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Abstract—Downlink data rates can vary significantly in cellular
networks, with a potentially non-negligible effect on the user
experience. Content providers address this problem by using
different representations (e.g., picture resolution, video resolution
and rate) of the same content and switch among these based
on measurements collected during the connection. If it were
possible to know the achievable data rate before the connection
establishment, content providers could choose the most appropri-
ate representation from the very beginning. We have conducted
a measurement campaign involving 60 users connected to a
production network in France, to determine whether it is possible
to predict the achievable data rate using measurements collected,
before establishing the connection to the content provider, on the
operator’s network and on the mobile node. We show that it is
indeed possible to exploit these measurements to predict, with a
reasonable accuracy, the achievable data rate.

I. INTRODUCTION

In cellular networks, Quality of Service (QoS), in particular

throughput, is especially sensitive to the context of use. To

deal with changing QoS, content providers implement adaptive

delivery strategies, where the quality and the characteristics

of the delivered content are adjusted to match the achievable

QoS of each user. These adaptive strategies are reactive: the

characteristics of the content delivered at time t are based

on measurements collected between the beginning of the

connection and t.

Yet, content providers take some key decisions at the

beginning of the delivery. For instance, most web services

have several style sheets for their web pages, with a variable

number of elements and information. The decision of which

style sheet to deliver should be taken at the very beginning of

the connection, even though no past throughput observation is

available. Another example is adaptive video streaming. The

video is divided into several chunks, and each chunk encoded

at several bit-rate corresponding to different quality levels.

Throughout the delivery, the client selects the highest quality

representation with respect to an estimation of the available

throughput based on the most recent history. At the very

beginning, though, no such history is available. The delivery

often starts with a medium or low quality representation to be

on the safe side [1].

In both cases, content providers could avoid this guess

work if they could get a reasonably accurate estimate of the

achievable data rate with a given client. This estimate does not

need to be extremely precise. Getting the order of magnitude

can already be enough in most cases.

Several authors have proposed methods to predict the

achievable data rate for a connection in a cellular network

based on measurements collected during the connection itself.

By their very nature, such methods cannot be used at the

beginning of the connection. These methods use measurements

collected over a certain time period, from a few milliseconds

to a few minutes to make predictions over similar time scales.

Some recent proposals have addressed throughput predictions

based on the information about the radio link status [2]. This

information is available at the mobile phone of the end-user; it

allows thus instantaneous throughput prediction. However, the

authors study accurate short-term prediction (a few hundreds

of milliseconds at most), while the needs of content providers

are also for rough throughput estimation at the scale of a few

seconds (the length of a video chunk typically ranges from 2

to 10 seconds). Other proposals rely on instant measurements

at the physical layer or on traffic monitoring at the cell level to

infer the bandwidth of a user but they cannot accurately predict

the achievable throughput for a connection, as this value can

depend on a combination of all these factors.

In this paper we study instantaneous (i.e. history-less)

prediction of the achievable throughput of a connection over

a period of a few seconds. We are interested in identifying the

set of information that enable relatively accurate predictions.

Radio link information can be collected on the User Equip-

ments (UEs) , e.g., Received Signal Strength Indicator (RSSI),

Reference Signal Received Quality (RSRQ), and Signal to

Interference and Noise Ratio (SINR). Context information can

also be collected at UE: location by Global Positioning System

(GPS) coordinates, speed, terminal category and frequency

band used. Finally, the network operator can offer information

about the cellular network performance, including the average

cell throughput, the average number of users, the connection

success rate and the Block Error Ratio (BLER). One of the

questions we address is whether this latter set of information

brings significant improvement to the prediction.

We present and analyse the results of a measurement cam-

paign involving a total of 5,700 connections over 350 different

cells from a production network. We use supervised machine

learning techniques to analyze the contribution of different

measurements. Based on this analysis, we show that it is in-

deed possible to use instantaneous measurements collected in

the cellular network and on the mobile to predict throughput,

with a reasonable accuracy. We show that combining physical



layer measurements from the mobile with measurements from

the cellular network enables a much better prediction.

II. RELATED WORKS

Over the years, different methods have been proposed to

estimate and predict the available bandwidth in a computer

network (see, for example, the surveys by Prasad et al.

[3] and Chaudhari and Biradar [4] and references wherein).

These methods exploit timing or other characteristics of the

packets belonging to a connection in order to estimate the

available capacity. In other words, they can work only after

the connection has been established. Instead, we are interested

in predicting the available capacity before a connection is

established, therefore we cannot use these solutions.

Our work is more closely related to studies that have

shown that it is possible to predict the data-rate of a cellular

connection by using measurements collected at the physical

layer [2, 5–7]. Along similar lines, some authors have incorpo-

rated such data-rate predictions into adaptation algorithms for

video transmission [8–10]. The key element shared by these

papers is that, in cellular networks, UEs and base stations

periodically exchange radio channel measurements, which are

used by the base station to make scheduling decisions. To a

varying degree, these papers propose to propagate this infor-

mation to other layers and/or entities. For instance, CQIC [2]

presents a new transport layer protocol based on a cross-layer

design. While such an approach is possible, it calls for major

changes, not only in the mobile nodes and in the cellular

network but also in the Internet at large.

Our approach is not as radical: we collect data that are

already available today in production networks and terminals.

One key difference is that we propose to collect data from both

user terminals and base stations. These measurements can be

collected and combined by an ad-hoc element in the cellular

network, similarly to what proposed by the EONA frame-

work [11] or the DASH-Aware Network Element (DANE)

element in the recent Server and Network Assisted DASH

(SAND) standard.

III. INPUT DATASET

A. Measurement Campaign

We collected the data used in this paper thanks to 60

volunteers who have installed a dedicated application [12]

on their UE and used it for two weeks, in February 2016.

Throughout the day, as long as the terminal is turned on, the

application periodically downloads a file from a remote server,

using a production cellular network. The size of the file is

32 Mbits. The file download was done only when the cellular

network used Long Term Evolution (LTE) technology. The

server is in a well-provisioned data-center (in other words, the

server cannot be the bottleneck of the connection). Figure 1

shows the different elements involved.

Every time a UE downloads the file, it generates an entry.

This entry contains a timestamp and the time it took to

download the full file, which we convert into the achieved

throughput. It also contains several measurements logged from

operator

Remote
Server

Context
Radio

link

Download

time
RAN info

Fig. 1. Overall architecture of our data collection campaign

the UE Operating System (OS) and from the Radio Access

Network (RAN) management system. We detail some of them

in Section III-B below.

Finally, we filtered out the entries so that the entries

having one or multiple missing values and the entries that

used multiple base stations (i.e., handover) are rejected. We

obtained the entries of 31 volunteers, corresponding to 5,700

downloads on 350 different cells.

B. Dataset Description

We detail here the variables grouped into four families that

we use as inputs of the prediction algorithm.

UE Categories and Cell Frequency Band LTE2600 and

LTE800 base stations respectively correspond to cells using

2.6 GHz and 800 MHz frequency bands. LTE defines UE cat-

egories, which determine their performance specifications and

enable base stations to be aware of their expected performance

level. Only categories 3 and 4 have been used.

Physical Layer (Radio) On the UE we collect (i) Reference

Signal Received Power (RSRP) the reference signal power

across the channel bandwidth; and (ii) Reference Signal

Received Quality (RSRQ) the ratio between Reference Signal

Received Power (RSRP) and RSSI multiplied by the number

of resources blocks allocated to the UE.

Context Information Intuitively, the awareness of the con-

text in which the download operation occurs can help to

predict QoS. Context awareness has been used in various

other applications [13, 14]. In this paper, we consider the

following indicators: (i) Indoor/Outdoor, an heuristic based

on the number of visible GPS satellites from the UE reports

whether the UE is indoor or not; (ii) Distance to cell based

on the GPS coordinates provided by the application and a

network topology database; and (iii) Speed estimated thanks

to the GPS and the accelerometer.

RAN Measurements Operators use Network Manangement

System (NMS) to monitor their networks by collecting raw

counters of network events, typically aggregated over a period

of a fifteen minutes. We have studied tens of KPIs, intuitively

linked to the throughput, and we have concluded that the most

relevant metrics are: average cell throughput, average number

of users on the cell, BLER of the cell and Radio Resource



Control (RRC) setup success rate.

IV. PREDICTION MECHANISM

In this part, we study which data are correlated with

throughput and whether combining several data in inputs

improves the throughput prediction.

A. Methodology

We used a Random Forest algorithm [15] for the learning

technique. We used a K-fold method [16] with K = 10 for

validation. It consists in dividing the set of entries into 10 ran-

domly chosen subsets. Then we use 9 subsets to learn the best

parameter settings for the predictor and the remaining subset

is used as a test set. This well-known methodology enables to

check if a model can accurately predict the throughput for a

new entry.

The predictors are built as follows. First, we always in-

clude the UE category and the cell frequency band. Then,

we consider the families of available data as described in

Section III-B: Context, Radio link, and RAN. We look at

all the configurations of availability for each family. Let i be

an entry of our measurement campaign. Let yi be the actual

throughput of the download operation related to i. For each

predictor, the algorithm predicts the throughput ŷi and we

compare the predicted throughput ŷi to the actual achieved

throughput yi.

B. Performance Metrics

We have selected the two metrics, presented in Table I,

among those commonly used to evaluate the results of pre-

diction algorithms:

• The coefficient of determination, R2, represents the per-

centage of the variance of the throughput explained by

the predictor. It is calculated as follows: R2 = 1 −∑
n

i=1
(ŷi−yi)

2

∑
n

i=1
(ȳ−yi)

2 , where ȳ is the mean throughput.

• The median absolute error ratio, Ēi, is the error ratio

that half of the predictions reach. The error ratio is

measured by the absolute value of the difference between

the predicted and the actual throughput, divided by the

actual throughput.

To complete these results, we depict in Figure 2 the Empiri-

cal Cumulative Distribution Function (ECDF) of the prediction

error ratio. We focus on the three main predictors: Radio-only,

RAN-only, and Radio and RAN.

C. Results

Regarding the accuracy of the prediction, the results that we

obtain (especially a cross validated coefficient of determination

at 0.85 and a median error ratio at 0.1) are equivalent to

much more sophisticated non-instantaneous techniques [17].

Our study thus reveals that instantaneous prediction based on

data that are already available at the device and at the oper-

ator enables a suficient accurate prediction to allow content

providers to select a class of service for each end-users.

The analysis of the best predictor should balance the

accuracy (the higher the better) and the number of input

TABLE I
COMPARISON OF DIFFERENT PREDICTORS

Predictor # variables # entries R
2

Ēi

x = UE cat. + Cell band 2 5757 0.39 0.28
x + Radio 4 4677 0.70 0.19
x + RAN 6 2842 0.71 0.17
x + Context 5 3827 0.65 0.20
x + Radio + RAN 8 2626 0.85 0.11
x + Radio + Context 7 3193 0.81 0.13
x + RAN + Context 9 1871 0.74 0.15
x + Radio + RAN + Context 11 1813 0.84 0.10

Fig. 2. Cumulative distribution function of error rate

data (the fewer the easier to implement). The first line of

Table I shows that the cell band and the UE category do not

enable an accurate prediction with our supervised learning

technique. The context information allows an improvement,

but the two main families of collected data that lead to a more

accurate prediction are RAN and Radio link (the coefficient

of determination is 0.70 and 0.71 respectively). Second, both

RAN and Radio are complementary input data since the

combination of both increases the R2 to 0.85 and limits the

median error ratio to 0.1.

V. DISCUSSION

The achievable throughput of a connection over a cellular

network depends on the performance of all the components

involved in the transmission: the mobile device, the radio link,

the cell capacity, the core network, and even the server of the

content provider. A commonly accepted claim is that the net-

work operator and the content provider over-provision the core

network and Content Delivery Network (CDN) respectively so

that the bottleneck is located in the last-mile. If this is indeed

the case, predicting the data rate in the last-mile is equivalent

to predicting the end-to-end data rate.

Some researchers have also studied the case where the core

network [18] or the CDN [19] are under-provisioned, in which

case the bottleneck is not in the last-mile. In this case, predict-

ing the data rate on the wireless link is not enough to predict

the end-to-end rate but such a prediction can still be exploited

by combining it with information related to the status of the

core network and the CDN. Typically, since content providers

now use several CDNs [20] to deliver content, specific CDN

monitoring solutions emerges. It would therefore be possible



to integrate the results of these monitoring solutions as inputs

of our throughput prediction algorithm.

Another source of improvement for our algorithm is to use

other types of information related to the mobile phone of the

user. At the physical layer, the reception sensitivity and the

transmission power are two variables that can impact the QoS.

Finally, a limitation of our study is the relatively poor

availability of radio link information. The measurements about

radio link are accessed by the mobile device OS through

specific Application Programming Interfaces (APIs). Unfor-

tunately, OS developers increasingly restrict these OS APIs.

The Minimization of Drive Test (MDT) standard [21] can fix

this problem by allowing the network operator to access the

radio link information for each subscriber.

VI. CONCLUSION

Predicting a transmission throughput through cellular net-

work using information available before the connection is

a challenge. Our results confirm the correlation between

throughput and both physical layer and access network data.

We highlight how complementary are these inputs, which

call for a better coordination between phone manufacturers,

network operators and content providers. In our study, we col-

lected information about the user context, cellular link quality,

and access network performance data. These data are available

before the connection at the condition that network operators

and content providers share information. With a supervised

learning technique, we have shown that it is possible to get

an accurate prediction, which has the potential to help content

providers to set their adaptive technique at the very beginning

of the delivery. Our future work include the design of the

collaboration between operators and content providers.
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