The Lagrangian approach is limited by the turn over time of the

structures in the flow. The time separation needs to be sufficiently

small to correctly capture the pressure correctly. The time separation

should be ∆t < 0.1× 2πrc/Vp, which means that the acquisition fre-

quency needs to be larger than ten times the turnover frequency in the

flow (i.e. the Lagrangian time scales), facq > 10× fturnover .
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Experimental arrangement

6.1 Experimental setup and conditions

Experiments were performed in a low-speed, open-jet wind-tunnel at

the Aerodynamics laboratory at Delft University of Technology. The

tunnel outlet has dimensions 40 cm × 40 cm. A square-section cylin-

der with dimension 30 mm × 30 mm (D × D) and 34.5 cm in span was

fitted with endplates and positioned in the middle of the free-stream.

The geometric blockage was 6.5%. The nominal free-stream velocity,

U , was 4.7 m s−1 (nominal dynamic pressure, q = 13.5 Pa), giving

Reynolds number ReD = UD/ν = 9,500. The main vortex shedding

frequency was fs = 20 Hz, corresponding to a Strouhal number of St =
fsD/U = 0.13, which is in good agreement with the results of Okajima

(1982), who found St = 0.13 for 104 < ReD < 2×104. The free-stream

turbulence intensity was assessed by hot-wire-anemometry and was ap-

proximately 0.1%. These experimental conditions are summarised in

table 6.1. Additional experiments were performed at U = 3.0 m s−1

and U = 9.7 m s−1, resulting in ReD = 6,000 and ReD = 19,000, re-

spectively. These additional experiments are used for describing square

cylinder pressure. The conditions for the experiments used for this de-

scription are listed in table 6.2.

The cylinder was instrumented with two flush mounted pressure

transducers (figure 6.2) located in close proximity to midspan of the

model to provide reference values for the pressure signals extracted

63
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Base-wall transducer location

Stereo-PIV

Tomo-PIV
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Figure 6.1: Schematic drawings of the tunnel exit with installed model

and the fields-of-view, x- and y-directions and pressure transducer lo-

cations. (a) tunnel exit with installed model (courtesy of F.J. Donker

Duyvis) (b) fields-of-view.
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Table 6.1: Experimental conditions for experimental assessment

Variable Value uncertainty

Free-stream velocity, U 4.7 m s−1 ± 2%

Free-stream turbulence intensity 0.1% U –

Tunnel dimension 400 mm –

Cylinder dimension, D 30 mm –

Blockage 6.5% –

Cylinder length 345 mm –

Reynolds number, ReD 9,500 ± 2%

Dynamic pressure, q 13.5 Pa ± 2%

Vortex shedding frequency, fs 20 Hz ± 1%

Strouhal number, St 0.13 ± 2%

from the PIV data. For the stereo-PIV one transducer was located at the

bottom and one at the base and for the tomo-PIV setup both transduc-

ers are located at the base on either side of the measurement-volume.

For comparison separate pressure measurements were performed with

both transducers located at the side-wall on either side of the measure-

ment location. Figure 6.1 shows the transducer locations as well as the

field-of-view used for the stereo-PIV and tomo-PIV setup.

The pressure transducers, Endevco 8507-C1, have a range of 1 psi

Table 6.2: Experimental conditions for square cylinder pressure

Parameter ReD ε
6,000 9,500 19,000 <3%

q, Pa 5.3 13.2 56.0 0.3

U , m s−1 3.0 4.7 9.7 <3%

fs, Hz 12.3 20.0 41.6 <1%

St 0.124 0.128 0.128 <3%
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Figure 6.2: Pressure transducer assembly. Left: flush mounting of the

pressure transducers. Right: internal layout of connections

(6,895 Pa), and a typical sensitivity of 175 mV psi−1 (25 µV Pa−1),

with a sensitivity-change related to temperature of less than 0.2% under

current operating conditions. They were calibrated, using a closed sys-

tem with a U-tube, against a Mensor DPG 2001 (range 0.5 psi; 3,447

Pa, uncertainty 0.010% full scale). Signal recording was performed us-

ing a National Instruments data acquisition system (consisting of: PCI-

6250, SCXI-1001, SCXI-1520, and SCXI-1314) operating at 10 kHz

(bandwidth (-3 dB): 20 kHz). The resulting noise-level was 4 µVRMS

resulting in a resolution of 0.3 Pa (twice the RMS-level). The zero-drift

for each run was less than 2 µV. Unless stated otherwise the pressure

signals are unfiltered (and not corrected for the effects of wind-tunnel

blockage). The pressure measurement on the side of model suffered

from laser-influences. The laser-influence was removed by deleting er-

roneous points and filling the gaps by interpolation. The signal was

subsequently low-pass filtered with a second order fit (robust Loess)

over 25 points. The power-spectrum was checked against a pressure

measurement without laser-interference and was confirmed to be un-

changed for frequencies up to 400 Hz.
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6.2 PIV-setup

A high-repetition-rate PIV-system in a stereo-PIV and tomo-PIV setup,

see figure 6.3, was used to capture the flow. Flow seeding was provided

by a Safex smoke generator, which delivered droplets of about 1 µm

in diameter. The measurement plane was illuminated by a Quantronix

Darwin-Duo laser system with an average output of 80 W at 3 kHz at

a wavelength of 527 nm. The typical energy per pulse was 16 mJ at

2.7 kHz. The laser-pulse separation was 90 µs. Images were acquired

by Photron Fastcam SA1 cameras (two for the stereo setup and four

for the tomographic setup) with a 1,024 × 1,024 pixels sensor (pixel-

pitch 20 µm), recording image-pairs at 2.7 kHz, equipped with Nikon

lenses with focal length 60 mm and aperture set at 2.8 (top cameras in

tomo-setup at 5.6). One camera was positioned normal to the image

plane. The other cameras were mounted with adapters such that the

Scheimpflug criterion was met. A total of 5,456 image-pairs, spanning

just over two seconds, was captured for the stereo-PIV setup and a total

of 2,728 image-pairs, spanning just over one second, was captured for

the tomo-PIV setup. Synchronization between the cameras, laser, and

image acquisition was accomplished by a LaVision programmable unit

in combination with a high-speed controller, both controlled through

DaVis 7.2 software. Particle image pairs were processed using DaVis

7.4 software. This software was also used for self-calibration, which

corrects the misalignment of the calibration plate with the laser sheet

(see Wieneke 2005, 2008). For the stereo-PIV setup the self-calibration

process corrected the misalignment to within 0.01 pixels and for the

tomo-PIV setup to within 0.07 pixels. Particle images were prepro-

cessed by subtracting the time-minimum and applying a 3×3 Gaus-

sian filter. The vector fields were processed with a median test (see

e.g. Westerweel & Scarano 2005) combined with a multiple correlation

peak check. Remaining spurious vectors were removed and replaced

using linear interpolation. The total number of spurious vectors was

less than 2% for both data-sets.

An overview of the main PIV settings used in this investigation is

given in table 6.3. For the stereo-PIV the field-of-view (FOV) was cap-

tured with a digital resolution of 15.7 pix mm−1. The laser light sheet

thickness was approximately 1 mm. The final interrogation window-
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Figure 6.3: Photograph showing the experimental arrangements. Top

Stereo-PIV setup. Bottom Tomo-PIV setup.
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Table 6.3: Main PIV settings

Stereo-PIV Tomo-PIV

Number of cameras 2 4

Lenses Nikon 60 mm Nikon 60 mm

Aperture setting, f# 2.8 2.8 & 5.6

Angle between cameras 32◦ 30◦×30◦

Digital resolution, 1/κ 15.7 pix mm−1 14.3 pix mm−1

Magnification errora, εκ/κ < 0.1% < 0.1%

Acquisition frequency, facq 2.7 kHz 2.7 kHz

Laser sheet thickness 1 mm 4 mm

Laser pulse time sep., δt 90 µs 90 µs

Laser pulse t-sep. errorb, εδt/δt 0.2% 0.2%

Velocity field time sep., ∆t 370 µs 370 µs

Initial interrogation area 32×32 pix 32×32×32 pix

Final interrogation area 16×16 pix 16×16×16 pix

Overlap factor 50% 50%

Vector field size 118×125 99×110×7

Dynamic velocity rangec 130 110

a lc=10 mm, εlc = 0, εnc
based on calibration misalignment

b using the laser pulse width, εδt = 0.2µs
c ratio of maximum pixel displacement with εcc (see Adrian 1997)

size was varied between 16 × 16 pixels and 128 × 128 pixels and the

OF between 0% and 75% resulting in vector grids of 236 × 250 vectors

to 14 × 15 vectors (after cropping), for 16 × 16 pixels with 75% OF

and 128 × 128 pixels with 50% OF, respectively. The additional exper-

iments at ReD = 6,000 and ReD = 19,000, had δt = 130 µs and δt = 45

µs, respectively.

For the tomo-PIV the illuminated volume was 70 mm × 70 mm ×
4 mm. It was captured with a digital resolution of 14.3 pix mm−1. The

final interrogation volume-size of 16 × 16 × 16 voxels with an OF of

50% gave a vector grid of 99 × 110 × 7 vectors (after cropping) with

vector-spacing of 0.56 mm.
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6.3 Pressure determination

For the assessment of the pressure determination a total of 2728 ve-

locity fields were used to determine the pressure, spanning just over a

second, for both the stereo-PIV and tomo-PIV configurations. The in-

plane pressure gradient was determined using either the Lagrangian or

the Eulerian formulation. The pressure field was obtained by the Pois-

son integration approach with a Dirichlet condition on the lower edge

of the domain and Neumann conditions on the remaining edges. For

the description of square cylinder pressure in chapter 8, pressure was

determined for stereo-PIV configuration using all 5,456 velocity fields.

Pressure (co-)spectra were determined by dividing one second of pres-

sure data in seven blocks with 50% overlap and averaging the spectra

obtained from these blocks.

6.4 Phase-averaging procedure

Although naturally occurring quasi-periodic flows make it more diffi-

cult to fix an unambiguous reference time variation (Lyn & Rodi 1994),

phase information was deduced from the pressure signal taken from the

side-wall transducer. The signal was low-pass filtered with a second

order fit (robust Loess) with a kernel of 100 points (see figure 6.4(a)),

giving it an estimated cut-off frequency of 100 Hz with frequencies

below 50 Hz unaffected. The discrete time analytic signal was recon-

structed using the Hilbert transform (see §2.2.3) and the phase-angle φ
was determined (see Huang et al. 1998, and figure 6.4(b)), and divided

into 20 phase-bins. Each phase-bin contained of the order 250 images.

The average instantaneous frequency varied 10% during the cycle, and

had a spread of 20% within each bin. Similar phase-averaging results

were obtained when velocity was used as a reference.

6.5 Uncertainty assessment

To establish the validity of the measured results, a detailed uncertainty

analysis was carried out. The root-mean-square (RMS) uncertainties

in the statistical quantities, such as time-averaged velocity, Reynolds-
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Figure 6.4: Determination of the phase variable φ(t). (a) low-pass fil-

tered pressure signal time-series, Cp , (b) complex discrete analytic sig-

nal, where ∆Cp =Cp−Cp . The vertical axis represents the real part and

the horizontal axis the imaginary part of the complex discrete analytic

signal.

averaged normal stresses, and Reynolds-averaged shear stress, due to a

finite number of samples, were determined following the work of Bene-

dict & Gould (1996) (see §2.3) considering 5,456 velocity vector fields.

The same approach was used to determine the RMS uncertainties on

the phase-averaged and fluctuating phase-averaged velocity by assum-

ing 250 velocity fields per phase-bin.

In addition, each instantaneous velocity vector is affected by mea-

surement error and therefore has an associated RMS measurement un-

certainty εu. Similarly, each velocity gradient has a RMS uncertainty

(e.g. εdu/dx). The magnitudes of these uncertainties in PIV are much

more difficult to estimate than for the time-averaged and phase-averaged

properties. They depend on a wide range of parameters, such as final

interrogation window size, correlation mapping, magnification, parti-

cle image density, uncertainties on the particle displacements, the laser

pulse separation, calibration procedure etc.

To estimate the uncertainty on the instantaneous velocity, velocity

gradient, and vorticity quantities, a linear uncertainty-propagation anal-

ysis was used see §2.3 and §3.4. This analysis is limited, only gives a
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Table 6.4: Uncertainty analysis for PIV-results, ReD = 9,500.

ε(%) ε(%) ε(%)

u/U 1.0 〈u〉/U 3.8 u/U 1.5

v/U 1.1 〈v〉/U 3.5 v/U 1.5

w/U 0.5 〈w〉/U 3.4 w/U 2.1

ωz/ωmax † 0.9 〈ωz〉/ωmax † 3.5 ωz/ωmax † 1.6

u′u′/U2 1.0 〈ûû〉/U2 3.3

v′v′/U2 1.3 〈v̂v̂〉/U2 2.8

w′w′/U2 0.2 〈ŵŵ〉/U2 2.5

u′v′/U2 0.5 〈ûv̂〉/U2 1.5

† ωmax = 54 U/D, located in the shear-layer.

(linear) estimate of the uncertainty. However, this analysis gives an in-

dication of the (order of magnitude) of the uncertainty. The results pre-

sented here are applicable to the streamwise component and the mag-

nitude of the error on the crossflow velocity is taken to be the same as

the streamwise component. Based on results from undisturbed flow for

the stereo-PIV setup (with the model removed), uncertainty in determi-

nation of the cross-correlation peak location was found to be εcc = 0.1

pixel. A summary of the uncertainties for ReD = 9,500 are provided in

table 6.4. Due to the nature of the stereoscopic reconstruction, the out-

of-plane velocity is very sensitive to misalignment in regions of strong

spatial gradients of in-plane velocity. Despite correction for misalign-

ment as described earlier, the out-of-plane velocity values in the initial

shear-layer are likely to be affected by the remaining misalignment er-

ror. Finally, the uncertainty due to a limited number of vortex shedding

cycles is estimated assuming a maximum deviation of half a cycle with

respect to the number of cycles measured. This results in an uncertainty

of 1.3%.



Chapter 7

Experimental assessment

The flow around a square cylinder at a Reynolds number of 9,500 was

found to be predominantly 2D along the side-wall of the cylinder, whereas

the wake flow was found to have considerable 3D fluctuations, see §8

for more details (see also de Kat et al. 2009a,b). Applying both stereo-

PIV and tomo-PIV to the square cylinder problem, we will describe

the performance of pressure evaluation under 2D and 3D flow around a

square cylinder and how it connects to the theoretical performance es-

timation and the numerical assessment of the preceding chapters. First

we present the results from stereo-PIV to show what accuracy the pres-

sure evaluation can achieve using planar PIV. Secondly, the tomo-PIV

results are used to assess the influence of 3D flow effects and to what

extent the pressure evaluation improves with inclusion of the 3D flow

terms. Next, power spectra are presented to assess the frequencies that

are captured properly by pressure-PIV. Finally the results are compared

with the results from the theoretical considerations in chapter 4 and the

test-case on the synthetic velocity field of chapter 5.

7.1 Pressure-PIV results

It is easy with a performance assessment on a synthetic flow to isolate

different influences, but it poses considerable difficulty with experimen-

tal results, where one has to deal with multiple responses at once (e.g.

noise and signal). Therefore we will change the approach with respect

73
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to the approach taken in chapter 5. The pressure signals from pressure-

PIV are compared with pressure signals from the pressure transducer

measurements. The signal from the pressure transducer measurement

is taken as reference, pre f . Using this reference signal, the mean re-

sponse, p/pre f , will give information on how well the time-averaged

value of the pressure signals correspond. A poor mean response im-

plies that there also will be a poor instantaneous response. With a good

mean response, then with the RMS response, σp/σre f , and the correla-

tion between the signals gives an indication of how well the fluctuations

around the mean are captured. The better the fluctuations are captured

the better the instantaneous description of the pressure signal.

In the absence of noise, the RMS response is a measure for the peak

response. In the presence of measurement noise, however, the RMS

response gives the combination of the peak response and the noise re-

sponse. Therefore, the RMS response alone is not a good measure to

make statements about the quality of the instantaneous description of

the pressure. The correlation value between the pressure signals from

pressure-PIV and from the pressure transducers gives an indication of

how well the signals are aligned in time. It, however, does not pro-

vide any insight into the amplitude behaviour. Combining the RMS

response and correlation values between the signals, statements can be

made about the quality of the instantaneous description of the pressure

signal.

7.1.1 Stereo-PIV

A typical result for stereo-PIV is shown in figure 7.1, where the rela-

tion between separated high vorticity regions and low pressure regions

is illustrated, especially apparent along the bottom side of the square

cylinder. In the wake the relatively large low pressure region can be as-

sociated to the formation of a Von Kármán vortex, which is more clearly

visible when considering phase-averaged results (see chapter 8 or e.g.

van Oudheusden et al. 2005, de Kat et al. 2010).

Figure 7.2 shows pressure signal time-series extracted from the pres-

sure fields derived from stereo-PIV using the Eulerian approach com-

pared to the pressure transducer signals. The signals for the side-wall

(figure 7.2, top) are in good agreement and show a clear periodic com-
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(a) (b)

Figure 7.1: Example of the stereo-PIV results. (a) out-of-plane vortic-

ity. (b) pressure field.
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Figure 7.2: Pressure signal time-series from stereo-PIV. The pressure

signal from PIV is shown in red. The pressure transducer signal is

shown in black. Top: side-wall signals. Bottom: base-wall signals.

Left: full time-series. Right: 0.1 s sub-set of the time-series.
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ponent as a consequence of the Von Kármán vortex shedding, whereas

the signals for the base-wall (figure 7.2, bottom) show a fair agreement

and the periodicity is less evident. To quantify the agreement between

the signals and to investigate the effects of spatial and temporal reso-

lution, the mean and RMS responses as well as the cross-correlation

values with respect to the pressure transducer signal are shown in fig-

ures 7.3-7.5 and 7.6-7.8 for the side and base-wall, respectively. As a

comparative reference (to indicate spanwise coherency), values deter-

mined from pressure transducers on either side of the PIV domain are

indicated in grey. The mean and RMS responses of these transducers

are compared with each other, taking each as the reference for the other,

which results in two values for the mean and RMS response. Also the

correlation between the two pressure transducer signals is determined.

Figure 7.3 shows the mean response for the side-wall pressure sig-

nal obtained from stereo-PIV. The relative mean responses of the trans-

ducers with respect to each other have a difference of about 1% with re-

spect to the ideal response. This small difference could be due to small

spanwise differences in the flow or a small difference in the response of

the transducers. The influence of spatial resolution, figure 7.3(a), shows

that both the Eulerian and the Lagrangian approach react similar and are

within 5% for all WS and OF. At the highest spatial resolution (small

WS) the response is an over-expression of 5%, whereas the response at

the lowest spatial resolution (big WS) results in a 5% reduction of the

mean response. The main contributor to the mean pressure is the curved

flow (i.e. the mean advective part, fluctuation play a smaller role), the

reduction in mean response can be attributed to the spatial filtering of

the flow curvature, but the effects are limited. The influence of temporal

resolution, figure 7.3(b), shows a clear difference between the Eulerian

and the Lagrangian approach. The Eulerian approach is hardly affected

by a change in temporal resolution, since the flow along the side-wall of

the square cylinder is predominantly 2D and there are no vortical struc-

tures passing the pressure evaluation domain close to the location the

pressure is extracted, which agrees well with the findings for pressure

determination on the advecting vortex in chapter 5. The Lagrangian

approach shows a distinct drop off for ∆t U/D > 0.1. The structures

next to the side of the square cylinder (figure 7.1 shows two structures

that are stronger than average) have an average maximum vorticity of
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Figure 7.3: Mean response to spatial and temporal influences on the

side-wall pressure signal from stereo-PIV. (a) Influence of spatial reso-

lution. (b) Influence of temporal resolution.
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around 30 U/D, resulting in a vortex turnover time (assuming a Gaus-

sian vortex) of ∆t U/D ≈ 0.3, which shows that the drop off of the mean

response is linked to the turnover time of the vortical structures along

the side of the square cylinder. Where a drop off of peak response is

expected to be linked with the vortex turnover time, this shows that the

vortex turnover time has a significant effect on the mean response as

well.

Figure 7.4 shows the RMS response for the side-wall pressure sig-

nal. The relative RMS responses of the pressure transducers are vir-

tually identical (a difference of < 0.5%, the two lines indicating them

have even merged into one line). In figure 7.4(a) the influence of the

spatial resolution on the RMS response. The RMS response of the Eule-

rian and Lagrangian approaches both perform very similar and no sig-

nificant differences can be found. For high spatial resolutions (small

WS) all OF give similar results, having a RMS response of 0.9. For

lower spatial resolutions and 75% OF the response stays nearly the

same, whereas for 50% and 0% OF the RMS response drops to ≈ 0.8
for WS of 128 and 64 pixels, respectively. The structures along the side

of the square cylinder are of the order of 0.1 D (see figure 7.1). The

drop of the RMS responses of the 0% and 50% OF seem to coincide

with this length scale. The influence of the temporal resolution on the

RMS response,7.4(b), shows a similar trend as the mean response (com-

pare with figure 7.3(b)), having a almost constant value for the Eulerian

approach and a drop off for ∆t U/D > 0.1 for the Lagrangian approach.

There is a slight increase (about 5%) in the RMS response for the Eu-

lerian approach for lower temporal resolutions (large ∆t) with respect

to the value of 0.9 the RMS has for the highest temporal resolution.

No clear explanation for this little increase can be found at present, but

perhaps the flow along the side of the cylinder is dominated by spatial

curvature of the fluid flow and affected less by the time dependent term,

see 4.1, and by omitting the time dependent term the results becomes

more accurate. The drop off of the Lagrangian approach for the RMS

response is expected and can be explained by the estimate of the vor-

tex turnover time of the structures along the side of the square cylinder,

which is ∆t U/D ≈ 0.3 (see previous paragraph).

The RMS response gives an indication of the correctness of the

magnitude of the amplitude of the fluctuations. To check whether the
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Figure 7.4: RMS response to spatial and temporal influences on the

side-wall pressure signal from stereo-PIV. (a) Influence of spatial reso-

lution. (b) Influence of temporal resolution.
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on the side-wall pressure signal from stereo-PIV. (a) Influence of spatial

resolution. (b) Influence of temporal resolution.
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fluctuations occur at the same time we need to look at the correlation be-

tween the signals. Figure 7.5 shows the correlation values between the

signals from pressure-PIV and the pressure transducer. The influence of

the spatial resolution, shown in figure 7.5(a), displays the same trend as

the mean and RMS responses, decreasing in value for decreasing spa-

tial resolution (bigger WS) and small differences are found between the

Eulerian and the Lagrangian approach. The best results are found for

WS with sides of 16 or 32 pixels and an OF of 50% or 75%. The results

for an OF of 0% are lower in all cases. The difference between the 50%

and 75% OF is less obvious. For a WS side of 64 the 75% OF has a

slightly better correlation value, but for a WS with side 128 pixels the

50% OF has better correlation value than the 75% OF. The 50% OF for

this WS also has a lower RMS response, which could indicate a stronger

modulation (loss of amplitude response), but less noise (loss of corre-

lation). The influence of the temporal correlation, figure 7.5(b), shows

that the correlation for the Lagrangian approach drops off at a slightly

later stage than the drop off of the mean and RMS responses, at ∆t U/D

≈ 0.2 versus ∆t U/D ≈ 0.1 for the mean and RMS responses.

The flow along the side of the square cylinder is predominantly 2D

(see chapter 8), which can also be inferred from RMS response relative

to each other and the correlation between the pressure transducers on

either side of the measurement domain (both approximately 1). The

preceding results can therefore be taken to be representative for the per-

formance of pressure from stereo-PIV in 2D flow (planar-PIV would

give similar results, since the third component of velocity is useless

unless the out-of-plane component of the velocity gradient is also avail-

able). We now turn our attention to the performance of pressure from

stereo-PIV in 3D and we look at the responses for the pressure signals

at the base of the square cylinder.

Figure 7.6 shows the mean response for the base-wall pressure sig-

nals. Interestingly the mean response is larger than unity and is increas-

ing with increasing WS, see figure 7.6(a). This suggests that the signal

is influenced by noise (measurement noise or incorrect capturing of the

pressure gradient). Nevertheless, the mean responses for the different

OF converge to a deviation of approximately 10% from the reference

value for WS/D ≈ 0.035 (WS with sides of 16 pixels). The difference in

response between the OFs is more evident than for the side-wall mean
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Figure 7.6: Mean response to spatial and temporal influences on the

base-wall pressure signal from stereo-PIV. (a) Influence of spatial reso-

lution. (b) Influence of temporal resolution.



7.1. PRESSURE-PIV RESULTS 83

response, where there was no discernible difference (see figure 7.3(a)).

As expected 0% OF performs worse than 50% that in its turn performs

worse than 75% OF. The vortical structures in the wake near the base go

down to sizes of approximately 0.05D, which would explain the similar

responses of the different OF for WS/D < 0.05. Figure 7.6(b), shows

the influence of the temporal resolution, which is very similar to that of

the side-wall mean response (figure 7.3(b)). The Eulerian approach is

not affected by the temporal resolution, having a difference of approx-

imately 10% with the reference. The Lagrangian approach drops off at

∆tU/D ≈ 0.25, which agrees with the vortex turnover time correspond-

ing to ∆t U/D ≈ 0.6 (structures next to the base of the square cylinder

have a peak vorticity of approximately 15 U/D and again assuming a

Gaussian vortex). For better resolutions than ∆t U/D ≈ 0.25 (smaller

∆t) the Lagrangian approach also has difference of approximately 10%

with the reference.

Figure 7.7 shows the RMS response for the base-wall pressure sig-

nals. Like the mean response they show that the pressure from stereo-

PIV is over-predicts the response with respect to the reference. The

response with the spatial resolution in figure 7.7(a) shows that the re-

sults for the different OF converge to a deviation of approximately 50%

with respect to the reference for WS/D ≈ 0.035 (WS with sides of 16

pixels). From that point the deviation from the reference for 0% OF

increases with decreasing resolution (increasing WS), the deviation for

50% OF stays almost the same, only increasing for the coarser resolu-

tions (WS/D > 0.15), and the deviation for 75% OF even decreases a

bit with decreasing resolution. The influence of the temporal resolu-

tion, figure 7.7(b), shows that the deviation for the Eulerian approach

first decreases slightly and for ∆tU/D > 2 is increases significantly. The

Kármán shedding gives us two vortices per cycle (one clockwise and

one counter-clockwise) resulting in a frequency in the pressure fluctua-

tions that is twice the shedding frequency, corresponding to ∆t U/D ≈ 4.

The significant increase of the deviation in RMS response of the Eule-

rian approach is clearly linked with the Kármán shedding. The RMS

response of the Lagrangian approach shows only small changes, first

decreasing slightly and then slightly increasing, but not exceeding a de-

viation of approximately 50% for the range of measured resolutions.

This is in contrast with the mean response, figure 7.6(b), where a clear
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Figure 7.7: RMS response to spatial and temporal influences on the

base-wall pressure signal from stereo-PIV. (a) Influence of spatial reso-

lution. (b) Influence of temporal resolution.
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departure is observed for ∆t U/D > 0.2.

The correlation values of the pressure signals from pressure-PIV

and the pressure transducers are shown in figure 7.8. The correlation be-

tween the pressure transducers on either side of the measurement plane

(from the transducer setup for the tomo-PIV experiment) were found to

be approximately 0.8 and are shown in grey. This is a clear difference in

spanwise correlation with respect to the result for the side-wall pressure

signal. The correlation is still strong, but the value decreased signifi-

cantly (0.8 versus 1 for base-wall and side-wall, respectively), indicat-

ing that there is 3D flow present. Figure 7.8(a) shows that changing the

spatial resolutions has no significant effect on the correlation. The cor-

relation has a value of approximately 0.6 for all WS and OF, except for

0% OF that shows a mild decrease with increasing WS. The influence of

the temporal resolution, figure 7.8(b) for the Eulerian approach shows

that the correlation first increases slightly from approximately 0.57 at

∆t U/D ≈ 0.05 to 0.65 at ∆t U/D ≈ 1 and then decreases significantly

for ∆t U/D > 2. This matches with the trend for the RMS response with

temporal resolution, see figure 7.7(b). The Lagrangian approach shows

a similar increase, but drops off for ∆t U/D > 0.2, which agrees with

the observation for the mean response. This drop off is related to the

vortex turnover time that corresponds to ∆t U/D ≈ 0.6.

The flow in the wake of the cylinder has a significant 3D element to

it (see chapter 8) as indicated by the spanwise correlation of the base-

wall pressure transducers. The results for the base-wall pressure signals

from stereo-PIV give a good indication of what a strictly planar velocity

input can give in pressure estimates in a 3D flow. However, the results

show a few interesting trends that can only be ascribed to noise or 3D

flow if we include the third direction in the input and see what the in-

fluence of adding/removing it does to the performance of the pressure

determination. Therefore, we will now focus on the wake and assess

the results for pressure determination from tomo-PIV.

7.1.2 Tomo-PIV

The results for the base-wall pressure signal from stereo-PIV lack the

full 3D velocity information needed for correct pressure determination

in a 3D flow, even for the case where pressure is determined only in
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Figure 7.8: Correlation values for spatial and temporal influences on

the base-wall pressure signal from stereo-PIV. (a) Influence of spatial

resolution. (b) Influence of temporal resolution.
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Figure 7.9: Example of the tomo-PIV results. Isosurfaces of out-of-

plane vorticity are shown in light grey, ωz = 15 D/U . Isosurfaces of

in-plane vorticity are shown in dark grey,
√

ω2
x +ω2

y = 20 D/U .

a cross-sectional plane. To assess the effect of the omission of the 3D

terms, tomo-PIV experiments were performed. The main difference

between the Eulerian and Lagrangian approach seems be related to the

temporal resolution, therefore, we focus on a single combination of in-

terrogation volume (3D equivalent of WS) and OF (16×16×16 pixels

and 50% OF) and investigate the influence of temporal resolution.

Figure 7.9 shows an example of the results from tomo-PIV. The

isosurfaces clearly indicate the 3D nature of the flow in the wake. The

mid-plane, where data is extracted to determine the planar pressure,

is flooded with the corresponding pressure field (determined with the

Eulerian approach and the full velocity and velocity gradient fields as

input). Low pressure regions are located near the regions of high in-

plane and/or out-of-plane vorticity, showing that the pressure field is

influenced by the 3D nature of the flow. The locations of the base-wall
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Figure 7.10: Base-wall pressure signal time-series from Tomo-PIV, Eu-

lerian approach. The pressure signal from PIV is shown in red. The

pressure transducer signal is shown in black. Top: 3D input. Bottom:

2D input. Left: full time-series. Right: 0.1 s sub-set of the time-series.

pressure transducers on either side of the measurement volume are also

depicted in figure 7.9.

Figure 7.10 shows the pressure signal time-series from tomo-PIV

using the Eulerian approach compared with the signal from the pres-

sure transducer that is depicted behind the measurement volume in fig-

ure 7.9. Both results with input from the full 3D information (figure

7.10, top) and a 2D subset (figure 7.10, bottom) of the tomo-PIV data

are shown. The difference between these results indicates the influence

of adding or omitting the extra 3D information. They both seem to have

a good agreement with the pressure transducer signal, where the signal

for the 3D input seems to be in better agreement. To quantitatively as-

sess the performance of the pressure determination and to compare the

different methods (analogous to the way the stereo-PIV results were as-

sessed) the mean response, the RMS response and the cross-correlation

values are determined for different time separations, ∆t, and shown in

figure 7.11 and 7.12. Due to the limited thickness of the volume only the
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smallest time separation gave results for the 3D Lagrangian approach.

Even for this case the pressure gradient at some points could not be de-

termined, i.e. the fluid path could not be reconstructed due to too large

values of the out-of-plane velocity. In order to work with larger time

separations the volume thickness should be increased.

The mean response, RMS response and correlation values for the

base-wall pressure signals based on a 2D subset of the information from

tomo-PIV show similar trends as the results from stereo-PIV. This is

especially apparent when comparing figure 7.11(a) with 7.6(b), figure

7.11(b) with 7.7(b), and figure 7.12 with 7.8(b). This similarity in trends

indicates that the same effects are present in both the data-sets and that

the tomo-PIV data can be used to assess the influence of lack of out-of-

plane information for planar- or stereo-PIV (even though for stereo-PIV

the out-of-plane velocity is know, this is of no use since the out-of-plane

gradient of both the in-plane velocity-components is needed).

The mean response in figure 7.11(a) shows that the results for the

Eulerian approach with 2D input are constant for all temporal resolu-

tions observed and has a difference of approximately 3% with respect

to the reference signal. The Eulerian approach with 3D input shows ex-

actly the same behaviour, but has a smaller difference of approximately

1%. The Lagrangian approach with 2D input has a difference of ap-

proximately 2% before it drops off for ∆t U/D > 0.2. The Lagrangian

approach with 3D input has a difference of approximately 4%, but it

was only possible to determine the pressure gradient for one temporal

resolution. The influence of the full information in does not change the

mean response significantly (most likely due to the fact that the mean

flow is 2D, see chapter 8). The RMS response, figure 7.11(b), shows

a more distinct difference between the results for the 3D input and the

2D input. The Eulerian approach with 2D input shows a decrease from

approximately 30% deviation at ∆t U/D ≈ 0.06 to approximately 25%

deviation at ∆t U/D ≈ 0.2 and then the deviation increases significantly

with decreasing temporal resolution (increasing ∆t) for ∆t U/D > 0.5.

The deviation for Lagrangian approach with 2D input starts at the same

value, decreases slightly and then increases significantly for ∆t U/D

> 0.2. The deviation for the Eulerian approach with 3D input starts

with a deviation of just under 20% at ∆t U/D ≈ 0.06 and then increases

for decreasing temporal resolution. The result for the Lagrangian ap-
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Figure 7.11: Mean response and RMS response to temporal influences

on the base-wall pressure signal from tomo-PIV. (a) Mean response. (b)

RMS response.
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Figure 7.12: Correlation values for the temporal influences on the base-

wall pressure signal from tomo-PIV.

proach with 3D input has deviation of just over 20%.

Figure 7.12 shows the correlation values with the temporal resolu-

tion. The most obvious difference that strikes the eye is that the correla-

tion values for the 3D input at the highest temporal resolution (smallest

∆t) are significantly higher than the correlation values for the 2D input.

The correlation for the Eulerian approach with 3D input has a max-

imum correlation value of just under 0.8, which is very close to the

spanwise correlation between the pressure transducers of 0.8. Starting

at the highest temporal frequency (∆t U/D ≈ 0.06) with the correlation

of just under 0.8, there is a gradual decrease in correlation value to

approximately 0.7 at ∆t U/D ≈ 2 and then there is an abrupt drop for

∆t U/D > 2. The Eulerian approach with 2D input shows a gradual in-

crease from 0.65 at ∆t U/D ≈ 0.06 to 0.7 at ∆t U/D ≈ 2 and then drops

off for ∆t U/D > 2. It has approximately the same values as the results

for the 3D input for ∆t U/D > 0.5. The Lagrangian approach with 2D

input starts the same as the Eulerian approach, but drops off earlier for
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∆t U/D > 0.2.

7.1.3 Spectral assessment

To assess the range of frequencies that can captured with pressure deter-

mination, power spectral density of the side-wall and base-wall pressure

signals obtained from stereo-PIV and tomo-PIV, respectively, are deter-

mined. Figure 7.13(a-b)top shows the spectral density for the main

test cases (see table 6.3) alongside with the power spectral density of

the corresponding pressure transducer signal. The dynamic correla-

tion between the PIV and corresponding pressure transducer signals

are shown in figure 7.13(a-b)bottom. For the side-wall, results from

the Eulerian approach are shown. The results for the Lagrangian ap-

proach are practically the same. For the base-wall, only results from

the Eulerian approach are shown. The side-wall pressure shows a pro-

nounced peak at the shedding frequency (20 Hz), while the base pres-

sure displays a slightly less pronounced peak at double the shedding

frequency. The power spectral density for the side-wall from stereo-

PIV (7.13(a)top) shows an excellent agreement up to approximately 80

Hz where the pressure from PIV spectrum departs abruptly from that of

the pressure transducer. The dynamic correlation (7.13(a)bottom) also

shows an abrupt drop from near unity to zero in the range 50-70 Hz.

This abrupt difference in amplitude (energy) and correlation can be at-

tributed to the small 3D component in the shear-layer. De Kat et al.

(2009a) show that, even though the flow along the side of the cylin-

der is predominantly 2D, the shear-layer has significant 3D fluctuations

near the trailing edge of the model, which are caused by the shear-layer

undergoing transition. The shear-layer has a frequency in the range of

102 to 103 Hz, which coincides with the region where the two spec-

tra differ. The power spectral density for the base-wall from tomo-PIV

(7.13(b)top) shows an excellent agreement up to 200 to 300 Hz. The

dynamic correlation shows that there is good correlation between the

signals before it drops to zero around 200 Hz. The small differences in

the low frequency range can be ascribed to the limited number of cy-

cles to get a good converged spectrum at these frequencies. The power

spectral density that is obtained with 2D input is shown as well and

shows similar agreement as the result with 3D input up to 80Hz. This
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Figure 7.13: Power spectral density plots (top) and dynamic correlation

plots (bottom) for the main PIV cases (see table 6.3). The spectrum

for pressure from PIV is shown in red. The spectrum for the pressure

transducer is shown in black. (a) Side wall, Stereo-PIV, Eulerian. (b)

Base-wall, Tomo-PIV, Eulerian. Results for 2D input are shown in grey.
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indicates that the pressure influence of the big 2D vortices are still cap-

tured correctly. Between circa 100 and 800 Hz, the results with 2D and

3D inputs display a difference, which is related to the 3D flow intro-

duced by shear-layer transition. This range matches the range where

the results from stereo-PIV perform worse for the side-wall pressure.

The dynamic correlation (7.13(b)bottom) shows that the result with 2D

input has a lower correlation for almost the complete frequency range

than the result with 3D input.

In figure 7.14, results are shown for a larger time step (∆t = 8∆tmin,

where ∆tmin is the smallest available velocity field time separation).

These results give insight into the different techniques respond to a

coarser time-resolution. For comparison the results for ∆t = ∆tmin are

shown in grey. Figure 7.14(a) shows the side-wall pressure results from

stereo-PIV with the Lagrangian approach. The power spectral density

has changed considerably. However, the main peak is still captured

correctly. The dynamic correlation shows that except for the main fre-

quency the correlation goes down. Correlation deteriorates for lower

frequencies than the dominant one (lower than 20 Hz) and the drop in

correlation has moved to a lower frequency, from 50-70 Hz to 30-40

Hz. Where before this drop was associated with the 3D nature of the

shear-layer transition, now, is likely to be related to the temporal reso-

lution limitations of the technique. The value of the expected limit for

this (reduced) acquisition frequency ( facq/10 ≈ 33 Hz) coincides with

the location where the drop is observed. In contrast to this, the results

for the Eulerian approach (not shown) are the same as the results for

∆tmin, showing only very small changes, indicating that for the side-

wall pressure the advective part is dominant and the local acceleration

only plays a minor role in the flow currently investigated.

Figure 7.14(b) shows the base-wall pressure results from tomo-PIV.

For the 3D input base-wall case, the effect of ∆t is similar to the effect

on the Eulerian approach for the side-wall pressure. The main differ-

ences are that the power spectral density for frequencies higher than

80 Hz are higher and thus further away from the reference. However,

the dynamic correlation shows almost no change. This strengthens the

indication that the local acceleration only plays a limited role in the

pressure determination in the flow currently investigated.
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Figure 7.14: Power spectral density plots (top) and dynamic correlation

plots (bottom) for ∆t = 8∆tmin. The spectrum for pressure from PIV

is shown in red. The spectrum for the pressure transducer is shown in

black. For comparison results for ∆t = ∆tmin are shown in grey. (a) Side

wall, Stereo-PIV, Lagrangian. (b) Base-wall, Tomo-PIV, Eulerian.
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7.2 Discussion

Although the experiments are not resolving all the structures in the flow

(due to the limitation in spatial and temporal resolution), the results

are sufficient to make statements regarding the performance of pressure

determination from PIV.

The spatial resolution needed to successfully perform pressure-PIV

can be inferred from the results for the predominantly 2D flow along-

side of the square cylinder. For both the Eulerian and the Lagrangian

approaches the restriction with respect to the spatial resolution were

found to be the same. Figure 7.4(a) and 7.5(a) show that for a 50%

OF and WS/D < 0.1 the RMS response is approximately 0.9 and the

correlation value is approximately 0.98. For WS/D < 0.2 the RMS re-

sponse is approximately 0.8 and the correlation value is approximately

0.95. Assuming D ≈ λx (see figure 7.1(a) where the large structure in

the flow has a radius of approximately D/2) we get estimates of the spa-

tial resolution of WS/λx < 0.1 and WS/λx < 0.2. In chapter 5 we found

that for WS/λx < 0.1 the peak response was 0.95 and for WS/λx < 0.2
the peak response was 0.90. These values are very close, only differ-

ing 5%, and their differences are most likely caused by the presence of

some 3D flow and the application of the boundary condition (equation

4.13). Therefore, It can be stated that to perform successful pressure-

PIV a spatial resolution is needed that has at least more than five WS

covering the structure under consideration. To improve the results and

to obtain results accurate within 10% the spatial resolution has to be at

least ten WS per flow structure.

The temporal resolution needed to successfully perform pressure-

PIV is related to the approach used. When using the Lagrangian ap-

proach, the necessary temporal resolution is facq > 10× fturnover , where

fturnover is frequency related to the vortex turnover time, which is related

to the Lagrangian time scales. This was shown in chapter 5, see figure

5.7(a), and is apparent from all the experimental results where the La-

grangian approach consistently drops off, when the temporal resolution

comes closer to the resolutions corresponding to the (estimated) vor-

tex turnover time. The Eulerian approach has a similar limitation, but

now the limitation is related to the Eulerian time scale. For the Eulerian

approach the results drop off when the temporal resolution approaches
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the resolution corresponding to the advective frequency. This is shown

for the large scale Kármán shedding, especially apparent in the correla-

tion values for the base-wall pressure signal in figures 7.8(b) and 7.12.

Furthermore, the spectral results for the base-wall pressure signal from

tomo-PIV show a loss of coherence and a change of spectral power for

f f low > 200−300 Hz. This corresponds to facq/ f f low > 13.5−9, which

is in good agreement with the requirement on the temporal resolution,

facq/ f f low > 10. Spectral results for a reduced acquisition frequency

show that the influence of the temporal resolution on the accuracy of

the Eulerian approach is limited. Since the temporal resolution only af-

fects the local acceleration term, this might indicate that (in the current

flow problem considered) the advective term is dominant and that the

local acceleration only plays a minor role.

The addition of the third component is necessary in order to suc-

cessfully obtain the pressure from the velocity field in 3D flow. This

is clearly shown by the correlation between the pressure-PIV results

and the pressure transducer signal as well as the findings in chapter 5,

where a peak response with a cos(α ) behaviour with the angle of the

vortex axis with the measurement plane normal was found. However,

the large scale structures in the wake, i.e. the Kármán vortices, are pre-

dominantly 2D (with the axis normal to the current measurement plane)

and their influence is therefore already captured correctly by the planar

description, as evidenced by the strong correlation (0.65) between the

pressure signal from stereo-PIV and pressure transducer signal at the

base-wall.

For the current flow problem, where the advective influences are

small compared to the strength of the vortices, the restrictions on the

Lagrangian approach (reconstruction of the fluid path) were found to be

more limiting than the restrictions on the Eulerian approach (accurate

estimation of the acceleration, especially near the domain edges).

The differences observed between the Eulerian approach, Lagrangian

approach and the reference pressure are due to influences of 3D flow

(for planar measurements) and spatial and temporal resolution, not due

to measurement noise. Estimating Ua and Vp to be in the order of the

freestream velocity, U (≈ 2W S/∆t), then, based on the analysis in §5

and σu/U ≈ 1.5%, the effect of noise is expected to be lower than 2%,

which is well below the differences found due to the spatial and tempo-
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ral resolution (and 3D flow).



Chapter 8

Square cylinder pressure

Now that the foundation for instantaneous planar pressure determina-

tion has been laid out, we turn our attention to the pressure around and

loading on a square cylinder. For three different Reynolds numbers,

time-averages, phase-averages and instantaneous pressure fields will be

presented. For the phase-averaged results, side- and base-wall pres-

sure evolution with phase will be shown. From the side- and base-wall

pressure, periodic loading will be derived. Finally, instantaneous reali-

sations are shown to see what structures contribute to the wall pressure,

how they change with Reynolds number and where they originate.

8.1 Time-averaged pressure (mean loading)

Figure 8.1 shows time-averaged velocity magnitude and time-averaged

pressure for ReD = 6,000, 9,500, and 19,000. The velocity magni-

tude and pressure fields show good agreement for all Reynolds num-

bers and have only subtle changes with respect to one another. The

saddle point in the wake was found to be located at x/D = 1.26, 1.09,

and 1.19 for ReD = 6,000, 9,500, and 19,000, respectively. This com-

pares favourably with the results of van Oudheusden et al. (2005), who

found a value of x/D = 1.1 at ReD = 10,000. The pressure minimum

in the wake was found to be Cp = -1.85, -1.84, and -1.81, for ReD =
6,000, 9,500, and 19,000, respectively. They were located at x/D =
1.06, 0.95, and 1.03. The shape of the pressure and velocity results are

99
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(a) (b)

(c) (d)

(e) (f)

Figure 8.1: Time-averaged velocity magnitude and pressure. From top

to bottom: ReD = 6,000, 9,500, and 19,000. Left Velocity magnitude.

Right Pressure. Each sixth vector in x-direction is shown.
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Table 8.1: Side- and base-wall statistics for transducer and PIV

Cp Cp C′
pC′

p C′
pC

′
p

ReD trans. PIV trans. PIV

Side-wall

6,000 -1.39 -1.47 0.38 0.27

9,500 -1.51 -1.55 0.49 0.36

19,000 -1.48 -1.47 0.38 0.28

Base-wall

6,000 -1.40 -1.43 0.11 0.29

9,500 -1.46 -1.49 0.09 0.25

19,000 -1.40 -1.44 0.09 0.19

in good agreement with van Oudheusden et al. (2007), see figure 1.7.

The biggest changes occur in the shear-layer region. The velocity

shows an increasing activity in along the side of the cylinder with in-

creasing Reynolds number, with the reversed flow near the cylinder side

increasing and moving forward. Starting from u/U = -0.10 at x/D =
0.31, -0.18 at x/D = 0.24, to -0.24 at x/D = 0.17, for ReD = 6,000,

9,500, and 19,000, respectively. The pressure field shows the pressure

minimum along the side of the cylinder moving forward with Reynolds

number, from x/D = 0.34, 0.24, to 0.19. The corresponding values for

the pressure are Cp = -1.58, -1.65, and -1.55 for ReD = 6,000, 9,500,

and 19,000, respectively.

To verify the validity of the results, the values for mean and fluctu-

ations of the side- and base-wall pressure obtained from PIV are com-

pared with the values from the pressure transducers. The results are

shown in table 8.1. The values for the mean pressure are in good agree-

ment. Except for the side-wall pressure at ReD = 6,000 (having a dif-

ference of just under 6%), differences between PIV and transducers are

smaller than 3%. The pressure fluctuations for the side-wall are within

30% of each other. The pressure fluctuations for the wake differ by

more than 100%. This large difference is due to the 2D method in a 3D
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(a) (b)

(c) (d)

(e) (f)

Figure 8.2: Time-averaged velocity and pressure fluctuations. From top

to bottom: ReD = 6,000, 9,500, and 19,000. Left Velocity fluctuations.

Right Pressure fluctuations. Each sixth vector in x-direction is shown.
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flow and due to edge-effects (see chapter 5).

The mean pressure can be used to estimate mean loading. Due to

symmetry the mean lift should be zero. The current experiment doesn’t

allow to check this. However, the symmetry in the wake suggests that

the lift is approximately zero for all Reynolds numbers. The mean drag

was found to be Cd = 2.14, 2.15, and 2.13, for ReD = 6,000, 9,500, and

19,000, respectively. The contribution of the front face was estimated

based on results from experiments on a similar setup (see Turella 2008,

for details on the experiment) at ReD ≈ 9,500, Cd

∣∣
f ront

= 0.74 (with an

RMS of 2.5%), and assuming it Reynolds number independent.

Figure 8.2 show the variance of the velocity and pressure fluctua-

tions. The velocity fluctuations along the side of the cylinder show a

decrease with Reynolds number, from u′u′ = 0.75, 0.68, to 0.58, for

ReD = 6,000, 9,500, and 19,000, respectively. The location, however,

does not change significantly (x/D ≈ 0.4). The velocity fluctuations

show that the wake is symmetric around the wake centreline and that,

for the region observed, the peak fluctuations decrease with increasing

Reynolds number. The maxima in fluctuations within the current field-

of-view are u′u′ = 0.96, 0.90, and 0.89, for ReD = 6,000, 9,500, and

19,000, respectively.

The peak of the fluctuations along the side of the cylinder also

moves forward with Reynolds number, from x/D = 0.32, to x/D = 0.12

to 0.19, and x/D = 0.10 to 0.15. The respective values of fluctuation

are C′
pC

′
p = 0.43, 0.53, and =0.37, for ReD = 6,000, 9,500, and 19,000,

respectively. It is following a similar trend as the mean side-wall region

pressure minima, having a peak at ReD = 9,500. In the wake the pres-

sure fluctuations are influenced by the lack of full 3D information to de-

termine the instantaneous pressure fields. This shows its footprint in the

large asymmetry in the pressure fluctuations in this region. However,

the fluctuations seem to follow the same trend with Reynolds number as

the velocity fluctuations, decreasing with increasing Reynolds number.

8.2 Phase-averaged description

The extrema in the time-averaged side-lobe pressure and pressure fluc-

tuations cannot be explained purely from the time-averaged velocity
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field and its statistics. The flow around bluff-bodies is know to be peri-

odic. To determine periodic loading and to see whether the extrema in

the pressure originate from periodic phenomena and to determine peri-

odic loading, phase-averages were taken. The phase-averages are deter-

mined using the side-wall pressure transducer signal (see figure 6.4) as

a reference. See §2.2.3 and §6.4 for details on the phase determination.

8.2.1 Phase-averaged flow structure

Figure 8.3 shows sequences of phase-averaged vorticity, velocity fluc-

tuations, pressure, and pressure fluctuations for ReD = 9,500.

Beginning at φ= 0, the pressure on the side-wall centre of the cylin-

der is at its global minimum, as inferred from the side-wall pressure sig-

nal. The shear-layer appears relatively close to the cylinder, and the size

of the recirculation region is at its global minimum. The side-wall sepa-

ration region may therefore be loosely characterised as being relatively

thin and intense compared to what will be shown at other phases. In ad-

dition, the shear-layer begins to grow significantly from about half-way

along the cylinder. Lyn & Rodi (1994) found that shear-layer growth

for the square cylinder departs markedly from the linear growth of un-

forced mixing layers. As a result, the shear-layer has a brief interaction

with the trailing edge. Passing the trailing edge in streamwise direction,

the vorticity level can be seen to decrease by well over 50%, whereas

the crossflow turbulence intensity increases dramatically. At the trailing

edge, the roll-up of the shear-layer into the main Kármán vortex can be

observed, evident in all the phase-averaged quantities in figure 8.3.

By φ = π/2, the pressure at the side-wall is in the middle of its

global increase. The shear-layer has moved appreciably away from the

cylinder, although the vorticity levels have not changed significantly

from φ = 0. The side-wall separation region breaks open, and an addi-

tional influx of fluid near the trailing edge increases the reversed-flow

up to 0.5 U . The Kármán vortex appears much farther downstream in

the near-wake region, but is still clearly connected to the shear-layer. It

can be seen that the velocity fluctuations and pressure fluctuations are

moving downstream with increasing phase.

At φ = π, the pressure at the side-wall is at its maximum. The

shear-layer is now at its farthest distance from the cylinder in the global
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Figure 8.3: Phase-averaged vorticity, velocity fluctuations, pressure,

and pressure fluctuations for ReD = 9,500 at four different phases. From

top to bottom: Vorticity, velocity fluctuations, pressure, and pressure

fluctuations. From left to right: φ= 0, φ = π/2, φ = π, and φ = 3π/2.

Each tenth vector is shown in x-direction and each second vector in

y-direction.
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sense, and the phase-averaged results have changed dramatically. The

vorticity level, as well as the velocity and pressure fluctuations, have

all decreased significantly along the shear-layer, compared to their val-

ues at the previous two phases. The Kármán vortex has now been shed

and convected downstream. Closer inspection reveals that the oppo-

site shear-layer Kármán vortex shedding process is now taking place.

As a matter of fact, a cursory comparison between phases φ = 0 and

φ = π shows that, in the near-wake, they are almost mirror images of

each other. The side-wall separation region may now be loosely char-

acterised as relatively large and rather weak, with reversed-flow being

much smaller than at φ = 0 and φ = π/2, being only 0.05 U .

Finally, by φ = 3π/2, the pressure at the side-wall is in the middle

of its global decrease. The shear-layer has moved towards the cylin-

der and is about to form the Kármán vortex of the next shedding cycle.

The opposite shear-layer has shed its Kármán vortex, as evidenced by

the large negative vorticity region in the near-wake moving out of view.

As the shear-layer moves back towards the cylinder, the side-wall sep-

aration region begins to close. The reversed-flow magnitude begins to

increase again, and the entire process described above is about to repeat

itself.

8.2.2 Phase-averaged pressure (periodic loading)

Figure 8.4 shows a 3D visualisation of phase-averaged pressure with

streamwise direction, x, crossflow direction, y, and phase φ for ReD =
9,500. The location of the square cylinder is indicated with a square (at

φ = 0). It visualises the process described before. Starting from φ = 0,

the pressure along the side wall increases reaching a maximum at φ=π
and then decreases again to a minimum around φ = 2π (= 0). The low

pressure region in the wake of the cylinder at φ = 0 indicates that a

Kármán vortex is present, which is subsequently shed (from the bottom

side) and moving away and into the wake. At φ ≈ π/2 a low pressure

region is starting to form near the top trailing edge of the cylinder. This

is a Kármán vortex starting to form from the top side and by φ≈π it has

formed and subsequently moves away and into the wake. At φ ≈ 3π/2

a low pressure region start to form at the bottom trailing edge, which is

the start of the Kármán vortex present at φ = 0 (= 2π).
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Figure 8.4: Volume visualisation of phase-averaged pressure with x, y,

and phase. ReD = 9,500.

To show what the cylinder experiences, phase-averaged pressure

in the planes closest to the cylinder (x-φ and y-φ planes) were taken to

represent the phase-averaged side- and base-wall pressure distributions.

The evolution of phase-averaged pressure and the evolution of the

pressure fluctuations around the phase averages for the side-wall are

shown in figure 8.5 for each Reynolds number. For clarity one and a

half cycle is shown. For all Reynolds numbers, the oscillating nature

of the side-wall pressure is visible and is present along the whole side.

However, the values attained differ significantly. The side-wall pressure

shows that the maxima attained are similar for all Reynolds number, but

the minima are different. The side-wall pressure minima were found for

φ ≈ 0, 〈Cp〉 = -2.39 at x/D = 0.27, -2.60 at x/D = 0.17, and -2.39 at

x/D = 0.15. This shows a similar trend with Reynolds number as the

changes in the side-lobe pressure minimum and pressure fluctuations

in the time-averaged description. The minima move forward with in-

creasing Reynolds number and have a peak value for ReD = 9,500. The
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minima in phase-averaged pressure coincide with the (local) maxima

in pressure fluctuations around the phase-average, which were found

to be 〈ĈpĈp〉 = 0.40 at x/D = 0.27, 0.22 at x/D = 0.15, and 0.23 at

x/D = 0.14.

The evolution with phase of phase-averaged pressure and evolution

of pressure fluctuations around the phase-averages for the base-wall are

shown in figure 8.5. Little change with Reynolds number can be ob-

served for the phase-averaged pressure, 〈Cp〉. For all Reynolds num-

bers, it shows alternating high and low pressure regions near the bot-

tom and top side of the cylinder. These alternating regions occur in

anti-phase for the top and bottom edge, respectively, i.e. when there

is high pressure at the top trailing edge the bottom trailing edge has

low pressure. The low pressure regions start near the edges and move

towards the centre of the base with phase before disappearing. They

are related with the formation and convection of Kármán vortices. In

between these low pressure regions there are regions of relatively high

pressure. The pressure fluctuations around the phase-average show sim-

ilar evolution with phase for all Reynolds number. The major differ-

ence between the Reynolds numbers is the intensity of the fluctuations,

which decreases with increasing Reynolds number. Even though the

determination of pressure from stereo-PIV in the wake is hampered by

the lack of 3D information the fluctuations show reasonable symmetry

behaviour with phase, both in mean and fluctuations.

To assure the pressure trends (in phase and with Re) at the side is

correctly captured, phase-averaged pressure and pressure fluctuations

from transducer and from PIV are compared with one another in figures

8.6(a-d) and 8.7(a-d)

The phase-averaged pressure for the side-wall shows for both trans-

ducer and PIV the same behaviour, figure 8.6(a, b). The maximum

pressure is the lowest for ReD = 19,000 and the minimum is the lowest

for ReD = 9,500. However, the absolute value differ. The minima were

found to be within 7% (with respect to their respective value) comparing

transducer with PIV, whereas the maxima are within 33% (with respect

to their respective value). The fluctuations around the phase-average

are in good agreement between the transducer and PIV, see figure 8.6(c,

d). Despite these differences, the influence of the Reynolds number and

the evolution in phase are correctly captured.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.5: Phase-averaged pressure and pressure fluctuations with

phase. Left: side-wall. Right: base-wall. (a-b) ReD = 6,000, (c-d)

ReD = 9,500, (e-f ) ReD = 19,000. Top: phase-averaged pressure. Bot-

tom: pressure fluctuations.
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Figure 8.6: Phase-averaged side pressure and pressure fluctuations. (a-

d) Phase-averaged pressure and pressure fluctuations for the side-wall

sensor location (a) Pressure from transducer, (b) Pressure from PIV, (c)

Pressure fluctuations from transducer, (d) Pressure fluctuations from

PIV. (e) Estimated lift.
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The phase-averaged pressure for the base-wall shows for both trans-

ducer and PIV similar behaviour, figure 8.7(a, b). Differences are larger

than for the side-wall. This is expected, since the wake is 3D and stereo

does not capture all necessary information to determine the pressure.

However, the phase-averaged pressure signal is in good agreement. The

fluctuations around the phase-average are in fair agreement between the

transducer and PIV, see figure 8.7(c, d). Despite these differences, the

influence of the Reynolds number and the evolution in phase for the

phase-averaged pressure are correctly captured.

Periodic loading

After determining the side- and base-wall pressure distributions (and

verifying their validity), they can be used to estimate the phase-averaged

loading. Integrating the pressure along x or y for each phase, the contri-

bution of the side- or base-wall to the force acting on the cylinder can

be determined, see figure 8.6(e) and 8.7(e).

To estimate the total periodic lift, the contribution of the top side

is estimated by shifting the bottom side contribution by half a cycle

in phase. Figure 8.6(e) shows the contributions of the bottom and top

side to the periodic lift force, together with the estimation for the total

lift force. The lift has an amplitude value of 〈Cl〉max = 1.32, 1.49, and

1.19, for ReD = 6,000, 9,500, and 19,000, respectively. The amplitude

for ReD = 9,500 is 13% larger than the amplitude for ReD = 6,000 and

25% larger than ReD = 19,000.

To estimate the total periodic drag, the contribution of the front was

based on results from experiments on a similar setup (see Turella 2008,

for details on the experiment) at ReD ≈ 9,500, 〈Cd〉| f ront = 0.74 (with

an RMS of 2.5%), and assuming it to be constant and Reynolds number

independent. Figure 8.7(e) shows the contributions of the front and

base to the periodic drag force, together with the drag force. The drag

fluctuations are 〈Cd〉RMS = 0.14, 0.13, and 0.10, for ReD = 6,000, 9,500,

and 19,000, respectively. It should be noted, however, that the pressure

determination in the wake is limited by both 3D aspects of the flow and

edge effects near the top of the domain.
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Figure 8.7: Phase-averaged base pressure and pressure fluctuations. (a-

d) Phase-averaged pressure and pressure fluctuations for the base-wall

sensor location. (a) Pressure from transducer, (b) Pressure from PIV,

(c) Pressure fluctuations from transducer, (d) Pressure fluctuations from

PIV. (e) Estimated drag.
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8.3 Instantaneous pressure

To get insight into what flow structures cause the surface pressure fluc-

tuations and periodic loading to change with Reynolds number, figure

8.8 shows instantaneous fields of vorticity, ωz, and corresponding pres-

sure for the three different Reynolds numbers. The instantaneous snap-

shots were chosen to be representative of the moment in phase, where

the Reynolds number influence is the largest (φ ≈ 0).

The vorticity fields, figure 8.8(a, c, and e), reveal the shear-layer in-

stability starting more upstream with increasing Reynolds number. At

ReD = 6,000, the shear-layer starts shedding distinct separate vortices

roughly at the trailing edge. For ReD = 9,500, the shear-layer starts

shedding distinct separate vortices roughly halfway along the cylinder.

Finally, at ReD = 19,000, the shear-layer starts shedding distinct sep-

arate vortices at roughly one quarter downstream of the leading edge.

Subsequently, these shed vortices interact and form a Kármán-like vor-

tex in the wake. The vortices that comprise this Kármán-like vortex

seem to get smaller and less intense with increasing Reynolds number.

However, the intensity might be attenuated by the limited resolution of

the experiment.

The pressure fields, figure 8.8(b, d, and f ), show two low pressure

regions. One along the side of the cylinder coinciding with the side-wall

separation region and one in the wake coinciding with the Kármán-like

vortex. The location of the Kármán-like vortex seems to change slightly

with Reynolds number, having roughly the same location for ReD =
6,000 and 19,000, whereas at ReD = 9,500 it is located more inwards

toward the centreline of the wake. Local regions of low pressure co-

incide with vortices, most noticeable along the side of the cylinder for

ReD = 9,500.

Combined with the time- and phase-averaged results, these results

suggest that the vortices formed by the shear-layer instability signifi-

cantly influence the side-wall pressure and the periodic loading on a

square cylinder.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.8: Instantaneous vorticity and pressure fields. Each snapshot

is representative for φ = 0. (a, c, and e) Instantaneous vorticity. (b, d,

and f ) Instantaneous pressure. (a-b) ReD = 6,000. (c-d) ReD = 9,500.

(e-f ) ReD = 19,000. Each sixth vector in x-direction is shown.



Chapter 9

Conclusions

The operating principle of obtaining pressure from PIV-data was de-

scribed using either a Eulerian or a Lagrangian approach. Based on the

current implementation, theoretical considerations led to estimates of

the limitations of the method. These estimates were checked using a

performance analysis on a synthetic flow field, comprised of a advect-

ing Gaussian vortex, as well as on an experimental test-case, the flow

around a square cylinder. All results indicate that in order to perform

successful pressure-PIV the following criteria should be met.

The spatial resolution needed to successfully perform pressure-PIV

were found to be the same for both the Eulerian and the Lagrangian

approaches. Ideally (defined as peak modulation smaller than 5%) the

spatial resolution needs to be ten times than that corresponding to the

flow structures, i.e. WS/λx < 0.1. Good results (based on peak mod-

ulation smaller than 10%) have been found for spatial resolutions five

times higher than the resolution corresponding to the flow structures,

i.e. WS/λx < 0.2.

The temporal resolution needed to successfully perform pressure-

PIV is related to the approach used. However, both approaches have

a similar limitation. The temporal resolution (acquisition frequency)

needs to be ten times that of the corresponding flow frequency, facq >
10× f f low. For the Eulerian approach f f low is related to the Eulerian

time scales. For the Lagrangian approach f f low is related to the La-

grangian time scales. Depending on the problem at hand one method
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might be more suitable than the other. For the current flow problem,

where the advective influences are small compared to the strength of

the vortices, the restrictions on the Lagrangian approach were found to

be more limiting than the restrictions on the Eulerian approach.

Addition of the third component is necessary in order to success-

fully obtain the pressure from the velocity field in 3D flow. This is

clearly shown by the correlation between the pressure-PIV results and

the pressure transducer signal as well as the findings in chapter 5, where

a peak response with a cos(α ) behaviour with the angle of the vortex

axis with the measurement plane normal was found. However, the large

scale structures in the wake, i.e. the Kármán vortices, are predominantly

2D (with the axis normal to the current measurement plane) and their

influence is therefore already captured correctly by the planar descrip-

tion, as evidenced by the strong correlation (0.65) between the pressure

signal from stereo-PIV and pressure transducer signal at the base-wall.

The influence of measurement noise could not be observed in the

current analysis of the experimental results. However, estimating Ua

and Vp to be in the order of the freestream velocity, U (≈ 2 WS/∆t), then,

based on the analysis in chapter 5 and εu/U = 1.5%, the effect of noise

is expected to be lower than 2%, which is well below the differences

found due to the spatial and temporal resolution.

The description of the pressure field around and loading on a square

cylinder showed that the vortices, emanating from the shear-layer insta-

bility change the flow around the cylinder significantly. Pressure load-

ing and pressure fluctuations along the side of the cylinder can increase

depending on Reynolds number. An increase in amplitude of estimated

periodic lift for ReD = 9,500 compared with ReD = 6,000 and 19,000

of > 10% was found. Together with the slight change in location of the

Kármán-like vortex in the wake this suggest an intimate (and complex)

relationship exists between the side-wall pressure, shear-layer, separa-

tion region, and near-wake, which changes significantly with Reynolds

number.
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