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Instantaneous velocity displacement and contour

measurement by use of shadow moiré and

temporal wavelet analysis

Cho Jui Tay, Chenggen Quan, Yu Fu, and Yuanhao Huang

A temporal wavelet analysis method is proposed for velocity, displacement, and three-dimensional
surface-profile measurement of a continuously deforming object by use of the shadow moiré technique.
A grating is placed close to a deforming object, and its shadow is observed through the grating. The
moiré fringe patterns, generated by the interference of the grating lines and their shadows, are captured
by a high-speed CCD camera with a telecentric gauging lens. Instantaneous frequency of gray-value
variation is evaluated point by point with the continuous wavelet transform. From the instantaneous
frequency of each point on the object, the velocity, displacement, and high-quality surface profile at
different instants can be retrieved. In this application, two specimens are tested to demonstrate the
validity of the proposed method: One is a small coin with a rigid body motion, and the other is a simply
supported beam subjected to a central point load. The results are compared with those obtained from
temporal Fourier-transform and mechanical stylus methods. © 2004 Optical Society of America

OCIS codes: 100.7410, 120.4120, 100.5070, 120.6650.

1. Introduction

Moiré topography, which was proposed by Meadows
et al.1 and Takasaki2 in the early 1970’s, has been
widely applied in industry for three-dimensional
�3-D� profile measurement and surface analysis.
Generally, it is classified into two types3–5: projec-
tion moiré and shadow moiré, according to the optical
arrangement of the system. In projection moiré the
fringe pattern is generated by one’s projecting a grat-
ing onto the object and viewing it through a second
grating. In shadow moiré the fringe pattern is gen-
erated by the interference of the grating lines and
their shadows. It is a relatively simple technique
that uses a single grating placed close to the object.
One shortcoming of the shadow moiré is the difficulty
of determining whether the surface is convex or con-
cave from one fringe pattern.6 This is also a diffi-
culty encountered with other optical techniques.
Compared with other interferometric techniques, the

moiré technique is also less sensitive. To achieve
high-resolution measurements, researchers applied
different types of phase-shifting technique in moiré
topography7–12 in the 1990’s. However, the phase-
shifting methods were limited to surface contouring
of static objects only.

The moiré technique has also been applied to dy-
namic problems by use of the time-averaged
method.13–16 In these studies, vibration amplitude
is determined from time-averaged fringe patterns.
However, they did not apply the method to study the
instantaneous displacement and contour of an object
as a function of time. In many cases, high-
resolution 3-D dynamic surface profiling of objects
with continually changing profiles gives useful infor-
mation on the dynamic response and deformation of
the objects.

In the late 1990’s, temporal phase-analysis and
temporal phase-unwrapping techniques17–19 were in-
troduced to study continuously deformed objects.20–22

Other applications involve contouring surface with
discontinuities by wavelength-scanning interferome-
try.23,24 Jin et al.25 applied the same concept by
using the shadow moiré technique to retrieve point-
by-point height information with a frequency sweep-
ing method. The moiré patterns are varied by a
rotating grating, and a series of fringe patterns are
obtained. By one’s applying the Fourier-transform
method along a time axis, the frequency of intensity
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variation at each point is obtained; subsequently, the
height of each point is determined without the need
for spatial phase unwrapping. This method is more
suitable for measuring objects with discontinuities
such as step changes or spatially isolated surfaces.

Among temporal phase-analysis algorithms,26 the
Fourier-transform method27 is the most popular
method. The intensity fluctuation due to deforma-
tion of each pixel is first transformed, and one side of
the spectrum is filtered with a bandpass filter. The
filtered spectrum is inverse transformed to obtain the
wrapped phase. The phase values are then un-
wrapped along the time axis at each pixel. The ac-
curacy of the Fourier-transform analysis increases
with higher temporal frequency for a narrow spec-
trum. However, in most cases the deformation of
each point on an object is different, and the deforma-
tion of each point may also be nonlinear along the
time axis. An automatic filtering process becomes
difficult as the width of the bandpass filter has to be
broadened and introduces further errors in phase ex-
traction. This shortcoming of Fourier analysis can
be overcome by the use of the wavelet transform.

The wavelet transform28 is a new and robust math-
ematic tool for signal analysis. The continuous
wavelet transform �CWT� was also used for phase
extraction on different types of fringe pattern with
spatial carriers.29–31 These applications use one-
dimensional CWT along a spatial axis. The instan-
taneous frequency of gray-value variation can be
obtained by one’s extracting the ridge of the wavelet
coefficients, which is followed by an integration pro-
cess to retrieve the phase. The CWT also gains ap-
plications in analyzing moiré fringe patterns.32–34

However, all these techniques extract the phase in
the spatial domain.

The wavelet transform has also been applied to
temporal phase analysis of speckle interferometry.
The concept was first introduced by Colonna de Lega
in 1996, and some preliminary results were present-
ed.35,36 In this study, temporal wavelet analysis is
applied to retrieve the instantaneous velocity, dis-
placement, and contour of objects from a series of
shadow moiré fringe patterns captured by a high-
speed CCD camera. Two specimens are selected to
demonstrate the validity of the proposed method.
One is a simply supported beam with central-point
loading. The velocity and displacement on each
point are different. The velocity can be retrieved
directly from an instantaneous frequency on the
ridge; integration is then carried out to obtain the
displacement. Neither temporal nor spatial phase
unwrapping is needed for displacement measure-
ment. However, in most cases, spatial phase un-
wrapping is still necessary when the instantaneous
contour is reconstructed. To verify the accuracy of
instantaneous surface profiling, we subject a small
coin to a rigid body motion. The retrieved surface
profile is compared with results from the mechanical
stylus method.

2. Theoretical Analysis

Figure 1 shows the optical arrangement. A grating
is placed in the x–y plane and is close to the object
surface. A camera and a light source are placed at
distance l from the grating with a pitch p. The in-
tensity distribution captured by a CCD camera is
governed by the following equation25:

I� x, y� � a� x, y� � b� x, y�cos� 2�h� x, y�d

p�l � h� x, y��� , (1)

where a�x, y� and b�x, y� are the intensity bias and
modulation factor, respectively. d is the distance
between the light source and the camera, h�x, y� is
the distance from the grating plane to a point P�x, y�.
In normal cases, l �� h�x, y�, Eq. �1� can be simplified
as

I� x, y� � a� x, y� � b� x, y�cos�kh� x, y��, (2)

where k � 2�d�pl is a constant related to the optical
setup.

When the object deforms in the z direction, Eq. �2�
can be rewritten as

I� x, y; t� � a� x, y; t� � b� x, y; t�cos��xy�t��

� a� x, y; t� � b� x, y; t�cos	k�h� x, y; t�

� h0� x, y��
, (3)

where h0�x, y� is the initial distance between the
grating and a point on the object. h�x, y; t� is a
time-dependent distance of a point as the object de-
forms. Both a�x, y; t� and b�x, y; t� are slowly vary-
ing functions of time. A series of fringe patterns are
recorded during deformation, and, at each pixel, the
history of intensity variation is analyzed by the CWT.

The CWT of a signal s�t� is defined as its inner
product with a family of wavelet function �a,b�t�:

WS�a, b� � �

�

��

s�t��a,b*�t�dt, (4)

Fig. 1. Schematic layout of the shadow moiré system.
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where * denotes the complex conjugate. Given a
mother wavelet ��t�, a family �a,b�t� can be con-
structed by elementary operations consisting of time
shifts and scaling �i.e., dilation or contraction�. The
family of wavelets is defined by

�a,b�t� �
1

�a
��t � b

a
� , b � R, a � 0, (5)

where a is the scaling factor and b is the time shift.
The signal s�t� can be recovered from the wavelet
coefficients WS�a, b� by an inverse wavelet transform
given by

s�t� �
1

C�
�


�

��

�
0

��

WS�a, b���t � b

a
� da

a2 db, (6)

provided that the constant C� is given by

C� � �

�

�� ��̂����2

�
d� � ��, (7)

where �̂��� denotes the Fourier transform of ��t�.
The mother wavelet function ��t� is a zero-mean wig-
gle �real or complex�, localized both in time and in
frequency, and it satisfies the admissibility condition
given by expression �7�.

For analysis of phase-related properties of real
functions �e.g., determination of instantaneous fre-
quency�, the complex CWT is more suitable than the
real wavelet transform or the discrete wavelet trans-
form. The most commonly used mother wavelet for
such applications is the complex Morlet wavelet be-
cause it gives the smallest Heisenberg box37:

��t� � g�t�exp�i�0 t�, (8)

where g�t� � exp�
t2�2�. Here �0 � 2� is chosen to
satisfy the admissibility condition so that the wavelet
function is able to remove the negative frequencies as
well as avoid the dc contribution of the signals. In
this study the CWT expands a one-dimensional tem-
poral intensity variation of certain pixels into a two-
dimensional plane of scaling a �which is related to the
temporal frequency� and position b �which is related
to the time axis�. One shortcoming of the CWT is
the large error generated at the boundary of the sig-
nal. To overcome this problem, we extend the signal
at its left- and right-hand edges. Instead of the com-
monly adopted symmetrical or zero-padding exten-
sion techniques, a linear predictive extrapolation
method30 is used in this study. The advantage of
this extrapolation method is that the phase and fre-
quency of intensity variations are maintained. Af-
ter the CWT has been carried out on the extended
data, the wavelet coefficients are truncated appropri-
ately.

Substituting Eqs. �3� and �8� into Eq. �4�, one can

express the wavelet transform of the temporal inten-
sity variation on pixel P�x, y� as37

Wxy�a, b� �

�a

2
Axy�b�(ĝ	a�� � �xy��b��


� ��b, ��)	exp�i�xy�b��
, (9)

where � � �0�a and � is a corrective term that is
negligible if the following conditions are satisfied:

�0
2

��xy��b��2
� Axy��b��

� Axy�b��
�� 1, (10)

�0
2

��xy��b��

��xy��b��2
�� 1. (11)

The trajectory of maximum �Wxy�a, b��2 on the a–b
plane is called a ridge. Because � ĝ���� is maximum
at � � 0, and if ��b, �� is negligible, �Wxy�a, b��2 reaches
maximum when

�xy��b� � �rb � �0�arb, (12)

where �xy��b� is defined as the instantaneous fre-
quency of the signal and arb denotes the value of a at
instant b on the ridge. The instantaneous velocity of
point P�x, y� at instant b can be retrieved directly
from �xy��b�.

The wavelet transform on the ridge can then be
expressed as

Wxy�arb, b� �
�arb

2
Axy�b� ĝ�0�exp�i�xy�b��. (13)

The complex phase value �W of wavelet transform
Wxy�a, b� on the ridge equals �xy�b�, which represents
the instantaneous distance between the grating and
point P�x, y� on the object. To retrieve the instan-
taneous contour of the object, we calculate the arc-
tangent of the ratio of the imaginary and real parts of
the wavelet transform on the ridge:

�xy�b� � tan
1�Im�Wxy�arb, b��

Re�Wxy�arb, b��� , (14)

where Re and Im denote the real and imaginary parts
of the wavelet transform. However, �xy�b� obtained
from Eq. �14� is within �0, 2��, and phase unwrapping
on the spatial domain cannot be avoided. For the
deformation measurement, the phase value �xy�b� is
calculated by integration of the instantaneous fre-
quency in Eq. �12�, and the phase-unwrapping proce-
dure is avoided in both the temporal and the spatial
domains. The combination of phase values of each
pixel at certain instant T generates a phase map of
�T, and deformation between two instants T1 and T2

can be obtained by ��T2

 �T1

�.

3. Experimental Illustration

Figure 2 shows the experimental setup. A simply
supported Perspex beam is subjected to continuous
deformation in the z direction by a motorized stage.
A vertical sinusoidal grating with a frequency of 6
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lines�mm is positioned close to the beam. A 150-W
dc white-light source with optical fiber illuminates
the object at a certain angle. The moiré fringe pat-
terns are captured at a right angle by a high-speed
CCD camera. The magnification error on the object
due to out-of-plane deformation can be eliminated by
use of a telecentric gauging lens. As the imaging
area is smaller than the telecentric lens, each point
on the object is imaged at a right angle. In this case,
the camera and the light source do not have to be
placed at the same distance from the object as in Fig.
1. This will reduce error caused by misalignment.

As the direction of deformation is known, carrier
fringes are not introduced in this experiment, and the
grating is placed parallel to the beam.

In a subsequent experiment, a coin �specimen 2� is
subjected to a rigid body motion in the z direction.
To determine the absolute surface profile, we intro-
duce carrier fringes by rotating the grating by a small
angle in the x–z plane. As the angle of rotation is
small, the variation of grating pitch due to the rota-
tion is neglected.

4. Results and Discussion

Figure 3 shows three typical fringe patterns captured
on a part of a simply supported beam at intervals of
0.008 s with an imaging rate of 125 frames�s �fps�.
Distances d and l �see Fig. 1� are 360 and 465 mm,
respectively, and, as the grating is placed close to the
object, the assumption of l �� h�x, y� is satisfied.
Five hundred fringe patterns are captured during a
4-s period, and 128 consecutive images are selected
for processing. At each pixel, 128 sampling points
along the time axis are obtained. Figure 4�a� shows
the gray-value variation of points A and B �see Fig.
3�a��. Owing to the diffraction effect, the fringe con-

Fig. 2. Experimental setup.

Fig. 3. Typical moiré fringe patterns of a simply supported beam

at different instants: �a� 0.4 s, �b� 0.64 s, and �c� 0.88 s.

Fig. 4. �a� Gray values of points A and B. �b� Modulus of the

Morlet wavelet transform at point A. �c� Modulus of the Morlet

wavelet transform at point B.
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trast is low when the distance between the object and
the grating is large. A slight increase in contrast is
observed at both points A and B, which implies that
distance h�x, y; t� is decreasing. The error on phase
extraction due to amplitude variation can be omitted
as it is slow varying and expression �10� is satisfied.
A slight difference in amplitude between points A and
B is also observed due to nonuniform illumination
and surface reflectivity. This will not affect the re-
sults as each pixel in the image is processed indepen-
dently of one another. Only temporal frequencies
are considered as they contain information on veloc-
ity and displacement. Compared with point B,
higher temporal frequency is observed at point A.
This implies that point A deforms faster than point B.
The moduli of the Morlet wavelet transform of the
intensity variation of points A and B are shown in
Figs. 4�b� and 4�c�, respectively. The dashed curve
shows the ridge of the wavelet transformation in
which the maximum moduli are found. Only a
slight variation of arb is observed on the ridge, which
implies that the velocities do not vary significantly
along the time axis. The transient velocities of
points A and B, obtained directly from the instanta-
neous frequency, are given in Fig. 5�a�. Integration
of 2��arb is carried out on each pixel to obtain a
continuous temporal displacement curve at each
pixel �see Fig. 5�b��. Displacement between any two
instants T1 and T2 can be obtained from ��T2


 �T1
�.

Figure 6�a� shows a spatial displacement distribution
within two instants T1 � 0.4 s and T2 � 0.8 s.

For comparison, temporal Fourier analysis is also
applied to the same fringe patterns. As the displace-
ments of each pixel are different, different frequency

spectra are expected. To cover all frequencies, we
selected a relatively wider bandpass filter. The fil-
tered spectrum is inverse transformed to obtain a
wrapped phase. One-dimensional phase unwrap-
ping is then applied to each pixel along the time axis.
Figure 6�b� shows a 3-D displacement plot obtained
by a temporal Fourier transform. Figure 7 shows a
comparison of displacement on cross section C–C �see

Fig. 5. �a� Instantaneous velocity and �b� displacement at points

A and B.

Fig. 6. Displacement of the beam between two instants T1 � 0.4

s and T2 � 0.8 s by use of �a� temporal wavelet analysis and �b�

temporal Fourier analysis.

Fig. 7. Comparison of displacement at cross section C–C between

wavelet and Fourier analyses. FT, Fourier transform.
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Fig. 3�a��. It can be observed that results from these
two methods agree well. However, the wavelet
method provides a much smoother displacement
map. The fluctuation in the Fourier transform is
approximately 0.02 mm. However, the fluctuation
is less than 0.01 mm in the wavelet method. From
the comparison, it can be seen that more accurate
displacements are obtained with the wavelet method.
As the wavelet method calculates the optimized fre-
quency at each instant, it performs an adaptive band-
pass filtering of the measured signal and thus limits
the influence of various noise sources and increases
the resolution of the measurement significantly. In
contrast, the Fourier-transform method uses a
broader filter that is less efficient in eliminating the
influence of noise.

To retrieve an instantaneous contour of the speci-
men, we use Eq. �14� to obtain a wrapped phase map
�see Fig. 8�a��. Figures 8�b� and 8�c� show, respec-
tively, an unwrapped phase map in the spatial do-
main and a 3-D contour at instant T � 0.8 s. To
verify the accuracy of the contour measurement, we
subject a coin of 22.4-mm diameter with a diffused
surface to a rigid body motion in the z axis �see Fig.
9�a��. The distances d and l �see Fig. 1� are 300 and
450 mm, respectively, and the frequency of the grat-
ing is 6 lines�mm. The camera recording rate is 125
fps. Figures 9�b� and 9�c� show typical fringe pat-
terns recorded at different instants. A carrier fringe
is introduced by our slightly rotating the grating.
We selected 128 consecutive images for processing
from a total of 500 frames. Figure 10�a� shows the
gray-value variation of points D and E. Although
the initial phases of these two points are different,

Fig. 8. �a� Wrapped phase map, �b� phase map after unwrapping,

and �c� 3-D plot of instantaneous surface profile at t2 � 0.8 s.

Fig. 9. �a� Area of interest on a coin �specimen 2� and typical

moiré fringe patterns at �b� 0.4 s and �c� 0.8 s.

Fig. 10. �a� Gray values of points D and E. �b� Plot of moduli of

Morlet wavelet transform at points D and E.
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the frequencies of gray-value variation along the time
axis are the same, which implies that these two
points have similar velocities and displacements.
The moduli of the Morlet wavelet transform of these
two points are also the same, and one of them is
shown in Fig. 10�b�. Figures 11�a� and 11�b� show,
respectively, a wrapped and unwrapped phase map
at instant T � 0.8 s. In Fig. 11�b� the unwrapped
phase has been subtracted from a base-plane value to
remove the carrier effect. Figure 11�c� shows a 3-D
reconstruction of the area of interest on the coin.
Figure 12 shows a comparison of the profile on cross

section F–F �see Fig. 9�a�� by use of the proposed
wavelet and mechanical stylus methods. The re-
sults generally agree well, and the maximum discrep-
ancy is approximately 15 �m. This is of the same
order of error as that of the phase-shifting
method.8–12 It should be noted, however, that in the
phase-shifting method at least three images are re-
quired.

5. Concluding Remarks

In this paper a novel method based on temporal
wavelet analysis is presented to retrieve transient
velocity, displacement, and surface contour on a con-
tinuously deforming object. Unlike conventional
temporal Fourier analysis, this method, which em-
ploys shadow moiré, extracts the instantaneous fre-
quency point by point along the time axis with
continuous Morlet wavelet transforms. Velocity can
be retrieved directly from an instantaneous fre-
quency, and a high-quality deformation map can also
be obtained without any phase-unwrapping process.
However, spatial phase unwrapping is still needed
for the reconstruction of an instantaneous surface
contour. A comparison between wavelet and Fou-
rier analyses shows that the wavelet method can
limit the influence of various noise sources and im-
prove the results significantly. High-quality surface
profiles can also be retrieved from a continuous de-
formed object, for which the normal phase-shifting
method is not applicable. The results of contour
measurement compared well with the mechanical
stylus method, and the accuracy of the proposed
method is of the order of 10 �m. Similar to the
Fourier transform, the temporal wavelet method
could also be applied to wavelength-scanning inter-
ferometry and other similar contouring techniques.
It should gain more acceptance in speckle interferom-
etry, as the influence of noise is much more serious on
speckle patterns.
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surements of curved surface,” Opt. Lasers Eng. 36, 29–40

�2001�.

12. R. Henan, A. Tagliaferri, and R. Torroba, “A contouring ap-

proach using single grating digital shadow moiré with a phase
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