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1. Introduction

This paper investigates the support of nonnegative solutions of the
semilinear Cauchy problem

u,(x, t)-Au(x, t)+ [3(u(x, t))=0, (x, t)R"x(0, oo),

u(x, O) Uo(X), x R"
(1.1)

(where /3: [0, )---[0, ) is continuous, nondecreasing, and /3(0)=0), of
certain similar parabolic variational inequalities, and of various nonlinear
degenerate parabolic problems in one spatial dimension. Our work is
motivated by previous research of A. S. Kalashnikov [2] on problems of
these types in one spatial dimension and of H. Brezis and A. Friedman [1]
on variational inequalities.

Kalashnikov has discovered certain conditions on /3 which imply a re-
markable contrast in the behavior of nonnegative solutions of (1.1) as
compared to solutions of the heat equation with the same initial data. In
particular (here we specialize Kalashnikov’s results to the case at hand and
restate them slightly), he proved that (a) if

ds--<0% (1.2)

then any bounded, nonegative solution of (1) must vanish identically after
some finite time T> O, and (b) if

ds
(s[3(s)),/2

<, .(1.3/

then any solution with compact support initially has compact support at all
later times >0. In this paper we demonstrate that (1.3) (which implies
(1.2)) in fact gives rise to a somewhat more striking effect even in higher
dimensions; namely, if Uo(X) merely goes to zero uniformly as [x]--o, then
for each time >0, the support of the corresponding solution of (1.1) is
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bounded. The solution therefore experiences an "instantaneous shrinking"
of its support. (L. Tartar in unpublished work has obtained this result for the
case /3(s)= sT, 0< /< 1.) We show furthermore that (1.3) is necessary for
this phenomenon (at least in one dimension), in the sense that should the
integral in (1.3) diverge, then there exists some smooth function Uo(X) for
which Uo(X)---O as ]x[--% but the corresponding solution of (1.1) has
unbounded support at some time to > 0. These facts are proved in Section 2.
The instantaneous occurrence of compact support has been proved by

Brezis and Friedman [1] for solution of certain parabolic variational ine-
qualities. In Section 3 we employ our techniques to give very simple proofs
of this and several other results from [1]; most notably, we completely avoid
here the cumbersome construction of global comparison functions.

Section 4 comprises an extension of our techniques to one-dimensional,
possibly degenerate equations of the form

ut(x, t)-[cb(u(x, t))]x + [h(u(x, t))]x + [3(u(x, t))= O,
u(x, O)= Uo(X), x

(x, t)Rx (0, ),
(1.4)

Here we identify conditions on tk, h, and /3 again to insure the immediate
onset of compact support of the solution, whenever Uo(X)--0 as

2. Instantaneous shrinking of support

Our proof of Theorem 2.2 below depends upon the construction of
certain nontrivial solutions to the differential equations (2.12) and (2.15). As
we shall see (1.3) immediately implies the solvability of (2.15), but to solve
(2.12) we must first verify that (1.2) holds:

LEMMA 2.1. Let/3:[0, )---[0, ) be nondecreasing and continuous, with
0 [3 (0) and [3 (x) > 0 for x > O. Assume that

Then

ds
(sl3(sl)/

< oo. (2.1t

ds--<m. (2.2)

Proof. First let us prove that (2.1) implies

t(x)
lira +oo. (2.3)
x’,aO X

If (2.3) were false, there would exist some 0 <L < oo and a sequence x, NO
such that 1 > x, > 0 and

/3(x)/x _< L, n 1, 2 (2.4)
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We may in addition assume that the x,’s are selected so that

0 < x+l_< x,]4, n 1, 2,

Then

ds

(s(s))
. ds 1

>1 J (x,)l/2 by the monotonicity of/31/2 $1/2 /
xll2 1/2

’n+l
1/2 by (2.4)

Xn

2
1/2

1
by (2.5).

(2.5)

This contradicts assumption (2.1) and thereby proves (2.3). In view of (2.3)
we have

Hence

[3 (x)/x --> 6 > 0 for some 8 > 0 and each 0 < x < 1.

ds 1 Io ds
(s)-" (s(s))"

Next we introduce some useful terminology. For a given function
u(x, t): R [0, oo)--[0, ) let us denote the support of u(., t) by S(t); that is,

S(t)=-{xeR"lu(x, t)>O}, t_>0. (2.6)

In addition, set

D(q) =-- {x e R" Uo(X) >- q}, n >- O, (2.7)

for a given function Uo(X): R"--*[0, ). Notice that if Uo(X) satisfies (2.8)
below, then D() is a bounded set for each rl >0.

THEOREM 2.2. Let Uo(X) be a bounded, nonnegative function defined on
ll"; and suppose that

lim Uo(X) 0. (2.8)

Assume that/3: [0, oo)---[0, ) is nondecreasing and continuous, with 0
/3(0), /3(x)>0 for x>0, and

ds
(s[3(s))V2 <

. (2.9)

Then for each t>0, the support S(t) of the solution u(x, t) of (1.1) is
bounded. In addition,

lim u(x, t)=0 uniformly in t>_O, (2.10)

and there exists some T>0 such that u(x, t)--O for all >-T.
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Remark 2.3. For simplicity of exposition we will assume that u(x, t) is a
classical solution of (1.1); but our methods extend easily to cover more
general types of solutions, the existence of which follows, for example, from
nonlinear semigroup theory.
Note also that our proof really requires only that u satisfy the inequalities

u >- 0 and

u,(x, t)-Au(x, t)+13(u(x, t))<_O, (x, t)Rnx(0,). (1.1)’

Proof. First of all we construct two auxiliary functions. For each t->0,
define g(t) by the equation

g() ds
/(s) n+l’

(2.11)

Lemma 2.1 and (2.9) imply that the integral converges. (We may assume
with no loss of generality that

t(s)

and thus that g(t) is defined for all >_0. Indeed

ess sup u(x, t) ess sup Uo(X) =-- M;
R,x[O,oo) R

and so we may if necessary redefine/3(x) to be constant for x >-M+ 1. This
modification insures that the integral to infinity diverges, but does not
otherwise affect the problem.) Upon differentiating (2.11) we discover that

g’(t) =/3 (g(t))
t>0,

n+l

g(0)=0, g(t)>0 for t>0, (2.12)
g(t)---c as t--.

Next define f(x): (-, )---[0, ) by

()[ 2 Io ]-/n +i () d ds x, x O; (2.13)

in view of the inequalities

() a s(s), (2.14)

(2.9) is a necessary and sufficient condition for the integral in (2.13) m
converge. As before there is no loss of generality in assuming that f is
defined for all x R. We twice differentiate (2.13) to find

ff(x))
f"(x)=,

n+l

f(O) f’(O) O, f(x) > 0 for x > O, (2.15)
f(x)-o as Ixl  .
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Now fix some to>0 and choose Xo =(x, x,..., x’d) S(to). Define

w(x, t) g(to- t) + f(x x), 0_< -< to, x (x, x2,..., x") R".

Then for x R" and 0 < <- to,

w,(x, t)-Aw(x, t)+ {3(w(x, t))

( )-g’(to- t) if(x’ x) + {3 g(to- t) + f(x’ Xo)
i=1 i=1

=0, (2.16)

by the monotonicity of/3, (2.12), and (2.15). In addition, since f(x)--oo as
[x[-- and since u(x, t) is bounded, there is some ball B, centered at Xo,
such that u(x, t) <_ w(x, t), xOB, O<--t<--to. Now, from (1.1), (2.16), and
standard comparison theorems, the difference u-w must attain maximum
on the parabolic boundary of the cylinder B [0, to]. Since u-w < 0 on
OB x [0, to], but

0< U(Xo, to)= U(Xo, to)-W(Xo, to),

there must exist some point (1, 2,,,,, rt) B for which

(, 0). (2.17)U(Xo, to)+ g(to)+ f(i _Xo)<_u
i=1

Several consequences follow from this inequality. First, we note that
u(, 0)>_ g(to)>0; and so . D(g(to)).

(Recall the definition (2.7) of the sets D(rl), 1 >-0). Owing to assumption
(2.8), D(g(to)) is a bounded subset of R". Second, inequality (2.17) implies
that

max f(i x) <- u(, 0) <- M.
lin

Since f(x)---oo as Ix]--*oo, this estimate provides a bound, solely in terms of/3
and M, on the distance [Xo-21.
Hence we have proved that an arbitrary point Xo S(to) is at most a

bounded distance away from the bounded set D(g(to)): S(to) is therefore
itself bounded.
Next we prove (2.10). Inequality (2.17) implies that 2 D(u(xo, to)) and,

as we have seen, that 12-Xo[ is bounded, independently of to>0 and
U(Xo, to). Hence for each E >0, the set

D(E, to) =- {x R" u(x, to) >- }

is within a uniformly bounded (in and to) distance from the set D().
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The last assertion of the theorem is also a simple consequence of (2.17)" if
to>0 is selected so large that g(to) ->M+ l, then from (2.17) follows the
contradiction

M+ 1--< g(to)-< u(, 0)<_M.

Hence the set S(to) must be empty in this case.

Remark 2.4. The following example demonstrates that hypothesis (2.9)
is in a certain sense a necessary condition or Theorem 2.2. Suppose

ds
(st3 (s)),.= (2.81

and define/(x): [0, oo)--->[0, oo) by

() dsI,( [: d,]- =x.

Differentiating we find that

f"(x) t3(f(x)) x_>0. (2.19)

According to the inequalities (2.14) and to (2.18),

f(0)=l, f(x)>O for all x>0,

f(x)--,O as xoo.

Now choose any smooth, bounded function Uo(X): RI-(0, oo) such that

Uo(0)=2, lim Uo(X)=O and Uo(X)>-f(x) for x>0.

By continuity of the solution u(x, t) of

u,(x, t)-u(x, t)+ 13(u(x, t)),

u(x, o)= Uo(X), x e II, (x, t) e Rx (0, oo),

we have u(0, t)>_f(O) for some O<--t<--to. Then (2.19) and (2.21) imply that
u(x, t) >- f(x), 0-< x < 0% 0-< < to; and so, by (2o20), we see that S(t) is
unbounded for 0 --< --< to.

Notice that this argument does not preclude the possibility that there may
be certain initial functions Uo(X) satisfying (2.8) for which the conclusions of
Theorem 2.2 are valid, even if (2.9) fails.
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3. Estimates on the support of variational inequalities

In [1] Brezis and Friedman proved an instantaneous shrinking of support
assertion for the solutions of the parabolic variational inequality

u (x, t) -> 0, a.e. (x, t) R" x [0, ),

(u,(x, t)- Au(x, t))(v(x, t)- u(x, t)) >-- x, t))(v(x, t)- u(x, t)) a.e. (3.1)

We have

w,-Aw=-O>_[ in Q. (3.4)

The solution u(x, t) is bounded; and so there is some ball B, centered at Xo,
with radius so large that u(x, t) <- w(x, t) for x 0B, 0 -< --< to.

Set Q*= Q fqB [0, to]. By (3.3) and (3.4) the maximum of u-w must
occur on the parabolic boundary OpQ* of Q*. But u-w<_O on

for all v --> 0 a.e.,

u(x, O)= Uo(X), x R",

whenever Uo(X) satisfies (2.6) and

]’(x, t) --< -0 < 0, (x, t) R" x [0, oo), (3.2)

for some constant 0 >0. The demonstration of this result in [1] depends
upon the clever construction of a global comparison function with the
required properties, but in fact a simple proo follows as well from our
methods:

THEOREM 3.1 (Brezis-Friedman). Suppose that f L(R" (0, )) satisfies
(3.2) and that

uoLX(R")L(R")

satisfies (2.6). Let u(x, t) denote the corresponding solution of the variational
inequality (3.1).

Then for each t>0, the set S(t) is bounded. Furthermore lim u(x, t)=0

uniformly in >0, and there exists some T>0 such that u(x, t)--O for all
t>_T.

Proof. Let Q denote the support of u in R"(0, T); since u is a
continuous function in R"x (0, T), Q is open and

u,(x, t)-Au(x, t)= f(x, t), (x, t) Q. (3.3)

Now fix to > 0 and choose Xo S(to). Define

w(x, t)=
O(to- t)._ 0

2 4n Ix-xl=’ xR",O<-t<--to.
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OpO* f3 {t > 0}, whereas

U(Xo, to)-W(Xo, to)= U(Xo, to)>0.

Hence there exists some B such that

Oto o 1_ Xo[ w(, o) < u(, o).,,,(:o, to)+5-+ (3.5)

Therefore 2 D(Oto/2), and by assumption this is a bounded subset of R".
Estimate (3.5) also implies that Xo is at most a bounded distance from
D(Oto/2), and so S(to) is itself a bounded set.
The last two assertions of the theorem follow as in the proof of Theorem

2.2.

Remark 3.2. The conclusions of Theorem 3.1 can in fact be proved
under somewhat a weaker assumption than (3.2). Suppose instead that

lim sup f(x, t)< 0, uniformly in t. (3.6)

In this case we first choose a ball B, centered at the origin, such that
f(x, t) -< -O < O for xB and some 0>0. Again fix to>0 and choose
Xo S(to)\. Then as in the previous proof, u-w must attain its (positive)
maximum on the parabolic boundary OpQ of the open set Q
{O f3 B [0, to]}\/). If a maximum is attained at (2, r)/ x (0, to], then

0(to-r) 0 [2 Xo[2 w(2, r) < u(2, t-) <M;+ 4---
and this again implies a bound on the distance from Xo to/. More generally,
what we require of 1: is that there exist some function w(x, t) with W(Xo, to)=
0, minutia, w(x, t)>0 for each 0< < to, limll_= w(x, t)= uniformly in t,
and w, Aw >- f.
We now modify slightly the techniques of the previous proof to give

simple demonstrations of some other assertions in [1], concerning the
propagation of the support of solutions of (3.1) when Uo has compact
support initially.

THEOREM 3.2 (Brezis-Friedman). Let f satisfy (3.2) and suppose that
u(x, t) is the solution to the variational inequality (3.1).

(i) If Uo WE’(R") has compact support S, and f, f, L=(ll" x (0, T)) for
some T> O, then them exists a constant Cx such that

S(t) = S + B(Cc,/-t) (3.7)

’or all 0< < T. (Here B(r) is ball centered at zero with radius r and "+"
denotes the vector sum.)
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(ii) If Uo L(R") has compact support and f LO(R x (0, T)) ]’or some
T> O, then there exists a constant C2 such that

S(t) S + B(C2,/t [log t[) (3.8)

]’or all sufficiently small > O.

Proof of (i). Under the assumption on the smoothness of Uo and f, it
follows from the maximum principle that u, is bounded, say

ll,(1,-(o.-< c. (3.9)

Let to>0 be given and xoS(to)\S. Define the open set

Q {(x, t) 0 < < to, u(x, t) > 0, x S},

and the function

0 Ix Xo[2
w(x)=-- x R". (3.10)

2n

In Q we have u,-Au f and w,-Aw =-0 >--f. Since u(x)-w(x)---o% the
maximum of u-w is attained, and this maximum occurs on the parabolic
boundary OpQ of Q. But

u-w<_OonOpQ\OS(O, to) and U(Xo, to)-W(Xo)=U(Xo, to)>O.

Therefore there is some point (,/) OS (0, to) such that

I-ol0 w()_< u(, r).
2n

Hence

dist (Xo, S) -< I

U )1/2
<-- C3 by (3.9)

--<Ct/.
Since Xo is an arbitrary point in S(to), part (i) of Theorem 3.2 is proved.
For the proof of part (ii) we will need an auxiliary estimate"

LEMMA 3.4. Let v be a bounded solution of the heat equation in
(0, ), with bounded initial data Vo(X). I[ ]’or some xR", dist (x, supt Vo)->
> O, then them is a constant C4 such that

Iv(x, t)[--< Cae-’2/8’ for all > O. (3.11)
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Proof.

IV(X, t)]=C . Vo() e-lx-’12/4tt,/2 d,l
<-- CI e-I-el2

,pt.o t,/2 d

e-r14t
C t,/ r- dr

Cf e-Ss(n-2)/2 ds Ce-:/8t.
z[4t

Proo[ o[ (ii). Again choose to>0, xoS(to). Set (8tollogtol)/2 and
S, S + B(e). Now if Xo S,, we are done. If not, consider the open set

Q, ((x, t) 0 < < to, u(x, t) > O, x S,).

Reasoning as in the proof of (i) there must exist a point (, )0S, x (0, to)
such that

I - ol=0 w() u(, r),
2n

for w defined by (3.10). Hence

dist (Xo, S) <- dist (x, S) + Ix Xol <- e +2__n lu(, rl0

Under the assumptions of (ii), there exists a supremum norm bound on
A

Hence

where

By Lemma 3.4,

u(, r)-< tc + v(, r), (3.13)

v,(x, t)- av(x, t) O,
v (x, O) Uo(X).

(x, t) II" x (0, ),

v(,, r) <- Ce-’/8’ <_ Cne-’/8.o. (3.14)

Therefore from (3.12)-(3.14) we may calculate that

dist (Xo, S) <- E + (Csto+ C4e-’:/8t)1/z

(8 to Ilog to[)
+ ((C5 + C4)to)I/z by the definition of E

<- Cz(to [log to[)/2 for 0 < to < 1/e.
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The constant does not depend on the choice of Xo S(to); and so

dist (S(to), S) <- C2(to ]log to[) 1/2.
Remark 3.5. Inequality (3.8) is shown in [1] to be the best possible

estimate under the given hypotheses.

4. One-dimensional equations with higher order nonlinear terms and possible
degeneracies

In this section we restrict our attention to equations in one space variable,
but now consider more general and possibly degenerate Cauchy problems of
the form:

u,(x, 0-[6(u(x, t))L +t3(u(x, t))=0, (x, t)Rx(0, ),
u(x, O)= Uo(X), x R,

(4.1)

and

u,(x, t)-[th(u(x, t))]** + [A(u)], +[3(u(x, t)), (x, t) Rx (0, o),
u(x, O)= Uo(X), x R.

(4.2)

/3 [0, )-- [0, ) is nondecreasing, 0 =/3 (0),

/3(x)>0 for x>0;

4):[0, oo)---[0, oo) is continuously differentiable, strictly

increasing, and convex, 0 4)(0). (4.3)

Kalashnikov proved in [2] that the convergence of the integral (1.2) implies
(assuming also (4.3)) that each bounded, nonnegative solution of (4.1)
vanishes identically after some finite time T> 0. Additionally, if

ds
(sl3(d(s)))I/z <

oo where (x)=- (x)- for x >_ O, (4.4)

then spatial compact support is maintained for solutions of (4.1); that is, if
Uo(X) has compact support, then the support of u(x, t) is for all time
contained in some finite interval. In his recent dissertation [3] Kershner has
established similar results for equation (4.2) (and has discovered also some
interesting "one-sided compact support" effects.)

In Theorem 4.1 we prove that assumptions (1.2) and (4.4) together imply
the instantaneous onset of compact support for solutions of (4.1), if only
Uo(X)---O as Ixl-  . Theorem 4.3 is the same result for solutions of (4.2),
under an appropriate hypothesis on the behaviour of X(x) and a stronger
assumption on/3((s)) for 0 < s < 1.

Here tk, A and/3 are given nonlinear functions, various properties of which
we shall identify as forcing instantaneous shrinking of support phenomena.
First of all, we will henceforth assume
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THEOREM 4.1. Suppose that dO and 13 satisfy assumptions (4.3), (1.2), and
(4.4). Assume that Uo(X) is a bounded, nonnegative ]unction defined on R;
and that

Uo(X) O as Ixl- oo. (4.5)

Then [or each > O, the support S(t) o[ the solution u(x, t) of (4.1) is bounded.
In addition

lim u(x, t)= 0 uniformly in t-->O;

and there exists some T> 0 such that u(x, t)=-O for all >-T.

Remark 4.2.
nonnegative

By a "solution u(x, t) of (4.1)" we mean a bounded,

u e C(R x [0, > 0}),

which solves (4.1) in a classical sense in the open set {u>0}. Although
unique generalized solutions with even more regularity are known to exist
for a fairly wide class of functions 4 and/3 (see Kalashnikov [2]), no global
smoothness beyond continuity is needed for our proofs.

Proof. Define the auxiliary functions g(t) and f(x) according to equations
(2.11) and (2.13), except that in (2.13) we replace/3 by/3o and that we set
n 1. Next choose to> 0, Xo S(to); and then define

w(x, t)=-(f(x-xo)+h(to-t)), O<-t<-to, xll,

for

We now calculate

h (t) =- do(g(t)). (4.6)

+ t3(w)
--d#(f+ h)h’(to- t)- f"(x Xo) + (3 orb)(f+ h)

>_(_d#(h)h,+13o ) ( [3od )2
(h) + -f"+ 2

(f) since h and/3

are increasing and ’ is decreasing (by (4.3))
0 by (4.6), (2.12), and (2.15) (with/3o in place of/3). (4.7)

Having now proved estimate (4.7), we may finish by reasoning as in the
proof of Theorem 2.2.

THEOREM 4.3. Suppose that 4 and [3 satis[y (4.3), (1.2), and that there
exist positive constants C6 and to ]’or which

[2 (.)(X) " C6X, 1-2It, 0 -< x -- 1. (4.8)
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Suppose also that " [0, oo)---[0, oo) is continuously differentiable and

(o) is bounded on compact subsets of [0, oo). (4.9)

Let Uo be nonnegative and bounded, Uo(X)---O as Ixl oo.
Then the conclusions of Theorem 4.1 are valid for a solution u(x, t) of

(4.2).

Proof. From (1.2) it follows as before that u(x, t)=O for all greater
than or equal to some finite time T (depending only on /3 and M----
essl sup u(x, t)).

Select 0’< to <--T, Xo S(to), and then choose K> 0 so large that

(K) >_M+ 1. (4.10)

Next define

A(x)=-- <--1

and finally set

w(x, t) =-- (KA(x)0’/2 + (tO g)(to- t))

for Ix Xol--< L (L to be selected),

for Ix-xol L, O<--t<--to,

(4.11)

(4.12)

w >
[3

(KA"/2){1- 2Kto(to- 1)A
’/2-x 2DKtoA’/2-v2]

2 Lz[3o(KA/2) -J
[3o (KA.,/){1 2Ko(o- 1) 2DKa}>-
2 L2C6 LC6 j

by (4.6) and (4.11)

for L large enough.

Since W(Xo, to) 0 < U(Xo, to), but

w (x, t) u (x, t) >-- (K) M> 0 for X xo + L, O <-- <-- to,

by (4.10), there must exist some ,(xo-L, xo+L) for which

U(Xo, to)+d(KA(2Y"/2 + (4 g)(to))--< u(2, 0);

this estimate implies each conclusion of the theorem.

we obtain, for [x- Xo[--< L,

where g is given by equation (2.11).
Let us now derive a differential inequality for w in the rectangle [x- Xo[ <--

L, 0--< t--< to. We calculate as in the previous proof that

ew w,- [6(w)]= + [X(w)] + t3(w)
0

o(KAto/2>-K(A’/2)=+xx[X +(6 g)(to t))]+/3o(KA/)
2

Let D=--sup{(o)’(x)[O<_x<_K+(dog)(T)}; then by direct computation
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Remark 4.4. Our choice of the function A(x)’0/2 is inspired by a similar
construction of Kershner [3].
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