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Abstract. We show that the widely deployed RSA-OAEP encryption scheme of Bel-
lare and Rogaway (Eurocrypt 1994), which combines RSA with two rounds of an under-
lying Feistel network whose hash (i.e., round) functions are modeled as random oracles,
meets indistinguishability under chosen-plaintext attack (IND-CPA) in the standard
model based on simple, non-interactive, and non-interdependent assumptions on RSA
and the hash functions. To prove this, we first give a result on a more general notion called
“padding-based” encryption, saying that such a scheme is IND-CPA if (1) its underlying
padding transform satisfies a “fooling" condition against small-range distinguishers on a
class of high-entropy input distributions, and (2) its trapdoor permutation is sufficiently
lossy as defined by Peikert and Waters (STOC 2008). We then show that the first round
of OAEP satisfies condition (1) if its hash function is #-wise independent for ¢ roughly
proportional to the allowed message length. We clarify that this result requires the hash
function to be keyed, and for its key to be included in the public key of RSA-OAEP. We
also show that RSA satisfies condition (2) under the ®-Hiding Assumption of Cachin
et al. (Eurocrypt 1999). This is the first positive result about the instantiability of RSA-
OAERP. In particular, it increases confidence that chosen-plaintext attacks are unlikely to
be found against the scheme. In contrast, RSA-OAEP’s predecessor in PKCS #1 v1.5

was shown to be vulnerable to such attacks by Coron et al. (Eurocrypt 2000).

*A preliminary version of this paper appears in Advances in Cryptology—CRYPTO 2010, 30th Annual
International Cryptology Conference, T. Rabin ed., LNCS, Springer, 2010. This is the full version.
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1. Introduction

Bellare and Rogaway [5] designed the RSA-OAEP encryption scheme as a drop-in
replacement for RSA PKCS #1 v1.5 [55] with provable security. In particular, it follows
the same paradigm as RSA PKCS #1 v1.5 in that it encrypts a message of less than & bits
to a k-bit ciphertext (where k is the modulus length) by first applying a fast, randomized,
and invertible “padding transform” to the message before applying RSA. In the case of
RSA-OAEP, the underlying padding transform (which is itself called ‘OAEP’!) embeds
a message m and random coins r as s||(H(s) @r) where ‘||’ denotes concatenation,
s = (m]|0K) @ G (r) for some parameter k1, and G and H are hash functions (see Fig. 2
on p. 12). In contrast, PKCS #1 v1.5 essentially just concatenates m with 7.

RSA-OAEP was designed using the random oracle (RO) methodology [6]. This means
that the hash functions are modeled as independent truly random functions, available to
all parties via oracle access. When the scheme is implemented in practice, these oracles
are heuristically “instantiated" in certain ways using a cryptographic hash function. In
particular, this means that any oracle call by the scheme’s algorithms is replaced by the
computation of a concrete function. In terms of security, a cryptographic hash function
(or a function built from one) is of course not random nor computable only via an oracle
(it has a short, public description), but schemes designed using this methodology are
hoped to be secure. Unfortunately, a series of works, starting with the seminal paper
of Canetti et al. [20], showed that there are schemes secure in the RO model that are
insecure under every instantiation of the oracles; such RO model schemes are called
uninstantiable. Thus, to gain confidence in an RO model scheme, we should show that it
is instantiable, i.e., that the oracles admit a secure instantiation by efficiently computable
functions under well-defined assumptions. Then, when we instantiate the scheme, we
know that our goal is at least plausible. We feel this is especially important for a scheme
such as RSA-OAEP, which is by now widely standardized and implemented (e.g., in
SSH [32]).

Yet, while RO model schemes continue to be proposed, relatively few have been shown
to be instantiable. In particular, we are not aware of any result showing instantiability
of RSA-OAEDP, even under a relatively modest security model. In fact, the scheme has
come under criticism lately due to several works (discussed in Sect. 1.2) showing the
impossibility of certain types of instantiations under chosen-ciphertext attack (IND-
CCA) [52]. Fortunately, we bring some good news: We give reasonable assumptions
under which RSA-OAEP is secure against chosen-plaintext attack (IND-CPA) [31].
We believe this is an important step toward a better understanding of the scheme’s
security.

'We often use the same terminology for ‘ f-OAEP, which refers to OAEP using an abstract TDP f, with
the meaning hopefully clear from context.
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1.1. Our Contributions

Our result on the instantiability of RSA-OAEP is obtained via three steps or other results.
(These other results may also be of independent interest.) First, we show a general result
on the instantiability of “padding-based encryption,” of which f-OAEP is a special case,
under the assumption that the underlying padding transform is what we call a fooling
extractor and the trapdoor permutation is lossy [49]. We then show (as the second and
third steps, respectively) that OAEP and RSA satisfy the respective conditions under
suitable assumptions.

PADDING-BASED ENCRYPTION WITHOUT ROs. Our first result is a general theorem
about padding-based encryption (PBE), a notion formalized recently by Kiltz and
Pietrzak [38]. PBE generalizes the design methodology of PKCS #1 and RSA-OAEP
we already mentioned. Namely, we start with a k-bit to k-bit trapdoor permutation
(TDP) that satisfies a weak security notion like one-wayness. To “upgrade” the TDP to
an encryption scheme satisfying a strong security notion like IND-CPA, we design an
invertible “padding transform" which embeds a plaintext and random coins into a k-bit
string, to which we then apply the TDP. This methodology is quite natural and has long
been prevalent in practice, motivating the design of OAEP and later schemes such as
SAEP [13] and PSS-E [23]. The latter were all designed and analyzed in the RO model.

We show that the RO model is unnecessary in the design and analysis of IND-CPA
secure PBE. To do so, we formulate a connection between PBE and a new notion we call
“fooling extractor for small-range distinguishers." or just “fooling extractor,” and lossy
trapdoor functions as defined by Peikert and Waters [49]. Lossiness means that there is
an alternative, “lossy” key generation algorithm that outputs a public key indistinguish-
able from a normal one, but which induces a small (“lossy”) range function. This is
powerful because it allows one to prove security with respect to the lossy key generation
algorithm, where information-theoretic arguments apply. A fooling extractor is a kind
of randomness extractor (a concept introduced in [46]) whose output on a high-entropy
source looks random to any function (or distinguisher) with a small range.> Our result
says that if the padding transform of a PBE scheme is an “adaptive” fooling extractor for
sources of the form (m, R)—where m is a plaintext and R is the random coins (which
we call “encryption sources”’)—and its TDP is sufficiently lossy (the logarithm of its
lossy range size should be slightly less than the length of R), then the PBE scheme is
IND-CPA. Here “adaptive” means that m may depend on the choice of the extractor
seed. We call such padding transforms “encryption-compatible.”

OAEP FOOLS SMALL-RANGE DISTINGUISHERS. Our second result says that the OAEP
padding transform is encryption-compatible if the hash function G is 7-wise independent
for appropriate ¢ (roughly, proportional to the allowed message length).* Note that no

2Such schemes were called “simple embedding schemes” by Bellare and Rogaway [5], who discussed
them only on an intuitive level.

3In the formal definition, we actually consider an “external” distinguisher who gets the extractor seed;
see Sect. 3 for details.

‘In particular, this result requires that G is a keyed hash function whose key is included in the public key
for OAEP. On the other hand, cryptographic hash functions are typically unkeyed. But see “Using unkeyed
hash functions” below.
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restriction is put on hash function H; in particular, neither hash function is modeled as
an RO. The inspiration for our proof comes from the “Crooked" Leftover Hash Lemma
(LHL) of Dodis and Smith [26], especially its application to deterministic encryption
by Boldyreva et al. [10] (who also gave a simpler proof). Qualitatively, the Crooked
LHL says that (K, f(IT(K, X))) looks like (K, f(U)) for any small-range function
f, pairwise-independent function IT keyed by K, and high-entropy source X; in our
terminology, this says that a pairwise-independent function is a fooling extractor for
such X. In our application, we might naively view IT as the OAEP. There are two
problems with this. First, OAEP is not pairwise independent, even in the RO model.
Second, showing that OAEP is encryption-compatible entails showing adaptivity (as
defined above), whereas in the lemma K is independent of X.

To solve the first problem, we show that the Crooked LHL can be strengthened to say
that K, f(X, IT(K, X)) looks like K, f(X, U); i.e., that I1(K, X) looks random to f
even given X. The proof is a careful extension of the proof of the Crooked LHL in [10].
Then, by viewing X as the random coins in OAEP and I1 as the hash function G, we can
conclude that OAEP is a fooling extractor for any fixed encryption source (m, R), where
m is independent of K (note that our analysis does not use any properties of H—the
only fact we use about the second Feistel round is that it is invertible).

To solve the second problem, we extend an idea of Trevisan and Vadhan [61] to our
setting and show that if G is f-wise independent for large enough ¢, the probability that
the chosen seed (or key) is “bad” for a particular encryption source is so small that we
can take a union bound over all possible m and conclude that OAEP is in fact adaptive,
meaning it is indeed encryption-compatible. Interestingly, we obtain better parameters
in the case that f is regular, meaning every preimage set has the same size. However,
our analysis still goes through assuming that every preimage set is sufficiently large,
which we show can always be assumed with some loss in parameters.

LossINESS OF RSA. To instantiate RSA-OAEDP, it remains to show lossiness of RSA.
Our final result is that RSA is indeed lossy under reasonable assumptions. We first
show lossiness of RSA under the ®-Hiding Assumption (®A) of Cachin, Micali, and
Stadler [16]. ®A has been used as the basis for a number of efficient protocols, e.g.,
[15,16,29,33]. ®A states roughly that given an RSA modulus N = pgq, it is hard to
distinguish primes e that divide ¢ (N) = (p — 1)(¢ — 1) from those that do not. Normal
RSA parameters (N, e) are such that gcd(e, ¢ (N) = 1. Under ®A, we may alternatively
choose (N, e) such that e divides p — 1. The range of the RSA function is then reduced
by a factor 1/e. To resist known attacks, we can take the bit-length of e up to almost 1/4
that of N, giving RSA lossiness of almost k/4 bits, where k is the modulus length.> We
also stress that even though the only currently known algorithm to break the ®A with
such parameters is to factor the modulus N, it is considerably stronger than the standard
factoring/RSA assumptions.

In practice, e is usually chosen to be small for efficiency reasons. We observe that
in this case more lossiness can be achieved by considering multi-prime RSA where
N = p1--- py for m > 2 (for a fixed modulus length). In the lossy case, we choose
(N, e) such that e divides p; forall 1 <i < m — 1; the range of the RSA function is then

5We remark that the recent attacks on ®A [56] are for moduli of a special form that does not include RSA.
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reduced by a factor 1 /e”~!. Ina preliminary version of this paper [37], we showed that the
maximum bit-length of e in this case to avoid our best attack was roughly k(1/m —2/m?)
where k is the modulus length. By devising better attacks, this value was subsequently
reduced to k(2/3m2/3) by Herrmann [35] and k(1/m — 2/(em log(m + 1))), where e
is the base of the natural logarithm, by Tosu and Kunihiro [60]. So, for a fixed modulus
size we gain in lossiness only for small e. If we assume such multi-prime RSA moduli
are indistinguishable from two-prime ones, we can achieve such a gain in lossiness in
the case of standard (two-prime) RSA as well.

ImPLICATIONS FOR RSA-OAEP. Combining the results above gives that RSA-OAEP is
IND-CPA in the standard model under (rather surprisingly, at least to us) simple, non-
interactive, and non-interdependent assumptions on RSA and the hash functions. The
parameters for RSA-OAEP supported by our proofs are discussed in Sect. 6. While
they are considerably worse than what is expected in practice, we view the upshot of
our results not as the concrete parameters they support, but rather that they increase
the theoretical backing for the scheme’s security at a more qualitative level, showing it
can be instantiated at least for larger parameters. In particular, our results give us greater
confidence that chosen-plaintext attacks are unlikely to be found against the scheme; such
attacks are known against the predecessor of RSA-OAEP in PKCS #1 v1.5 [22]. That
said, we strongly encourage further research to try to improve the concrete parameters.
Indeed, initial steps in this direction have already been taken; see Sect. 1.3 below.

Moreover, our analysis brings to light to some simple modifications that may increase
the scheme’s security. The first is to key the hash function G. Although our results
have some interpretation in the case that G is a fixed function (see below), it may be
preferable for G to have an explicit, randomly selected key. It is in an interesting open
question whether our proof can be extended to function families that use shorter keys.
The second possible modification is to increase the length of the randomness versus that
of the redundancy in the message when encrypting short messages under RSA-OAEP. Of
course, we suggest these modifications only in cases where they do not impact efficiency
too severely.

USING UNKEYED HASH FUNCTIONS. Formally, our results assume G is randomly chosen
from a large family (i.e., it is a keyed hash function). However, our analysis actually
shows that almost every function (i.e. all but a very small fraction) from the family yields
a secure instantiation; we just do not know an explicit member that works. In other
words, it is not strictly necessary that G be randomly chosen. When G is instantiated in
practice using a fixed cryptographic hash function like MD5 or SHA, it is plausible that
the resulting instantiation is secure. One can also assume the fixed cryptographic hash
function to be implicitly keyed, where the key (in this context called the initialization
vector) is chosen and fixed by its designer, and hard-coded into its implementation.

ON CHOSEN-CIPHERTEXT SECURITY. Any extension of our results to security under
chosen-ciphertext attack (IND-CCA) must get around the negative results of Kiltz and
Pietrzak [38] (which we discuss in more detail in Sect. 1.2). One possible approach to
this is based on the fact that, by the results of Bellare and Palacio [4], the notion of plain-
text awareness (PA) + IND-CPA implies IND-CCA. Thus, in order to show IND-CCA
security of RSA-OAEP in the standard model it suffices, by our results, to show PA
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(which is an orthogonal property to privacy). To show the latter one could try to use non-
black-box assumptions on H along the lines of [18]. We leave a detailed investigation
to future work.

1.2. Related Work

SEcURITY OF OAEP IN THE RO MODEL. In their original paper [5], Bellare and Rogaway
showed that OAEP is IND-CPA assuming the TDP is one-way. They further showed it
achieves a notion they called “plaintext awareness." Subsequently, Shoup [58] observed
that the latter notion is too weak to imply security against chosen-ciphertext attacks, and
in fact there is no black-box proof of IND-CCA security of OAEP based on one-wayness
of the TDP. Fortunately, Fujisaki al. [28] proved that OAEP is nevertheless IND-CCA
assuming so-called “partial-domain" one-wayness and that partial-domain one-wayness
and (standard) one-wayness of RSA are equivalent.

SEcURITY OF OAEP wiTHOUT ROs. Results on instantiability of OAEP have so far
mainly been negative. Boldyreva and Fischlin [11] showed that (contrary to a conjecture
of Canetti [17]) one cannot securely instantiate even one of the two hash functions (while
still modeling the other as an RO) of OAEP under IND-CCA by a “perfectly one-way"
hash function [17,19] if one assumes only that f is partial-domain one-way. Brown [14]
and Paillier and Villar [47] later showed that there are no “key-preserving" black-box
proofs of IND-CCA security of RSA-OAEP based on one-wayness of RSA. Recently,
Kiltz and Pietrzak [38] (building on the earlier work of Dodis et al. [24] in the signature
context) generalized these results and showed that there is no black-box proof of IND-
CCA (or even NM-CPA) security of OAEP based on any property of the TDP satisfied
by an ideal (truly random) permutation.® In fact, their result can be extended to rule out
a black-box proof of NM-CPA security of OAEP assuming the TDP is lossy [39], so our
results are in some sense optimal given our assumptions.

INSTANTIATIONS OF RELATED SCHEMES. A positive instantiation result about a variant
of OAEP called OAEP++ [40] (where part of the transform is output in the clear) was
obtained by Boldyreva and Fischlin in [12]. They showed an instantiation that achieves
(some weak form of) non-malleability under chosen-plaintext attacks (NM-CPA) for
random messages, assuming the existence of non-malleable pseudorandom generators
(NM-PRGs).” We note that the approach of trying to obtain positive results for instan-
tiations under security notions weaker than IND-CCA originates from their work, and
the authors explicitly ask whether OAEP can be shown IND-CPA in the standard model
based on reasonable assumptions on the TDP and hash functions.

Another line of work has looked at instantiating other RO model schemes related
at least in spirit to OAEP. Canetti [17] showed that the IND-CPA scheme in [6] can
be instantiated using (a strong form of) perfectly one-way probabilistic hash functions.
More recently, the works of Canetti and Dakdouk [18], Pandey al. [48], and Boldyreva et

6Note, however, that their result does not rule out such a proof based on other properties of the TDP,
non-black-box assumptions on the hash functions, or in the case of a specific TDP like RSA.

TIn particular, their security notion does not imply IND-CPA since they consider random messages. We
also point out that it remains an open question whether NM-PRGs can be constructed.
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al. [9] obtained (partial) instantiations of the earlier IND-CCA scheme of [6]. Hotheinz
and Kiltz [36] recently showed an IND-CCA secure instantiation of a variant of the
DHIES scheme of [51].

1.3. Subsequent Work

Subsequent to the preliminary version of this paper [37], our results have been improved
in several ways. First, as mentioned above, Hermann [35] and Tosu and Kunihiro [60]
gave better cryptanalyses of our extension of ®A to the case of multiple primes. Fur-
thermore, Lewko al. [42] resolved an open problem raised by our work and proved
“approximate regularity” of lossy RSA on arithmetic progressions of sufficient length,
leading to improved security bounds for RSA-OAEP; see Sect. 6. They also showed
that this result gives a proof of IND-CPA security of RSA PKCS #1 v1.5. Subsequently,
Smith and Zhang [59] proved a stronger result on approximate regularity of lossy RSA
under a stronger assumption on RSA, leading to better parameters. They also fixed an er-
roneous claim of [42] about an “average-case” version of approximate regularity of lossy
RSA, which can be used to prove large consecutive runs of input bits simultaneously
hardcore without the stronger assumption on RSA.

Seurin [57] (building additionally on Freeman et al. [27]) showed how to extend our
results to the case of the Rabin trapdoor function [50] instead of RSA. Hemenway e/
al. [34] showed how to use our result on the lossiness of RSA under ®A to obtain new
constructions of non-committing encryption under this assumption. Bellare et al. [3]
proved IND-CPA security of RSA-OAEP under standard one-wayness of RSA, but
making a much stronger assumption on the hash functions than we do.

2. Preliminaries

s . $
NOTATION AND CONVENTIONS. For a probabilistic algorithm A, by y <— A(x), we mean
that A is executed on input x and the output is assigned to y, whereas if S is a finite

set then by s s , we mean that s is assigned a uniform element of S. We sometimes
use y < A(x; Coins) to make A’s random coins explicit. We denote by Pr[A(x) =>y:
... ] the probability that A outputs y on input x when x is sampled according to the
elided experiment. Unless otherwise specified, an algorithm may be probabilistic and
its running-time includes that of any overlying experiment. We denote by 1% the unary
encoding of the security parameter k. We sometimes suppress dependence on k for
readability. For i € N we denote by {0, 1}’ the set of all binary strings of length i. If s
is a string, then |s| denotes its length in bits, whereas if S is a set then |S| denotes its
cardinality. By ‘||” we denote string concatenation. All logarithms are base 2.

Basic DEFINITIONS. Writing Py (x) for the probability that arandom variable X putson x,
the statistical distance between random variables X and Y with the same range is given by
AX,Y) = % > IPx(x)— Py (x)|. If A(X, Y) is at most € then we say X, Y are e-close
and write X =, Y. We say that X is independent if it is independent of all other random
variables under consideration. The min-entropy of X is Hoo (X) = — log(max, Px (x)).
A random variable X over {0, 1}" is called an (n, £)-source if Hoo (X) > €.If £ = n then
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X is said to be uniform. Let f : A — B be a function. We denote by R(f) the range
of f,ie.,{be B|3ac A, f(a) =>b}. Wecall |R(f)| the range size of . We call f
regular if each pre-image set is the same size, i.e., |{x € D | f(x) = y}| is the same for
all y € R.

PUBLIC-KEY ENCRYPTION AND ITS SECURITY. A public-key encryption scheme with
message-space MsgSp is a triple of algorithms AE = (K, £, D). The key generation
algorithm KC returns a public key pk and matching secret key sk. The encryption algo-
rithm £ takes pk and a plaintext m to return a ciphertext. The deterministic decryption
algorithm D takes sk and a ciphertext c to return a plaintext. We require that for all
messages m € MsgSp

Pr [D(sk, E(pk, m)) = m - (pk, sk) <iic]

is (very close to) 1.
To anencryption scheme I[1 = (K, £, D) and an adversary A = (A, A), we associate
a chosen-plaintext attack experiment,

Experiment Expﬁitfpa (k)

b <10, 1) (pk, sk) < K(1%)
(mo, my, state) < A (pk)

¢ < Epk, my)

d il As(pk, c, state)

If d = b then return 1 else return 0

where we require A’s output to satisfy |mg| = |m|. Define the ind-cpa advantage of A
against IT as

AV 0 =2 Pr [ B = 1 -1

LOSSY TRAPDOOR PERMUTATIONS. A lossy trapdoor permutation (LTDP) generator [49]3
is a pair LTDP = (F, F") of algorithms. Algorithm F is a usual trapdoor permutation
(TDP) generator, namely it outputs a pair (f, f~') where f is a (description of a)
permutation on {0, 1}¥ and f~! its inverse. Algorithm F’ outputs a (description of a)
function £’ on {0, 1}¥. We call F the “injective mode" and F” the “lossy mode" of LTDP
respectively, and we call F “lossy” if it is the first component of some lossy TDP. For a
distinguisher D, define its /tdp-advantage against LTDP as

Itdp

AdVLTDP,D(k)ZPf[D(f)ﬁl 2 f_l)&f]—Pr[D(f’)zﬂ : f/i]-‘/].

8We note that [49] actually defines lossy trapdoor functions, but the extension to permutations is straight-
forward.
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We say LTDP has residual leakage s if for all f’ output by F’ we have |R(f')| < 2°.
The lossiness of LTDP is £ = k — s.

¢-WISE INDEPENDENT HASHING. Let H: K x D — R be a (keyed) hash function. We say

that H is t-wise independent [62] if for all distinctx, ..., x;, € Dandall y;,...,y; € R
$ 1
Pr[H(K,xl) =y A ... NHK,xp)) =y : K <—IC] = W
In other words, H(K, x1), ..., H(K, x;) are all uniform and independent.

3. Padding-Based Encryption from Lossy TDP + Fooling Extractor

In this section, we show a general result on how to build IND-CPA secure padding-
based encryption (PBE) without using random oracles, by combining a lossy TDP with
a “fooling extractor" for small-range distinguishers.

3.1. Background and Tools
We first provide the definitions relevant to our result.

PADDING-BASED ENCRYPTION. The idea behind padding-based encryption (PBE) is as
follows: We start with a k-bit to k-bit trapdoor permutation (e.g., RSA) and wish to build
a secure encryption scheme. As in [5], we are interested in encrypting messages of less
than k bits to ciphertexts of length k. It is well-known that we cannot simply encrypt
messages under the TDP directly to achieve strong security. So, in a PBE scheme we
“upgrade" the TDP by first applying a randomized and invertible “padding transform"
to a message prior to encryption.

Our definition of PBE largely follows the recent formalization in [38]. Let k, i, p be
three integers such that 4 p < k. A padding transform (7, 7) consists of two mappings
7 {0, 1}#TP — {0, 1} and # : {0, 1}¥ — {0, 1}* U {_L} such that 7 is injective and
the following consistency requirement is fulfilled:

Vm e {0, 1}*,r €{0,1}° : A((m|r)) =m.

A padding transform generator is an algorithm IT that on input 1¥ outputs a (description
of a) padding transform (7, 7). Let F be a k-bit trapdoor permutation generator and
IT be a padding transform generator. Define the associated padding-based encryption
scheme AE[F] = (K, €, D) with message-space {0, 1}** by

Alg K£(1%) Alg E((x, f), m) Alg D((x, £~1), y)
(. 7) < T1(15) P01 x —n(mlr) | x < fTIO)
T <« (7, 7) y < f(x) m < w(x)
(f, f—l) (if(lk) Return y Return m

Return ((r, f), (m, f~1))
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Padding-based encryption schemes have long been prevalent in practice, for example
PKCS #1 [55]. While OAEP [5] is the best-known, the notion also captures later schemes
such as SAEP [13] and PSS-E [23].

FOOLING EXTRACTORS. We define a new notion that we call “fooling extractor for small-
range distinguishers" or just “fooling extractor.” Intuitively, fooling extractors are a type
of randomness extractor [46] that “fools" distinguishers with small-range output. We
give some more intuition after the formal definition.

Definition 3.1. Let FExt: {0, 1}¢ x {0, 1} — {0, 1}* be a function and let X =
{X1,..., X4} beaclass of (n, £)-sources (as defined in Sect. 2). We say that FExt fools
range-2° distinguishers on X with probability 1 — ¢ (or is an (s, £)-fooling extractor for
X)) if for all functions f’ on {0, 1}" with range size at most 2° and all 1 <i < g:

(K, f(FEX{(K, X)) = (K, f'(U)),

where K is uniform on {0, 1}€ and U is uniform and independent on {0, 1}"*. We call K
the key or seed of FExt. Note that K is independent of i above.

We say that FExt adaptively fools range-2° distinguishers on X’ with probability 1 — ¢
(or is an adaptive (s, &)-fooling extractor for X) if for all functions f” on {0, 1}¥ with
range size at most 2°:

E [max A(f’(FExt(k’,Xi)), f/(U))} <e.

& qo,1ye LISi=a

Since A(K, f'(FEXX(K, X;)), (K, f'(U))) = Ex A(K', f(FEXt(X', X)), (K', f(U))),
the above implies that (K, f/(FExt(K, X;)) ~. (K, f'(U)) for i depending on K (or,
put differently, (K, f/(FExt(K, X;)) ~. (K, f'(U)) holds for every i over the same
choice of K).

As a useful special case, we say that FExt fools range-2° regular distinguishers on X
with probability 1 — ¢ (or is a regular (s, €)-fooling extractor for X') if we quantify only
over regular f in the definition. An adaptive regular (s, €)-fooling extractor for X is
defined analogously.

We note that while the intuition given prior to the definition describes fooling the
function f, it actually requires fooling an “implicit” or “external” distinguisher that sees
both the output f'(FExt(K, X;)) of f and the extractor seed K. This crucial for the def-
inition to be meaningful. Indeed, just asking that f'(FExt(K, X;)) be indistinguishable
from f(U) for all small-range functions f is equivalent to asking only that FExt(K, X;)
be indistinguishable from U. This latter requirement is trivial to achieve (if one is not
concerned with key length)—for example, by using K as a one-time pad.

We also note that the concept of fooling extractors was implicit in the work of Dodis
and Smith [26] on error-correction without leaking partial information, whose “Crooked”
Leftover Hash Lemma establishes in our language that a pairwise-independent function is
a (s, e)-fooling extractor for every singleton (n, £)-source X wheres < £ —2log(1/¢e)+
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2. This lemma was later applied in the context of deterministic public-key encryption
by Boldyreva et al. [10], who also gave a simpler proof.

3.2. The Result

To state our result, we first formalize the concept of encryption-compatible padding
transforms.

Definition 3.2. Let I1 be a padding transform generator whose coins are drawn from
Coins. Define the associated function iy : Coins x {0, 1}4t7 — {0, 1}* by h(cc, m||r)
= s (m|r) for all cc € Coins, m € {0, 1}*, r € {0, 1}*, where (7, #) < TI(1¥; cc).
Define the class X of encryption sources associated to IT as containing all sources
of the form (m, R), where m € {0, 1}* is fixed and R € {0, 1}” is uniform. (Note
that the class A7y therefore contains 2# distinct (i + p, p)-sources.) We say that IT is
(s, &)-encryption-compatible if hr as above is an adaptive (s, €)-fooling extractor for
AXT11. (Here Coins plays the role of {0, 1}¢ in Definition 3.1.) A regular (s, £)-encryption-
compatible padding transform generator is defined analogously.

Theorem 3.3. Let LTDP = (F, F’) be an LTDP with residual leakage s, and let T1 be
an (s, €)-encryption-compatible padding transform generator. Then, for any IND-CPA
adversary A against AEn[F], there is an adversary D against LTDP such that for all
keN

AdVET (h) < Adviyoe () +e.

Furthermore, the running-time of D is the time to run A.

Proof.  Given A = (A1, A>), we define three games, called G, G1, G2, in Fig. 1. Note
that game Gy is the experiment Explnd P4 (k) defining IND-CPA security. We claim that
for a distinguisher D against LTDP that is simple to construct, we have

+Ad ind- e ) = Pr[Go=>1] (1)
< Pr[Gi= 1]+ Adv s (k) 2)
< Pr[Gy= 1]+ Adv s (k) +¢ 3)
= % +AdvTPo () + e, )

from which the theorem follows by re-arranging terms. So let us justify the above.
Equation (1) is true by the definition of IND-CPA security.
For (2) we can construct a distinguisher D as required since Go, G do not use f~!
in any way.
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Game Gy: Game G: Game Gs:
b {01} (FfY S F b {01} fEF b {01}5 f = F
(m,#) &1 I (7, 7) (m,7) <105 I1 o (7, 7) (Wvﬁ)HH;H:(ﬂff)
(mg, mq, state) & Ay (f,10) (mo, my, state) S A (f,II) (mo, mq, state) — A (f,II)
r—{0,1}*; & — 7 (ms|I7) r 0,1}z — #(mallr) z < {0,1}*
d & Ao((f,11), f(x), state) d <& Ay((f,10), f(x), state) d < Ay((f,T0), f(x), state)
If d = b then Return 1 If d = b then Return 1 If d = b then Return 1

Else Return 0 Else Return 0 Else Return 0

Fig. 1. Games for the proof of Theorem 3.3. Shaded areas indicate the differences between games.

Equation (3) is true by the definition of encryption compatibility. Namely, since /1y in
the definition is an adaptive (s, &)-fooling extractor for A7, we know the expectation over
the coins cc is at most & for m depending on cc (and hence ), where (7, 7) < T1(1 k. co),
of A(f/'(w(m, R)), f'(U)), so in particular it holds for m = mj, in game G.

Finally, (4) uses the fact that in G, no information about b is given to A. Note that
the final two steps in the proof are information-theoretic, meaning they do not use any
assumption about A’s running-time. (]

Remark 3.4. The analogous result holds for regular LTDPs and regular encryption-
compatible padding transforms. That is, if the LTDP is regular, then it suffices to use
a regular encryption-compatible padding transform to obtain the same conclusion. The
latter may be easier to design or more efficient than in the general case; indeed, we get
better parameters for OAEP in the regular case in Sect. 4. Furthermore, known examples
of LTDPs (including RSA, as shown in Sect. 5) are regular, although a technical issue
about the domain of RSA versus the output range of OAEP makes it challenging to
exploit this for RSA-OAEP; see Sect. 6.

4. OAEP as a Fooling Extractor

In this section, we show that the OAEP padding transform of Bellare and Rogaway [5]
is encryption-compatible as defined in Sect. 3 if its initial hash function is #-wise inde-
pendent for ¢ depending on the message length and lossiness of the TDP.

4.1. OAEP

We recall the OAEP padding transform of Bellare and Rogaway [5], lifted to the “instan-
tiated” setting, i.e., where its hash functions may be keyed. (The original scheme was
defined for unkeyed hash functions.) Let G: Kg x {0, 1} — {0, 1}* and H: Ky x
{0, 1}* — {0, 1}” be hash functions. The associated padding transform generator
OAEP[G H] on input 1% returns (kg Kiys TKg.Ky)» Where K¢ <—ICg(1k) and
Ky % K1 (1%), defined via
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m € {0, 1} re {0,1}” m
(] % ]
[771
—m (7]
s + se {01} t€{0,1}°

Fig. 2. Algorithms g, (m,r) and g g, (s, 1) for OAEP[G, H].

Algorithm g g, (m|r) | Algorithm g, ,, (x)

s <—m®dG(Kg,r) st < x
t<—r®HKpy,s) r<—t®HKpy,s)
x < st m<—s®G(Kg,r)
Return x Return m

See Fig. 2 for a graphical illustration.

Remark 4.1.  Since we mainly study IND-CPA security, for simplicity we define above
the “no-redundancy" version of OAEP, i.e., corresponding to the “basic scheme" in [5].
However, all our results also holds for the redundant version. Additionally, as is typical
in the literature, we have defined OAEP to apply the G-function to the least-significant
bits of the input; in standards and implementations, it is typically the most significant
bits (where the order of m and r are switched). Again, we stress that our results hold in
either case.

4.2. Analysis

The following establishes that OAEP is encryption-compatible if the hash function G is
t-wise independent for appropriate z. No restriction is put on the other hash function H.
Indeed, our result also applies to SAEP [13] (although the latter is neither standardized
nor known to provide CCA security in the RO model, except in certain cases).

Theorem 4.2. Let G: Kg x {0, 1} — {0, 1}* and H: Ky x {0, 1}** — {0, 1} be
hash functions, and suppose G is t-wise independent. Let OAEP = OAEP[G, H]. Then

(1) OAEP is (s, &)-encryption-compatible where ¢ = 27" for u = 31’?(,0 -5 —

logt +2) — —zg‘;izs) -1

(2) OAEP is regular (s, €)-encryption-compatible where ¢ = 27" foru = Zt’w(p —
s—logt+2)—%sl+2— 1.
(3) When t = 2, OAEP is (s, ¢)-encryption-compatible where ¢ = 27" for u =

(p—s—2n)/4 -1

Note that parts (2) and (3) capture special cases of (1) in which we get better bounds.
The techniques used in the proof were first developed in the context of the classical
LHL by Trevisan and Vadhan [61] and Dodis, Sahai and Smith [25], though the style of
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presentation of our theorem statement and proof are inspired by Barak al. [1, Lemmal].
‘We mention that due to our use of (variants of) the Crooked LHL rather than the classical
one and the stucture of OAEP, some of the technical details differ in our case and require
new ideas.

Corollary 4.3. Let G: Kg x {0,1} — {0,1}* and H: Ky x {0, 1}* — {0, 1}*
be hash functions and suppose that G is t-wise independent for t > 3’;—‘:‘:. Then
OAEPI[G, H] is (s, &)-encryption-compatible where ¢ = exp(—c(p — s — logt)) for a
constant ¢ > 0.

In particular, ¢ &~ 1/2 for regular functions. For such a function, if p — s is at least
180, then ¢ is roughly 2780 for r = 10 and message lengths i < 23 (which for practical
purposes does not restrict the message-space). Applying Theorem 3.3, we see that if G
is 10-wise independent and the number of random bits used in OAEP is at least 180 bits
larger than the residual lossiness of the TDP, then the security of OAEP is tightly related
to that of the lossy TDP.

Remark 4.4.  To show security of OAEP against what we call key-independent chosen-
plaintext attack, it suffices to argue that OAEP[G, H] is a fooling extractor for any fixed
encryption source X = (m, R) where m € {0, 1}*. The latter holds for any ¢ > 0
and s < p — 2log(1/¢) + 2 assuming G is only pairwise-independent (i.e., t = 2).
See Appendix 8 for details.

Proof.  (of Theorem 4.2) We now prove the above theorem.

OverviEw. We write OAEP for OAEP[G, H]. The high-level idea for all three parts
of the theorem is the same. Fix a lossy function f’ with range size at most 2*. We
first show that for every fixed message m € {0, 1}**, with high probability (say 1 — &)
over the choice of K, the statistical distance between f'(OAEP(m, R)) and f'(U)
is small (say &). This aspect of the proof changes from part to part. We then take a
union bound to show that the above holds for all messages over the same choice of K¢
with probability at least 1 — 2#8. This means that the statistical distance between the
pair (Kg, f/(OAEP(@m, R))) and (K¢, f'(OAEP(U))) is at most ¢ = & + 2#§ for all
messages over the same choice of K. Finally, we express § as a function of £, and select
& to minimize this sum. Note that the entire argument works for any choice of H.
We first prove part (3) of the theorem, then part (2), and finally part (1).

PROOF OF PART (3). To prove part (3) of the theorem, we strengthen the Crooked LHL
of [26] to give the distinguisher access to the input to the fooling function as well its
output.

Lemma 4.5. (Augmented Crooked LHL.) Leth: KxA — B be apairwise-independent
function and let g: A x B — S be a function. Let X be a random variable on A such
that Heo (X) > 1g|S| + 21g(1/8) — 2 for some & > 0. Then
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A((K, g(X, h(K, X)), (K, g(X,U)) = &,

where K <iIC and U <iB.

The proof, which extends the proof of the Crooked LHL givenin [10],isin Appendix 1.

Now we let G play the role of 4 in Lemma 4.5 and let {0, 1}” and {0, 1}** play
the roles of A and B, respectively. Let g in the lemma be defined by g(a,b) =
fm®allb® H(Ky,m® a)) for arbitrary but fixed m € {0, 1}, Ky € Kp. It fol-
lows that OAEP is a (s, £)-fooling extractor for every fixed encryption source X of the
form (m, R). Part (3) of the theorem now follows by applying Markov’s inequality and
taking a union bound over all such sources.

In more detail, let f’ be any function on {0, 1}k to a set ) of size at most 2%, and let
X = (m, R) be any (i + p, p)-source, where m € {0, 1}** is fixed and R is uniform over
{0, 1}*. Define random variable Zg,, g, to take value A(f’ (k. ky (m|IR), f'(U)) for
U uniform on {0, l}k, if Kg = kg and Ky = kg, where here and in what follows the
probability is over the random choices of K and Ky (although as the distribution on
Ky does not matter — we use only the fact that it is independent of m, R, Kg). Then
applying Lemma 4.5 as explained above, we have E [ ZKs, Ky ] <1/2/|S|-27~. Thus
by Markov’s inequality

25=p
28

Pr|Zgsky = 8] <

for any &€ > 0. By a union bound, the probability that the above holds simultaneously
for all 2#* possible (u + p, p)-sources X = (m, R) is at least 1 — 8, where

It now follows (by a conditioning argument) that OAEP is (s, ¢)-encryption-compatible
with ¢ = & + 8;. Note that §; can be written in the form y - £~! (where y depends
on p, s, i but not &). Setting & = y!/? yields ¢ < 2y'/? and part (3) of the Theorem
follows by observing that

1
u=—loge > —E-logy—l

1
=5t 12 —p) =1
(0 —=s—=2w)/4—1

PrOOF OF PART (2). Instead of Markov’s inequality, the proof of part (2) of the theorem
uses a stronger tail inequality for z-wise independent random variables, due to Bellare
and Rompel [7] (our application was inspired by the use of 7-wise independence by
Trevisan and Vadhan [61] and Dodis, Sahai, and Smith [25]).

Let f’ be any function on {0, l}k to a set ) of size at most 2°. For this part of the
theorem, assume that f” is regular, that is, that each preimage set has size exactly 285,
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Let X = (m, R) be any (i + p, p)-source, where m € {0, 1}* is fixed and R is uniform
over {0, 1}*. For each r € {0, 1}” and y € ), define the random variable

7 — 27F iff/(an,KH(m”r))=y’
"y 0 otherwise,

where as before the probability is over the random choices of K and K g (although as
before the distribution on K i does not matter — we use only the fact that it is independent
ofm,R,K¢). Let Zy = Zr Zy,y. We claim that E [ Zy ] = 279, To see this, note that

E[Z,]=2 27 -Pc[fWIN=y]=P[fWIR) =y]=2""

where we use the fact that R is uniform and f’ is regular.

To bound the deviation of Zy from its mean, note that for a fixed y, the variables
{Z,y}re(0,1)» are t-wise independent (by the z-wise independence of G) and take values
in [0, 27”]. We can apply the following tail bound (modified from the original to apply
to random variables in [0, M ] rather than [0, 1]).

Lemma 4.6. (Bellare and Rompel [7]) Let Ay, ... A, be t-wise independent random
variables taking values in [0, M]. Let A = zi A;and § < 1. Then

foM N\
Pr([[A-E[A]|>6-E[A]]<¢ (m)

where ¢; < 3 and c; < 1 whent > 8.

Setting § = 2¢, we get that for every y € ),

. o t t/2
Pr[IZy—23|228~2‘]fC’(W) : (5)

By a union bound, the probability that there existsay € Y suchthat|Z,—27°| > 28275

is at most
t/2
t
2SC — A .
' (432 - 2—s)

Observe that if |Z, — 27| > 2& .27 for all y € ) then, letting Y denote the random
variable f'(nk; Kk, (m, R)), we have

1 - s -
A(Kg. Kn.Y).(Kg. K. f'(U)) < 5 312, =27 = 3 8-27 =&
yey yey



Instantiability of RSA-OAEP Under Chosen-Plaintext Attack 905

By another union bound, the probability that the above holds simultaneously for all 2#
possible (u + p, p)-sources X = (m, R) is at least 1 — §;, where

, 12
5 = 20+, (—) . ©)

4@2 .D=s+p

It now follows (by a conditioning argument) that OAEP is (s, ¢)-encryption-compatible
with ¢ = & + §;. Note that §; can be written in the form y - £~ (where y depends
ont,p,s, i but not 8). Setting & = y!/¢+D yields & < 2y!/¢+D and part (2) of the
Theorem follows by observing that

1
u oge = PR ogy
1 t
——t+—1(E(p—s—logt+2)+u+s+10gc,)—1
t nw+s+2
(p—s—logr+2) - HTIT2
Z 5 (pos—logr+2) 1

PROOF OF PART (1). We now turn to proving the lemma for general (not necessarily
balanced) functions f’. We first give a proof for approximately balanced functions, in
which no pre-image set is too small; we then show that this implies a bound for arbitrary
functions.

Assume for now that min,¢y |preimgf/ ()| = A - 2K for some real number 0 <
A < 1 (note that regularity corresponds to A = 1), where preimgf/ (y) = {x €
{0, 1}* | f(x) = y} We sketch how to modify the proof of part (2) under this as-
sumption; essentially, we end up with an extra factor of A in the denominator of Eq. 6.
We use the same definition of Zy as in part (2). Instead of E [ Zy ] = 279, we now have
E[Z,]|=Pr[ f(U|R) = y]= |preimg (y)|/2*. Thus, instead of Eq. (5), we have

Pr |12, — Ipreimg ;(1)1/2"| = 22 - Jpreimg - ()|/2* |

; t/2
=G 482 . imag 2k . op ’
€~ - |preimg ;. (y)|/

Using minycy [preimg s (y)| > A - 2k=5 and taking a union bound, we get that the
probability that there exists y € ) such that

1Zy — |preimg ; (y)|/25| = 22 - |preimg 1 (y)] /2] (7

is at most

¢ t/2
s —_—_—m—
e (452 2 20) ‘ ®)
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We can obtain a bound for arbitrary functions f’ by noting that every function f” is
“close” to a function with no small pre-images. Specifically:

Claim 4.7. Let f': {0, 1}F — Y where || < 2° be a function. For any real number
A > 0, there exists a function g": {0, 1}¥ — ) such that (i) minycy |preimgg, M| >
A - 2K=5: and (ii) the function g’ agrees with f” on a 1 — A fraction of its domain. In
particular, A(f'(U), g'(U)) < A.

We can now prove part (3) of the Theorem from Eq. (8) by choosing A = & in the
claim and then completing the analysis as in part (2). It remains to prove the claim.

Proof (of Claim 4.7): The idea is that we will take all the small pre-image sets of f’
and merge them together with some larger preimage set (e.g., if O has a large pre-image
set, then for all elements x such that preimgf/(f’(x)) is small, we set f(x) = 0). How
many elements can belong to small pre-image sets? There are at most 2° pre-image sets,
each of which contains at most A - 285 elements. So there are at most A - 2X elements
of the domain on which f’ has to be changed. (]

This concludes the proof of the Theorem.

5. Lossiness of RSA

In this section, we show that the RSA trapdoor permutation is lossy under reasonable
assumptions. In particular, we show that, for large enough encryption exponent e, RSA
is considerably lossy under the ®-Hiding Assumption of [16]. We then show that by
generalizing this assumption to multi-prime RSA we can get even more lossiness. Finally,
we propose a “Two-Or-m-Primes” Assumption that, when combined with the former,
amplifies the lossiness of standard (two-prime) RSA for small e.

5.1. Background on RSA and Notation

We denote by RS Ay the set of all tuples (N, p, g) such that N = pq is the product of

two distinct k /2-bit primes. Such an N is called an RSA modulus. By (N, p, q) < RS A
we mean that (N, p, ¢) is sampled according to the uniform distribution on RS A;. An
RSA TDP generator [53] is an algorithm F that returns (N, e), (N, d), where N is an
RSA modulus and ed = 1 (mod ¢(N)). (Here ¢(-) denotes Euler’s totient function,
so in particular ¢(N) = (p — 1)(g — 1).) The tuple (N, e) defines the permutation on
Zy given by f(x) = x® mod N, and similarly (N, d) defines its inverse. We say that a
lossy TDP generator LTDP = (F, F’) is an RSA LTDP if F is an RSA TDP generator.

To define the ®-Hiding Assumption and later some extensions of it, the following
notation is also useful. For i € N we denote by P; the set of all i-bit primes. Let R be a
relation on p and ¢g. By RSAi[R] we denote the subset of RS.Ay for that the relation
R holds on p and g. For example, let e be a prime. Then RSAi[p = 1 mod e] is the
set of all (N, p, q), where N = pgq is the product of two distinct k/2-bit primes p, g
and p = 1 mod e. That is, the relation R(p, ¢) is true if p = 1 mod e and ¢ is arbitrary.

By (N, p,q) < RS Ai[R] we mean that (N, p, q) is sampled according to the uniform
distribution on RS Ak[R].
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5.2. RSA Lossy TDP from ®-Hiding

®-HIDING AssuMPTION (DA). We recall the ©-Hiding Assumption of [16]. For an RSA
modulus N, we say that N ¢-hides a prime e if e | ¢ (V). Intuitively, the assumption is
that, given RSA modulus N, it is hard to distinguish primes which are ¢-hidden by N
from those that are not. Formally, let 0 < ¢ < 1/2 be a (public) constant determined
later. Consider the following two distributions:

Ri={(e,N) : e, <Pu: (N, p,q) < RSAlp = 1 mod €'}
Li={(e,N) : e<Pu; (N, p,q) <~RSAlp =1 mod e)}.

To a distinguisher D, we associate its ® A advantage defined as
Adv?) (k) = Pr[D(R1)=1]1—Pr[D(L)=1].

As shown in [16], distributions R, £ can be sampled efficiently assuming the widely
accepted Extended Riemann Hypothesis (as we need a density estimate on the number
of primes of a particular form).’

RSA LTDP rrom ®A. We construct an RSA LTDP based on ®A. In injective mode the
public key is (N, e) where e is not ¢-hidden by N, whereas in lossy mode it is. Namely,
define LTDPy = (Fi, F}) as follows:

Algorithm F; Algorithm 7]
e, e & Pek e Pek
(N.p.q) <RSAlp=1mode] |  (N.p.q)<RSAlp=1mode]
If ged(e, ¢ (N)) # 1 then return L Return (N, e)
d < ¢ " mod ¢(N)
Return ((N, e), (N, d))

The fact that algorithm 77 has only a very small probability of failure (returning L)
follows from the fact that ¢ (V) can have only a constant number of prime factors of
length ck and Bertrand’s Postulate.

Proposition 5.1. Suppose there is a distinguisher D against LTDP|. Then there is a
distinguisher D’ such that for all k € N

Itd
Advl_tT]I)DPl,D(k) < Adv}, (k).

Furthermore, the running-time of D' is that of D. LTDP| has lossiness ck.

The proof is straightforward.

From a practical perspective, a drawback of LTDP; is that F; chooses N = pq
in a non-standard way, so that it hides a prime of the same length as e. Moreover,
for small values of e it returns L with high probability. This is done for consistency

9This is done by choosing a uniform (1/2 — ¢)k-bit number x until p = xe 4 1 is a prime.
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with how [16] formulated ®A. But, to address this, we also propose what we call the
Enhanced ®A (E®A), which says that N generated in the non-standard way (i.e., by
J1) is indistinguishable from one chosen at random subject to gcd(e, ¢ (N)) = 1.10 we
conjecture that E® A holds for all values of ¢ that ®A does. Details follow.

ENHANCED ®-HIDING AsSUMPTION. We say that the Enhanced ®-Hiding Assumption
(E®A) holds for c if the following two distributions R+ and L+ are computationally
indistinguishable:

Ris = {(e, N) : e <P (N, p,q) ERSA
L1+ ={(e,N) : e <Pu: (N, p,q) <RSAlp =1 mod e])}.

To a distinguisher D, we associate its EPA advantage defined as
AdVE%A(k) =Pr[D(R1x)=1]1-Pr[D(L1+)=1].

As before, distributions R+, L1+ can be sampled efficiently assuming the widely ac-
cepted Extended Riemann Hypothesis. We conjecture that E® A holds for all values of
K¢, c that A does.

RSA LTDP FroM E®A. Now define LTDP |+ = (Fi«, F|.) where
Algorithm F«
e Pk
(N, p,q) & RS A

If gcd(e, ¢ (N)) # 1 then Return L
Else Return (N, e), (N, d)

and F|. = Fj in Sect. 5.2. Again we have the probability that Fy« returns L is very
small. We stress that Fi«, unlike 7, chooses p, g at random as is typical in practice.
We have the following proposition.

Proposition 5.2. [f the Enhanced ®-Hiding Assumption holds for c, then LTDPx =
(Fi+, Fi+) is an RSA LTDP with lossiness ck. In particular, suppose there is a distin-
guisher D against LTDP . Then there is a distinguisher D' such that

Itdp

AdVLTDPl*

k) < AdvEDMK).

¢
Furthermore, the running-time of D' is that of D.

Again, the proof is straightforward.

PARAMETERS FOR LTDP ;. When e is too large, ® A can be broken by using Coppersmith’s
method for finding small roots of a univariate modulo an unknown divisor of N [21,43].

10 Additionally, in practice the encryption exponent e is usually fixed. This can be addressed by parameter-
izing E®A by a fixed e instead of choosing it at random. Note that for ¢ = 3 one should make bothe | p — 1
and e | ¢ — 1 in the lossy case (otherwise the assumption is false [16]).
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Namely, consider the polynomial 7 (x) = ex-+1 mod p.Coppersmith’s method allows us
to find all roots of 7 smaller than N'/#, and thus factor N, in lossy mode in polynomial
time if ¢ > 1/4. (This is essentially the “factoring with high bits known" attack.)
More specifically, applying [43, Theorem1], N can be factored in time poly(log N) and
O(N®)ifc =1/4 — ¢ (i.e., loge > log N(1/4 — ¢)). For example, with modulus size
k = 2048, we can set ¢ = .04 for 80-bit security (to enforce ke > 80) and obtain
2048(1/4 — 0.04) = 430 bits of lossiness.

5.3. RSA Lossy TDP from Multi-prime ®-Hiding

Multi-prime RSA (according to [41] the earliest reference is [54]) is a generalization of
RSA tomoduli N = p; - -- p,, of length k with m > 2 prime factors of equal bit-length.
Multi-prime RSA is of interest to practitioners since it allows to speed up decryption
and is included in RSA PKCS #1 v2.1. We are interested in it here because for it we can
show greater lossiness, in particular with smaller encryption exponent e.

NOTATION AND TERMINOLOGY. Let m > 2 be fixed. We denote by MRS A the set
of all tuples (N, p1, ..., pm), where N = p1 - -+ py, is the product of distinct k/m-bit

primes. Such an N is called an m-prime RSA modulus. By (N, p1, ..., Pm) & MRS A
we mean that (N, pi, ..., py) is sampled according to the uniform distribution on
MRS Ag. The rest of the notation and terminology of Sect. 5 is extended to the multi-
prime setting in the obvious way.

MuLTI ®-HIDING ASSUMPTION. For an m-prime RSA modulus N, let us say that N m¢-
hides aprime e ife | p; — 1 forall 1 <i < m — 1. Intuitively, the assumption is that,
given such N, it is hard to distinguish primes which are m¢-hidden by N from those that
do not divide p; — 1 forany 1 <i < m. Formally, let m = m(k) > 2 be a polynomial
and let ¢ = c(k) be an inverse polynomial determined later. Consider the following two
distributions:

Ro={(e,N) : e.e’ <Po: (N.p1.....p)) < MRSApizm_1 = 1 mod €1}
Ly={(e,N): e<Pui; (N, pir.... p) < MRSApicm_1 = 1 mod el}.

Above and in what follows, by p;<,—1 = 1 mod e we mean that p; = 1 mod e for all
1 <i <m — 1. To adistinguisher D, we associate its M PA advantage defined as

Aded?'A (k) = Pr[D(Ry))=1]—-Pr[D(Ly)=1].

m,c,D

As before, distributions R, £, can be sampled efficiently assuming the widely accepted
Extended Riemann Hypothesis.

Note that if we had required that in the lossy case N = pj - - - p;, is such that e | p; for
all 1 <i < m,thenin this case we would always have N = 1 mod e. But in the injective
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case N mod e is random, which would lead to a trivial distinguishing algorithm. This
explains why we do not impose e | p;, in the lossy case above.

MuLti-PRIME RSA LTDP FrRoM M®A. We construct a multi-prime RSA LTDP based
on M®A having lossiness (m — 1) log e, where in lossy mode N m¢-hides e. Namely,
define LTDP;, = (F3, F) as follows:

Algorithm 7, Algorithm 7}
e, & Per e Pek
N, Pt Pm) (N p1.... pm) < MRS Ay
<~ MRS Ai[pi<m—1 = 1 mod €'] [pi<m—1 = 1 mod e]
If ged(e, ¢ (N)) # 1 then Return L Return (N, e)
d < e " mod ¢(N)
Else return (N, ¢), (N, d)

Proposition 5.3.  Suppose there is a distinguisher D against LTDP,. Then there is a
distinguisher D’ such that for all k € N

Itdp M®A
Advo (k) < AdVM®S (k).
Furthermore, the running-time of D' is that of D. LTDP, has lossiness (m — 1)ck.

The proof is straightforward.

PARAMETERS FOR LTDP,. Using [35, Section 3] we can break the M® A in time poly (log N)
and O (N¥®) if

c>1/m— —e&.

2
3vm3

For m > 3 this improves the bound with ¢ > 1/m — 1/m?> — ¢ obtained from
“factoring with high bits known"; for m > 4 this improves the bound with ¢ >

(l/m)(]/(m—l)_(l/m)m/(m—l)
I/m=2 m(n—1)

that Tosu and Kunihiro [60] showed a bound with ¢ > 1/m — m where e is the
base of the natural logarithm, which is better than [35] for m > 6 (see [60, Section4.4]
for comparison).

For example, with modulus size k = 2048 and m = 3 (m = 4, 5) we set ¢ = .04 (for
about 80-bit security) and obtain 676 (778, 822) bits of lossiness for LTDP,, according
to Proposition 5.3.

— ¢ from the preliminary version [37]. We also note

5.4. Small-Exponent RSA LTDP from 2-vs-m Primes

For efficiency reasons, the public RSA exponent e is typically not chosen to be too large
in practice. (For example, researchers at UC San Diego [63] found that 99.5 % of the
certificates in the campus’s TLS corpus had e = 2'® + 1.) Therefore, we investigate
the possibility of using an additional assumption to “amplify” the lossiness of RSA for
small e.
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Our high-level idea is to assume that it is hard to distinguish N = pg where p, g
are primes of length k/2 from N = py --- p,, form > 2, where py, ..., p,, are primes
of length k/m (which we call the “2-vs-m Primes” Assumption). This assumption is a
generalization of the “2-vs-3 Primes” Assumptions introduced in [8] and used indepen-
dently to construct a “slightly lossy” TDF based on modular squaring [45]. Combined
with the MPA Assumption of Sect. 5.3, we obtain (m — 1) log e bits of lossiness from
standard (two-prime) RSA. Let us state our assumption and construction formally.

2-vs-m PRIMES ASSUMPTION. We say that the 2-vs-m primes assumption holds for m if
the following two distributions N> and N, are computationally indistinguishable:

No={N : e<Puy: (N, p.q) <RSAlp =1 mod el}
Ny ={N : e<Pu: (N, p.q) &< MRSApi=m—1 =1 mod el}.

To a distinguisher D, we associate its HFA-advantage defined as
2vmp
Adv;,, "(D) = Pr[DN2)=1]—Pr[DWN,) =1].

RSA LTDP FrOM 2-Vs-m PRIMES + M®A. Define LTDP3 = (F3, F3) as follows:

. /
Algorithm 73 Alg0r1$t hm 73
$ e <P,
e, e <P ck s
(N,p,q) &RSAIC[P = 1 mod ¢'] (N, Pty Pm) < MRS A pi<m-1
If ged(e, $(N)) # 1 then Return L R; inn(l?\? ei
Else Return (N, e), (N, d) urn L, e

Proposition 5.4. If the 2-vs-m Primes Assumption holds for m and the Multi-Prime
®-Hiding Assumption holds for m, e, then LTDP3 = (F3, fé) is an RSA LTDP with
lossiness (m — 1)ck. In particular, suppose there is a distinguisher D against LTDP3.
Then there is a distinguisher Dy, Dy such that

Itd 2
Adv 1D (D) < Adv, ™" (D1) + Adv) tA(Dy).

Furthermore, the running-time of D1, Dy is that of D.

Again, the proof is a straightforward.

PARAMETERS FOR LTDP3. We note that m in the construction cannot be too large; other-
wise, a small factor of N in the lossy case can be recovered by the elliptic curve factoring
method due to Lenstra [41], whose running-time is proportional to the smallest factor of
N. The largest factor recovered by the method so far was 223-bits in length [64]. Thus,
for example using 2048-bit RSA with ¢ = 2'® — 1, if we assume it is hard to recover
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factors larger than that we can get 8 - 16 = 128 bits of lossiness under the HFA plus
M®A where m = 9.

ENHANCED HFA. As in the previous cases, to address the fact that in practice N = pq
is chosen at random and not subject to p hiding a prime of the same bit-length as e, we
may define an enhanced version of HFA. Then under the enhanced HFA + enhanced
M®A assumptions, we obtain the same amount of lossiness for standard 2-prime RSA.

6. Instantiating RSA-OAEP

By combining the results of Sects. 3, 4, and 5, we obtain standard model instantiations
of RSA-OAEP under chosen-plaintext attack.

REGULARITY. In particular, we would like to apply part (2) of Theorem 4.2 in this
case, as it is not hard to see that under all of the assumptions discussed in Sect. 5,
RSA is a regular lossy TDP on the domain Z},. Unfortunately, this is different from
{0, 1}PT# (identified as integers), the range of OAEP. In RSA PKCS #1 v2.1, the mis-
match is handled by selecting p + © = |log N| — 16, and viewing OAEP’s output
as an integer less than 2°T#* < N /216 (i.e., the most significant two bytes of the out-
put are zeroed out). The problem is that in the lossy case RSA may not be regular
on the subdomain {0, ..., 2°T#} (although this has been proven in subsequent work;
see below). So, we just detail the weaker parameters given by part (1) of Theorem 4.2
here.

CONCRETE PARAMETERS. Since the results in Sect. 5 have several cases and the parameter
settings are rather involved, we avoid stating an explicit theorem about RSA-OAEP. If
we use part (1) of Theorem 4.2, one can see that for u = 80 bits security, messages of
roughly u = k—s—3-80 bits can be encrypted (for sufficiently large 7). For concreteness,
we give two example parameter settings. Using the Multi ®-Hiding Assumption with
k = 1024 bits and 3 primes, we obtain £ = k — s = 291 bits of lossiness and hence can
encrypt messages of length 1 = 40 bits (for r ~ 400). Using the ®-Hiding Assumption
with k = 2048, we obtain £ = k — s = 430 bits of lossiness and hence can encrypt
messages of length ;= 160 bits (for r &~ 150).

SUBSEQUENT IMPROVEMENTS. The approximately regularity of RSA on the above sub-
domain (and, more generally, on arithmetic progressions of sufficient length) has subse-
quently been shown by Lewko et al. [42]. This allows us to obtain essentially the better
parameters given by part (2) of Theorem 4.2. For example, using the ®-Hiding Assump-
tion with k£ = 2048, we can encrypt messages of length 274 bits (see [42, Section5.3]).
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7. Appendix 1: Proof of Lemma 4.5

We introduce the following notation for the proof. For a random variable V with range
V, we define the collision probability of V as Col(V) =Pr[V = V'] =3 ., Py (v)?
where V' is an independent copy of V, and for an event £ we define the conditional
collision probability Colg(V) = Pr [ V=V 5]. For random variables V, W, we

define the square of the 2-distance as D(V, W) = >, (PV (v) — Py (v))2.
Writing Ey for expectation over the choice of random & from X, we have

A((K, g(X, h(K, X)), (K, g(X,U))) = Ex[A(g(X,h(k, X)), g(X, 1))] (9

1
< SEx [\/ 151 D(g(X. h(k, X)), g(X. U))]

1
< EJISIEk[D(g(X,h(k,X)),g(X, 0))] (10)

where the first inequality is by Cauchy-Swartz and the second is by Jensen’s inequality.
We now show

Ei[D(g(X, h(k, X)), g(X,U))] < Col(X)

from which the theorem follows. Write (X, Yx) = (X, h(k, X)) for an arbitrary but fixed
k. Then

D(g(X. Y1), g(X. 1)) = D (Pocxrn(s) = Pecx.tn(®))’

Ay

= Z Po(x,vp(5)* —2 Z Py(x,v)(8) Pycx,u) (5)
N S

+ Z Pg(X,U)(S)2 .
K
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Using the Kronecker delta 8, ¢ which equals 1 if s = s" and else O for all s,s" € S,
we can write Pg(X,Yk) (s) = ZX PX(x)Sg(x,h(k,x)),s» and thus

D Pexrn®)? = D (Z Px (X)3g(x,h(/<,x)),s) ( > Py (X')r?g(x/,h(k,x/)),x)
s X x/

N

= Z Px (x) Px (X")8(h(k,x)), g (hk.x") -

x,x’

We use the pairwise independence of 4 to rewrite this in terms of collision probabilities:

Ey [Z Pyx.vp()’] = Z Px (x) Px (XVEx[8g(x hk.x)).g(x" hk.x'y)]
s

x,x’

Col(X) + Colg(g(X, U))(1 — Col(X)), an

where the subscript £ denotes (conditioning on) the event that X # X’. That is,

Colg(g(X,U)) = Pr[g(X.U) =g(X. U) | X # X'].

Similarly,
Z Pox,v) (8) Pex,u)(s) = Z (Z Px (x)3g(x,h(k,x)),s)
s s X
(Z PX(x/)PU (u)ég(x’,u),s)
x'u
= > D> Px(0)Px(x") Py ()dg(e k.. e )
x oy u
so that

E [Z Py(x,v0) () Pycx, 0y (5)] Z Z Z Py (x) Px (x") Py (u)Eg [8(x hik,x)), (') ]

x'u

Col(g(X, U)) = Colg(g(X, U))Col(X)
+ Colg(g(X, U))(1 — Col(X)).

where £ is defined as above. Note that the only difference between the expression above
and that in (11) is that even when X = X’, a collision is not guaranteed.
Finally,

> Pyxn(s)* = Col(g(X, U))

Colg(g(X, U))Col(X) + Colg(g(X, U))(1 — Col(X))
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as well. By combining the above, we have

Ex[D(g(X, Yi), f(X,U))] = Col(X) + Colg(g(X, U))(1 — Col(X))
—2(Colg(g(X, U))Col(X)
+ Colg (g(X, U))(1 — Col(X)))
+ Colg(g(X, U))Col(X) + Colg(g(X, U))(1—Col(X))
= (1 — Colg(g(X, U)))Col(X)
< Col(X).

To complete the proof, we can plug the bound above into (10):

1
A((K, g(X, h(K, X)), (K, g(X,U))) < EJ |SIEx[D(g(X, hk, X)), g(X,U))]

< %,/|S|CO1(X).

By the assumption on the min-entropy of X, the collision probability Col(X) is at most
482/|8|. So the statistical distance A((K, g(X, h(K, X))), (K, g(X, U))) is at most &,
as desired. O

8. Appendix 2: Security of OAEP Under Key-Independent Chosen-Plaintext
Attack

The commonly-accepted notions of security for encryption ask for privacy with respect
to messages that may depend on the public key. We define here a notion of privacy for
messages not depending on the public key. We mention that such a definition appears
for example in the work of Micali et al. [44] (under the name “three-pass,” versus “one-
pass," cryptosystem), in the text of Goldreich [30], and in the context of the recent work
on deterministic encryption [2].

THE DEFINITION. To an encryption scheme IT = (K, &, D) and an adversary B =
(B1, By) we associate
Experiment Expiﬁiigi_CPa (k)
b <i{0, 1}; (mg, my, s) &Bl
(pk, sk) < IC; ¢ < E(pk, mp)

d < By(pk, c, 5)
If d = b then Return 1 Else Return 0

We require |mg| = |m1| above. Define the indki-cpa advantage of B against IT as
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REMARKS. While non-standard, KI security seems adequate for some applications. For
example, in [30] Goldreich points out that high-level applications that use encryption
as a tool do so in a key-oblivious manner, and Bellare et al. [2] argue that in real life
public keys are abstractions hidden in our software, so messages are unlikely to depend
on them. KI security also suffices for hybrid encryption.

THE RESULT. We can show a standard model instantiation under KI security directly
from Lemma 4.5, where G is any pairwise-independent function. This is captured by
the theorem below.

Theorem 8.1. Let LTDP = (F, F’) be an LTDP with residual leakage €, and let
OAERP be the encryption scheme associated to F, hash functions G, H, and a parameter
ko < k. Suppose G is pairwise-independent. Let ¢ > 0. Then for any ko > £ +
2log(1/e) —2 and any INDKI-CPA adversary B against OAEP, there is a distinguisher
D against LTDP such that

Adviaia s (k) < Adv)Tho (k) +e.

Furthermore, the running-time of D is the time to run B.

As we mentioned, the proof is a simple hybrid argument concluding by Lemma 4.5.
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