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Abstract

We show that the widely deployed RSA-OAEP encryption scheme of Bel-
lare and Rogaway (Eurocrypt 1994), which combines RSA with two rounds of
an underlying Feistel network whose hash (i.e., round) functions are modeled
as random oracles, meets indistinguishability under chosen-plaintext attack
(IND-CPA) in the standard model based on simple, non-interactive, and non-
interdependent assumptions on RSA and the hash functions. To prove this,
we first give a result on a more general notion called “padding-based” en-
cryption, saying that such a scheme is IND-CPA if (1) its underlying padding
transform satisfies a “fooling” condition against small-range distinguishers on
a class of high-entropy input distributions, and (2) its trapdoor permutation
is sufficiently lossy as defined by Peikert and Waters (STOC 2008). We then
show that the first round of OAEP satifies condition (1) if its hash function is
t-wise independent for appopriate t and that RSA satisfies condition (2) under
the Φ-Hiding Assumption of Cachin et al. (Eurocrypt 1999).

This appears to be the first non-trivial positive result about the instan-
tiability of RSA-OAEP. In particular, it increases our confidence that chosen-
plaintext attacks are unlikely to be found against the scheme. In contrast,
RSA-OAEP’s predecessor in PKCS #1 v1.5 was shown to be vulnerable to
such attacks by Coron et al. (Eurocrypt 2000).

1 Introduction

The RSA-OAEP encryption scheme was designed by Bellare and Rogaway [5]
as a drop-in replacement for RSA PKCS #1 v1.5 [37] with provable security
guarantees. In particular, it follows the same paradigm as RSA PKCS #1 v1.5
in that it encrypts a message of less than k bits to a k-bit ciphertext (where k is
the modulus size) by first applying a fast, randomized, and invertible “padding
transform” to the message before applying RSA. In the case of RSA-OAEP,
the underlying padding transform (which is itself called ‘OAEP’1) embeds a
message m and random coins r as s‖(H(s) ⊕ r) where ‘‖’ denotes concatenation,

1 We often use the same terminology for ‘f -OAEP,’ which refers to OAEP using an
abstract TDP f , with the meaning hopefully clear from context.
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s = (m‖0k1) ⊕ G(r) for some parameter k1, and G and H are hash functions
(see Figure 1 on p. 11). In contrast, PKCS #1 v1.5 essentially just concatenates
m with r.

RSA-OAEP was designed using the random oracle (RO) methodology [4].
This means that, for the security analysis, its hash functions are modeled as in-
dependent truly random functions, available as oracles to all parties. When the
scheme is implemented in practice, they are heuristically “instantiated” in cer-
tain ways using a cryptographic hash function like SHA1. A cryptographic hash
function is certainly not random (it has a short public description), but schemes
designed using this methodology are hoped to be secure. Unfortunately, a series
of works, starting with the seminal paper of Canetti et al. [16] showed that there
are schemes secure in the RO model that are insecure under every instantiation
of the oracle; such RO model schemes are called uninstantiable. Thus, to gain
confidence in an RO model scheme, we should show that it is not uninstantiable,
i.e., that it admits a secure instantiation by an efficiently computable function
under well-defined assumptions. Then, when we instantiate the scheme, we know
that our goal is at least plausible. This is especially important for a scheme such
as RSA-OAEP, which is by now widely standardized and deployed.

Yet, while RO model schemes continue to be proposed, few have been shown
to be instantiable. In particular, we are not aware of any result showing instan-
tiability of RSA-OAEP, even under a relatively modest security model. In fact,
the scheme has come under criticism lately due to several works (discussed in
Section 1.2) showing the impossibility of certain types of instantiations under
chosen-ciphertext attack (IND-CCA). Fortunately, we bring some good news: We
give reasonable assumptions under which RSA-OAEP is secure against chosen-
plaintext attack (IND-CPA). We believe this is an important step towards a
better understanding of the scheme’s security.

1.1 Our Contributions

Our result on the instantiability of RSA-OAEP is obtained via three steps or
other results. (These other results may also be of independent interest.) First,
we show a general result on the instantiability of “padding-based encryption,”
of which f -OAEP is a special case, under the assumption that the underlying
padding transform is what we call a fooling extractor and the trapdoor permu-
tation is sufficiently lossy [36]. We then show that OAEP and RSA satisfy the
respective conditions.

Padding-based encryption without ROs. Our first result is a general the-
orem about padding-based encryption (PBE), a notion formalized recently by
Kiltz and Pietrzak [29].2 PBE generalizes the design methology of PKCS #1 and
RSA-OAEP we already mentioned. Namely, we start with a k-bit to k-bit trap-
door permutation (TDP) that satisfies a weak security notion like one-wayness.

2 Such schemes were called “simple embedding schemes” by Bellare and Rogaway [5],
who discussed them only on an intuitive level.



To “upgrade” the TDP to an encryption scheme satisfying a strong security no-
tion like IND-CPA, we design an invertible “padding transform” which embeds
a plaintext and random coins into a k-bit string, to which we then apply the
TDP. This methodology is quite natural and has long been prevalent in prac-
tice, motivating the design of OAEP and later schemes such as SAEP [9] and
PSS-E [20]. The latter were all designed and analyzed in the RO model.

We show that the RO model is unnecessary in the design and analysis of IND-
CPA secure PBE. To do so, we formulate an interesting connection between PBE
and a new notion we call “fooling extractor for small-range distinguishers” or just
“fooling extractor.” Intuitively, a fooling extractor transforms a high-entropy
source into something that “looks random” to any function (or distinguisher)
with a small range.3 Our result says that if the underlying padding transform of
a PBE scheme is a fooling extractor for all sources of the form (m, R) where m
is a plaintext and R is the random coins (which we call “encryption sources”)
and its TDP is lossy as defined by Peikert and Waters [36] then the PBE scheme
is IND-CPA. We call such padding transforms “encryption-compatible.”

OAEP fools small-range distinguishers. Our second result says that the
OAEP padding transform is encryption-compatible as we defined it above if the
hash function G is t-wise independent for appropriate t (essentially, proportional
to the allowed message length, where the latter is determined by how large
an output range of the distinguisher should be tolerated in the definition of
encryption-compatibility). Note that no restriction is put on hash function H ;
in particular, neither hash function is modeled as a RO.

The inspiration for our proof comes from the “Crooked” Leftover Hash Lemma
(LHL) of Dodis and Smith [22] (see [6] for a simpler proof of the latter). Qual-
itatively, the Crooked LHL says that K, f(Π(K, X)) looks like K, f(U) for any
small-range function f , pairwise-independent function Π keyed by K, and high-
entropy source X ; in our terminology, this says that a pairwise-independent func-
tion is a fooling extractor for such X . In our application, we might näıvely view
Π as the OAEP. There are two problems with this. First, OAEP is not pairwise
independent, even in the RO model. Second, showing that OAEP is encryption-
compatible entails showing it fools f on all encryption sources simultaneously,
whereas the lemma pertains to a fixed source. To solve the first problem, we
show that the lemma can be strengthened to say that K, f(X,Π(K, X)) looks
like K, f(X, U); i.e., that Π(K, X) looks random to f even given X . Then, we
view X as the random coins in OAEP and Π as the hash function G; we can
conclude that OAEP is a fooling extractor for a fixed encryption source (m, R)
(note that our analysis does not use any properties of H—the only fact we use
about the second Feistel round is that it is invertible). To solve the second prob-
lem, we extend an idea of Trevisan and Vadhan [42] to our setting and show
that if G is in fact t-wise independent for large enough t, the error probability
for a particular encryption source is so small that we can take a union bound
and conclude that OAEP is a fooling extractor on all of them, as required.
3 In the formal defintion there is also an “outer” distinguisher who gets the extractor

seed; see Section 3 for details.



Lossiness of RSA. To instantiate RSA-OAEP, it remains to show lossiness
of RSA. Our final result is that RSA is indeed lossy under reasonable assump-
tions. Intuitively, lossiness [36] means that there is an alternative, “lossy” key
generation algorithm that outputs a public key indistinguishable from a nor-
mal one, but which induces a small-range (uninvertible) function. We first show
lossiness of RSA under the Φ-Hiding Assumption (ΦA) of Cachin, Micali, and
Stadler [13]. ΦA has been used as the basis for a number of efficient protocols,
e.g., [13,12,24,25]. ΦA states roughly that given an RSA modulus N = pq, it is
hard to distinguish primes that divide φ(N) = (p − 1)(q − 1) from those that
do not. Normal RSA parameters (N, e) are such that gcd(e,φ(N) = 1. Under
ΦA, we may alternatively choose (N ′, e) such that e divides p− 1. The range of
the RSA function is then reduced by a factor 1/e. To resist known attacks, we
can take the bit-length of e up to almost 1/4 that of N , giving RSA lossiness of
almost k/4 bits, where k is the modulus length.4

We then observe that for small e lossiness may be amplified for a fixed mod-
ulus length by considering multi-prime RSA where N = p1 · · · pm for m ≥ 2, and
in the lossy case choosing (N ′, e) such that e divides pi for all 1 ≤ i ≤ m−1; the
range of the RSA function is then reduced by a factor 1/em−1. (The maximum
bit-length of e in this case to avoid known attacks is roughly k(1/m − 2/m2)
where k is the modulus length, so for a fixed modulus size we gain in lossiness
only for small e.) If we assume such multi-prime RSA moduli are indistinguish-
able from two-prime ones, we can achieve such lossiness in the case of standard
(two-prime) RSA as well.

Implications for RSA-OAEP. Combining the above implies that RSA-OAEP
is IND-CPA in the standard model under (rather surprisingly) simple, non-
interactive, and non-interdependent assumptions on RSA and the hash func-
tions. The parameters for RSA-OAEP supported by our proofs are discussed
in Section 6. While they are considerably worse than what is expected in practice,
we view the upshot of our results not as the concrete parameters they support,
but rather that they increase the theoretical backing for the scheme’s security at
a more qualitative level, showing it can be instantiated at least for larger param-
eters. In particular, our results give us greater confidence that chosen-plaintext
attacks are unlikely to be found against the scheme; such attacks are known
against the predecessor of RSA-OAEP in PKCS #1 v1.5 [19]. That said, we
strongly encourage further research to try to improve the concrete parameters.

Moreover, our analysis brings to light to some simple modifications that may
increase the scheme’s security. The first is to key the hash function G. Although
our results have some interpretation in the case that G is a fixed function (see
below), it may be preferable for G to have an explicit, randomly selected key. It
is in an interesting open question whether our proof can be extended to function
families that use shorter keys. The second possible modification is to increase
the length of the randomness versus that of the redundancy in the message

4 We remark that the recent attacks on ΦA [40] are for moduli of a special form that
does not include RSA.



when encrypting short messages under RSA-OAEP. Of course, we suggest these
modifications only in cases where they do not impact efficiency too severely.

Using unkeyed hash functions. Formally, our results assume G is randomly
chosen from a large family (i.e., it is a keyed hash function). However, our
analysis actually shows that almost every function (i.e., all but a negligible
fraction) from the family yields a secure instantiation; we just do not know an
explicit member that works. In other words, it is not strictly necessary that G
be randomly chosen. When G is instantiated in practice using a cryptographic
hash function, it is plausible that the resulting instantiation is secure.

Chosen-ciphertext security. Any extension of our results to CCA security
must get around the recent negative results of Kiltz and Pietrzak [29] (which we
discuss in more detail below). We outline some possible approaches in the full
version [27].

1.2 Related Work

Security of OAEP in the RO model. In their original paper [5], Bellare
and Rogaway showed that OAEP is IND-CPA assuming the TDP is one-way.
They further showed it achieves a notion they called “plaintext awareness.”
Subsequently, Shoup [41] observed that the latter notion is too weak to imply
security against chosen-ciphertext attacks, and in fact there is no black-box proof
of IND-CCA security of OAEP based on one-wayness of the TDP. Fortunately,
Fujisaki et al. [23] proved that OAEP is nevertheless IND-CCA assuming so-
called “partial-domain” one-wayness, and that partial-domain one-wayness and
(standard) one-wayness of RSA are equivalent.

Security of OAEP without ROs. Results on instantiability of OAEP have
so far mainly been negative. Boldyreva and Fischlin [7] showed that (contrary to
a conjecture of Canetti [14]) one cannot securely instantiate even one of the two
hash functions (while still modeling the other as a RO) of OAEP under IND-
CCA by a “perfectly one-way” hash function [14,17] if one assumes only that f is
partial-domain one-way. Brown [10] and Paillier and Villar [34] later showed that
there are no “key-preserving” black-box proofs of IND-CCA security of RSA-
OAEP based on one-wayness of RSA. Recently, Kiltz and Pietrzak [29] (building
on the earlier work of Dodis et al. [21] in the signature context) generalized these
results and showed that there is no black-box proof of IND-CCA (or even NM-
CPA) security of OAEP based on any property of the TDP satisfied by an ideal
(truly random) permutation.5 In fact, their result can be extended to rule out a
black-box proof of NM-CPA security of OAEP assuming the TDP is lossy [30],
so our results are in some sense optimal given our assumptions.

Instantiations of related schemes. A positive instantiation result about a
variant of OAEP called OAEP++ [26] (where part of the transform is output
5 Note, however, that their result does not rule out such a proof based on other

properties of the TDP, non-black-box assumptions on the hash functions, or in the
case of a specific TDP like RSA.



in the clear) was obtained by Boldyreva and Fischlin in [8]. They showed an
instantiation that achieves (some weak form of) non-malleability under chosen-
plaintext attacks (NM-CPA) for random messages, assuming the existence of
non-malleable pseudorandom generators (NM-PRGs).6 We note that the ap-
proach of trying to obtain positive results for instantiations under security no-
tions weaker than IND-CCA originates from their work, and the authors explic-
itly ask whether OAEP can be shown IND-CPA in the standard model based
on reasonable assumptions on the TDP and hash functions.

Another line of work has looked at instantiating other RO model schemes
related at least in spirit to OAEP. Canetti [14] showed that the IND-CPA scheme
in [4] can be instantiated using (a strong form of) perfectly-one way probabilistic
hash functions. More recently, the works of Canetti and Dakdouk [15], Pandey et
al. [35], and Boldyreva et al. [11] obtained (partial) instantiations of the earlier
IND-CCA scheme of [4]. Hofheinz and Kiltz [28] recently showed an IND-CCA
secure instantiation of a variant the DHIES scheme of [1].

2 Preliminaries

Notation and conventions. For a probabilistic algorithm A, by y
$← A(x)

we mean that A is executed on input x and the output is assigned to y, whereas
if S is a finite set then by s

$← S we mean that s is assigned a uniformly random
element of S. We sometimes use y ← A(x; Coins) to make A’s random coins
explicit. We denote by Pr

[
A(x) ⇒ y : . . . ] the probability that A outputs y on

input x when x is sampled according to the elided experiment. Unless otherwise
specified, an algorithm may be probabilistic and its running-time includes that
of any overlying experiment. We denote by 1k the unary encoding of the security
parameter k. We sometimes surpress dependence on k for readability. For i ∈ N
we denote by {0, 1}i the set of all binary strings of length i. If s is a string then
|s| denotes its length in bits, whereas if S is a set then |S| denotes its cardinality.
By ‘‖’ we denote string concatenation. All logarithms are base 2.

Basic Definitions. Writing PX(x) for the probability that a random variable
X puts on x, the statistical distance between random variables X and Y with
the same range is given by ∆(X, Y ) = 1

2

∑
x |PX(x) − PY (x)|. If ∆(X, Y ) is at

most ε then we say X, Y are ε-close and write X ≈ε Y . The min-entropy of X
is H∞(X) = − log(maxx PX(x)). A random variable X over {0, 1}n is called a
(n, &)-source if H∞(X) ≥ &. Let f : A → B be a function. We denote by R(f) the
range of f , i.e., {b ∈ B | ∃a ∈ A, f(a) = b}. We call |R(f)| the range-size of f .
We call f regular if each pre-image set is the same size, i.e., |{x ∈ D | f(x) = y}|
is the same for all y ∈ R.

Public-key encryption and its security. A public-key encryption scheme
with message-space MsgSp is a triple of algorithms AE = (K, E ,D). The key-
6 In particular, their security notion does not imply IND-CPA since they consider

random messages. We also point out that it remains an open question whether NM-
PRGs can be constructed.



generation algorithm K returns a public key pk and matching secret key sk. The
encryption algorithm E takes pk and a plaintext m to return a ciphertext. The
deterministic decryption algorithm D takes sk and a ciphertext c to return a
plaintext. We require that for all messages m ∈ MsgSp

Pr
[
D(sk, E(pk, m)) ,= m : (pk, sk) $←K

]

is negligible.
To an encryption scheme Π = (K, E ,D) and an adversary A = (A1, A2) we

associate a chosen-plaintext attack experiment,

Experiment Expind-cpa
Π,A (k)

b
$← {0, 1} ; (pk, sk) $← K(1k)

(m0, m1, state) $← A1(pk)
c

$← E(pk, mb)
d

$← B2(pk, c, state)
If d = b then return 1 else return 0

where we require A’s output to satisfy |m0| = |m1|. Define the ind-cpa advantage
of A against Π as

Advind-cpa
Π,A (k) = 2 · Pr

[
Expind-cpa

Π,A (k) ⇒ 1
]
− 1 .

Lossy trapdoor permutations. A lossy trapdoor permutation (LTDP) gen-
erator [36]7 is a pair LTDP = (F ,F ′) of algorithms. Algorithm F is a usual
trapdoor permutation (TDP) generator, namely it outputs a pair (f, f−1) where
f is a (description of a) permutation on {0, 1}k and f−1 its inverse. Algorithm
F ′ outputs a (description of a) function f ′ on {0, 1}k. We call F the “injective
mode” and F ′ the “lossy mode” of LTDP respectively, and we call F “lossy” if
it is the first component of some lossy TDP. For a distinguisher D, define its
ltdp-advantage against LTDP as

Advltdp
LTDP,D(k) = Pr

[
D(f) ⇒ 1 : (f, f−1) $← F

]
−Pr

[
D(f ′) ⇒ 1 : f ′ $← F ′

]
.

We say LTDP has residual leakage s if for all f ′ output by F ′ we have |R(f ′)| ≤
2s. The lossiness of LTDP is & = k − s.

t-wise independent hashing. Let H : K×D → R be a hash function. We say
that H is t-wise independent if for all distinct x1, . . . , xt ∈ D and all y1, . . . , yt ∈
R

Pr
[
H(K, x1) = y1 ∧ . . . ∧ H(K, xt) = yt : K

$← K
]

=
1

|R|t .

In other words, H(K, x1), . . . , H(K, xt) are all uniformly and independently ran-
dom.

7 We note that [36] actually defines lossy trapdoor functions, but the extension to
permutations is straightforward.



3 Padding-Based Encryption from Lossy TDP + Fooling
Extractor

In this section, we show a general result on how to build IND-CPA secure
padding-based encryption (PBE) without using random oracles, by combining a
lossy TDP with a “fooling extractor” for small-range distinguishers.

3.1 Background and Tools

We first provide the definitions relevant to our result.

Padding-based encryption. The idea behind padding-based encryption (PBE)
is as follows: We start with a k-bit to k-bit trapdoor permutation (e.g., RSA) and
wish to build a secure encryption scheme. As in [5], we are interested in encrypt-
ing messages of less than k bits to ciphertexts of length k. It is well-known that
we cannot simply encrypt messages under the TDP directly to achieve strong
security. So, in a PBE scheme we “upgrade” the TDP by first applying a ran-
domized and invertible “padding transform” to a message prior to encryption.

Our definition of PBE largely follows the recent formalization in [29]. Let
k, µ, ρ be three integers such that µ+ρ ≤ k. A padding transform (π, π̂) consists
of two mappings π : {0, 1}µ+ρ → {0, 1}k and π̂ : {0, 1}k → {0, 1}µ ∪ {⊥} such
that π is injective and the following consistency requirement is fulfilled:

∀m ∈ {0, 1}µ, r ∈ {0, 1}ρ : π̂(π(m ‖ r)) = m .

A padding transform generator is an algorithm Π that on input 1k outputs a
(description of a) padding transform (π, π̂). Let F be a k-bit trapdoor permu-
tation generator and Π be a padding transform generator. Define the associ-
ated padding-based encryption scheme AEΠ [F ] = (K, E ,D) with message-space
{0, 1}µ by

Alg K(1k)
(π, π̂) $←Π(1k)
π ← (π, π̂)
(f, f−1) $← F(1k)
Return ((π, f), (π, f−1))

Alg E((π, f), m)
r

$← {0, 1}ρ ; x ← π(m‖r)
y ← f(x)
Return y

Alg D((π, f−1), y)
x ← f−1(y)
m ← π̂(x)
Return m

Padding-based encryption schemes have long been prevalent in practice, for
example PKCS #1 [37]. While OAEP [5] is the best-known, the notion also
captures later schemes such as SAEP [9] and PSS-E [20].

Fooling extractors. We define a new notion that we call “fooling extractor
for small-range distinguishers” or just “fooling extractor.” Intuitively, fooling
extractors are a type of randomness extractor that “fools” distinguishers with
small-range output. We give some more intuition after the formal definition.

Definition 1. Let FExt : {0, 1}c × {0, 1}n → {0, 1}k be a function and let X =
{X1, . . . , Xq} be a class of n-bit sources. We say that FExt fools range-2s distin-
guishers on X with probability 1 − ε (or is an (s, ε)-fooling extractor for X ) if



for all functions f on {0, 1}k with range-size at most 2s and all 1 ≤ i ≤ q:

(K, f(FExt(K, Xi)) ≈ε (K, f(U)) ,

where K is uniform on {0, 1}c and U is uniform and independent on {0, 1}n.
(Here K is the key or seed of FExt.) For example, one is often interested in the
class Xn,$ consisting of all (n, &)-sources X. As a strengthening of the above, we
say that FExt simultaneously fools range-2s distinguishers on X with probability
1 − ε (or is a simultaneous (s, ε)-fooling extractor for X ) if for all functions f
on {0, 1}k with range-size at most 2s:

E
k

$← {0,1}c

[
max
1≤i≤q

∆
(
f(FExt(k, Xi)) , f(U)

)]
≤ ε .

As a useful special case, we say that FExt fools regular range-2s distinguishers
on X with probability 1 − ε (or is a regular (s, ε)-fooling extractor for X ) if we
quantify only over regular f in the definition. A simultaneous regular (s, ε)-
fooling extractor for X is defined analogously.

Intuitively, one can think of the definition of a fooling extractor as involv-
ing a two-stage distinguisher. The first stage is represented by the function f ,
which takes as input FExt(K, Xi). The second stage is represented only implic-
itly, and takes as input f(FExt(K, Xi)) and K. While the intuition given prior
to the definition captures only the first stage, the second stage is crucial for the
definition to be meaningful. Indeed, just asking that f(FExt(K, Xi)) be indistin-
guishable from f(U) for all small-range functions f is equivalent to asking only
that FExt(K, Xi) be indistinguishable from U . This latter requirement is trivial
to achieve–for example, by using K as a one-time pad.

We note that the concept of fooling extractors was implicit in the work
of Dodis and Smith [22] on error-correction without leaking partial informa-
tion, whose “Crooked” Leftover Hash Lemma establishes in our language that
a pairwise-independent function is a (s, ε)-fooling extractor for every singleton
(n, &)-source X where s ≤ &− 2 log(1/ε) + 2.

3.2 The Result

To state our result, we first formalize the concept of encryption-compatible
padding transforms.

Definition 2. Let Π be a padding transform generator whose coins are drawn
from Coins. Define the function hΠ : Coins× {0, 1}µ+ρ → {0, 1}k by h(c, m‖r) =
π(m‖r) for all c ∈ Coins, m ∈ {0, 1}µ, r ∈ {0, 1}ρ, where (π, π̂) ← Π(1k; Coins).
We say that Π is (s, ε)-encryption-compatible if hΠ as above is a simultaneous
(s, ε)-fooling extractor for the class XΠ of sources of the form (m, R), where
m ∈ {0, 1}µ is fixed and R ∈ {0, 1}ρ is uniformly random. (Note that the class
XΠ contains 2µ distinct (µ+ρ)-bit sources.) We call XΠ the class of encryption
sources associated to Π. A regular (s, ε)-encryption-compatible padding trans-
form generator is defined analogously.



Theorem 1. Let LTDP = (F ,F ′) be an LTDP with residual leakage s, and let
Π be an (s, ε)-encryption-compatible padding transform generator. Then for any
IND-CPA adversary A against AEΠ [F ] there is a adversary D against LTDP
such that for all k ∈ N

Advind-cpa
AE,A (k) ≤ Advltdp

LTDP,D(k) + ε .

Furthermore, the running-time of D is the time to run A.

Remark 1. The analogous result to the above holds for regular LTDPs and reg-
ular encryption-compatible padding transforms. That is, if the LTDP is regular
(meaning F ′ is) then it suffices to use a regular encryption-compatible padding
transform to obtain the same conclusion. The latter may be easier to design
or more efficient than in the general case; indeed, we get better parameters for
OAEP in the regular case in Section 4. Furthermore, known examples of LTDPs
(including RSA, as shown in Section 5) are regular, although some technical
issues make it difficult to exploit this for RSA-OAEP; cf. Section 6.

4 OAEP as a Fooling Extractor

In this section, we show that the OAEP padding transform of Bellare and Rog-
away [5] is encryption-compatible as defined in Section 3 if its initial hash func-
tion is t-wise independent for appropriate t.

4.1 OAEP

We recall the OAEP padding transform of Bellare and Rogaway [5], lifted to the
“instantiated” setting where hash functions may be keyed. Let G : KG×{0, 1}ρ →
{0, 1}µ and H : KH×{0, 1}µ → {0, 1}ρ be hash functions. The associated padding
transform generator OAEP[G, H] on input 1k returns (πKG,KH , π̂KG,KG), where
KG

$←KG(1k) and KH
$← KH(1k), defined via

Algorithm πKG,KH (m‖r)
s ← m ⊕ G(KG, r)
t ← r ⊕ H(KH , s)
x ← s‖t
Return x

Algorithm π̂KG,KH (x)
s‖t ← x
r ← t ⊕ H(KH , s)
m ← s ⊕ G(KG, r)
Return m

See Figure 1 for a graphical illustration.

Remark 2. Since we mainly study IND-CPA security, for simplicity we define
above the “no-redundancy” version of the OAEP, i.e., corresponding to the “ba-
sic scheme” in [5]. However, our results also hold for the redundant version.
Additionally, as is typical in the literature we have defined OAEP to apply the
G-function to the least-significant bits of the input; in standards and implemen-
tations it is typically the most significant bits (where the order of m and r are
switched). Again, we stress that our results hold in either case.



m ∈ {0, 1}µ r ∈ {0, 1}ρ

⊕ G

H ⊕

s t

m

⊕ G

H ⊕

s ∈ {0, 1}µ t ∈ {0, 1}ρ

Fig. 1. Algorithms πKG,KH (m, r) and π̂KG,KH (s, t) for OAEP[G, H].

4.2 Analysis

The following establishes that OAEP is encryption-compatible if the hash func-
tion G is t-wise independent for appropriate t. No restriction is put on the other
hash function H . Indeed, our result also applies to SAEP [9] (although the latter
is neither standardized nor known to provide CCA security in the RO model,
except in certain cases).

Theorem 2. Let G : KG × {0, 1}ρ → {0, 1}µ and H : KH × {0, 1}µ → {0, 1}ρ be
hash functions, and suppose G is t-wise independent. Let OAEP = OAEP[G, H].
Then
(1) OAEP is (s, ε)-encryption-compatible where ε = 2−u for u = t

3t+2 (ρ − s −
log t + 2) − 2(µ+s)

3t+2 − 1.
(2) OAEP is regular (s, ε)-encryption-compatible where ε = 2−u for u = t

2t+2 (ρ−
s − log t + 2) − µ+s+2

t+1 − 1.
(3) When t = 2, OAEP (s, ε)-encryption-compatible where ε = 2−u for u =

(ρ− s − 2µ)/4 − 1.

Note that parts (2) and (3) capture special cases of (1) in which we get better
bounds. We give a high-level idea of the proof; details are deferred to the full
version [27].

The high-level idea for all three parts of the theorem is the same. Fix a lossy
function f with range-size at most 2s. We first show that for every fixed message
m ∈ {0, 1}µ, with high probability (say 1−δ) over the choice of the hash function
G, the statistical distance between (KG, f(OAEP(m, R))) and ((KG, f(U)) is
small (say ε̂). Namely, we first compute the expected statistical distance over
the choice of G and then apply tail bounds. This aspect of the proof changes
from part to part. For part (3) we use a strengthened version of the Crooked
Leftover Hash Lemma (LHL) of [22] and Markov’s inequality. For parts (1) and
(2) we adapt the techniques of [42] (see also [2]) developed in the context of
the standard LHL and use the tail inequality for t-wise independent random
variables due to Bellare and Rompel [3]. (For part (2) this is relatively easy,
but for part (1) we first apply a “balancing” lemma saying that for any non-
regular f we can find a “almost-regular” function g that agrees with f on a large



fraction of its domain.) In all three parts, we can then take a union bound to
show that OAEP is good for all messages with probability at least 1− 2µδ. This
means that the statistical distance between the pair (KG, f(OAEP(m, R))) and
(KG, f(OAEP(U))) is at most ε = ε̂+ 2µδ. Finally, we express δ as a function of
ε̂, and select ε̂ to minimize this sum. Note that the entire argument works for
any choice of H .

In order to get a more qualitative “feel” for the bounds in the theorem, we
give the following simplification as a corollary:

Corollary 1. Let G : KG × {0, 1}ρ → {0, 1}µ and H : KH × {0, 1}µ → {0, 1}ρ

be hash functions and suppose that G is t-wise independent for t ≥ 3µ+s
ρ−s . Then

OAEP[G, H] is (s, ε)-encryption-compatible where ε = exp(−c(ρ− s− log t)) for
a constant c > 0.

In particular, c ≈ 1/2 for regular functions. For such a function, if ρ− s is at
least 180 then ε is roughly 2−80 for t = 10 and message lengths µ ≤ 215 (which
for practical purposes does not restrict the message-space). Applying Theorem 1,
we see that if G is 10-wise independent and the number of random bits used in
OAEP is at least 180 bits larger than the residual lossiness of the TDP, then the
security of OAEP is tightly related to that of the lossy TDP.

Remark 3. To show security of OAEP against what we call key-independent
chosen-plaintext attack, it suffices to argue that OAEP[G, H] is a fooling extrac-
tor for any fixed encryption source X = (m, R) where m ∈ {0, 1}µ. The latter
holds for any ε > 0 and s ≤ ρ − 2 log(1/ε) + 2 assuming G is only pairwise-
independent (i.e., t = 2). See the full version [27] for details.

5 Lossiness of RSA

In this section, we show that the RSA trapdoor permutation is lossy under
reasonable assumptions. In particular, we show that, for large enough encryption
exponent e, RSA is considerably lossy under the Φ-Hiding Assumption of [13].
We then show that by generalizing this assumption to multi-prime RSA we can
get even more lossiness. Finally, we propose a “Two-Or-m-Primes” Assumption
that, when combined with the former, amplifies the lossiness of standard (two-
prime) RSA for small e.

5.1 Background on RSA and Notation

We denote by RSAk the set of all tuples (N, p, q) such that N = pq is the
product of two distinct k/2-bit primes. Such an N is called an RSA modulus. By
(N, p, q) $←RSAk we mean that (N, p, q) is sampled according to the uniform
distribution on RSAk. An RSA TDP generator [38] is an algorithm F that
returns (N, e), (N, d), where N is an RSA modulus and ed ≡ 1 (mod φ(N)).
(Here φ(·) denotes Euler’s totient function, so in particular φ(N) = (p−1)(q−1).)
The tuple (N, e) defines the permutation on Z∗

N given by f(x) = xe mod N ,



and similarly (N, d) defines its inverse. We say that a lossy TDP generator
LTDP = (F ,F ′) is an RSA LTDP if F is an RSA TDP generator.

To define the Φ-Hiding Assumption and later some extensions of it, the fol-
lowing notation is also useful. For i ∈ N we denote by Pi the set of all i-bit primes.
Let R be a relation on p and q. By RSAk[R] we denote the subset of RSAk

for that the relation R holds on p and q. For example, let e be a prime. Then
RSAk[p = 1 mod e] is the set of all (N, p, q), where where N = pq is the product
of two distinct k/2-bit primes p, q and p = 1 mod e. That is, the relation R(p, q)
is true if p = 1 mod e and q is arbitrary. By (N, p, q) $←RSAk[R] we mean that
(N, p, q) is sampled according to the uniform distribution on RSAk[R].

5.2 RSA Lossy TDP from Φ-Hiding

Φ-Hiding Assumption (ΦA). We recall the Φ-Hiding Assumption of [13]. For
an RSA modulus N , we say that N φ-hides a prime e if e | φ(N). Intuitively,
the assumption is that, given RSA modulus N , it is hard to distinguish primes
which are φ-hidden by N from those that are not. Formally, let 0 < c < 1/2 be
a (public) constant determined later. Consider the following two distributions:

R1 = {(e, N) : e, e′
$← Pck ; (N, p, q) $←RSAk[p = 1 mod e′]}

L1 = {(e, N) : e
$← Pck ; (N, p, q) $←RSAk[p = 1 mod e])} .

To a distinguisher D we associate its ΦA advantage defined as

AdvΦA
c,D(k) = Pr [ D(R1) ⇒ 1 ] − Pr [ D(L1) ⇒ 1 ] .

As shown in [13], distributions R1,L1 can be sampled efficiently assuming the
widely-accepted Extended Riemann Hypothesis.8

RSA LTDP from ΦA. We construct an RSA LTDP based on ΦA. In injective
mode the public key is (N, e) where e is not φ-hidden by N , whereas in lossy
mode it is. Namely, define LTDP1 = (F1,F ′

1) as follows:

Algorithm F1

e, e′
$← Pck

(N, p, q) $←RSAk[p = 1 mod e′, p]
If gcd(e,φ(N)) ,= 1 then return ⊥
d ← e−1 mod φ(N)
Return ((N, e), (N, d))

Algorithm F ′
1

e
$← Pck

(N, p, q) $←RSAk[p = 1 mod e]
Return (N, e)

The fact that algorithm F1 has only a negligible probability of failure (re-
turning ⊥) follows from the fact that φ(N) can have only a constant number of
prime factors of length ck and Bertrand’s Postulate.

8 This is done by choosing a uniform (1/2 − c)k-bit number x until p = xe + 1 is a
prime.



Proposition 1. Suppose there is a distinguisher D against LTDP1. Then there
is a distinguisher D′ such that for all k ∈ N

Advltdp
LTDP1,D(k) ≤ 2 · AdvΦA

c,D′(k) .

Furthermore, the running-time of D′ is that of D. LTDP1 has lossiness ck.

Remark 4. From a practical perspective, a drawback of LTDP1 is that F1 chooses
N = pq in a non-standard way, so that it hides a prime of the same length as
e. Moreover, for small values of e it returns ⊥ with high probability. This is
done for consistency with how [13] formulated ΦA. But, to address this, we also
propose what we call the Enhanced ΦA (EΦA), which says that N generated
in the non-standard way (i.e., by F1) is indistinguishable from one chosen at
random subject to gcd(e,φ(N)) = 1.9 We conjecture that EΦA holds for all
values of c that ΦA does. Details are given in the full version [27]. An analogous
enhancement pertains to later extensions of ΦA.

Parameters for LTDP1. When e is too large, ΦA can be broken by using
Coppersmith’s method for finding small roots of a univariate modulo an unknown
divisor of N [18,32]. (No other attack on ΦA here is known.) Namely, consider
the polynomial r(x) = ex+1 mod p. Coppersmith’s method allows us to find all
roots of r smaller than N1/4, and thus factor N , in lossy mode in polynomial
time if c ≥ 1/4. (This is essentially the “factoring with high bits known” attack.)
More specifically, applying [32, Theorem 1], N can be factored in time O(Nε) if
c = 1/4− ε (i.e., log e ≥ k(1/4− ε)). For example, with modulus size k = 2048,
for about 80-bit security in lossy mode we set ε = .04 (to enforce kε ≥ 80).
The lossiness of LTDP1 is then 432 bits according to Proposition 1. A similar
calculation shows that for a modulus of size 1024 (resp., 3072) the lossiness of
LTDP1 we get is 176 (resp., 688) bits.

5.3 RSA Lossy TDP from Multi-Prime Φ-Hiding

Multi-prime RSA (according to [31] the earliest reference is [39]) is a generaliza-
tion of RSA to moduli N = p1 · · · pm of length k with m ≥ 2 prime factors of
equal bit-length. Multi-prime RSA is of interest to practitioners since it allows to
speed up decryption and is included in RSA PKCS #1 v2.1. We are interested
in it here because for it we can show greater lossiness and even with smaller
encryption exponent e.

Notation and terminology. Let m ≥ 2 be fixed. We denote by MRSAk

the set of all tuples (N, p1, . . . , pm), where N = p1 · · · pm is the product of
distinct k/m-bit primes. Such an N is called an m-prime RSA modulus. By
(N, p1, . . . , pm) $←MRSAk we mean that (N, p1, . . . , pm) is sampled according
9 Additionally, in practice the encryption exponent e is usually fixed. This can be

addressed by parameterizing EΦA by a fixed e instead of choosing it at random.
Note that for e = 3 one should make both e | p − 1 and e | q − 1 in the lossy case
(otherwise the assumption is false; cf. [13, Remark 2, p. 6]).



to the uniform distribution on MRSAk. The rest of the notation and terminol-
ogy of Section 5 is extended to the multi-prime setting in the obvious way.

Multi Φ-hiding assumption. For an m-prime RSA modulus N , let us say
that N mφ-hides a prime e if e | pi − 1 for all 1 ≤ i ≤ m − 1.Intuitively, the
assumption is that, given such N , it is hard to distinguish primes which are mφ-
hidden by N from those that do not divide pi − 1 for any 1 ≤ i ≤ m. Formally,
let m = m(k) ≥ 2 be a polynomial and let c = c(k) be an inverse polynomial
determined later. Consider the following two distributions:

R2 = {(e, N) : e, e′
$← Pck ; (N, p1, . . . , pt)

$←MRSAk[pi≤m−1 = 1 mod e′]}
L2 = {(e, N) : e

$← Pck ; (N, p1, . . . , pt)
$←MRSAk[pi≤m−1 = 1 mod e]} .

Above and in what follows, by pi≤m−1 = 1 mod e we mean that pi = 1 mod e
for all 1 ≤ i ≤ m − 1. To a distinguisher D we associate its MΦA advantage
defined as

AdvMΦA
m,c,D(k) = Pr [ D(R2) ⇒ 1 ] − Pr [ D(L2) ⇒ 1 ] .

As before, distributions R2,L2 can be sampled efficiently assuming the widely-
accepted Extended Riemann Hypothesis.

Note that if we had required that in the lossy case N = p1 · · · pm is such that
e | pi for all 1 ≤ i ≤ m, then in this case we would always have N = 1 mod e.
But in the injective case N mod e is random, which would lead to a trivial
distinguishing algorithm. This explains why we do not impose e | pm in the lossy
case above.

Multi-prime RSA LTDP from MΦA. We construct a multi-prime RSA
LTDP based on MΦA having lossiness (m − 1) log e, where in lossy mode N
mφ-hides e. Namely, define LTDP2 = (F2,F ′

2) as follows:

Algorithm F2

e, e′
$← Pck

(N, p1, . . . , pm)
$←MRSAk[pi≤m−1 = 1 mod e′]

If gcd(e,φ(N)) ,= 1 then Return ⊥
d ← e−1 mod φ(N)
Else return (N, e), (N, d)

Algorithm F ′
2

e
$← Pck

(N, p1, . . . , pm)
$←MRSAk[pi≤m−1 = 1 mod e]

Return (N, e)

Proposition 2. Suppose there is a distinguisher D against LTDP2. Then there
is a distinguisher D′ such that for all k ∈ N

Advltdp
LTDP2,D(k) ≤ 2 ·AdvMΦA

m,c,D′(k) .

Furthermore, the running-time of D′ is that of D. LTDP2 has lossiness (m−1)ck.

Parameters for LTDP2. As in the case of LTDP1, if e is too large then Copper-
smith’s method [18] can be used to factor N in the lossy case. But this time the



attack is more involved than “factoring with high bits known.” Let us first con-
sider m = 3. Consider the polynomial r(x′

1, x
′
2) = (ex′

1 + 1)(ex′
2 + 1) mod p1p2.

Substituting x1 = x′
1x

′
2 and x2 = x′

1 + x′
2 gives r(x1, x2) = e2x1 + ex2 +

1 mod p1p2. Applying [33, Theorem 3] with β = 2/3 and γ = 2δ tells us that
we can find all roots smaller than N δ for δ = (2(1− 2/3)3/2)/3 ≈ .12 in polyno-
mial time, so we require c ≤ 1/3 − .12 ≈ .21 to prevent this attack. (Note that
is slightly smaller than what we would deduce from “factoring with high bits
known” [32], which gives c ≤ .22.) More specifically, for m = 3 we can factor N
in the lossy case in time O(Nε) if c ≥ 1/3 − δ − ε (i.e., log e = k(1/3 − δ − ε))
with δ as above.

In the general case, we can apply [33, Theorem 4] to deduce we must require
c ≤ 1/m− δ where

δ =
2((1/m)(1/m)−1 − (1/m)m/(m−1))

m(m − 1)
≤ 2

m(m − 1)
.

Note that this is only smaller than the bound with δ = 1/m2 obtained from
“factoring with high bits known” for m ≥ 5, namely for m = 5 we have δ ≈ 0.06.
(The reason we also had a better attack for m = 3 is that we used a specialized
theorem.)

We note that this may not be the best attack possible based on Coppersmith’s
method (in particular the coefficients of the polynomial we use are highly cor-
related). It is an interesting open question whether there is a better attack. We
also remark that for a fixed modulus length, m cannot be too large since the
Elliptic Curve Method for factoring can compute a factor pi of N faster than
the Number Field Sieve one if pi is significantly smaller than N1/2 [31].

5.4 Small-Exponent RSA LTDP from 2-Or-m-Primes

For efficiency reasons, the public RSA exponent e is typically not chosen to be
too large in practice. (For example, researchers at UC San Diego [43] observed
that 99.5% of the certificates in the campus’s TLS corpus had e = 216 + 1.)
Therefore, we investigate the possibility of using an additional assumption to
amplify the lossiness of RSA for small e.

The high-level idea is to assume that it is hard to distinguish N = pq where
p, q are primes of length k/2 from N = p1 · · · pm for m > 2, where p1, . . . , pm

are primes of length k/m (which we call the “2-or-m Primes” Assumption).
Combined with the MΦA Assumption of Section 5.3, we obtain (m−1) log e bits
of lossiness from standard (two-prime) RSA. Due to space constraints, details
are deferred to the full version [27].

6 Instantiating RSA-OAEP

By combining the results of Section 3, Section 4, and Section 5, we obtain stan-
dard model instantiations of RSA-OAEP under chosen-plaintext attack.



Regularity. In particular, we would like to apply part (2) of Theorem 2 in
this case, as it is not hard to see that under all of the assumptions discussed in
Section 5, RSA is a regular lossy TDP on the domain Z∗

N . Unfortunately, this
domain is different from {0, 1}ρ+µ (identified as integers), the range of OAEP. In
RSA PKCS #1 v2.1, the mismatch is handled by selecting ρ+ µ = 3log N4 − 2,
and viewing OAEP’s output as an integer less than 2ρ+µ < N/4. The problem is
that in the lossy case RSA may not be regular on the subdomain {0, ..., 2ρ+µ−1}.

We can prove, in some cases, that in the lossy case RSA is approximately
regular on this subdomain, and in those cases we obtain the better parameters
given by part (2) of Theorem 2. However, here use just use the weaker parameters
given by part (1) of Theorem 2. We leave a detailed discussion of approximate
regularity to future work. In particular, understanding the regularity of RSA
on subintervals of the domain is a first step towards improving the concrete
parameters we obtain.

Concrete parameters. Since the results in Section 5 have several cases and
the parameter settings are rather involved, we avoid stating an explicit theorem
about RSA-OAEP. From part (1) of Theorem 2 one can see that for u = 80
bits security and assuming RSA has & bits of lossiness, messages of roughly
µ ≈ & − 3 · 80 bits can be encrypted (for sufficintly large t). For concreteness,
we give two example parameter settings. Using the Multi Φ-Hiding Assumption
with N = 1024 bits and 3 primes, we obtain & = k − s = 291 bits of lossiness
and hence can encrypt messages of length µ = 40 bits (for t ≈ 400); using the
Φ-Hiding Assumption with N = 2048, we obtain & = k−s = 430 bits of lossiness
and hence can encrypt messages of length µ = 160 bits (for t ≈ 150). We stress
that while we view our results as providing important theoretical backing for
the scheme at a more qualitative level, we strongly encourage further research
to try to improve the concrete parameters.

Acknowledgements

We thank Mihir Bellare, Alexandra Boldyreva, Dan Brown, Yevgeniy Dodis,
Jason Hinek, Arjen Lenstra, Alex May, Phil Rogaway, and the anonymous re-
viewers of Crypto 2010 for helpful comments. In particular, we thank Dan for
reminding us of [13, Remark 2, p. 6], Alex for pointing out the improved attack
in Section 5.3, and Phil for encouraging us to consider the case of small e more
closely. A.O. was supported in part by Alexandra Boldyreva’s NSF CAREER
award 0545659 and NSF Cyber Trust award 0831184 and thanks her for her
support. A.S. was supported in part by NSF awards #0747294, 0729171.

References

[1] Abdalla M., Bellare M., Rogaway P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In CT-RSA 2001.

[2] Barak B., Shaltiel R., Tromer E.: True Random Number Generators Secure
in a Changing Environment. In CHES 2003.



[3] Bellare M., Rompel J.: Randomness-Efficient Oblivious Sampling. In: FOCS
1994. ACM (1994)

[4] Bellare M., Rogaway P.: Random oracles are practical: A paradigm for de-
signing efficient protocols. the In Conference on Computer and Communica-
tions Security. ACM (1993)

[5] Bellare M., Rogaway P.: Optimal asymmetric encryption: How to encrypt
with RSA. In: EUROCRYPT 1994. LNCS. Springer (1994)

[6] Boldyreva A., Fehr S., O’Neill A.: On notions of security for deterministic
encryption, and efficient constructions without random oracles. In: CRYPTO
2008. LNCS. Springer (2008)

[7] Boldyreva A., Fischlin M.: Analysis of random oracle instantiation scenarios
for OAEP and other practical schemes. In: CRYPTO 2005. LNCS. Springer
(2005)

[8] Boldyreva A., Fischlin M.: On the security of OAEP. In: ASIACRYPT 2006.
LNCS. Springer (2006)

[9] Boneh D.: Simplified OAEP for the RSA and Rabin functions. In: CRYPTO
2001. LNCS. Springer (2001)

[10] Brown D.: What hashes make RSA-OAEP secure? In Cryptology ePrint
Archive, Report 2006/223 (2006)

[11] Boldyreva A., Cash C., Fischlin M., Warinschi B.: Efficient private bidding
and auctions with an oblivious third party. In: ASIACRYPT 2009.

[12] Cachin, C.: Efficient private bidding and auctions with an oblivious third
party. In: CCS 1999. ACM (1999)

[13] Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: EUROCRYPT 1999. Full
verion at http://www.zurich.ibm.com/ cca/papers/cpir.pdf

[14] Canetti R.: Towards realizing random oracles: Hash functions that hide all
partial information. In: CRYPTO 1997. LNCS. Springer (1997)

[15] Canetti R., Dakdouk R.: Extractable Perfectly One-Way Functions. In:
ICALP 2008.

[16] Canetti R., Goldreich O., Halevi S.: The random oracle methodology, re-
visited. J. ACM 51(4): 557-594 (2004)

[17] Canetti R., Micciancio D., and Reingold O.: Perfectly one-way probabilistic
hash functions. In: STOC 1998. ACM (1998)

[18] Coppersmith D.: Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. In J. Cryptology. Vol. 10. Springer (1997)

[19] Coron J-S., Joye M., Naccache D., Paillier P.: New Attacks on PKCS #1
v1.5 Encryption. In EUROCRYPT 2000. LNCS. Springer (2000)

[20] Coron J-S., Joye M., Naccache D., Paillier P.: Universal Padding Schemes
for RSA, In CRYPTO 2002. LNCS. Springer (2002)

[21] Dodis Y., Oliveira R., Pietrzak K.: On the Generic Insecurity of the Full
Domain Hash. In CRYPTO 2005. LNCS. Springer (2005)

[22] Dodis Y., Smith A: Correcting errors without leaking partial information.
In: STOC 2005. ACM (2005)



[23] Fujisaki E., Okamoto T., Pointcheval D., Stern J.: RSA-OAEP is secure
under the RSA assumption. In: J. Cryptology 17(2): 81-104 (2004)

[24] Gentry, C., Mackenzie, P., Ramzan, Z.: Password authenticated key ex-
change using hidden smooth subgroups. In: CCS 2005. ACM (2005)

[25] Hemenway B., Ostrovsky R.: Public-key locally-decodable codes. In
CRYPTO 2008. LNCS. Springer (2008)

[26] Kazukuni K., Imai H.: OAEP++: A Very Simple Way to Apply OAEP to
Deterministic OW-CPA Primitives. In Cryptology ePrint Archive, Report
2002/130 (2002)

[27] Kiltz E., O’Neill A., Smith A.: Instantiability of RSA-OAEP under Chosen-
Plaintexts Attacks. Full version of this paper.

[28] Kiltz E., Pietrzak K.: The Group of Signed Quadratic Residues and Appli-
cations. In: CRYPTO 2009. LNCS. Springer (2009)

[29] Kiltz E., Pietrzak K.: On the security of padding-based encryption schemes
(or: Why we cannot prove OAEP secure in the standard model). In: EURO-
CRYPT 2009. LNCS. Springer (2009)

[30] Kiltz E., Pietrzak K.: Personal Communication, 2009.
[31] Lenstra A. K.: Unbelievable security : Matching AES security using public

key systems. In: ASIACRYPT 2001 LNCS Springer (2001)
[32] May A.: Using LLL-Reduction for Solving RSA and Factorization Problems:

A Survey. LLL+25 Conference in honour of the 25th birthday of the LLL
algorithm, 2007.

[33] Herrmann M., May A.: Solving Linear Equations Modulo Divisors: On
Factoring Given Any Bits. In ASIACRYPT 2008. LNCS. Springer (2008)

[34] Paillier P., Villar J.: Trading one-wayness against chosen-ciphertext security
in factoring-based encryption. In ASIACRYPT 2006. LNCS. Springer (2006)

[35] Pandey O., Pass R., Vaikuntanathan V.: Adaptive One-Way Functions and
Applications In CRYPTO 2008. LNCS. Springer (2008)

[36] Peikert C., Waters B.: Lossy trapdoor functions and their applications. In:
STOC 2008. ACM (2008)

[37] RSA Laboratories Public-Key Cryptography Standards.
www.rsa.com/rsalabs/pkcs/

[38] Rivest R., Shamir A., Adelman L.: A method for obtaining public-key
cryptosystems and digital signatures. Technical Report MIT/LCS/TM-82
(1977)

[39] Rivest R., Shamir A., Adelman L.: Cryptographic communications system
and method. U.S. Patent 4,405,829 (1983)

[40] Schridde C,. Freisleben B.: On the validity of the Φ-Hiding Assumption in
cryptographic protocols. In: ASIACRYPT 2008. LNCS. Springer (2008)

[41] Shoup V.: OAEP Reconsidered. In: J. Cryptology 15(4): 223-249 (2002)
[42] Trevisan L., Vadhan S.: Extracting Randomness from Samplable Distribu-

tions. In: FOCS 2000. ACM (2000)
[43] Yilek S., Rescorla E., Shacham H., Enright B., Savage S.: When Private

Keys are Public: Results from the 2008 Debian OpenSSL Debacle. In: IMC
2009.


