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Abstract. We illustrate in a simple setting the instantaneous shock tracking approach

to stability of viscous conservation laws introduced by Howard, Mascia, and Zumbrun.

This involves a choice of the definition of instantaneous location of a viscous shock. We

show that this choice is time-asymptotically equivalent both to the natural choice of

least-squares fit pointed out by Goodman and to a simple phase condition used by Guès,

Métivier, Williams, and Zumbrun in other contexts. More generally, we show that it is

asymptotically equivalent to any location defined by a localized projection.

1. Introduction. In this paper, we illustrate in the simple and concrete setting of

Burgers equation the argument for nonlinear stability of viscous shock waves developed

for general systems of conservation laws in [Z1, MaZ2, MaZ3, MaZ4], based on instan-

taneous tracking of the location of the perturbed viscous shock wave. The advantage of

Burgers equation is that the linearized equations may be solved explicitly by a linearized

Hopf–Cole transformation, thus isolating the nonlinear issues we wish to discuss. This

same example was given in [Z1]; here we expand a bit the surrounding discussion, reex-

amining the question of what is a reasonable or natural definition of the instantaneous

location of a perturbed viscous shock wave and adding a discussion of the small-amplitude

limit.

Using the purely operational but analytically tractable definition of [Z1, MaZ2, MaZ4]

as a tool for comparison, we show that any definition based on localized projection is

time-asymptotically equivalent to any other and to the definition of [Z1, MaZ2, MaZ4];

see Appendix C, and especially Remarks C.3–C.4. Moreover, any of these may be used

as the basis of a nonlinear stability argument. This includes in particular both the

natural definition by least squares fit pointed out early on by Goodman [G] and, in the
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178 KEVIN ZUMBRUN

limit of infinite localization (to a single point), a very simple definition based on a phase

condition, introduced by Guès, Métivier, Williams, and Zumbrun [GMWZ].

Our analysis is intended for the nonspecialist. It is brief and self-contained except for

standard linear and short-time parabolic existence theory. Though we restrict here for

simplicity to the scalar Burgers case, our arguments and conclusions extend in straight-

forward fashion to the general system case [Z1, MaZ2, MaZ4], once there are established

the requisite bounds on the linearized solution operator. This separate, and in general

difficult, problem has been treated in [ZH, MaZ3, Z2]; see Remark 3.4 and the discussion

of Section 4. Our purpose here is, rather, to isolate the issues connected with viscous

shock-tracking and the nonlinear iteration argument by restricting to a case where the

linearized bounds are available by an exact solution formula.

1.1. Problem and equations. Consider the scalar viscous conservation law

ut + f(u)x = uxx, (1.1)

u = u(x, t) ∈ R, x ∈ R, t ∈ R
+, with

f(u) = u2/2. (1.2)

Equation (1.1) serves as a simple model for gas dynamics, traffic flow, or shallow-water

waves, where u represents the density of some conserved quantity and f its flux through

a fixed point x. With the choice of flux (1.2), (1.1) becomes Burgers equation, the pro-

totypical example of a scalar viscous conservation law. The behavior for other (convex)

fluxes is qualitatively similar.

We investigate the question of nonlinear stability of solutions u = ū, that is, whether a

perturbation ũ = ū+u remains close to ū in some norm for initial perturbations u|t=0 =

(ũ−ū)|t=0 sufficiently small in some (possibly different) norm: more specifically, nonlinear

asymptotic stability, that is, whether ũ both remains near and converges to ū as t →
+∞ for initial perturbations sufficiently small. Since the equation (1.1) is translation-

invariant, we must when relevant (specifically, when translates of ū are not equal to

ū) adjust the second notion to that of nonlinear asymptotic orbital stability, defined as

nonlinear stability together with convergence as t → +∞ to the set of translates of ū, as

discussed further below.

1.2. Constant and traveling-wave solutions. An obvious class of solutions of (1.1) is

the set of constant solutions ū ≡ a, a ∈ R. A second class of solutions is the viscous

shock waves, or smooth traveling-wave solutions

u(x, t) = ū(x− st), lim
x→±∞

ū(x) = u±, (1.3)

s constant, connecting constant endstates u±. If s = 0, they are equilibria, or stationary

waves of the associated evolution equation (1.1). A traveling wave may always be con-

verted to a standing wave by the change of coordinates x → x − st to a frame moving

with the same speed s.

Observing that ∂tū(x− st) = −sū′, ∂xū(x− st) = ū′, and ∂2
xū(x− st) = ū′′, we obtain

for a solution (1.3) the profile equation −sū′ + f(ū)′ = ū′′. Integrating from −∞ to x

reduces this to a first-order equation

ū′ = (f(ū)− sū)− (f(u−)− su−). (1.4)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



INSTANTANEOUS SHOCK LOCATION 179

Taking, for definiteness, s = 0 and u− = 1, we obtain ū′ = (1/2)(ū2 − 1), which has

the explicit solution

ū(x) = − tanh(x/2) (1.5)

connecting endstates u± = ∓1. This is the unique solution up to translation in x con-

necting that particular pair of endstates. Other endstates and speeds also lead to tanh

profiles, as may be seen by invariances of Burgers equation; thus, we may without loss

of generality restrict to this specific case.

2. Stability of constant solutions. To indicate the basic approach, let us first

consider the stability of a constant solution

ū ≡ a, a ∈ R (2.1)

of (1.1). Letting ũ be a second solution of (1.1), and defining the perturbation u := ũ−ū,

we obtain after a brief computation the perturbation equation

ut − Lu = N(u)x, (2.2)

where Lu := uxx − aux is the linearization of uxx − f(u)x about the solution ū ≡ a, and

N(u) := −u2/2 is a remainder of quadratic order.

2.1. Linear solution operator. The homogeneous linearized equations vt−Lv = 0 may

be recognized as a convected heat equation

vt + avx = vxx, v|t=0 = f. (2.3)

This admits an exact solution

eLtf =

∫ +∞

−∞
G0(x, t; y)f(y)dy, (2.4)

where

G0(x, t; y) := eLtδy(x) =
e−

|x−y−at|2
4t

√
4πt

(2.5)

is the Green function for (2.3), a convected heat kernel. This yields in particular a unique

classical solution v ∈ C0(t ≥ 0;Lp(x)) ∩ C2(t > 0, x) for each f ∈ Lp.

Easy scaling arguments yield, for 1 ≤ p ≤ ∞,

|G0(·, t; y)|Lp(x) = |G0(x, t; ·)|Lp(y) = Cpt
− 1

2 (1−1/p),

|G0,y(·, t; y)|Lp(x) = |G0,y(x, t; ·)|Lp(y) = C ′
pt

− 1
2 (1−1/p)− 1

2 ,
(2.6)

for some constants Cp, C
′
p > 0. From (2.6), we readily obtain the following linearized

estimates (standard heat kernel bounds).

Lemma 2.1. For some C > 0, all t > 0,

∣∣∣
∫ +∞

−∞
G0(x, t; y)f(y)dy

∣∣∣
Lp

≤ Ct−
1
2 (1−1/p)|f |L1(x),

∣∣∣
∫ +∞

−∞
G0,y(x, t; y)f(y)dy

∣∣∣
Lp

≤ Ct−
1
2 (1−1/p)− 1

2 |f |L1(x).

(2.7)
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180 KEVIN ZUMBRUN

Proof. Applying the triangle inequality together with (2.6), we obtain

∣∣∣
∫ +∞

−∞
G0(x, t; y)f(y)dy

∣∣∣
Lp(x)

≤
∫ +∞

−∞
|G0(·, t; y)|Lp(x)|f(y)|dy = Cpt

− 1
2 (1−1/p)|f |L1 .

The proof of the second inequality is similar. �

Lemma 2.2. For some C > 0, all t > 0,
∣∣∣
∫ +∞

−∞
G0(x, t; y)f(y)dy

∣∣∣
Lp(x)

≤ C|f |Lp ,
∣∣∣
∫ +∞

−∞
G0,y(x, t; y)f(y)dy

∣∣∣
Lp(x)

≤ Ct−
1
2 |f |Lp .

(2.8)

Proof. Noting that G0(x, t; y) = G0(x− y, t; 0), so that (2.4) is a convolution, we may

rewrite
∫ +∞
−∞ G0(x, t; y)f(y)dy as

∫ +∞
−∞ G0(z, t; 0)f(x − z)dz with z := x − y. Applying

the triangle inequality and (2.6), we obtain

∣∣∣
∫ +∞

−∞
G0(x, t; y)f(y)dy

∣∣∣
Lp(x)

≤
∫ +∞

−∞
|G0(z, t; 0)||f |Lpdz = C1|f |Lp .

The proof of the second inequality is similar. �
2.2. Integral representation. From the homogeneous linearized solution formula (2.4),

we obtain by variation of constants/Duhamel’s formula a solution for the inhomogeneous

linearized equations

vt − Lv = g, v|t=0 = f (2.9)

of v = eLtf +
∫ t

0
eL(t−s)g(s)ds, or

v(x, t) =

∫ +∞

−∞
G0(x, t; y)f(y)dy +

∫ t

0

∫ +∞

−∞
G0(x, t− s; y)g(y, s)dy ds, (2.10)

yielding a unique C0(t ≥ 0;Lp(x)) ∩ C2(t > 0;x) solution v for f ∈ Lp and g ∈
L1(t;W−1,p(x)).

2.3. Nonlinear iteration. Returning now to the nonlinear problem (2.2), we have, set-

ting g = N(u)x in (2.9), the representation u(x, t) =
∫ +∞
−∞ G0(x, t; y)uo(y)dy+∫ t

0

∫ +∞
−∞ G0(x, t− s; y)N(u(y, s))ydy ds, or, integrating the last term by parts,

u(x, t) =

∫ +∞

−∞
G0(x, t; y)u0(y)dy −

∫ t

0

∫ +∞

−∞
G0,y(x, t− s; y)N(u(y, s))dy ds, (2.11)

valid so long as the solution u exists and remains sufficiently smooth that (2.11) gives the

unique solution to the associated inhomogeneous problem, in particular for u0 ∈ Lp∩L∞

and u in C0(t ≥ 0;Lp ∩ L∞) ∩ C2(t > 0, x), any p ≥ 1.

On the other hand, standard short-time existence theory (proved, e.g., by contraction-

mapping using a similar representation with shifted initial time) yields existence of a

C0(t ≥ 0;Lp ∩ L∞(x)) ∩ C2(t > 0, x) solution so long as |u|Lp∩L∞ remains bounded.

Now define

ζ(t) := sup
0≤s≤t, 1≤p≤∞

|u|Lp(s)(1 + s)
1
2 (1−1/p). (2.12)

Lemma 2.3. For all t ≥ 0 for which ζ(t) is finite, some C > 0, and E0 := |u0|L1∩L∞ ,

ζ(t) ≤ C(E0 + ζ(t)2). (2.13)
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INSTANTANEOUS SHOCK LOCATION 181

Proof. Noting, by quadratic dependence N(u) = O(|u|2) and the definition (2.12) of

ζ, that

|N(u)|L1 ≤ C|u|2L2 ≤ Cζ(t)2(1 + t)−
1
2 ,

|N(u)|Lp ≤ C|u|Lp |u|L∞ ≤ Cζ(t)2(1 + t)−
1
2 (1−1/p)− 1

2 ,
(2.14)

we obtain, applying Lemmas 2.1–2.2 to representation (2.11), the estimate

|u(·, t)|Lp(x) ≤
∣∣∣
∫ +∞

−∞
G0(x, t; y)u0(y)dy

∣∣∣
Lp(x)

+
∣∣∣
∫ t/2

0

∫ +∞

−∞
G0,y(x, t− s; y)N(u(y, s))dy ds

∣∣∣
Lp(x)

+
∣∣∣
∫ t

t/2

∫ +∞

−∞
G0,y(x, t− s; y)N(u(y, s))dy ds

∣∣∣
Lp(x)

≤ C(1 + t)−
1
2 (1−1/p)E0 + Cζ(t)2

∫ t/2

0

(t− s)−
1
2 (1−1/p)−1/2(1 + s)−

1
2 ds

+ Cζ(t)2
∫ t

t/2

(t− s)−
1
2 (1 + s)−

1
2 (1−1/p)− 1

2 ds

≤ C(E0 + ζ(t)2)(1 + t)−
1
2 (1−1/p).

(2.15)

Rearranging, we obtain (2.13). �

Corollary 2.4 (Stability of constant solutions). Constant solutions ū ≡ a are nonlin-

early stable in L1 ∩ L∞ and nonlinearly asympotically stable in Lp, p > 1, with respect

to initial perturbations u0 that are sufficiently small in L1∩L∞. More precisely, for some

C > 0,

|ũ− ū|Lp(t) ≤ C(1 + t)−
1
2 (1−1/p)|ũ− ū|L1∩L∞ |t=0 (2.16)

for all t ≥ 0, 1 ≤ p ≤ ∞, for solutions ũ of (1.1) with |ũ− ū|L1∩L∞ |t=0 sufficiently small.

Proof. (“Continuous induction”) By Lemma 2.3, ζ(t) ≤ C(E0 + ζ(t)2) for

E0 := |ũ− ū|L1∩L∞ |t=0. (2.17)

Taking E0 < 1
4C2 , we have therefore that ζ(t) < 2CE0 whenever ζ(t) ≤ 2CE0, and

so the set of t ≥ 0 for which ζ(t) < 2CE0 is equal to the set of t ≥ 0 for which

ζ(t) ≤ 2CE0. Recalling, by the cited standard short-time existence theory, that ζ is

continuous wherever it is finite, we find, therefore, that the set of t ≥ 0 for which

ζ(t) < 2CE0 is both open and closed. Taking without loss of generality C > 1/2, so

that t = 0 is contained in this set, we have that the set is nonempty. It follows that

ζ(t) < 2CE0 for all t ≥ 0, yielding (2.16) by definitions (2.12) and (2.17). �
Remark 2.5. The rate of decay (2.16) is that of a heat kernel; that is, the mechanism

for stability is diffusive only.

3. Stability of viscous shock solutions. We turn now to the stability of viscous

shock solutions of (1.1), without loss of generality, restricting to the case

ū(x) = − tanh(x/2)
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182 KEVIN ZUMBRUN

described in (1.5). Letting ũ as before be a second solution of (1.1), define the pertur-

bation

u(x, t) := ũ(x+ α(t), t)− ū(x) (3.1)

as the difference between a translate of ũ and the background wave ū, where the trans-

lation α(t) is to be determined later.

This yields after a brief computation the perturbation equation

ut − Lu = N(u)x + α̇(t)(ūx + ux), (3.2)

where Lu := uxx − (a(x)u)x is the linearization of uxx − f(u)x about the solution ū =

− tanh(x/2), a(x) := df(ū)(x) = ū(x), and N(u) := −u2/2 is the same remainder of

quadratic order as in the constant-coefficient case.

3.1. Linear solution operator/decomposition of the Green function. The homogeneous

linearized equation

vt − Lv = vt + (a(x)v)x − vxx = 0, v|t=0 = f (3.3)

can be solved explicitly by a linearized Hopf–Cole transformation [S, N, Z3, GSZ] to give

an exact solution formula

eLtf =

∫ +∞

−∞
G(x, t; y)f(y)dy, (3.4)

where

G(x, t; y) := eLtδy(x) = ū′(x)
(1
2

)(
errfn(

x− y − t√
4t

)− errfn(
x− y + t√

4t
)
)

+
(( e−

x
2

e
x
2 + e−

x
2

)e− (x−y−t)2

4t

√
4πt

+
( e

x
2

e
x
2 + e−

x
2

)e− (x−y+t)2

4t

√
4πt

) (3.5)

is the Green function for (3.3) and errfn(z) := 1√
π

∫ z

−∞ e−ξ2dξ.

Following the approach of [Z1, MaZ2, MaZ4], now decompose

G(x, t; y) := E(x, t; y) + S(x, t; y) +R(x, t; y), (3.6)

where

E(x, t; y) := ū′(x)e(y, t), e(y, t) :=
(1
2

)(
errfn(

−y − t√
4t

)− errfn(
−y + t√

4t
)
)
, (3.7)

S(x, t; y) :=
(( e−

x
2

e
x
2 + e−

x
2

)e− (x−y−t)2

4t

√
4πt

+
( e

x
2

e
x
2 + e−

x
2

)e− (x−y+t)2

4t

√
4πt

)
, (3.8)

and

R(x, t; y) := ū′(x)
(1
2

)(
errfn(

x− y − t√
4t

)− errfn(
−y − t√

4t
)
)

− ū′(x)
(1
2

)(
errfn(

x− y + t√
4t

)− errfn(
−y + t√

4t
)
)
.

(3.9)

Here, the “excited term” E represents the nondecaying part of the linearized solution v,

involving the zero eigenfunction Lū′ = 0 associated with instantaneous translation of the

background wave, the “scattering term” S comprises Gaussian signals convected along

hyperbolic characteristics, and the “remainder term” R a faster-decaying residual.
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A straightforward calculation gives

|R(x, t; y| ≤ C|x||ū′(x)|
∫ 1

0

(e− (ξx−y−t)2

4t

√
4πt

− e−
(ξx−y+t)2

4t

√
4πt

)
dξ

≤ Ce−θ|x|
∫ 1

0

(e− (ξx−y−t)2

4t

√
4πt

+
e−

(ξx−y+t)2

4t

√
4πt

)
dξ,

(3.10)

θ > 0, showing that R, as the product of an exponentially decaying term and the sum of

convected Gaussians, is indeed faster-decaying than either E or S.

Lemma 3.1. For some C > 0, θ > 0, all t > 0,

|R(x, t; y| ≤ Ce−θ|x|/C
(e− (x−y−t)2

4Ct

√
t

+
e−

(x−y+t)2

4Ct

√
t

)
+ Ce−θ(|x−y|+t),

|Ry(x, t; y| ≤ Ce−θ|x|/C
(e− (x−y−t)2

4Ct

t
+

e−
(x−y+t)2

4Ct

t

)
+

Ce−θ(|x−y|+t)

√
t

.

(3.11)

Proof. Applying the Cauchy–Schwarz inequality in the argument of the exponential,

we find readily that

e−θ|x|/2
(
e−

(ξx−y−t)2

4t + e−
(ξx−y+t)2

4t

)
≤ e−θ|x|/C

(
e−

(x−y−t)2

4Ct + e−
(x−y+t)2

4Ct

)
(3.12)

for |x| ≤ Mt and C > 0 sufficiently large; hence (3.10) implies (3.11)(i). For |y| � |x|+|t|,
(3.12) holds trivially, likewise giving (3.11)(i). In both of these cases, the left-hand side is

bounded by the first, Gaussian, term alone on the right-hand side. In the remaining case

|x| � t and |y| ≤ M |x|, we have for C > 0 sufficiently large that e−θ|x| ≤ e−(θ/C)(|x−y|+t),

from which we find directly from (3.9) that the left-hand side of (3.11)(i) is bounded by

the final term on the right-hand side.

Similar computations yield (3.11)(ii). �
Remark 3.2. The excited term E converges as t → +∞ to ū′(x) times

−σ(+∞) :=

∫ +∞

−∞
e(y,+∞)f(y)dy = (1/2)

∫ +∞

−∞
f(y)dy,

the time-asymptotic state of the linearized equations (3.3) determined by conservation of

mass (equals total integral
∫ +∞
−∞ v(x, t)dx). Note that ū′(x) corresponds to infinitesimal

translation of the background wave ū(x); hence a linear time-asymptotic state −σū′(x)

corresponds roughly to a steady-state perturbation ū(x− σ)− ū(x) consisting of a shift,

or translation, σ of the background wave. The term σ(t) := −
∫ +∞
−∞ e(y, t)f(y)dy thus

measures, at a linearized level, the shift in location of the shock at time t, or “instan-

taneous shock shift”. This refines the picture of behavior given by the time-asymptotic

shock shift σ(+∞).
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Proposition 3.3. The Green function G decomposes as G = E + G̃, E = ū′(x)e(y, t),

where, for some C > 0, all t > 0,
∣∣∣
∫ +∞

−∞
G̃(x, t; y)f(y)dy

∣∣∣
Lp(x)

≤ Ct−
1
2 (1−1/p)|f |L1 ,

∣∣∣
∫ +∞

−∞
G̃y(x, t; y)f(y)dy

∣∣∣
Lp(x)

≤ Ct−
1
2 (1−1/p)− 1

2 |f |L1 ;

(3.13)

∣∣∣
∫ +∞

−∞
G̃(x, t; y)f(y)dy

∣∣∣
Lp(x)

≤ C|f |Lp ,
∣∣∣
∫ +∞

−∞
G̃y(x, t; y)f(y)dy

∣∣∣
Lp(x)

≤ Ct−
1
2 |f |Lp ;

(3.14)∣∣∣
∫ +∞

−∞
et(y, t)f(y)dy

∣∣∣ ≤ Ct−
1
2 |f |L1 ,

∣∣∣
∫ +∞

−∞
ety(y, t)f(y)dy

∣∣∣ ≤ Ct−1|f |L1 ; (3.15)

∣∣∣
∫ +∞

−∞
et(y, t)f(y)dy

∣∣∣ ≤ C|f |L∞ ,
∣∣∣
∫ +∞

−∞
eyt(y, t)f(y)dy

∣∣∣ ≤ Ct−
1
2 |f |L∞ ; (3.16)

and∣∣∣
∫ +∞

−∞
e(y, t)f(y)dy

∣∣∣ ≤ C|f |L1 ,
∣∣∣
∫ +∞

−∞
ey(y, t)f(y)dy

∣∣∣ ≤ Ct−1/2|f |L1 . (3.17)

Proof. Defining G̃ := R + S, we have the decomposition G = E + G̃. By (3.8)

and estimate (3.11), G̃ and G̃y obey essentially the same bounds as G and Gy in the

constant-coefficient case (2.5), up to a harmless exponential error (the final terms on the

right-hand sides of (3.11)). Thus, bounds (3.13) and (3.14) follow by the same argument

used to prove (2.7) and (2.8). By (3.7), |et| and |eyt| satisfy essentially the same bounds

as supx |G̃| and supx |G̃y|; hence (3.15) and (3.16) follow again from this same argument

in case p = ∞, which amounts to Hölder’s inequality together with Lp bounds on e and

derivatives (see Lemma D.1, Appendix D.1 for a careful derivation of these Lp bounds).

Finally, (3.17) follows by |e| ≤ C, |ey| ≤ Ct−1/2 using the triangle inequality. �
Remark 3.4. The apparently special Proposition 3.3 in fact holds for viscous shock

waves of general strictly parabolic systems provided that the shock satisfies a generalized

spectral stability, i.e., Evans function, condition [Z1, Z4, MaZ3]. Indeed, there is a

parallel decomposition of the Green function as the sum of terms E, S, and R with

pointwise descriptions generalizing those of (3.7), (3.8), (3.11). Similar bounds hold for

Evans stable shocks of general hyperbolic-parabolic systems ut + f(u)x = (B(u)ux)x

with B =

(
0 0

b2 b2

)
, under mild compatibility conditions on df(u±) and B(u±) satisfied

for standard physical equations such as the Navier–Stokes equations of compressible gas-

dynamics or MHD with van der Waals equation of state, or the equations of viscoelasticity

[MaZ3, Z4]. Scalar shock waves are always spectrally stable, by the maximum principle;

hence, the stability condition does not make itself apparent for Burgers equation.

In the derivation of bounds by inverse Laplace transform estimates, the terms E and

S arise in a very natural way as leading terms of a low-frequency “scattering” expansion

[MaZ3, Z2] of the resolvent kernel about frequency λ = 0, without the need to rearrange

terms as done here in the Burgers case. See Section 2, [BeSZ], for a particulary clear

discussion of the method from a more general point of view. Indeed, the decomposition
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of G into E and G̃ was suggested from the inverse Laplace transform point of view

[ZH, Z1, MaZ3]. Here, for pedagogical purposes, we have imposed this structure by

force on the explicit Green function given by a Hopf–Cole transformation in order to

demonstrate clearly the approach.

3.2. Integral representation/α-evolution scheme. Recalling that ū′(x) is a stationary

solution of the linearized equations ut = Lu, so that Lūx = 0, or∫ ∞

−∞
G(x, t; y)ūx(y)dy = eLtūx(x) = ūx(x),

we have, applying Duhamel’s principle to (3.2),

u(x, t) =

∫ ∞

−∞
G(x, t; y)u0(y) dy

−
∫ t

0

∫ ∞

−∞
Gy(x, t− s; y)(N(u) + α̇u)(y, s) dy ds+ (α(t)− α(0))ū′(x).

(3.18)

Defining α implicitly as

α(t) =−
∫ ∞

−∞
e(y, t)u0(y) dy

+

∫ t

0

∫ +∞

−∞
ey(y, t− s)(N(u) + α̇ u)(y, s)dyds,

(3.19)

following [ZH, Z4, MaZ2, MaZ3], where e is defined as in (3.7), and substituting in (3.18)

the decompositionG = ū′(x)e+G̃ of Proposition 3.3, we obtain the integral representation

u(x, t) =

∫ ∞

−∞
G̃(x, t; y)u0(y) dy

−
∫ t

0

∫ ∞

−∞
G̃y(x, t− s; y)(N(u) + α̇u)(y, s)dy ds,

(3.20)

and, differentiating (3.19) with respect to t, and observing that ey(y, s) → 0 as s → 0,

as the difference of approaching heat kernels,

α̇(t) =−
∫ ∞

−∞
et(y, t)u0(y) dy

+

∫ t

0

∫ +∞

−∞
eyt(y, t− s)(N(u) + α̇u)(y, s) dy ds.

(3.21)

(Note: in obtaining (3.20), we have used the fact that e(y, 0) ≡ 0 to conclude that

α(0) = 0.)

Equations (3.20), (3.21) together form a complete system in the variables (u, α̇), from

the solution of which we may afterward recover the shift α via (3.19). From the original

differential equation (3.2) together with (3.21), we readily obtain short-time existence and

continuity with respect to t of solutions (u, α̇) ∈ L1 ∩L∞×R by a standard contraction-

mapping argument.1

1Specifically, for initial time T ≥ 0, and t ≥ T , split the expression (3.21) for α̇(t) into the sum of

a bounded “known” term −
∫∞
−∞ et(y, t)u0(y) dy +

∫ T
0

∫+∞
−∞ eyt(y, t − s)(N(u) + α̇u)(y, s) dy ds and an

“unknown term”
∫ t
T

∫+∞
−∞ eyt(y, t− s)(N(u) + α̇u)(y, s) dy ds that is contractive for (u, α̇) bounded and

|t− T | � 1. The u-equation (3.2) may be treated in standard fashion, treating the right-hand side as a
forcing term and expressing u as an integral on [T, t], again contractive for |t− T | � 1.
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Remark 3.5. Here, the key step in deriving (3.20) is to observe that the contribu-

tion in the right-hand side of (3.18) coming from terms involving ū′(x)e(y, t) is, under

definition (3.19), exactly −ū′(x)α(t), so cancels the final term. That is, we have de-

fined the instantaneous translation α(t) from considerations of technical convenience so

as to cancel all nondecaying terms in (3.18). Note that α(t) agrees to linear order with

the prescription σ(t) in Remark 3.2 of the instantaneous shock shift for the linearized

equations.

3.3. Nonlinear iteration. Associated with the solution (u, α̇) of the integral system

(3.20)–(3.21), define

ζ(t) := sup
0≤s≤t, 1≤p≤∞

(
|u|Lp(s)(1 + s)

1
2 (1−1/p) + |α̇(s)|(1 + s)1/2

)
. (3.22)

Lemma 3.6. For all t ≥ 0 for which ζ(t) is finite, some C > 0, and E0 := |u0|L1∩L∞ ,

ζ(t) ≤ C(E0 + ζ(t)2). (3.23)

Proof. With the established bounds on G̃ and e, the proof of (3.23) is almost identical

to that of (2.13) in the constant-coefficient case. Noting, by quadratic dependence,

N(u) = O(|u|2) and the definition (2.12) of ζ, that

|N(u) + |α̇|u|L1 ≤ C|u|L1(|u|L∞ + |α|) ≤ ζ(t)2(1 + t)−
1
2 ,

|N(u) + |α̇|u|Lp ≤ C|u|Lp(|u|L∞ + |α|) ≤ ζ(t)2(1 + t)−
1
2 (1−1/p)− 1

2 ,
(3.24)

we obtain, similarly as in (2.15), applying Lemmas 3.13–3.14 to representation (3.20),

|u(·, t)|Lp(x) ≤ C(1 + t)−
1
2 (1−1/p)E0 + Cζ(t)2

∫ t/2

0

(t− s)−
1
2 (1−1/p)−1/2(1 + s)−

1
2 ds

+ Cζ(t)2
∫ t

t/2

(t− s)−
1
2 (1 + s)−

1
2 (1−1/p)− 1

2 ds

≤ C(E0 + ζ(t)2)(1 + t)−
1
2 (1−1/p).

(3.25)

Similarly, by (3.15) and (3.16),

|α̇(t)| ≤ C(1 + t)−
1
2E0 + Cζ(t)2

∫ t/2

0

(t− s)−1(1 + s)−
1
2 ds

+ Cζ(t)2
∫ t

t/2

(t− s)−
1
2 (1 + s)−1ds

≤ C(E0 + ζ(t)2)(1 + t)−
1
2 .

(3.26)

Combining and rearranging (3.25)–(3.28), we obtain (2.3). �

Corollary 3.7 (Stability of shock solutions). Viscous shock solutions ū(x) of (1.1)

are nonlinearly stable in L1 ∩ L∞ and nonlinearly orbitally asympotically stable in Lp,

p > 1, with respect to initial perturbations u0 that are sufficiently small in L1 ∩ L∞.
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More precisely, for some C > 0 and α ∈ W 1,∞(t),

|ũ− ū(· − α)|Lp(t) ≤ C(1 + t)−
1
2 (1−1/p)|ũ− ū|L1∩L∞ |t=0,

|α̇(t)| ≤ C(1 + t)−
1
2 |ũ− ū|L1∩L∞ |t=0,

|α(t)| ≤ C|ũ− ū|L1∩L∞ |t=0,

|ũ− ū|L1∩L∞(t) ≤ C|ũ− ū|L1∩L∞ |t=0,

(3.27)

for all t ≥ 0, 1 ≤ p ≤ ∞, for solutions ũ of (1.1) with |ũ− ū|L1∩L∞ |t=0 sufficiently small.

Proof. The first two inequalities follow by a proof identical to that of Proposition

2.4 in the constant-coefficient case, using (3.6) and continuity of ζ wherever ζ is fi-

nite, a consequence of short-time existence theory, to obtain ζ(t) ≤ 2CE0, for E0 :=

|ũ − ū|L1∩L∞ |t=0 ≤ η0 sufficiently small. This yields the first two bounds by definition

of ζ. The third then follows using (3.17), by

|α(t)| ≤ CE0 + Cζ(t)2
∫ t/2

0

(t− s)−
1
2 (1 + s)−

1
2 ds

+ Cζ(t)2
∫ t

t/2

(t− s)−
1
2 (1 + s)−

1
2 ds

≤ C(E0 + ζ(t)2).

(3.28)

Finally, we note that

ũ(x, t)− ū(x) = u(x− α(t), t)− (ū(x)− ū(x− α(t)),

so that |ũ(·, t)− ū| is controlled by the sum of |u| and |ū(x)− ū(x− α(t))| ∼ α(t)|ū′(x)|,
hence, by our estimates, remains ≤ CE0 for all t ≥ 0, for E0 sufficiently small. This

verifies the fourth inequality, yielding nonlinear stability and completing the result. �
Remark 3.8. In the semilinear case considered here, Corollary 3.7 could be proved

in a more straightforward fashion by a contraction-mapping argument applied directly

to the system (3.20)–(3.21), bypassing the continuous induction argument above. How-

ever, in more delicate situations such as the quasilinear parabolic or hyperbolic-parabolic

cases, it is advantageous for reasons of regularity to separate the issues of short-time

existence/well-posedness and long-time bounds, as we have done here; see [MaZ2, MaZ4,

Z4, RZ] for further discussion.

Remark 3.9. Again, the rate of decay (3.27)(i) is that of a heat kernel; that is,

the mechanism for stability is diffusive only, and not involving compressivity of the

shock. This rate is in fact sharp, as may be seen intuitively by considering a compactly

supported, perturbation supported, arbitrarily far from the shock location x = 0. Far

from the shock, the background solution ū is approximately constant, and so behavior

is like that of a perturbation of a constant solution as studied in Section 2. But, this is

readily seen to decay like a heat kernel, giving the stated rate (3.27)(i).

3.4. Postscript: phase-asymptotic vs. asymptotic orbital stability. A stronger condi-

tion than nonlinear orbital stability, proved above, is nonlinear phase-asymptotic orbital

stability, in which a perturbed solution ũ is required to approach not only the set of trans-

lates of ū, but a specific translate of u. In the language of Corollary 3.7, this amounts to

the requirement that α have a limit α(t) → α(+∞) as t → +∞.
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We do not establish this property in Corollary 3.7, nor is it established in [Z1, MaZ2,

MaZ4]. Indeed, for the general class of perturbations considered here (and in [Z1, MaZ2,

MaZ4]), α(t) if it converges to a limit does not do so at any uniform algebraic rate

depending only on E0, t, as may be seen by considering perturbations with support

arbitrarily far from the shock location x = 0. See [Z1] for further discussion.

It is a strength of this approach that such data may be treated nonetheless, and in a

simple fashion parallel to the treatment of the constant-coefficient case. However, phase-

asymptotic stability does not seem to be accessible by this simple argument scheme in-

volving only Lp → Lq estimates. For proofs of phase-asymptotic stability under strength-

ened assumptions on the initial data, following a similar tracking approach but involving

additional pointwise information on the solution, see [R, HZ, HR, HRZ, RZ].

4. The system case. We have described the nonlinear stability argument of [Z1,

MaZ2, MaZ4] in the simple scalar setting of Burgers equation. We now discuss briefly how

this carries over to the case of general hyperbolic-parabolic systems, including Navier–

Stokes equations of compressible gas dynamics and MHD. Namely, Remark 3.4 plus

essentially the same argument described here gives nonlinear orbital stability of viscous

shocks provided that they satisfy an Evans function (generalized spectral stability)

assumption yielding the necessary pointwise bounds. The Evans condition is necessary

for linearized stability as shown in [ZH, MaZ3]. It holds always for small-amplitude

shocks, but may fail in general for large-amplitude shocks. In the large-amplitude case,

it is readily checked numerically; in certain special limits, it may be checked analytically

using asymptotic ODE and/or singular perturbation theory. When the Evans condition

fails, there are interesting implications for dynamics/bifurcation; see [Z5, Z7, TZ1, TZ2,

TZ3, TZ4, SS, BeSZ].

See [AGJ, GZ, ZH, ZS, MaZ3] for a discussion of the Evans function and its origins.

For verification of the Evans condition for small-amplitude shocks, see [ZH, HuZ, PZ,

FS1]. For examples of unstable shocks, see [GZ, ZS]. For numerical and analytical

verification for large-amplitude shocks, see [BHZ, BHRZ, HLZ, HLyZ, CHNZ]; see [Br,

BrZ, BDG, HuZ2] for a more general discussion of numerical Evans function techniques.

See [ZS, Z2, Z4, Z6, GMWZ, GMWZ2, FS2] for extensions to multiple dimensions.

The derivation of pointwise Green function bounds for general systems is complicated,

involving detailed estimates on the resolvent kernel using the Evans function and asymp-

totic ODE techniques, converted to bounds on the Green kernel via stationary phase

estimates in the inverse Laplace transform formula. See [ZH, Z3, Z2, Z4, BeSZ, GMWZ,

GMWZ2] for discussions of these and related techniques. These are details of the linear

theory. Here, we have chosen to isolate the nonlinear iteration argument by restricting

to a case (Burgers equation) for which the linear theory is explicitly known a priori, in

order to give the reader a flavor of the arguments.

We emphasize: once the linearized theory is established, the nonlinear shock-tracking

argument of [Z1, MaZ2, MaZ4, Z2] is essentially the same for the system case as for

the scalar case. See Remark 3.4. Indeed, the method is of a still more general nature;

see the parallel treatments of stability of relaxation shocks and detonation waves in
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[MaZ1, LRTZ, TZ4] and of spatially periodic solutions of viscous conservation laws or

balance laws in [JZ1, JZ2, JZN].

Acknowledgement. Thanks go to Mark Williams and Benjamin Texier for their

interest in the work, and for several helpful comments improving the exposition.

Appendices.

Appendix A. Comparison with previous work. The instantaneous tracking

method used here is to be contrasted with an earlier method introduced in [Liu85, Liu97]

and completed in [SX, LZ2],2 based on a fixed time-asymptotic shock location determined

by conservation of mass. There, the approach is, rather than defining an instantaneous

shock location so as to minimize residual error, to develop a detailed approximate so-

lution sufficiently accurate that the nonlinear residual is again small enough to close a

nonlinear iteration. This has the advantage that, if one can succeed, one automatically

obtains additional details of the solution. It has the disadvantage that one must obtain

such details in order for the argument to close, and this means a rather complicated

and technical argument, and one that is difficult to carry out or check. Moreover, as

described in Section 3.4, such methods require localization of the initial perturbation in

the form of algebraic spatial decay rates. The recent paper [LZ2], on the other hand,

features a uniform basin of attraction as the shock amplitude goes to zero, something

that is not attained from the basic stability argument given in Section 3; we discuss this

issue further in Appendix B. Note that the results of [SX, LZ2] apply only to small-

amplitude “Lax type” waves and artificial (Laplacian) viscosity, whereas our results in

[Z1, MaZ4, Z4, HZ, RZ] apply in principle to waves of arbitrary amplitude and type

and physical (partially parabolic) viscosity; see [HLZ, BHZ] for proofs of stability in the

large-amplitude limit for isentropic gas dynamics and MHD.

It should be mentioned that the early paper [LZu] involving shock tracking of un-

dercompressive shocks is based on time-asymptotic estimation of the shock location, in

this case obtained by a time-asymptotic study of the linearized equations and not simply

conservation of mass, rather than instantaneous tracking in the sense of [Z1, MaZ2] de-

scribed above. This does not lead to a fixed estimate of shock location, due to interaction

with nonlinear terms, but is less accurate than the instantaneous scheme used in [HZ].

2Both [Liu85] and [Liu97] contain significant errors, corrected respectively in [SX] and [LZ2]. A key
step in [Liu85] is the intermediate result, stated in the final paragraph of p. 12, that

∫ +∞

0

∫ +∞

−∞
|u(x, t)− ū(x− δ)−Θ(x, t)|2dx dt < ∞, (A.1)

where Θ is defined as a sum of “outgoing diffusion waves”; as shown by an explicit counterexample in
[GSZ], this estimate in general does not hold. Likewise, it is pointed out in [LZ2] that [Liu97] contains

an “incorrect Ansatz” (|x|+ t+1)−1/2(1 + |x|)−1 of the perturbation near the shock location (centered
at x = 0 in the analysis), which is described in [LZ2] as algebraically decaying, hence not sufficiently
confined to the shock layer for the argument of [Liu97] to close. Both of these errors are related to the
contribution ū(x − δ(t)) − ū(x) ∼ δ(t)ū′(x) removed in our argument by instantaneous shock tracking.
As pointed out in Remark 2, [HZ], this contribution corresponds in turn to the “coupled diffusion wave”

introduced by different means in [SX] in order to correct the argument of [Liu85].
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It can succeed in [LZu] because of the advantageous structure of the model considered,

but does not appear sufficient in the general case considered in [HZ]. Similarly, the early

shock-tracking scheme used in [LY] is based on conservation of mass and not a more

detailed localized fit as in the instantaneous tracking described above; this suffices to

treat the scalar problem considered there, but does not appear sufficiently accurate to

treat the system case.

Appendix B. The small-amplitude limit. It is instructive to consider the small-

amplitude limit |u+ − u−| → 0. Consider now the family of stationary viscous shock

solutions

ūε(x) := −ε tanh(εx/2), lim
x→±∞

ūε(x) = ūε
± = ∓ε (B.1)

of (1.1), and examine the behavior as ε → 0.

Denote the associated homogeneous linearized equation by

vt − Lεv = vt + (aε(x)v)x − vxx = 0, v|t=0 = f, (B.2)

where aε(x) := ūε(x). The invariance (x, t, u) → (x/ε, t/ε2, u/ε) of Burgers equation

converts this to the ε-independent case (1.5) considered in Section 3, from which we may

deduce the ε-dependent Green function formula

eL
εtf =

∫ +∞

−∞
Gε(x, t; y)f(y)dy, (B.3)

where

Gε(x, t; y) := eL
εtδy(x) = (ūε)′(x)

( 1

2ε

)(
errfn(

x− y − εt√
4t

)− errfn(
x− y + εt√

4t
)
)

+
(( e−

εx
2

e
εx
2 + e−

εx
2

)e− (x−y−εt)2

4t

√
4πt

+
( e

εx
2

e
εx
2 + e−

εx
2

)e− (x−y+εt)2

4t

√
4πt

)

(B.4)

and (ūε)′(x) = ε2ū′(εx) ∼ ε2e−θε|x|, θ > 0. Here, we are using the scaling relations

ūε(x) = εū(εx) and Gε(x, t; y) = εG(εx, ε2t; εy).

Decompose again

Gε(x, t; y) := Eε(x, t; y) + Sε(x, t; y) +Rε(x, t; y), (B.5)

where

Eε(x, t; y) := (ūε)′(x)eε(y, t), eε(y, t) :=
( 1

2ε

)(
errfn(

−y − εt√
4t

)− errfn(
−y + εt√

4t
)
)
,

(B.6)

Sε(x, t; y) :=
(( e−

εx
2

e
εx
2 + e−

εx
2

)e− (x−y−εt)2

4t

√
4πt

+
( e

εx
2

e
εx
2 + e−

εx
2

)e− (x−y+εt)2

4t

√
4πt

)
, (B.7)

and

Rε(x, t; y) :=(ūε)′(x)
( 1

2ε

)(
errfn(

x− y − εt√
4t

)− errfn(
−y − εt√

4t
)
)

+ (ūε)′(x)
( 1

2ε

)(
errfn(

−y + εt√
4t

)− errfn(
x− y + εt√

4t
)
)
.

(B.8)
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Defining the perturbation

u(x, t) := ũ(x+ α(t), t)− ūε(x), (B.9)

setting G̃ε := Sε+Rε, and following the steps of Section 3, we obtain again the integral

representation

u(x, t) =

∫ ∞

−∞
G̃ε(x, t; y)u0(y) dy

−
∫ t

0

∫ ∞

−∞
G̃ε

y(x, t− s; y)(N(u) + α̇u)(y, s)dy ds,
(B.10)

α̇(t) = −
∫ ∞

−∞
eεt (y, t)u0(y) dy

+

∫ t

0

∫ +∞

−∞
eεyt(y, t− s)(N(u) + α̇u)(y, s) dy ds.

(B.11)

α(t) = −
∫ ∞

−∞
eε(y, t)u0(y) dy

+

∫ t

0

∫ +∞

−∞
eεy(y, t− s)(N(u) + α̇ u)(y, s)dyds.

(B.12)

Dependence on ε. Evidently, we could carry through the entire stability analysis of

Section 3, as the ε-dependent Green function Gε = Eε + Sε + Rε has the same form as

G. However, the bounds obtained in this way, in particular, the estimate (3.11) on the

remainder R, would involve constants C = C(ε) > 0 blowing up as ε → 0. This means

that the allowable size E0 ≤ 1
4C(ε)2 of perturbations, determined in the proof of Corollary

2.4, goes to zero as ε → 0. That is, the basin of attraction of the shock ūε established

by our basic stability argument shrinks to zero as ε → 0. Indeed, the bounds derived for

general systems in [ZH, MaZ3] (described briefly in Section 4) share this same property,

and so the basin of attraction for the stability results proved in [MaZ2, MaZ4, Z1, Z2, HZ]

and related works goes to zero as the shock amplitude goes to zero.

However, this is not an inherent limitation of the method, or the shock. Following, we

show that by different, more careful, estimates of Eε and Rε, we may in fact recover a

uniform stability result, valid for perturbations of sufficiently small size independent of

ε.

Proposition B.1. For some C > 0 independent of ε, 0 < ε ≤ 1, and all t > 0,

∣∣∣
∫ +∞

−∞
G̃ε(x, t; y)f(y)dy

∣∣∣
Lp(x)

≤ Ct−
1
2 (1−1/p)|f |L1 ,

∣∣∣
∫ +∞

−∞
G̃ε

y(x, t; y)f(y)dy
∣∣∣
Lp(x)

≤ Ct−
1
2 (1−1/p)− 1

2 |f |L1 ;

(B.13)

∣∣∣
∫ +∞

−∞
G̃ε(x, t; y)f(y)dy

∣∣∣
Lp(x)

≤ C|f |Lp ,
∣∣∣
∫ +∞

−∞
G̃ε

y(x, t; y)f(y)dy
∣∣∣
Lp(x)

≤ Ct−
1
2 |f |Lp ;

(B.14)∣∣∣
∫ +∞

−∞
eεt (y, t)f(y)dy

∣∣∣ ≤ Ct−
1
2 |f |L1 ,

∣∣∣
∫ +∞

−∞
eεty(y, t)f(y)dy

∣∣∣ ≤ Ct−1|f |L1 ;

(B.15)
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∣∣∣
∫ +∞

−∞
eεt (x, t; y)f(y)dy

∣∣∣ ≤ C|f |L∞ ;
∣∣∣
∫ +∞

−∞
eεyt(x, t; y)f(y)dy

∣∣∣ ≤ Ct−
1
2 |f |L∞ ; (B.16)

and
∣∣∣
∫ +∞

−∞
eε(y, t)f(y)dy

∣∣∣ ≤ Cε−1|f |L1 ,
∣∣∣
∫ +∞

−∞
eεy(y, t)f(y)dy

∣∣∣ ≤ Cε−1t−1/2|f |L1 .

(B.17)

Proof. As Sε evidently obeys the same decay estimates as S, to establish the stated

bounds on G̃ε, it is sufficient to establish them for Rε. This is a straightforward conse-

quence of Lemmas D.4 and D.5 established in Appendix D.3. Likewise, for the stated

bounds on eε, it is sufficient to establish corresponding Lp(y) bounds on εε, from which

the results then follow by Hölder’s inequality. The needed bounds are established in

Lemma D.3, Appendix D.2. �

Corollary B.2 (Stability of small-amplitude shock solutions). For 0 < ε ≤ 1, viscous

shock solutions ūε(x) of (1.1) are nonlinearly stable in L1∩L∞ and nonlinearly orbitally

asympotically stable in Lp, p > 1, with respect to initial perturbations u0 with L1 ∩L∞

norm less than or equal to η0 > 0 sufficiently small, where η0 is independent of 0 < ε ≤ 1.

More precisely, for some C > 0 independent of 0 < ε ≤ 1, there is α ∈ W 1,∞(t) such that

|ũ− ūε(· − α)|Lp(t) ≤ C(1 + t)−
1
2 (1−1/p)E0,

|α̇(t)| ≤ C(1 + t)−
1
2E0,

|α(t)| ≤ Cε−1E0,

|ũ− ūε|L1∩L∞(t) ≤ CE0,

(B.18)

for all t ≥ 0, 1 ≤ p ≤ ∞, for solutions ũ of (1.1) with E0 := |ũ− ūε|L1∩L∞ |t=0 ≤ η0.

Proof. The proof of the first two bounds follows exactly as in the proof of Corollary 3.7

in the fixed-amplitude case, since the integral equations for (u, α̇) form a closed system

involving only G̃ε, eεt and eεyt, and the bounds on G̃ε, eεt and eεyt are the same as the

bounds on G̃, et and eyt in the fixed-amplitude case. With these bounds established, we

obtain the third bound from (B.12), using the fact that the bounds on eε and eεy are no

worse than ε−1 times the bounds on e and ey in the fixed-amplitude case.

Finally, we note that ũ(x, t)− ūε(x) = u(x− α(t), t)− (ūε(x)− ūε(x− α(t)), so that

|ũ(·, t)− ūε| is controlled by the sum of |u| and |ūε(x)− ūε(x−α(t))|. By monotonicity of

scalar shock profiles as orbits of the first-order scalar profile ODE (1.4), ūε(x)− ūε(x−
α(t)) has one sign, hence

|ūε(x)− ūε(x− α(t))|L1 =
∣∣∣
∫ +∞

−∞
(ūε(x)− ūε(x− α(t)))dx

∣∣∣ = |α(t)||uε
+ − uε

−|,

and, by (B.18)(iii),

|ūε(x)− ūε(x− α(t))|L1 = 2ε|α(t)| ≤ 2CE0.

Likewise, by the Mean Value Theorem,

|ūε(x)− ūε(x− α(t))| ≤ |α(t)|(ūε)′|L∞ ≤ (CE0/ε)(ε
2) = CE0ε,
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by the asymptotics (ūε)′ ∼ ε2e−θε|x|. Thus, |ūε(x)− ūε(x− α(t))|L1∩L∞ ≤ CE0, and so

|ũ(x, t) − ūε(x)|L1∩L∞ ≤ CE0 for all t ≥ 0, for E0 sufficiently small. This verifies the

fourth inequality, yielding nonlinear stability and completing the result. �
Remark B.3. In the small-amplitude limit ε → 0, the shock shift α → +∞ as ε−1

times perturbation mass. Nonetheless, the stability estimates are uniform, independent

of ε.

Remark B.4. As discussed in Section 3.4, we have obtained stability for a class

L1 ∩ L∞ of perturbations that lead to shock shifts α not only of order 1/ε, but also

decaying subalgebraically to their limits α(+∞), if they exist.

Remark B.5. Here we have treated only the simple and explicit case of Burgers

equation. It would be very interesting to try to treat the small-amplitude system case

by a similarly simple argument based on this approach, using the singular perturba-

tion techniques developed in [MaZ3, PZ] to obtain the necessary sharpened ε-dependent

bounds analogous to those of Proposition B.1 in the Burgers case to try to obtain results

uniform in ε.

Appendix C. Alternative shock-tracking schemes. As discussed in Remarks

3.2 and 3.4, the quantity α(t), introduced for technical reasons in (3.19), has an inter-

pretation as an “instantaneous shock shift”, measuring the approximate location of a

perturbed viscous shock profile at time t. This suggests the question what is the “exact”

location of an asymptotic shock profile, and how well α(t) approximates this location.

The study of this question leads to an interesting class of alternative shock-tracking

schemes that are time-asymptotically equivalent to (3.20)–(3.21), based on localized pro-

jections, converging in the “infinite-localization” limit to a pointwise phase condition

introduced in [GMWZ] in the context of the small-viscosity limit.

Unlike a perturbed inviscid shock wave, which is sharply located by the presence of

a discontinuity, a perturbed viscous shock wave is smooth, so requires some extrinsic

criterion to define its location. Two intuitive definitions immediately come to mind. The

first, defining the location of an unperturbed stationary scalar shock u ≡ ū(x) without

loss of generality to be the origin, x = 0, is simply to define the location α(t) of a

perturbed shock ũ as the point α(t) at which ũ takes on the value ū(0), or

ũ(α(t), t) = ū(0). (C.1)

By the Implicit Function Theorem and the fact that ū′(0) = 0 (recall that ū is monotone,

as the solution of a scalar first-order traveling-wave ODE), this uniquely defines α for

|ũ′ − ū′|L∞(t) sufficiently small.

In the system case u ∈ R
n, we cannot satisfy (C.1) for all n coordinates using the

single parameter α, so we must choose some preferred coordinate direction, substituting

for (C.1) the system analog

 · ũ(α(t), t) =  · ū(0) (C.2)

for some vector  ∈ R
n such that  · ū′(0) = 0, a condition that, by the Implicit Function

Theorem, guarantees that α(t) is well defined for |ũ′ − ū′|L∞(t) sufficiently small.

Defining the perturbation variable

u(x, t) = ũ(x+ α(t), t)− ū(x), (C.3)
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following the notation of Section 3, we find that (C.2) translates to the phase condition

 · u(0, t) = 0, (C.4)

determining α(t) implicitly through (C.3). Condition (C.4) is particularly natural from

the point of view of the resolvent equation arising in the solution by Laplace transform of

the associated linearized equations. For, the resolvent equation consists of an underde-

termined ordinary differential boundary-value problem for which the standard treatment

is to remove indeterminacy by one or more phase conditions such as (C.4). Indeed,

this condition was introduced in [GMWZ] starting from just such considerations, for the

study of shock stability in the vanishing viscosity limit.3

The second intuitive definition is, following Goodman [G], to define the shock shift α

so as to minimize the least squares distance of ũ(x, t) from the shifted shock ū(x−α(t)),

that is, to minimize |u(·, t)|L2 . This leads to the “localized projection condition” (Euler-

Lagrange equation)

〈, u〉L2 = 0, 〈, ū′〉L2 = 1, (C.5)

where (x) := ū′(x)
|ū′|2

L2
(see Appendix D.4 for this calculation). Here, the word “localized”

refers to the fact that (x) decays as x → ±∞. More generally, we denote as a localized

projective condition any condition of the form (C.5) with  ∈ L1. This can be viewed

as a nonlocal version of the pointwise phase condition (C.4), converging to (C.4) in the

“infinite-localization limit” (x) → 0δ(x), 0 ∈ R
n constant, of a Dirac measure.

Each of these schemes (either of the form (C.4) or (C.5)) may be written as an evolution

equation in (u, α). Defining the perturbation variable u of (C.3), we find as in Section 3

that u obeys the partial differential equation

ut − Lu = N(u)x + α̇(ūx + ux) (C.6)

depending on α̇, defined implicitly by (C.5). Differentiating (C.5) with respect to t, we

obtain

0 = 〈, ut〉L2 = 〈, Lu+N(u)x + α̇(ūx + ux)〉L2 ,

which, using 〈, ūx〉L2 = 1, reduces to α̇(1 + 〈, ux〉L2) = −〈, Lu + N(u)x〉L2 , or, rear-

ranging,

α̇ = −〈, Lu+N(u)x〉L2

1 + 〈, ux〉L2

, (C.7)

well defined for u ∈ H2 with |u|H2 sufficiently small. See [G, TZ1, Z7] for related

discussions.

Together, (C.6)–(C.7) determine a closed system of evolution equations for (u, α̇),

similar in spirit to the system (3.20)–(3.21) of Section 3, but local in time, whereas the

system (3.20)–(3.21) involves “memory terms” depending on values of u, α̇ at earlier

times s ≤ t. For each choice of test function , there results a different evolution system,

and different solutions (u, α̇) and α, representing different decompositions of the common

solution ũ of (1.1) under investigation, a perturbed viscous shock wave.

We know already from the analysis of Corollary 3.7 that the solution ũ exists for all

time and converges to the set of translates of the background shock ū. However, it is not

3More precisely, a multi-dimensional version reducing to (C.4) in the one-dimensional case.
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a priori clear that the system (C.6)–(C.7) has a global solution for any particular choice

of , nor that the solution u should decay as t → 0. That is, it is not clear which of

these alternative shock-tracking schemes gives an accurate estimate of shock location in

the sense that the known convergence of ũ to the set of translates is revealed by decay

at the appropriate rate of the perturbation variable u.

The following proposition asserts that all of these schemes are accurate in this sense, so

that in principle any one of them could be used as the basis of an argument for nonlinear

stability. Indeed, all lead to the same rates of decay.

Proposition C.1. Let uref , αref denote the solution of (3.20)–(3.21) of Section 3, with

initial data ũ0− ū, E0 := |ũ0− ū|L1∩H2 sufficiently small, and let u, α denote the solution

with the same initial data of (C.6)–(C.7), with  ∈ L1. Then, u, uref exist for all t ≥ 0,

with

|u|Lp(t), |uref |Lp(t) ≤ CE0(1 + t)−
1
2 (1−1/p),

|u|H2(t), |uref |H2(t) ≤ CE0(1 + t)−1/4,

|u|L1∩H2(t)− |uref |L1∩H2(t) ≤ CE0(1 + t)−1/2,

|ũ− ū|L1∩H2(t) ≤ CE0,

|α|(t), |αref |(t) ≤ CE0,

|α− αref |(t) ≤ CE0(1 + t)−1/2.

(C.8)

Proof. A routine extension of the proof of Corollary 3.7, using the additional as-

sumption of H2 smallness of the initial data yields (3.27) augmented with |uref |H2(t) ≤
CE0(1 + t)−

1
4 . We omit the details. (But see the results of [MaZ2, MaZ4] in the much

more complicated system case.) The corresponding bounds (C.8)(i)–(ii), hence global

existence of u, thus follow provided that we can establish (C.8)(iii).

Expanding

u(x, t) = ũ(x+ α(t), t)− ū(x)

= ũ(x+ α(t), t)− ū(x+ (α− αref)) + ū(x+ (α− αref))− ū(x)

= uref(x+ (α− αref), t) +
(
ū(x+ (α− αref))− ū(x)

)
,

(C.9)

we find using the triangle inequality, followed by the Mean Value Theorem together with

exponential decay of ū′, that

|u|L1∩H2(t)− |uref |L1∩H2(t) ≤
∣∣ū(x+ (α− αref))− ū(x)

∣∣
L1∩H2 ≤ C|α− αref |(t),

so that (C.8)(iii) follows from (C.8)(vi). Likewise, (iv) follows from (i)–(iii) and (v),

which in turn follows from (vi) and the bounds on |αref |(t) established in Section 3.

Thus, it remains only to prove (C.8)(vi). Applying the definition 〈, u〉L2 = 0 to

expansion (C.9), we obtain

〈, uref(x+ (α− αref), t)〉L2 = −〈, ū(x+ (α− αref))− ū(x)〉L2

= −〈, (α− αref)ū′ +O(|α− αref |2)〉L2 .
(C.10)
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Now applying 〈, ū′〉L2 = 1, and rearranging, we obtain

|α− αref |(t) ≤ ||L1(|uref |L∞(t) + C|α− αref |2)
≤ C2(E0(1 + t)−1/2 + |α− αref |2),

(C.11)

yielding (C.8)(vi) provided |α − αref | is sufficiently small. The result then follows by

continuity of α, αref and smallness of α at t = 0 for E0 small, recalling that αref(0) =

0. �
Remark C.2. As the only bound used on  was its L1 norm, the proof of Proposition

C.1 is easily adapted to the case that  is a bounded measure, in particular the case of

a phase condition (C.4). This includes also more general cases such as the sum of point

measures, leading to a sort of “difference stencil” condition determining shock location.

Remark C.3. Recalling that αref(t) in general decays at most at a subalgebraic rate

(see Remark 3.9), we see from (C.8)(iv) that α and αref are time-asymptotically equivalent

in the sense that |α − αref | decays at a rate faster than the (general) rate of decay of

|αref |.
Remark C.4. For initial data in addition decaying as |u0(x)| ≤ CE0(1 + |x|)−3/2, it

is shown for general systems in [HR, RZ] that αref decays at the faster rate

|αref(t)− αref(+∞)| ≤ CE0(1 + t)−1/2. (C.12)

However, the same analysis yields sharpened bounds on uref as well, giving also

|uref(x, t)| ≤ CE0(1 + t)−1 for |x| ≤ θt,

θ > 0 sufficiently small. Substituting in (C.10), we obtain in place of (C.11) the estimate

|α− αref |(t) ≤ CE0(1 + t)−1||L1 + CE0(1 + t)−1/2

∫
|x|≥θt

|(x)|dx+ C|α− αref |2,

yielding |α− αref |(t) ≤ CE0(1 + t)−1 provided |(x)| ≤ C(1 + |x|)−3/2.

Thus, under this strengthened decay requirement on , we obtain time-asymptotic

equivalence of α and αref also in this case. Bound (C.12) is sharp, as can be seen by

direct computation on the linear term in (3.19) for data decaying as (1+ |x|)−3/2. (Note

that the linear O(E0) term dominates the nonlinear O(E2
0) term up to any finite time,

for E0 sufficiently small.)

Conclusions. By comparison with the scheme of Section 3, we find that each of

the alternative shock-tracking schemes described in this Appendix, based on localized

phase conditions, yields a globally defined solution exhibiting the same rates of decay

as the perturbation uref defined in Section 3. That is, essentially any tracking scheme

based on information that is “local to the shock” in the sense that it is accessible by

an inner product with an L1 function (resp. bounded measure)  yields a convergent

system of perturbation equations. Note, further, that the only information used to draw

these conclusions consists of estimates on (uref , αref) already established in [Z1, MaZ2,

MaZ3, MaZ4, HZ, RZ] for Evans-stable Lax or undercompressive type shocks of general

hyperbolic–parabolic systems. Thus, the conclusions of Proposition C.1 and Remarks
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C.2–C.4 remain valid for Evans-stable Lax or undercompressive shocks of general systems

of hyperbolic–parabolic conservation laws.4

An interesting question is whether we could carry out a nonlinear stability analysis

for these schemes from first principles rather than by comparison to our existing results.

This is particularly intriguing for the case of the pointwise phase condition (C.4), for

which resolvent (and thus pointwise Green function) bounds are available through the

framework developed in [GMWZ]. Besides the intrinsic interest of this question, there

are real advantages to the scheme based on (C.4) for extension to more complicated situ-

ations: for example, the fact that it is local in time (the scheme in Section 3 by contrast

involves “memory terms”), and that the phase condition (C.4) makes no reference to the

explicit structure of the system.

Appendix D. Miscellaneous estimates.

D.1. Bounds on e.

Lemma D.1. For some C > 0 and all t > 0,

|e(·, t)|L∞ ,≤ C, (D.1)

|ey(·, t)|Lp , |et(·, t)|Lp ≤ Ct−
1
2 (1−1/p), (D.2)

|ety(·, t)|Lp ≤ Ct−
1
2 (1−1/p)−1/2, (D.3)

|ey(y, t)|, |et(y, t)| ≤ Ct−1/2
(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
, (D.4)

|ety(y, t)| ≤ Ct−1
(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
. (D.5)

Proof. Bound (D.1) follows immediately from definition (3.7). Given (D.4)–(D.5),

bounds (D.2)–(D.3) follow as in the heat kernel estimates (2.7)–(2.8). Thus, it remains

only to establish (D.4)–(D.5). Differentiating (3.7), we have ey(y, t) =(
1

u+−u−

)(
e−

(−y−t)2

4t√
4πt

− e−
(−y+t)2

4t√
4πt

)
, yielding (D.4)(i). Differentiating (3.7) with respect

to t, we obtain

et(y, t) =
(−1

2

)(e− (−y−t)2

4t

√
4πt

+
e−

(−y+t)2

4t

√
4πt

)

−
( t−1/2

2

)( (−y − t)√
t

e−
(−y−t)2

4t

√
4πt

− (−y + t)√
t

e−
(−y+t)2

4t

√
4πt

)
,

(D.6)

4With the inclusion of additional phase conditions to account for additional degrees of freedom in the
time-asymptotic state (see [HZ, RZ]), these methods and estimates extend also to the overcompressive

case.
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yielding (D.4)(ii) immediately for t ≥ 1. By the Mean Value Theorem, for t ≤ 1,

∣∣∣ (−y − t)√
t

e−
(−y−t)2

4t

√
4πt

− (−y + t)√
t

e−
(−y+t)2

4t

√
4πt

∣∣∣ = t
∣∣∣
∫ 1

−1

∂z

( z√
t

e−
z2

4t

√
4πt

)
|z=−y+θt dθ

∣∣∣

≤ 2Ct
∣∣∣∂z

( z√
t

e−
z2

4t

√
4πt

)
|z=−y

∣∣∣
≤ C

(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
,

(D.7)

which, together with (D.6), yields again (D.4)(ii). Estimate (D.5) is found similarly.

Note that we have taken crucial account of cancellation in the small time estimates of

et, ety. �

Remark D.2. For t≤1, a calculation analogous to (D.7) yields |ey(y, t)|≤Ce−
(y+a−t)2

Mt ,

and thus |e(·, s)|L1 → 0 as s → 0.

D.2. Bounds on eε.

Lemma D.3. For some C > 0, all 0 < ε ≤ 1, and all t > 0,

|eε(·, t)|L∞ ,≤ C/ε, (D.8)

|eεy(·, t)|Lp ≤ (C/ε)t−
1
2 (1−1/p), (D.9)

|eεt(·, t)|Lp ≤ Ct−
1
2 (1−1/p), (D.10)

|eεty(·, t)|Lp ≤ Ct−
1
2 (1−1/p)−1/2, (D.11)

|eεy(y, t)| ≤ (C/ε)t−1/2
(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
, (D.12)

|eεt(y, t)| ≤ Ct−1/2
(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
, (D.13)

|eεty(y, t)| ≤ Ct−1
(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
. (D.14)

Proof. Bounds (D.8), (D.9), and (D.12) follow exactly as in the ε-independent case.

Bound (D.10) follows immediately provided that we can establish (D.13), as we now do.

Differentiating (B.6) with respect to t, we obtain

eεt (y, t) =
(−1

2

)(e− (−y−εt)2

4t

√
4πt

+
e−

(−y+εt)2

4t

√
4πt

)

−
( t−1/2

2ε

)( (−y − t)√
t

e−
(−y−εt)2

4t

√
4πt

− (−y + εt)√
t

e−
(−y+t)2

4t

√
4πt

)
,

(D.15)
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yielding (D.13) immediately for t ≥ ε−2. By the Mean Value Theorem, for t ≤ ε−2,

∣∣∣ (−y − εt)√
t

e−
(−y−εt)2

4t

√
4πt

− (−y + εt)√
t

e−
(−y+εt)2

4t

√
4πt

∣∣∣ = εt
∣∣∣
∫ 1

−1

∂z

( z√
t

e−
z2

4t

√
4πt

)
|z=−y+θεt dθ

∣∣∣

≤ 2Cεt
∣∣∣∂z

( z√
t

e−
z2

4t

√
4πt

)
|z=−y

∣∣∣
≤ Cε

(
e−

(−y−εt)2

Ct + e−
(−y+εt)2

Ct

)
,

(D.16)

which, together with (D.15), yields again (D.13). Bounds (D.11) and (D.14) follow

similarly. �
D.3. Bounds on Rε.

Lemma D.4. For Kf :=
∫
R
K(x, y)f(y) dy and any 1 ≤ p ≤ ∞,

|Kf |Lp ≤ sup
y

|K(·, y)|Lp |f |L1 , (D.17)

|K|Lp→Lp ≤ max{sup
x

|K(x, ·)|L1 , sup
y

|K(·, y)|L1}. (D.18)

Proof. By the triangle inequality,
∣∣∣
∫
R

K(·, y)f(y)dy
∣∣∣
Lp(x)

≤
∫
R

|K(·, y)|Lp |f(y)|dy ≤ sup
y

|K(·, y)|Lp |f |L1 ,

establishing (D.17). This yields also (D.18) in case p = 1. Likewise,
∣∣∣
∫
R

K(x, y)f(y)dy
∣∣∣ ≤

∫
R

|K(x, y)|dy|f |L∞ ≤ sup
x

|K(x, ·)|L1 |f |L∞ ,

establishing (D.18) for p = ∞. For general p, (D.18) then follows by the Riesz–Thorin

Interpolation Theorem. �

Lemma D.5. For some C > 0, all 0 < ε ≤ 1, and all t > 0,

sup
y

|Rε(·, t; y)|Lp(x), sup
x

|Rε(x, t; ·)|Lp(y) ≤ Ct−
1
2 (1−1/p), (D.19)

sup
y

|Rε
y(·, t; y)|Lp(x), sup

x
|Rε

y(x, t; ·)|Lp(y) ≤ Ct−
1
2 (1−1/p)− 1

2 . (D.20)

Proof. From (ūε)′ ∼ ε2e−θε|x|, we obtain

Rε(x, t; y) =
1

2ε
x(ūε)′(x)

∫ 1

0

(e− (θx−y−εt)2

4t

√
4πt

− e−
(θx−y+εt)2

4t

√
4πt

)
dθ

≤ Ce−θε|x|
∫ 1

0

(e− (θx−y−εt)2

4t

√
4πt

+
e−

(θx−y+εt)2

4t

√
4πt

)
dθ,

(D.21)

from which we obtain immediately |Rε|L∞ ≤ Ct−1/2, and, bounding Ce−θε|x| by C,

sup
x

|Rε|Lp(y) ≤ Ct−
1
2 (1−1/p)

for any p.
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Bounding the integral on the right-hand side by C1t
−1/2 and the L1(x) norm of

Ce−θε|x| by C2/ε, we find supy |Rε|L1(x) ≤ C2t
−1/2/ε ≤ C for t ≥ ε−2. For t ≤ ε−2,

on the other hand, we may estimate the integral (the middle displayed term in the first

equality) instead, using the Mean Value Theorem, as

∫ 1

0

(e− (θx−y−εt)2

4t

√
4πt

− e−
(θx−y+εt)2

4t

√
4πt

)
dθ ≤

∫ 1

0

(2εt)∂z

(e− (θx−y−z)2

4t

√
4πt

)
|z=z∗∈[−εt,εt] dθ

≤ (2εt)

∫ 1

0

Ct−1 dθ ≤ Cε,

to again obtain supy |Rε|L1(x) ≤ C2ε/ε ≤ C. The bounds on supy |Rε|Lp(x) then fol-

low by Hölder interpolation between the L1 and L∞ bounds, verifying (D.19) Similar

computations yield (D.20). �
D.4. Euler–Lagrange equations for least squares. Setting E(α) := 1

2 |u|2L2 = 1
2 |ũ(· +

α, t)− ū(·)|2L2 and differentiating, we have

dE

dα
= 〈ũ(·+ α, t)− ū(·), ũ′(·+ α, t)〉L2 = 〈u, ū′ + u′〉L2 = 〈u, ū′〉L2 ,

where, in the final equality, we have used 〈u, u′〉L2 =
∫ +∞
−∞ (u2/2)′(x)dx = 0 for u ∈ H1.
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