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1. Introduction

The moduli space of stable bundles on the projective space P
3 is an important object of investigation in algebraic

geometry. Especially important subclass of stable bundles is constituted by the so-called mathematical instanton

bundles. By definition a mathematical instanton on P
3 is a stable vector bundle E of rank 2 with c1(E) = 0 and with

the property that

H1(P3, E(−2)) = 0,

known as the instantonic condition. The second Chern class c2(E) is known as the charge, or the topological charge of

the instanton E .

Originally, instanton bundles appeared in the seminal work of Atiyah–Drinfeld–Hitchin–Manin [1] as a way to describe

Yang–Mills instantons on a four-sphere S4 which play an important role in Yang–Mills gauge theory. Since then
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they attracted a lot of attention, especially the questions like smoothness and connectedness of their moduli space and

different approaches to their construction were considered. Also a number of generalizations of instantons appeared, such

as instantons on higher-dimensional projective spaces [19, 24] (in particular symplectic instantons) and noncommutative

instantons [12].

The goal of this paper is to introduce another (in a way more direct) generalization of instantons. Instead of going to

higher dimensions, or into the noncommutative world, we suggest just to replace P
3 with another Fano threefold. In

doing so we note that the line bundle OP3 (−2) appearing in the instantonic condition is nothing but the square root

of the canonical bundle, so as soon as we have a Fano threefold with canonical class being a square we can consider

instantons on it. This attracts our attention to Fano threefolds of index 2.

Here we should also mention an independent paper of Daniele Faenzi [7], which also discusses a generalization of

instanton bundles to Fano threefolds, especially to those with trivial third Betti number. In particular, the results obtained

in loc. cit. for the Fano threefold of index 2 and degree 5 and 4 are very close to the results in the present paper.

Recall that the index of a Fano manifold is the maximal integer dividing its canonical class. By Fano–Iskovskikh–Mukai

classification the index of a Fano threefold is bounded by 4, with P
3 being the only index 4 variety and the quadric

Q3 the only index 3 variety. Among the Fano threefolds of index 2 the most important are those with Picard number 1.

Given such a threefold Y we denote by OY (1) the ample generator of the Picard group. Then the canonical bundle of Y

is OY (−2) and OY (−1) is its square root. So, we have the following

Definition 1.1 ([13]).
Let Y be a Fano threefold of index 2. An instanton bundle on Y is a stable vector bundle E of rank 2 with c1(E) = 0
such that

H1(Y , E(−1)) = 0. (1)

The integer c2(E) is called the (topological) charge of the instanton E .

The goal of this paper is to show that instantons on Fano threefolds of index 2 share many properties of usual instantons.

So, their investigation, interesting by itself, may be helpful for further study of instantons on P
3. To be more precise we

will concentrate on the following two issues: the monadic construction and the Grauert–Mülich Theorem.

Recall that every instanton of charge n on P
3 can be represented as the cohomology in the middle term of a self-dual

three-term complex

OP3 (−1)n → O2n+2
P3 → OP3 (1)n

(known as a monad). The reason for this is a relatively simple structure of the bounded derived category Db(P3) of

coherent sheaves on P
3. This category is known to have many full exceptional collections, the most convenient for

our question is the collection
(
OP3 (−1),OP3 ,OP3 (1),OP3 (2)

)
. The instantonic condition implies (by stability and Serre

duality) that any instanton lies in the right orthogonal to OP3 (2), which is the subcategory of Db(P3) generated by

OP3 (−1), OP3 , and OP3 (1). Decomposing the instanton with respect to this collection gives the monad.

Of course, generic Fano threefold does not have a full exceptional collection, so the above description cannot work

verbatim. However, a certain part of it works. To be more precise, each Fano threefold Y of index 2 has an exceptional

collection (OY ,OY (1)) (not full), which gives rise to a semiorthogonal decomposition

Db(Y ) = 〈BY ,OY ,OY (1)〉,

where triangulated category BY , defined as the orthogonal BY = 〈OY ,OY (1)〉⊥, is called the nontrivial component of

Db(Y ) and discussed in [15]. Now, if E is an instanton of charge n on Y then analogously to the case of P
3 the

instantonic condition implies that E is right orthogonal to OY (1), hence it is contained in the subcategory 〈BY ,OY 〉 of

Db(Y ). Decomposing E with respect to this semiorthogonal decomposition we can see that the component with respect

to OY is just On−2
Y , while the component in BY is a very special vector bundle Ẽ of rank n which is called the acyclic

extension of the instanton E . The decomposition itself takes the form of a short exact sequence

0 → E → Ẽ → On−2
Y → 0,
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Instanton bundles on Fano threefolds

which is an analogue of the monad. Moreover, the bundle Ẽ itself should be considered as an analogue of the Kronecker

module, see e.g. [18], associated to the instanton. We show that Ẽ has many nice properties, in particular it is self-

dual with respect to a certain antiautoequivalence of the category BY , which generalizes usual symmetry property of

Kronecker modules. Moreover, we show that one can easily reconstruct the instanton from its acyclic extension.

Another approach to construction and classification of instantons is based on investigation of the behavior of the re-

striction of an instanton to lines. In the case of P3 this behavior is described by the classical Grauert–Mülich Theorem

saying that if E is an instanton of charge n then

• for generic line L ⊂ P
3 one has E↾L

∼= OL ⊕OL;

• the lines L ⊂ P
3 for which the restriction EL is nontrivial (jumping lines) are parameterized by a degree n divisor

DE in the Grassmannian Gr(2, 4) of lines;

• the divisor comes with a coherent sheaf (which is locally free of rank 1 at points corresponding to lines L such

that E↾L = OL(1)⊕OL(−1)), and the instanton can be reconstructed from the divisor and the associated sheaf.

We aim to prove the same for Fano threefolds of index 2. Of course, in this case we should look at the Hilbert scheme of

lines on Y (which is traditionally called the Fano scheme of lines) F (Y ) which is a certain surface naturally associated

to the threefold Y . It is not clear whether the analogue of the first part of the Grauert–Mülich Theorem is true in this

case, however the second definitely holds. We show that as soon as the generic line on Y is not a jumping line for

an instanton E of charge n, the scheme of jumping lines is a curve DE on F (Y ) which is homologous to nDL, where

DL is the curve on F (Y ) parameterizing lines intersecting a given line L. Moreover, we show that the curve DE comes

equipped with a coherent sheaf LE (locally free of rank 1 at the points corresponding to 1-jumping lines) and discuss

the question of reconstructing E from the pair (DE ,LE ).

The general study of instantons outlined above is illustrated by a more detailed description of what goes on for Fano

threefolds of index 2 and degree 5 and 4 respectively.

In case of degree 5 there is only one such threefold Y5, it can be constructed as a linear section of codimension 3 of

the Grassmannian Gr(2, 5) embedded into the Plücker space P(Λ2k5). Such linear section is given by the corresponding

three-dimensional space of skew-forms in terms of which one can describe the geometry (and the derived category)

of Y5. In particular, the nontrivial part BY5
of the derived category of Y5 is generated by an exceptional pair of vector

bundles [20] which gives a description of the acyclic extension Ẽ of an instanton in terms of representations of the

Kronecker quiver with three arrows (which is a complete analogue of the Kronecker module describing instantons on P
3),

and instanton itself is described as the cohomology of a self-dual monad

Un → O4n+2
Y5

→ (U∗)n,

where U is just the restriction of the tautological rank 2 vector bundle from the Grassmannian Gr(2, 5). On the other

hand, the Fano scheme of lines on Y5 is identified with P
2 and we show that the Kronecker module above can be

thought of as a net of quadrics parameterized by this P
2. In these terms the curve DE of jumping lines of an instanton

E gets identified with the degeneration curve of the net of quadrics and the associated sheaf LE with (the twist of) the

corresponding theta-characteristic on DE . The usual procedure of reconstructing the net of quadrics from the associated

theta-characteristic shows that the instanton E can be reconstructed from the pair (DE ,LE ) in this case.

In the case of degree 4 we also have a nice interpretation. Each Fano threefold Y4 of index 2 and degree 4 is an

intersection of two quadrics in P
5. In the pencil of quadrics passing through Y4 there are six degenerate quadrics. We

consider the double covering C of P1 (parameterizing quadrics in the pencil) ramified in these six points. The curve C

has genus 2 and it is well known that BY
∼= Db(C ) in this case, see [5] or [14]. Let τ be the hyperelliptic involution of C .

We show that the acyclic extension Ẽ of an instanton E of charge n on Y4 corresponds under the above equivalence

to a semistable vector bundle F on C of rank n such that τ∗F ∼= F ∗ which has a special behavior with respect to

the Raynaud’s bundle on C . Moreover, the Fano scheme of lines on Y4 is isomorphic (noncanonically) to the abelian

surface Pic0C and we show that the curve DE coincides with the theta-divisor on Pic0C associated with the bundle F .

In particular, we show that in this case one can reconstruct the instanton E from the pair (DE ,LE ).
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The paper is organized as follows. In Section 2 we collect the preliminary material required for the rest of the paper. In

particular we discuss Fano threefolds of index 2 and their derived categories. Section 3 is the central part of the paper

where we develop the general theory of instantons. In particular, we introduce the acyclic extension of an instanton

and discuss the curve of its jumping lines. In Section 4 we consider in detail the case of degree 5 Fano threefolds, and

Section 5 deals with the degree 4 case. Finally, in Section 6 we outline possible approaches to instantons on Fano

threefolds of index 2 and degrees 3, 2, and 1.

2. Preliminaries

We work over an algebraically closed field k of characteristic 0.

2.1. Stable sheaves

Let F be a coherent sheaf on a smooth projective variety X of dimension n. Assume a polarization (i.e. an ample divisor

H on X ) is chosen. Then the slope of F is defined as

µH (F ) = c1(F ) · Hn−1/r(F ).

A sheaf F is called Mumford-semistable, or µ-semistable if for each subsheaf G ⊂ F with r(G) < r(F ) one has

µH (G) ≤ µH (F ). If the last inequality is strict for all such G then one says that F is stable.

Analogously, F is called Gieseker-semistable if for each subsheaf G ⊂ F with r(G) < r(F ) one has

χ(X, G(tH))/r(G) ≤ χ(X, F (tH))/r(F ) for t ≫ 0.

Here χ(X, −) stands for the Euler characteristic of a sheaf. By Riemann–Roch χ(X, F (tH))/r(F ) is a polynomial of

degree n with the coefficient at tn independent of F and the coefficient at tn−1 proportional to µH (F ). Thus each

Mumford-stable sheaf is Gieseker-stable, and each Gieseker-semistable sheaf is Mumford-semistable.

Note also that rescaling of H does not affect the (semi)stability of coherent sheaves. Thus if Neron–Severi group of X

is isomorphic to Z one can forget about the choice of polarization. Moreover, in this case one can consider c1(F ) just as

an integer and the slope µ(F ) = c1(F )/r(F ) as a rational number. We are going to use this convention throughout the

paper.

Note also that if the Picard group of X is Z then a twisting of a sheaf F by a line bundle results in shifting the slope of

F by the integer equal to the class of this line bundle in Pic X . In particular, there is a unique twist such that the slope

µ(F ) is contained the interval −1 < µ(F ) ≤ 0. This twist is called the normalized form of F and is denoted by Fnorm.

The following criterion is very useful for verification of stability.

Lemma 2.1 ([9]).
Assume that the Picard group of X is Z and its ample generator OX (1) has global sections. Let F be a vector bundle

of rank r on X such that for each 1 ≤ k ≤ r − 1 the vector bundle (ΛkF )norm has no global sections. Then F is stable.

We will refer to Lemma 2.1 as Hoppe’s criterion.

2.2. Fano threefolds of index 2

A Fano variety is a smooth projective variety Y with the anticanonical class −KY ample. The index of a Fano variety Y

is the maximal integer dividing the canonical class. We refer to [11] for a detailed introduction into the modern theory

of Fano varieties.

1201

A
uth

or 
co

py
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It is well known that for a Fano variety of dimension m the index does not exceed m + 1, see [8, 11]. Moreover, there is

only one Fano m-fold of index m + 1, which is the projective space P
m, and only one Fano m-fold of index m, which is

the quadric Qm ⊂ P
m+1. In case of threefolds, thus we have P

3 of index 4 and Q3 of index 3, as well as Fano threefolds

of index 2 and 1. All of them are classified in [11]. In this paper we restrict the attention to Fano threefolds of index 2

and the Picard group of rank 1. There are five families of those, classified by the degree of the ample generator of the

Picard group:

degree 5 Y5 = Gr(2, 5) ∩ P
6 ⊂ P

9 (a linear section of the Grassmannian);

degree 4 Y4 = Q1 ∩ Q2 ⊂ P
5 (an intersection of two 4-dimensional quadrics);

degree 3 Y3 ⊂ P
4 (a cubic threefold);

degree 2 Y2 → P
3 (a quartic double solid);

degree 1 Y1 99K P
2 (a hypersurface of degree 6 in the weighted projective space P(1, 1, 1, 2, 3)).

From now on we denote by Y any Fano threefold of index 2. We will indicate the degree by a lower index, for example

Y5 will stand for the degree 5 threefold. Since the Picard number of Y is 1, it follows that

H2(Y ,Z) = H4(Y ,Z) = H6(Y ,Z) = Z,

(generated by the class of a hyperplane section, the class of a line, and the class of a point) so the Chern classes of

vector bundles can be thought of as integers. The ample generator of the Picard group is denoted by OY (1), so we have

ωY
∼= OY (−2).

2.3. The Fano scheme of lines

The Hilbert scheme of lines on Y is a surface which we denote by F (Y ) and it is called traditionally the Fano scheme

of lines on Y . By definition, if W ∗ = Γ(Y ,OY (1)) then F (Y ) is a subscheme in Gr(2, W ) consisting of all lines in P(W )

which lie in (the closure of) the image of Y via the (rational) map given by the line bundle OY (1).

For a line L ⊂ Y we denote by DL ⊂ F (Y ) the curve parameterizing lines intersecting L and its class in the group

A1(F (Y )) of 1-cycles on F (Y ) modulo rational equivalence (which we denote by ∼).

Let Z denote the universal family of lines. It is a codimension 2 subscheme in Y ×F (Y ), its fibers over F (Y ) are mapped

onto lines in Y . Thus we have a diagram

Z

q

��

p

!!
Y F (Y ).

Lemma 2.2.
If a Fano threefold Y of index 2 is generic in its deformation class then the map q in the above diagram is flat and finite.

Proof. In case of degree d = 5 and d = 4 it is easy to see that the map q is finite and flat for any Yd. Indeed,

if there is a point on Yd with infinite number of lines on Yd passing through this point then these lines sweep in Yd a

surface of degree less than d which is impossible by the Lefschetz Theorem. On the other hand, for d ≤ 3 one can verify

the claim by a parameter counting.
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Remark 2.3.
Although for generic Y the map q is flat and finite, both may fail for special 3-folds Y . For example, consider the cubic
3-fold in P

4 = P(x0, . . . , x4) with equation x2
0 x1 + x3

1 + x3
2 + x3

3 + x3
4 = 0. It is easy to check that it is smooth. However

the lines passing through the point (1 :0 :0 :0 :0) are parameterized by the elliptic curve x0 = x1 = x3
2 + x3

3 + x3
4 = 0, so

the fiber of q over this point is not finite.

On the other hand, the map p : Z → F (Y ) is always flat and smooth. In fact, it is a projectivization of the restriction to

F (Y ) of the tautological bundle of Gr(2, W ). We denote this rank 2 bundle on F (Y ) by M . We will need to identify the

first Chern class of M .

Lemma 2.4.
We have c1(M) = −dDL.

Proof. For simplicity assume that OY (1) is generated by global sections, i.e. the map Y 99K P(W ) is regular. Take

a subspace W ′ ⊂ W of codimension 2. Then c1(M∗) is represented by all lines L ⊂ P(W ) which intersect P(W ′). In

the other words it is the set of lines on Y which pass through Y ∩ P(W ′). But Y ∩ P(W ′) is a linear section of Y of

codimension 2, so its class is c1(OY (1))2 which is rationally equivalent to dL, where L is a line on Y . Hence the required

set of lines is rationally equivalent to d times the set of lines intersecting L, that is to dDL.

Corollary 2.5.
We have ωZ/F (Y )

∼= p∗OF (Y )(dDL)⊗q∗OY (−2) and ωZ/(Y ×F (Y ))
∼= p∗OF (Y )(dDL).

Proof. Since Z = PF (Y )(M) we have ωZ/F (Y )
∼= p∗ det M∗⊗OZ/F (Y )(−2). The second formula follows immediately from

ωZ/(Y ×F (Y ))
∼= ωZ/F (Y ) ⊗ q∗ω−1

Y since ωY
∼= OY (−2) and OZ/F (Y )(1) = q∗OY (1).

2.4. Derived categories

For an algebraic variety X we denote by Db(X ) the bounded derived category of coherent sheaves on X . It is a k-linear

triangulated category. The shift functor in any triangulated category T is denoted by [1]. We denote Extp(F, G) =

Hom(F, G[p]) and Ext•(F, G) =
⊕

p∈Z
Extp(F, G)[−p]. One says that a triangulated category T is Ext-finite if Ext•(F, G)

is a finite dimensional graded vector space for all F, G ∈ T. The derived category Db(X ) is Ext-finite if X is smooth

and proper.

Definition 2.6 ([4, 5]).
A semiorthogonal decomposition of a triangulated category T is a sequence of full triangulated subcategories A1, . . . ,Am

in T such that HomT(Ai,Aj ) = 0 for i > j and for every object T ∈ T there exists a chain of morphisms

0 = Tm → Tm−1 → . . . → T1 → T0 = T

such that the cone of the morphism Tk → Tk−1 is contained in Ak for each k = 1, 2, . . . , m.

A semiorthogonal decomposition with components A1, . . . ,Am is denoted T = 〈A1, . . . ,Am〉. The easiest way to produce

a semiorthogonal decomposition is by using exceptional objects or collections.

Definition 2.7 ([3]).
An object F ∈ T is called exceptional if Ext•(F, F ) = k. A collection of exceptional objects (F1, . . . , Fm) is called
exceptional if Extp(Fl, Fk ) = 0 for all l > k and all p ∈ Z.

The minimal triangulated subcategory of T containing an exceptional object F is equivalent to the derived category of

k-vector spaces. It is denoted by 〈F 〉, or sometimes just by F .
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Lemma 2.8 ([5]).
If T is an Ext-finite triangulated category then any exceptional collection F1, . . . , Fm in T induces a semiorthogonal

decomposition

T = 〈A, F1, . . . , Fm〉

where A = 〈F1, . . . , Fm〉⊥ = {F ∈ T : Ext•(Fk , F ) = 0, 1 ≤ k ≤ m}.

This construction can be efficiently applied to Fano varieties. Recall that by Kodaira vanishing any line bundle on a

Fano variety is exceptional. Moreover, if X is a Fano variety of index r then the sequence OX ,OX (1), . . . ,OX (r − 1) is

exceptional. In particular, for Fano threefolds of index 2 we have an exceptional pair OY ,OY (1). By Lemma 2.8 it extends

to a semiorthogonal decomposition

Db(Y ) = 〈BY ,OY ,OY (1)〉, BY = 〈OY ,OY (1)〉⊥. (2)

The category BY is called the nontrivial component of Db(Y ). Some of its properties are discussed in [15].

For each exceptional object E ∈ T one can define the so-called mutation functors as follows. For each object F ∈ T

consider the canonical evaluation map Ext•(E, F )⊗E → F . Its cone is denoted by LE (F ) and is called the left mutation

of F through E . By definition we have a distinguished triangle

Ext•(E, F )⊗E → F → LE (F ). (3)

The right mutation of F through E is defined dually, by using the coevaluation map and the distinguished triangle

RE (F ) → F → Ext•(F, E)∗⊗E.

The following fact is well known.

Lemma 2.9 ([4]).
The left and right mutations through E vanish on the subcategory 〈E〉 and induce mutually inverse equivalences

⊥E
LE // E⊥.
RE

oo

3. Instanton bundles

Let Y be a Fano threefold of index 2. Recall that by definition an instanton of charge n on Y is a stable vector bundle

E of rank 2 with c1(E) = 0, c2(E) = n, enjoying the instantonic condition (1), which we rewrite for convenience as

H1(Y , E(−1)) = 0.

3.1. Cohomology groups

No wonder that the condition (1) has very similar consequences as the classical instanton condition on P
3. For example,

the cohomology table of E has the same shape.
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Lemma 3.1 ([13]).
Let E be an instanton bundle of charge n on a Fano threefold of index 2 and degree d. Then the cohomology table of

E has the following shape:

t . . . −3 −2 −1 0 1 . . .

h3(E(t)) . . . ∗ 0 0 0 0 . . .

h2(E(t)) . . . ∗ n − 2 0 0 0 . . .

h1(E(t)) . . . 0 0 0 n − 2 ∗ . . .

h0(E(t)) . . . 0 0 0 0 ∗ . . .

In particular,

H0(E(t)) = 0 for t ≤ 0,

H1(E(t)) = 0 for t ≤ −1,

H2(E(t)) = 0 for t ≥ −1,

H3(E(t)) = 0 for t ≥ −2.

Proof. First note that H0(E(t)) = 0 for t ≤ 0 by stability of E . Further, by the Serre duality,

H3(E(t))∗ = H0(E∗(−t − 2)) = H0(E(−t − 2)) = 0

for t ≥ −2. Also by the Serre duality we have H2(E(−1))∗ = H1(E∗(−1)) = H1(E(−1)) = 0. Finally, consider the

Koszul complex

0 → O(−3) → O(−2)3 → O(−1)3 → O → OZ → 0,

given by a triple of global sections of O(1) with Z a zero-dimensional subscheme of Y of length d (note that

dim H0(Yd,O(1)) = d + 2 ≥ 3, so we can always find a triple of sections). Note that E ⊗OZ is an artinian sheaf,

in particular H>0(E ⊗OZ ) = 0. On the other hand, looking at the hypercohomology spectral sequence of the above

Koszul complex tensored with E we see that H2(E) cannot be killed by anything (since H2(E(−1)) = H3(E(−2)) = 0),

hence if H2(E) 6= 0 it should contribute nontrivially into H2(E ⊗OZ ) = 0. Thus H2(E) = 0. Twisting additionally by

O(t) with t ≥ 0 and using the same argument we prove inductively that H2(E(t)) = 0 for all t ≥ 0. Then by the Serre

duality we have H1(E(−2− t)) = 0. This explains all zeros in the table. Applying Riemann–Roch one can easily deduce

that dim H1(E) = dim H2(E(−2)) = n − 2.

Corollary 3.2.
The charge of an instanton bundle is greater or equal than 2.

The instanton bundles of charge 2 are called the minimal instantons. They are particularly interesting. For example

they have the following vanishing property.

Corollary 3.3.
If E is a minimal instanton then H i(E(t)) = 0 for all i and −2 ≤ t ≤ 0.

Remark 3.4.
The possible values of dim H0(E(1)) = dim H3(E(−3)) and dim H1(E(1)) = dim H2(E(−3)) are hard to find. There is a
simple restriction

dim H0(E(1)) − dim H1(E(1)) = 2d − 2n + 4

which is given by Riemann–Roch. Moreover, probably one can show that

dim H0(E(1)) ≤ 2d, dim H1(E(1)) ≤ 2n − 4.

For this it is enough to check that for generic linear section C of Y of codimension 2 (which is an elliptic curve) one
has H0(C, E↾C ) = 0. In this case it would be easy to deduce for minimal instantons the equalities H•(E(1)) = k2d,
H•(E(−3)) = k2d[−3].
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3.2. The acyclic extension

As we have seen in Lemma 3.1, each instanton E enjoys the vanishing

H•(Y , E(−1)) = 0.

One can easily produce from E another bundle which has a stronger vanishing.

Lemma 3.5.
For each instanton bundle E there exists a unique short exact sequence

0 → E
λE−→ Ẽ → On−2

Y → 0 (4)

such that Ẽ is acyclic, i.e.

H•(Y , Ẽ) = 0.

Indeed, it is clear that Ẽ is nothing but the universal extension of H1(Y , E)⊗OY by E . Another way to describe Ẽ is

by saying that

Ẽ = LOY
E,

the left mutation of E through OY . Indeed, the definition of the left mutation (3) in this case literally coincides with exact

sequence (4). The bundle Ẽ will be referred to as the acyclic extension of the instanton E . Recall the semiorthogonal

decomposition (2) of Db(Y ). We have the following

Lemma 3.6.
The acyclic extension of an instanton of charge E is a simple µ-semistable vector bundle Ẽ on Y with

r(Ẽ) = n, c1(Ẽ) = 0, c2(Ẽ) = n, c3(Ẽ) = 0, H•(Ẽ) = H•(Ẽ(−1)) = 0.

In particular, Ẽ ∈ BY . Moreover,

h0(Ẽ∗) = h1(Ẽ∗) = n − 2, h2(Ẽ∗) = h3(Ẽ∗) = 0.

Proof. Chern classes and cohomology of Ẽ are computed immediately using the defining sequence (4). To compute

the cohomology of Ẽ(−1) we twist (4) by −1, and to compute the cohomology of Ẽ∗ we dualize (4) and use self-duality

of E .

To check that Ẽ is simple we first show that Hom(E, Ẽ) = k (by applying Hom(E, −) to (4) and noting that E itself is

simple and Hom(E,OY ) = H0(Y , E) = 0). Then applying Hom(−, Ẽ) to (4) we see that Ẽ is simple. Finally, to establish

µ-semistability of Ẽ we note that Ẽ is an extension of two µ-semistable sheaves of the same slope.

3.3. The antiautoequivalence

Recall that any instanton, being a rank 2 bundle with trivial determinant, is self-dual. This self-duality translates to

the following property of the acyclic extension. Consider the following antiautoequivalence of the category O⊥
Y ⊂ Db(Y ).

First, note that the duality functor

F 7→ RHom (F,OY )

gives an antiequivalence of the category O⊥
Y onto the category ⊥OY . Composing it with the left mutation functor LO

with respect to OY , and using Lemma 2.9 we conclude that

D: O⊥
Y → O⊥

Y , F 7→ LO(RHom (F,OY ))

is an antiautoequivalence of O⊥
Y . Moreover, it is easy to see that D is involutive.
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Lemma 3.7.
We have a functorial isomorphism δ : D2 ∼

−→ id.

Proof. Indeed, for each F we have a canonical distinguished triangle

RHom(F,OY )⊗OY → RHom (F,OY ) → D(F ).

Dualizing it we obtain a triangle

RHom (D(F ),OY ) → F → RHom(F,OY )∗⊗OY .

Since LO(OY ) = 0, the application of exact functor LO gives a functorial isomorphism D2(F ) ∼= LO(F ). But if F ∈ O⊥
Y

then LO(F ) = F .

Moreover, the antiautoequivalence D preserves the subcategory BY .

Proposition 3.8.
The category BY is preserved by the antiautoequivalence D.

Proof. Assume that F ∈ BY = 〈OY ,OY (1)〉⊥. Then we have RHom (F,OY ) ∈ ⊥〈OY (−1),OY 〉 and so D(F ) =

LO(RHom (F,OY )) ∈ ⊥OY (−1) ∩O⊥
Y . But since ωY

∼= OY (−2), it follows from the Serre duality that ⊥OY (−1) = OY (1)⊥,

so we see that D(F ) ∈ O⊥
Y ∩ OY (1)⊥ = 〈OY ,OY (1)〉⊥ = BY .

3.4. The self-duality of acyclic extensions

Now we can state the self-duality property of Ẽ .

Proposition 3.9.

If Ẽ is the acyclic extension of an instanton then there is a canonical isomorphism φ : D(Ẽ) → Ẽ . Moreover, the

isomorphism φ is skew-symmetric, that is the diagram

D(Ẽ)

D(φ)

||

−φ

  
D2(Ẽ)

δ
Ẽ // Ẽ

commutes.

Proof. Applying RHom (−,OY ) to (4) and denoting by σ : E∗ → E the canonical isomorphism we obtain an exact

sequence

0 → On−2
Y → RHom (Ẽ,OY )

σλT
E−−→ E → 0.

Combining it with (4) we obtain a long exact sequence

0 → On−2
Y → RHom (Ẽ,OY )

λE σλT
E−−−−→ Ẽ → On−2

Y → 0.

Since LO(OY ) = 0, we see that

φ = LO(λEσλT
E ) : D(Ẽ) → LO(Ẽ) = Ẽ
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is an isomorphism. Let us show that φ is skew-symmetric. For this note that the above arguments give the following

commutative diagram.

RHom (Ẽ,OY )

λE σλT
E

''

// D(Ẽ)

φ

ww
Ẽ

Dualizing it we obtain

Ẽ RHom (D(Ẽ),OY )oo

RHom (Ẽ,OY )

λE σT λT
E

hh

φT

66

and applying LO we obtain

Ẽ D2(Ẽ)oo

D(Ẽ)

LO(λE σT λT
E )

cc

D(φ)

;;

Now it remains to note that the arrow in the top row is δẼ and, since σT = −σ , the left arrow is −φ.

3.5. Reconstruction of the instanton

It turns out that any vector bundle F satisfying properties of both Lemma 3.6 and Proposition 3.9 is the acyclic extension

of appropriate instanton.

Theorem 3.10.
Assume that F is a vector bundle on Y with

r(F ) = n, c1(F ) = 0, c2(F ) = n, c3(F ) = 0, H•(F ) = H•(F (−1)) = 0, D(F ) ∼= F.

Then H i(Y , F ∗) = 0 unless i = 0, 1 and h0(F ∗) = h1(F ∗) ≤ n − 2. Moreover, if h0(F ∗) = n − 2 then there is a unique

instanton E of charge n such that F ∼= Ẽ .

Remark 3.11.
It is easy to see that the conditions H•(F ) = H•(F (−1)) = 0 together with c1(F ) = 0 imply c2(F ) = r(F ) and c3(F ) = 0.
Indeed, it follows easily from the description of the numerical Grothendieck group of the category BY , see [15].

Proof. Let us write down the condition D(F ) ∼= F explicitly. Since F is a vector bundle, we have RHom (F,OY ) ∼= F ∗.

Hence D(F ) = Cone (H•(Y , F ∗)⊗OY → F ∗). Writing down the long exact sequence of sheaf cohomology we obtain a

long exact sequence

0 → H0(Y , F ∗)⊗OY → F ∗ → F → H1(Y , F ∗)⊗OY → 0

as well as the vanishing of H i(Y , F ∗) for i 6= 0, 1. Note that by Riemann–Roch the Euler characteristic of F ∗ is zero,

hence h0(F ∗) = h1(F ∗). Denoting this integer by h we can rewrite the above sequence as

0 → Oh
Y → F ∗ → F → Oh

Y → 0.

Let E be the image of the map F ∗ → F . Note that E is locally free (as a kernel of an epimorphism of vector bundles).

Moreover, c1(E) = 0 and c2(E) = n, hence r(E) ≥ 2. Thus h = n − r(E) ≤ n − 2.

Finally, if h = n − 2 then E has rank 2, is locally free, and c1(E) = 0, c2(E) = n. Moreover, it is stable since

H0(Y , E) = Coker (H0(Y , F ∗) → H0(Y , F ∗)) = 0, and H1(Y , E(−1)) = 0 since both F (−1) and OY (−1) are acyclic.
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3.6. Ideals of lines

Recall that a line on a Fano threefold Y is a rational curve on Y of degree 1.

Proposition 3.12.
For any Fano threefold Y of index 2 and any line L ⊂ Y the ideal sheaf IL is contained in BY . Moreover, it is fixed

by D:

D(IL) ∼= IL.

Proof. From the exact sequence

0 → IL → OY → OL → 0

it follows easily that H•(Y , IL) = H•(Y , IL(−1)) = 0, so IL ∈ BY . Further, applying RHom (−,OY ) and taking into account

that

RHom (OL,OY ) ∼= OL[−2],

by the Grothendieck duality (since ωL/Y = ωL ⊗ω−1
Y ↾L = OL(−2)⊗OL(2) = OL), we obtain a triangle

OY → RHom (IL,OY ) → OL[−1]. (5)

Since LO(OY ) = 0 we conclude that

D(IL) = LO(RHom (IL,OY )) = LO(OL[−1]) = Cone (OY [−1] → OL[−1]) = IL,

hence the claim.

Remark 3.13.
In fact one can show that the isomorphism D(IL) ∼= IL is skew-symmetric in the sense of Proposition 3.9. However we
will not need this fact, so we skip the proof.

As we will see below the ideals of lines give a connection between the geometric and categorical properties of lines.

However, sometimes it is more convenient to use the (twisted and shifted) dual objects. We denote

JL = RHom (IL,OY (−1))[1] ∈ Db(Y ).

Lemma 3.14.
We have a distinguished triangle

OY (−1)[1] → JL → OL(−1). (6)

Moreover, JL ∈ BY .

Proof. The triangle is obtained from (5) by a shift and a twist. Since both OY (−1) and OL(−1) are acyclic, we

conclude that JL ∈ O⊥
Y . On the other hand,

RHom(OY (1), JL) = RHom
(
OY (1), RHom (IL,OY (−1)[1])

)
= RHom

(
OY (1)⊗ IL, OY (−1)[1]

)

= RHom(IL,OY (−2)[1]) ∼= RHom(OY , IL[2])∗ = 0

(we used the Serre duality in the last isomorphism), hence JL ∈ BY .

Remark 3.15.
One can check that the object JL is isomorphic to a cone of the unique nontrivial morphism OL(−1)[−1] → OY (−1)[1].
Indeed, it is a cone of such a morphism just by (6), and the morphism is nontrivial since otherwise we would have
JL

∼= OY (−1)[1]⊕OL(−1) and thus JL would not be orthogonal to OY (1). Finally, to check that the morphism is unique
we note that it is obtained by the antiautoequivalence RHom (−,OY (−1)[1]) from the morphism OY → OL. The later
morphism is evidently unique hence the claim.
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3.7. Jumping lines

A line L ⊂ Y is a jumping line for an instanton E if E↾L
∼= OL(i)⊕OL(−i) with i > 0. More precisely, we will say in this

case that L is an i-jumping line. By analogy with the case of instantons on P
3 it is very tempting to state the following

Conjecture 3.16.
For any instanton E on Y a generic line is not jumping.

The standard approach [18] to this conjecture does not work because the map from the universal line to Y has disconnected

fibers (as we have seen in Lemma 2.2 the map is finite). We will show in Sections 4 and 5 that this conjecture is related

to some well-known geometric questions.

Assume that E is an instanton such that generic line is not jumping for E . Let DE ⊂ F (Y ) be the subscheme parameteriz-

ing jumping lines of E and write i : DE → F (Y ) for the embedding. Also recall the notation introduced in subsection 2.3.

The following result is an analogue of the Grauert–Mülich Theorem.

Theorem 3.17.
If E is an instanton on Y of charge n such that generic line is not jumping for E then

DE ∼ nDL.

Further, there is a coherent sheaf LE on DE such that

Rp∗q
∗E(−1) ∼= i∗LE [−1].

The sheaf LE is invertible on the open subset of DE parameterizing 1-jumping lines, and has the property

LE
∼= RHom

(
LE ,ODE

((n − d)DL)
)
.

In particular, if E has no 2-jumping lines then LE is a line bundle such that L2
E

∼= ODE
((n − d)DL).

Proof. Consider the object F = Rp∗q
∗E(−1) ∈ Db(F (Y )). If x is a point of F (Y ) such that the corresponding line Lx

on Y is not a jumping line, then H•(Lx , E(−1)↾Lx
) = 0 whence F is supported on the subscheme DE . Further, if Lx is a

1-jumping line then H•(Lx , E(−1)↾Lx
) = k⊕k[−1], which means that F is a rank 1 sheaf on DE shifted by −1. Thus

DE = −c1(F) = −c1(Rp∗q
∗E(−1)).

Note that by Grothendieck–Riemann–Roch the first Chern class of Rp∗q
∗(E(−1)) does not depend on E itself, it depends

only on the Chern character of E . In particular, to compute the rational equivalence class of DE we can replace E by

any sheaf with the same Chern character. The most convenient choice is to take

E ′ = Ker

(
O⊕2

Y →
n⊕

i=1

OLi

)
,

where L1, . . . , Ln is a generic n-tuple of lines. It is clear that Rp∗q
∗OY (−1) = 0, hence we have Rp∗q

∗E ′(−1) ∼=⊕
Rp∗q

∗OLi
(−1)[−1]. It remains to check that c1(Rp∗q

∗OLi
(−1)) = DLi

.

Indeed, let Li be the line corresponding to a point xi ∈ F (Y ). As Li is generic, we may assume that the map q is flat

over Li, so q∗OLi
= Oq−1(Li)

. But it is clear that

q−1(Li) = p−1(xi) ∪ D̃Li
,
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where D̃Li
is a section of the map p over DLi

(the points of D̃Li
are the pairs (y, x) ∈ Y ×F (Y ) such that x ∈ DL and y

is the unique point of intersection of the line Lx with Li). Thus we have an exact sequence

0 → GD̃Li
→ q∗OLi

→ Op−1(xi)
→ 0,

where GD̃Li
is the sheaf of ideals of the scheme-theoretical intersection p−1(xi) ∩ D̃Li

on D̃Li
. In particular, it is a sheaf

of rank 1 on D̃Li
. Tensoring the above sequence by q∗OY (−1) and taking into account that Rp∗

(
Op−1(xi)

⊗q∗OY (−1)
)

=

H•
(
p−1(x),Op−1(x)(−1)

)
⊗Ox = 0 since p−1(x) = P

1, we conclude that

Rp∗q
∗(OLi

(−1)) = Rp∗

(
q∗OLi

⊗q∗OY (−1)
)

= Rp∗

(
GD̃Li

⊗ q∗OY (−1)
)
.

Since the restriction of the map p to D̃Li
is an isomorphism onto DLi

, we conclude that Rp∗q
∗(OLi

(−1)) is a rank 1 sheaf

on DLi
. Hence its first Chern class indeed equals DLi

.

For the second claim we have to check that F is a coherent sheaf shifted by −1. Since the map p has relative dimension 1,

the object F can have cohomology only in degree 0 and 1. Thus we have to check that the cohomology in degree 0

vanishes. Indeed, let F0 denote the cohomology of F in degree 0 and F1 the cohomology in degree 1. Then we have a

distinguished triangle

F0 → F → F1[−1].

Applying the Grothendieck duality and taking into account that ωZ/F (Y ) = p∗OF (Y )(dDL)⊗q∗OY (−2) by Corollary 2.5,

we have

RHom (F,OF (Y )) = RHom
(
Rp∗q

∗(E(−1)), OF (Y )

) ∼= Rp∗ RHom
(
q∗(E(−1)), p!OF (Y )

)

∼= Rp∗

(
q∗(E∗(1))⊗ωZ/F (Y )[1]

) ∼= Rp∗

(
q∗(E∗(1))⊗p∗OF (Y )(dDL)⊗q∗OY (−2)[1]

)

∼= Rp∗(q
∗(E(−1)))⊗p∗OF (Y )(dDL)[1] ∼= F(dDL)[1].

On the other hand, applying duality to the distinguished triangle for F we obtain a triangle

RHom
(
F1,OF (Y )

)
[1] → F(dDL)[1] → RHom

(
F0,OF (Y )

)
.

Note that since both F0 and F1 are supported on a closed subscheme of F (Y ), their derived duals are concentrated

in degrees higher than 1. Hence the first and the third term of the triangle are concentrated in nonnegative degrees.

It follows that the cohomology of F(dDL)[1] in degree −1, which is nothing but F0(dDL), vanishes. Thus F0 = 0 and

F = F1[−1]. Moreover, since F1 is supported on the curve DE we can write F = i∗LE [−1], this being a definition of the

coherent sheaf LE . We have already seen the sheaf LE is of rank 1 at any point of DE corresponding to a 1-jumping

line.

Finally, recall that RHom (F,OF (Y ))
∼= F(dDL)[1]. Substituting here F = i∗LE [−1] and using the Grothendieck duality

we deduce

i∗LE (dDL) ∼= RHom
(
i∗LE [−1],OF (Y )

) ∼= i∗ RHom
(
LE [−1], i!OF (Y )

)

∼= i∗ RHom
(
LE , ωDE /F (Y )

) ∼= i∗ RHom
(
LE ,ODE

(DE )
) ∼= i∗ RHom

(
LE ,ODE

(nDL)
)

which gives the required property of LE . Finally, if there are no 2-jumping lines and so LE is a line bundle, this is

evidently equivalent to L2
E

∼= ODE
((n − d)DL).

Now we can state the following

Conjecture 3.18.
The curve of jumping lines DE together with the line bundle LE determines the instanton.

Again, the standard reconstruction procedure [18] does not work here since the lines corresponding to points of DE do

not sweep Y (they sweep a certain surface), so it is not clear a priori how one could produce the bundle E out of this

surface. We will see however that for Fano threefolds of degree 5 and 4 the conjecture is true.
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3.8. Jumping lines in terms of BY

It turns out that the curve of jumping lines can be described in the intrinsic terms of the category BY . This description will

be useful later. To make a statement recall that for each line L we have defined an object JL = RHom (IL,OY (−1))[1] ∈

Db(Y ). This can be used to construct a universal family of objects JL.

Indeed, first note that the universal family of ideal sheaves IL is the ideal sheaf IZ on Y ×F (Y ), where Z is the universal

line. Denote the embedding of Z into Y ×F (Y ) by ζ . Now consider

J = RHom
(
IZ , q∗

1OY (−1)⊗p∗
1OF (Y )(−dDL)[1]

)
,

where p1 and q1 are the projections from Y ×F (Y ) to F (Y ) and Y respectively. Applying the functor

RHom (−, q∗
1OY (−1)[1]) to the exact sequence 0 → IZ → OY ×F (Y ) → OZ → 0 and taking into account the fact that

by the Grothendieck duality we have

RHom
(
OZ , q∗

1OY (−1)⊗p∗
1OF (Y )(−dDL)[1]

) ∼= ζ∗ζ
!
(
q∗

1OY (−1)⊗p∗
1OF (Y )(−dDL)

)
[1]

∼= ζ∗

(
q∗OY (−1)⊗p∗OF (Y )(−dDL)⊗ωZ/Y ×F (Y )[−1]

) ∼= ζ∗q
∗OY (−1)[−1] ∼= OZ (−1)[−1],

we deduce that J fits into the following distinguished triangle:

q∗
1OY (−1)⊗p∗

1OF (Y )(−dDL)[1] → J → OZ (−1). (7)

Proposition 3.19.

Let Ẽ be the acyclic extension of an instanton E . A line L on Y is a jumping line for E if and only if Hom(Ẽ, JL) 6= 0.

Moreover, we have

Rp∗q
∗E(−1) ∼= Rp1∗ RHom (q∗

1Ẽ, J).

In particular, if generic line is not jumping for E then Rp1∗ RHom (q∗
1Ẽ, J) ∼= i∗LE [−1].

Proof. First, JL ∈ BY ⊂ O⊥
Y , hence Ext•(Ẽ, JL) = Ext•(E, JL). Further,

Ext•(E,OY (−1)) = H•(Y , E∗(−1)) = H•(Y , E(−1)) = 0

by self-duality of E , hence Ext•(E, JL) = Ext•(E,OL(−1)). Finally, using again self-duality of E we see that

Ext•(E,OL(−1)) = H•(Y , E∗⊗OL(−1)) = H•(Y , E ⊗OL(−1)) = H•(L, E↾L(−1)).

Combining all this we see that for non-jumping line L we have Ext•(Ẽ, JL) = 0, while for an i-jumping line L we have

dim Hom(Ẽ, JL) = dim Ext1(Ẽ, JL) = i.

For the second statement we apply the functor Rp1∗ RHom (q∗
1Ẽ, −) to the triangle (7). Note that

Rp1∗ RHom
(
q∗

1Ẽ, q∗
1OY (−1)⊗p∗

1OF (Y )(−dDL)
) ∼= Rp1∗

(
q∗

1Ẽ∗(−1)⊗p∗
1OF (Y )(−dDL)

)

∼= H•(Y , Ẽ∗(−1))⊗OF (Y )(−dDL) = 0

since Ẽ∗ is an extension of E∗ ∼= E by On−2
Y and both bundles are in OY (1)⊥. On the other hand,

Rp1∗ RHom (q∗
1Ẽ,OZ (−1)) ∼= Rp∗q

∗(Ẽ∗(−1))

Again, since Ẽ∗ is an extension of E by On−2
Y and Rp1∗q

∗
1(OY (−1)) = 0 by base change we conclude that

Rp1∗q
∗
1(Ẽ∗(−1)) ∼= Rp∗q

∗(E(−1)). Combining all this we deduce the required isomorphism.

1212

A
uth

or 
co

py



A. Kuznetsov

The same trick can be used for the description of the divisor of intersecting lines in F (Y )×F (Y ) and for the curve

DL ⊂ F (Y ) as well.

Lemma 3.20.
Two distinct lines L and L′ intersect if and only if Hom(IL, JL′ ) 6= 0.

Proof. Since Ext•(OY , JL′ ) = 0 we have Ext•(IL, JL) = Ext•−1(OL, JL′ ). Similarly, by the Serre duality we have

Ext•(OL,OY (−1)) ∼= Ext•(OY (−1),OL(−2)[3])∗ ∼= H•(L,OL(−1)[3])∗ = 0, whence Ext•(OL, JL′ ) ∼= Ext•(OL,OL′ ). On the

other hand, if lines L and L′ do not intersect then this is zero. If they intersect in a point then Exti(OL,OL′ ) = k for i = 1

and i = 2. Combining with the above isomorphisms we conclude that

Exti(IL, JL′ ) =

{
k if L intersects L′ and i = 0, 1,

0 otherwise,

which proves the lemma.

4. Instantons on Fano threefolds of degree 5

In this section we consider in detail the case of the Fano threefold Y5 of index 2 and degree 5. We start with a short

reminder on the geometry and derived category of Y5.

4.1. Derived category

Recall that Y5 is a linear section of codimension 3 of Gr (2, 5). Denote by V the vector space of dimension 5 and by

A ⊂ Λ2V ∗ a generic vector subspace of dimension 3 (the group SL(V ) acts with an open orbit on the Grassmannian

Gr (3, Λ2V ∗) and any A from the open orbit gives the same linear section). Denote also by U the restriction of the

tautological rank 2 subbundle from Gr (2, V ) to Y5 and let

U⊥ = Ker (V ∗⊗OY → U∗).

Recall that by [20] the category Db(Y5) is generated by an exceptional collection. For our purposes the most convenient

choice of the collection is

Db(Y5) = 〈U,U⊥,OY5
,OY5

(1)〉. (8)

It gives the following descriptions of the category BY5
.

Lemma 4.1.
The category BY5

is generated by either of the following two exceptional pairs:

BY5
= 〈U,U⊥〉 = 〈(V /U)(−1),U〉.

Moreover, we have canonical isomorphisms

Ext•(U,U⊥) = Ext•((V /U)(−1),U) = A.
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Proof. The first decomposition follows immediately from the definition of BY5
and (8). To get the second, we apply to

Db(Y5) the antiautoequivalence F 7→ RHom (F,OY5
(−1)). Since (U⊥)∗ = V /U and U∗(−1) ∼= U, we see that it takes (8)

to

Db(Y5) =
〈
OY5

(−2),OY5
(−1), (V /U)(−1),U

〉
.

Finally, by the Serre duality we have

BY5
= 〈OY5

,OY5
(1)〉⊥ = ⊥〈OY5

(−2),OY5
(−1)〉,

which gives the second decomposition of BY5
.

For the computation of Ext’s we refer to [20]. Here we will only explain how the evaluation morphism

α : A⊗U → U⊥

can be described. Consider the map A⊗U → A⊗V ⊗OY5

ev
−→ V ∗⊗OY5

, where ev is the evaluation of a 2-form (recall

that A is a subspace in Λ2V ∗) on a vector. Its composition with the projection V ∗⊗OY5
→ U∗ vanishes (by definition of

Y5), hence the map itself factors through the subbundle U⊥.

We would like to point out the following two funny consequences of the lemma. First, observe that it follows that the

left mutation of U⊥ through U is (V /U)(−1)[1] and dually, the right mutation of (V /U)(−1) through U is U⊥[−1]. In other

words, we have the following exact sequence:

0 → (V /U)(−1) → A⊗U → U⊥ → 0. (9)

Also note that the antiautoequivalence from the proof of Lemma 4.1 takes the above exact sequence to

0 → (V /U)(−1) → A∗⊗U → U⊥ → 0.

Since the sequence is canonical, it follows that there is an isomorphism

A ∼= A∗, (10)

which can be easily shown to be symmetric. From now on for each vector a ∈ A we will denote by a∗ ∈ A∗ the covector

corresponding to a under isomorphism (10).

4.2. The Fano scheme of lines

It is well known that the Fano scheme of lines on Y5 is P
2. We will need the following more precise description.

Lemma 4.2.
We have F (Y5) = P(A). Moreover, for each point a ∈ P(A) we have an exact sequence

0 → U
a

−−→ U⊥ → IL → 0, (11)

and a distinguished triangle

(V /U)(−1)
a

−−→ U → JL. (12)
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Proof. Stability of V /U and U∗ implies that the morphism a : (V /U)(−1) → U has kernel of rank 1. Since it is

reflexive, we conclude that it is a line bundle. Again, by stability of V /U and U∗ we know that it has degree −1, so

the kernel is OY5
(−1). Computing the Chern class of the cokernel we see that it is a torsion sheaf of rank 1 on some

line L on Y5. Moreover, since the sheaves OY5
(−1), (V /U)(−1) and U are all acyclic, the cokernel is acyclic as well.

In particular, it has no 0-dimensional torsion, so it is a line bundle on L, which being acyclic should be isomorphic to

OL(−1). Thus we obtain an exact sequence

0 → OY5
(−1) → (V /U)(−1)

a
−→ U → OL(−1) → 0.

In other words, we see that the cone of a : (V /U)(−1) → U is quasi-isomorphic to the (shifted by 1) cone of a morphism

OL(−1) → OY5
(−1)[2] and, as it was explained in Remark 3.15, to justify the triangle (12) it remains to show that this

morphism is nontrivial. Indeed, if the morphism were trivial then the cone would be the direct sum of OY5
(−1)[1] and

OL(−1), which should imply in particular that the surjection U → OL(−1) splits, which of course is false as U is torsion

free.

Now to obtain the first exact triangle it is sufficient to remember that JL = RHom (IL,OY5
(−1))[1] (just by definition).

Since RHom (−,OY5
(−1))[1] is an involution, we can apply it to (12). It is easy to see that we get precisely (11).

Remark 4.3.
Alternatively, the object JL can be written as the cone of a morphism a⊥⊗U → U⊥, where a⊥ ⊂ A is the orthogonal
complement of a ∈ A. It follows from Lemma 3.20 that lines L and L′ intersect if and only if the corresponding vectors
a, a′ ∈ A are orthogonal. Thus, the divisor DL is the line on P(A) orthogonal to a with respect to the quadratic form on
A corresponding to the isomorphism (10).

4.3. The action of the antiautoequivalence

Let us describe the antiautoequivalence D. For this it suffices to understand how it acts on the bundles U and U⊥.

Lemma 4.4.
We have D(U) = U⊥[1] and D(U⊥) = U[1]. Moreover, the morphism

D[−1] : A = Hom(U,U⊥) → Hom
(
D[−1](U⊥), D[−1](U)

)
= Hom(U,U⊥) = A

is −1.

Proof. Indeed, we have RHom (U,OY5
) = U∗ and LO(U∗) = Cone (V ∗⊗OY5

→ U∗) = U⊥[1]. Similarly,

RHom (U⊥,OY5
) = V /U and LO(V /U) = Cone (V ⊗OY5

→ V /U) = U[1].

To check the second part take any a ∈ A and the corresponding morphism αa : U → U⊥. By definition αa factors as

U
a

−→ A⊗U
α

−→ U⊥. Dualizing we obtain the morphism α∗
a which factorizes as V /U

α∗

−→ A∗⊗U∗ a
−→ U∗. Note that it also

factorizes as V /U
−a

−−→ A⊗ (V /U)
α∗

−→ U∗. It follows that after the mutation LO (and a shift) we obtain a map U → U⊥

which factorizes as U
−a

−−→ A⊗U
α

−→ U⊥, hence coincides with −αa.

4.4. The monadic description

As Lemma 4.1 shows we have an equivalence

BY5

∼= Db(QA),

where Db(QA) is the derived category of finite dimensional representations of the quiver with 2 vertices and the space

of arrows from the first vertex to the second given by A,

QA = •
A

−−→ • .
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The equivalence is given by

Φ5 : Db(QA) → BY5
, (M•

1 , M•
2 , m) 7→ Cone

(
M•

1 ⊗U
m

−−→ M•
2 ⊗U⊥

)
.

The inverse equivalence Φ−1
5 : BY5

→ Db(QA) takes any F ∈ BY5
to the representation (M•

1 , M•
2 ) with

M•
2 = Ext•(U⊥, F ), M•

1 = Ext•(F,U[1])∗.

To get a monadic description of an instanton we just apply Φ−1
5 to its acyclic extension.

Lemma 4.5.
Let F be a semistable vector bundle of rank n with c1(F ) = 0 such that F ∈ BY5

. Then Ext•(F,U) = kn[−1].

Proof. First, note that U
∼= U∗(−1) (since U has rank 2 and detU ∼= OY5

(−1)), hence we have the following exact

triple

0 → U⊥(−1) → V ∗⊗OY5
(−1) → U → 0

(this is just the exact triple defining U⊥ twisted by −1). By the Serre duality we have Exti(F,OY5
(−1)) =

H3−i(Y5, F (−1))∗ = 0, so it follows that

Ext•(F,U) ∼= Ext•+1(F,U⊥(−1)). (13)

Now note that µ(U) = −1/2, µ(F ) = 0. Therefore by stability of F and U we have

Hom(F,U) = 0 and Hom(U, F (−2)) = 0.

On the other hand, µ(U⊥(−1)) = −4/3 and µ(F (−2)) = −2, hence by stability of F and U⊥ we have

Hom(U⊥(−1), F (−2)) = 0.

By the Serre duality it follows that Ext3(F,U) = 0 and Ext3(F,U⊥(−1)) = 0. Combining this with (13) we see that

Exti(F,U) = 0 unless i = 1. Computing the Euler characteristic with Riemann–Roch (recall that by Remark 3.11 we

have c2(F ) = n and c3(F ) = 0) we conclude that

Ext•(F,U) = kn[−1],

which proves the lemma.

Let H be a fixed vector space of dimension n.

Proposition 4.6.
Let F be a semistable vector bundle of rank n with c1(F ) = 0 such that F ∈ BY5

. Choose an isomorphism H ∼= Ext1(F,U).
If D(F ) ∼= F then there is an exact sequence

0 → H ⊗U
γF−→ H∗⊗ U⊥ → F → 0.

If the isomorphism φF : D(F ) → F is skew-symmetric then the morphism γF is given by a symmetric in H tensor in

A⊗H∗⊗H∗ = Hom(H ⊗U, H∗⊗U⊥).
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Proof. Consider the universal extension

0 → H ⊗U → F ′ → F → 0. (14)

It follows that Ext•(F ′,U) = 0. On the other hand, Ext•(OY5
, F ′) = Ext•(OY5

(1), F ′) = 0 since this is true both for F

and U. Hence looking at exceptional collection (8) we see that F ′ ∈ 〈U⊥〉, hence F ′ is a direct sum of shifts of U⊥. On

the other hand, from (14) we see that F ′ is a vector bundle of rank 2n + n = 3n. Hence F ′ ∼= (U⊥)n. In other words, we

have shown that there is an exact sequence

0 → H ⊗U
γF−→ H ′⊗U⊥ → F → 0,

where H ′ is another vector space of dimension n. Now it is time to use the self-duality of F . Applying D and taking

into account Lemma 4.4 we obtain another exact sequence

0 → (H ′)∗⊗U
−γT

F−−→ H∗⊗U⊥ → D(F ) → 0.

Both sequences come from a decomposition of an object of the category BY with respect to the exceptional collection

(U,U⊥), hence the map φF : D(F ) → F induces a unique isomorphism of these exact sequences, that is a pair of

isomorphisms h : H∗ → H ′, h′ : (H ′)∗ → H such that the following diagram commutes.

0 // (H ′)∗⊗U
−γT

F //

h′

��

H∗⊗U⊥ //

h

��

D(F ) //

φF

��

0

0 // H ⊗U
γF // H ′⊗U⊥ // F // 0

Applying the duality D once again we obtain yet another commutative diagram.

0 // (H ′)∗⊗U
−γT

F //

hT

��

H∗⊗U⊥ //

(h′)T

��

D(F ) //

D(φF )

��

0

0 // H ⊗U
γF // H ′⊗U⊥ // F // 0

Since D(φF ) = −φF we conclude that h′ = −hT . Identifying H ′ with H∗ via h we see from the first diagram that

−γF = −γT
F , so γT

F = γF , that is γF is symmetric.

For each γ ∈ A⊗S2H∗ consider the induced map mγ : H → H∗⊗A. Consider also the composition

γ ′ : H ⊗U
mγ ⊗idU

−−−−−→ H∗⊗A⊗U
idH∗ ⊗ α

−−−−−→ H∗⊗U⊥

and

γ̂ : H ⊗V
mγ ⊗idV
−−−−→ H∗⊗A⊗V

idH∗ ⊗ ev
−−−−→ H∗⊗V ∗.

Theorem 4.7.
Let H be a vector space of dimension n. Denote by Mn(Y5) the set of all γ ∈ A⊗S2H∗ which satisfy the following

conditions:

(i) the map γ ′ : H ⊗U → H∗⊗U⊥ is a fiberwise monomorphism of vector bundles,

(ii) the rank of the map γ̂ : H ⊗V → V ∗⊗H∗ equals 4n + 2.
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Then the moduli space MIn(Y5) of instantons of charge n on Y5 is the quotient Mn(Y5)/GL(H). In particular, any

instanton of charge n is the cohomology bundle of a monad

0 → H ⊗U
γ′

−→ H∗⊗U⊥ → C ⊗OY5
→ 0,

where γ ∈ Mn(Y5) and C = Coker γ̂ ∼= kn−2.

Proof. First, let us construct a map Mn(Y5) → MIn(Y5). Take F = Coker (γ ′ : H ⊗U → H∗⊗U⊥). Then F satisfies

the conditions of Theorem 3.10. Indeed, the only nontrivial thing to check is that h0(F ∗) = n − 2. But from the exact

sequence

0 → F ∗ → H ⊗ (V /U)
γ′

−→ H∗⊗U∗ → 0

it follows that H0(Y5, F ∗) is the kernel of the map H ⊗V → H∗⊗V ∗ induced by γ ′. It is clear that this map coincides

with γ̂, hence its rank is 4n + 2, so the kernel has dimension 5n − (4n + 2) = n − 2. So, we deduce that F is the acyclic

extension of an instanton E of charge n which is the cohomology of the monad

0 → H ⊗U → H∗⊗U⊥ → On−2
Y5

→ 0.

This construction can be performed in families, so we obtain a morphism Mn(Y5) → MIn(Y5). This morphism is surjective

by Proposition 4.6. So, it remains to check that the fibers are the orbits of GL(H).

Indeed, assume that the instantons E1 and E2 constructed from γ1, γ2 ∈ A⊗S2H∗ are isomorphic. In other words, the

cohomology bundles of the monads

0 → H ⊗U
γ′

1−→ H∗⊗U⊥ → On−2
Y5

→ 0 and 0 → H ⊗U
γ′

2−→ H∗⊗U⊥ → On−2
Y5

→ 0

are isomorphic. Since the monads come from a decomposition with respect to an exceptional collection, the isomorphism

extends to an isomorphism of monads. Thus there are unique isomorphisms f : H → H and g : H∗ → H∗ such that

γ ′
2 ◦ f = g ◦ γ ′

1. Transposing (and using symmetricity of γi) we obtain γ ′
1 ◦ gT = fT ◦ γ ′

2. Multiplying with f−T on the

left and g−T on the right we obtain γ ′
2 ◦ g−T = f−T ◦ γ ′

1. Since f and g are unique it follows that g = f−T , hence

γ ′
1 = fT ◦ γ ′

2 ◦ f .

One can rewrite slightly the monad as follows. Note that the morphism H∗⊗U⊥ → C ⊗OY5
factors as H ⊗U⊥ →

H∗⊗V ∗⊗OY5
→ C ⊗OY5

. Therefore we have the following commutative diagram:

H∗⊗U⊥ // H∗⊗V ∗⊗OY5
//

��

H∗⊗U∗

H ⊗U
γ′

// H∗⊗U⊥ // C ⊗OY5

Since the top row is acyclic, it follows that the bottom row is quasi-isomorphic to

0 → H ⊗U → K ⊗OY5
→ H∗⊗U∗ → 0, (15)

where K = Ker (H∗⊗V ∗ → C ) = Im γ̂. So, we have proved

Proposition 4.8.
Any instanton of charge n on Y5 is the cohomology of a self-dual monad (15) with dim H = n and dim K = 4n + 2.
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4.5. Instantonic nets of quadrics

Any tensor γ ∈ A⊗S2H∗ can be thought of as a net of quadrics in P(H) parameterized by P(A∗). So, given an instanton

E on Y5 we can consider the corresponding net of quadrics γE .

The space of nets of quadrics, A⊗S2H∗, is acted upon by the group GL(H), so one can speak about GIT stability and

semistability of a net of quadrics. Recall that, according to [25], a net γ is unstable if and only if there is a pair of

subspaces H1, H2 ⊂ H such that

• dim H1 + dim H2 > dim H , and

• the map A∗ γ
−→ S2H∗ → H∗

1 ⊗H∗
2 is zero.

Proposition 4.9.
For any instanton E on Y5 the corresponding net of quadrics γE is semistable.

Proof. Assume that γE is unstable. Let (H1, H2) be the destabilizing pair of subspaces. Consider the subspace

H⊥
2 = Ker (H∗ → H∗

2 ). Note that the condition dim H1 + dim H2 > dim H is equivalent to

dim H1 > dim H⊥
2 .

The second condition says that the image of the map H1⊗A∗ ⊂ H ⊗A∗ γE−→ H∗ is contained in H⊥
2 . Thus we have a

commutative diagram

H1⊗A∗ //

��

H⊥
2

��
H ⊗A∗

γE // H∗

Consider the map γs : H1⊗U → H⊥
2 ⊗U⊥ induced by the upper line of the above diagram and the induced diagram

0 // H1⊗U //

γs

��

H ⊗U //

γE

��

(H/H1)⊗U //

γq

��

0

0 // H⊥
2 ⊗U⊥ // H∗⊗U⊥ // H∗

2 ⊗U⊥ // 0

with exact rows. Since the morphism γE is injective by Proposition 4.6 we conclude that γs is injective as well. Moreover,

we obtain an exact sequence

0 → Ker γq → Coker γs → Coker γE → Coker γq → 0.

Note that, by semistability of Ẽ ∼= Coker γE , the image of the middle arrow should have nonpositive first Chern class,

hence

c1(Coker γs) ≤ c1(Ker γq).

On the other hand, since Ker γs = 0 we have

c1(Coker γs) = − dim H⊥
2 + dim H1 > 0,

hence c1(Ker γq) > 0. But Ker γq is a subsheaf in (H/H1)⊗U, and U is stable of negative slope. This contradiction

proves the claim.
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4.6. Jumping lines

Again consider the net of quadrics γ ∈ A⊗S2H∗ associated with an instanton E . Assume for a moment that generic

quadric in the net is nondegenerate. Then degenerate quadrics form a curve (of degree n) in P(A∗) which we denote

by Dγ . By definition the curve Dγ is the support of the cokernel of the morphism H ⊗OP(A∗)(−2)
γ

−→ H∗⊗OP(A∗)(−1)

induced by γ. The cokernel itself is a coherent sheaf (we denote it by θγ ) with the property that

RHom (θγ , ωDγ ) ∼= θγ . (16)

In particular, if the net is regular, the curve Dγ is smooth and θγ is a theta-characteristic, that is a line bundle which is

a square root of the canonical class. Moreover, as the defining exact sequence

0 → H ⊗ OP(A∗)(−2)
γ

−→ H∗⊗OP(A∗)(−1) −→ θγ → 0 (17)

shows, this theta-characteristic is nondegenerate, that is

H0(Dγ , θγ ) = 0. (18)

In case of a nonregular net the sheaf θγ is neither locally free nor of rank 1 in general. But still it enjoys the

properties (16) and (18). We will call such sheaves generalized nondegenerate theta-characteristics.

Recall that the Fano scheme of lines on Y5 coincides with P(A) which itself is identified with P(A∗), so the curve Dγ can

be thought of as a curve on the Fano scheme of lines. It turns out that it coincides with the curve of jumping lines of

the instanton Eγ , and the corresponding sheaf LE is obtained from the theta-characteristic θγ by a twist.

Proposition 4.10.
Let E be an instanton on Y5 and γE the corresponding net of quadrics. Then one has a distinguished triangle

Rp∗q
∗E(−1) → H ⊗OP(A∗)(−3)

γE−→ H∗⊗OP(A∗)(−2).

In particular, the generic line is nonjumping for E if and only if the generic quadric in the net γE is nondegenerate.

Furthermore, if these equivalent conditions hold then DE = Dγ and LE = θγ (−1).

Proof. By Lemma 3.19 we know that Rp∗q
∗E(−1) ∼= Rp1∗ RHom (q∗

1Ẽ, J). On the other hand, one can easily write

a relative version of (11),

0 → U⊠ OP(A∗)(−3) → U⊥ ⊠ OP(A∗)(−2) → IZ → 0,

which gives a distinguished triangle

(V /U)(−1) ⊠ OP(A∗)(−3) → U⊠ OP(A∗)(−2) → J.

Now we combine this triangle with the exact sequence

0 → H ⊗U
γE−→ H∗⊗U⊥ → Ẽ → 0.

Note that Ext•(U, (V /U)(−1)) = Ext•(U⊥,U) = 0 by Lemma 4.1, Ext•(U,U) = k since U is exceptional and

Ext•(U⊥, (V /U)(−1)) = k[−1] by (9). This gives the desired distinguished triangle

Rp1∗ RHom (q∗
1Ẽ, J) → H ⊗OP(A∗)(−3)

γE−→ H∗⊗OP(A∗)(−2).

The rest of the proposition easily follows.
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The above proposition gives the following reinterpretation of Conjecture 3.16 in terms of the associated net of quadrics

 if γ is an instantonic net of quadrics then generic quadric in the net is nondegenerate. In fact we believe that this

should follow from the semistability of the net. To be more precise, we have the following

Conjecture 4.11.
If γ is a semistable net of quadrics then the generic quadric is nondegenerate.

Remark 4.12.
Analogous statement for pencils of quadrics is very easy to prove by analyzing the possible isomorphism classes of the
images of the map H ⊗OP1 (−1) → H∗⊗OP1 given by the pencil. If the image is Oa

P1 ⊕OP1 (−1)b with a + b < dim H

then taking H1 = Ker (H ⊗OP1 (−1) → OP1 (−1)b) and H2 = Coker (Oa
P1 → H∗⊗OP1 )∗ we get a destabilizing pair of

subspaces.

On the other hand, for higher dimensional linear spaces of quadrics the analogous statement is wrong. For example, the
5-dimensional space of Plücker equations of Gr (2, 5) consists of degenerate quadrics, but is stable.

We can also use Proposition 4.10 to deduce Conjecture 3.18.

Corollary 4.13.
For Fano threefold of degree 5 Conjecture 3.18 is true.

Proof. By Proposition 4.10 the (generalized) theta-characteristic of the net can be reconstructed from the sheaf LE

on DE , so it suffices to recall that the net can be reconstructed from the associated theta-characteristic θ. Indeed, if we

consider θ as a sheaf on the projective plane, then the complex (17) is nothing but the decomposition of θ with respect

to the standard exceptional collection (O(−2),O(−1),O) (by nondegeneracy property θ is orthogonal to O, so it does not

appear in the decomposition). But the morphism H ⊗O(−2) → H∗⊗O(−1) gives back the net. Finally, the net allows

to reconstruct the instanton by Theorem 4.7 (or Proposition 4.8).

5. Instantons on Fano threefolds of degree 4

In this section we concentrate on Fano threefolds of degree 4.

5.1. Derived category

A Fano threefold of degree 4 and index 2 is an intersection of two quadrics in P
5. Denote by V a vector space of

dimension 6 and by A a vector space of dimension 2. Then a pair of quadrics gives a map A → S2V ∗, so we have a

family of quadrics in P(V ) parameterized by P(A). There are six degenerate quadrics in this family, giving six special

points a1, . . . , a6 ∈ P(A). Let C be the double covering of P(A) ramified in {a1, . . . , a6}. Then C is a curve of genus 2.

Denote by π : C → P(A) the double covering and by τ : C → C its hyperelliptic involution. We will need the following

description of the category BY4

Theorem 5.1 ([5, 14]).
There is an equivalence BY4

∼= Db(C ) given by the Fourier–Mukai functor associated with the family of spinor bundles

on the quadrics in the family P(A).

Let us explain the statement. On each smooth quadric in the family P(A) there are two spinor bundles. Restricting them

to Y4 we obtain a pair of bundles on Y4 which can be thought of as being associated with two points of C over the point

of P(A) corresponding to the quadric. Similarly, each singular quadric in P(A) is a cone over a 3-dimensional quadric

and Y4 does not pass through its vertex. Hence the projection from the vertex gives a map from Y4 onto a 3-dimensional
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quadric and we can pullback its (unique!) spinor bundle to Y4. This gives a bundle associated with the branching

point of C → P(A). One can show that all those spinor bundles form a vector bundle S of rank 2 on C ×Y4 and the

Fourier–Mukai functor ΦS : Db(C ) → Db(Y4) is an equivalence onto BY4
. Note that this defines S only up to a twist by

the pullback of a line bundle on C .

Another approach to the relation of C and Y4 and the description of the universal spinor bundle S on C ×Y4 is due to

Mukai. He showed that Y4 is the moduli space of stable rank 2 vector bundles on C with fixed determinant ξ of odd

degree and that S is the universal family for this moduli problem. For our convenience we assume that

deg ξ = 1

(note that a twist by a line bundle of degree k changes the degree of the determinant of a rank 2 bundle by 2k , so

the moduli spaces for all odd degrees are isomorphic and the corresponding universal spinor bundles S differ by the

corresponding twists). This fixes the bundle S unambiguously. In particular, we have

det S = ξ ⊠ OY4
(−1).

In fact one can compute also

c2(S) = η + 2LY , η ∈ H1(C )⊗H3(Y4) ⊂ H4(C ×Y4), η2 = 4pC pY ,

where HY , LY , and pY stand for the classes of a hyperplane section, of a line and of a point on Y4, while pC stands for

the class of a point on C . This allows to write down the Grothendieck–Riemann–Roch for the functor Φ = ΦS.

Lemma 5.2.
For any F ∈ Db(C ) we have

ch(Φ(F )) = (2 deg F − r(F )) − (deg F )HY + r(F )LY +
deg F

3
pY .

Proof. One has

ch(S) = 2 + (pC − HY ) − pC HY − η + pC LY +
1

3
pY +

1

3
pC pY .

Since the relative tangent bundle of C ×Y → Y is just the pullback of ω−1
C , its Todd genus equals 1 − pC , so

ch(S) td(TC ) = 2 − pC − HY − η + pC LY +
1

3
pY .

Multiplying this by ch(F ) = r(F )+(deg F )pC and taking pushforward to Y4 (i.e. taking the coefficient at pC ) one obtains

the result.

5.2. Lines

The description of the Fano scheme of lines on Y4 is well known. However, for our purposes we will need a description

closely related to our Fourier–Mukai functor. We start with the following

Lemma 5.3.
Let L be a line bundle of degree 0 on C and Sy a stable rank 2 vector bundle on C with det Sy = ξ corresponding to a

point y ∈ Y4. If H0(C,L⊗Sy) 6= 0 then Sy is a nontrivial extension

0 → L−1 → Sy → L⊗ξ → 0. (19)

Vice versa, Ext1(L⊗ξ,L−1) = k2 and each nontrivial extension of L⊗ξ with L−1 is a stable rank 2 bundle on C with

determinant ξ .
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Proof. Assume that H0(C,L⊗Sy) 6= 0. Then we have a map L−1 → Sy. If this map is not injective at a point x ∈ C

then the map factors through L−1(x) which is impossible by stability of Sy (since degL−1(x) = 1). So, the map L−1 → Sy

is an embedding of vector bundles. Hence the quotient is a line bundle which has to be isomorphic to det Sy⊗L
∼= L⊗ξ .

The extension is nontrivial since Sy is simple.

Vice versa, note that Ext•(L⊗ξ,L−1) = H•(C,L−2⊗ξ−1). Since deg(L−2⊗ξ−1) = −1, there are no global sections and

by Riemann–Roch the first cohomology has dimension 2. Now take any nontrivial extension

0 → L−1 → E → L⊗ξ → 0.

Evidently detE = ξ , so let us check that E is stable. If not then there should be a line bundle L′ of degree 1 such that

Hom(L′,E) 6= 0. Applying Hom(L′, −) to the above exact sequence we obtain

0 → Hom(L′,L−1) → Hom(L′,E) → Hom(L′,L⊗ξ) → Ext1(L′,L−1) → . . .

Since degL′ = 1 and degL−1 = 0 the first term is zero. Further, since deg(L⊗ξ) = 1 the third term is nontrivial only

if L′ = L⊗ξ . In the latter case the map from the third term to the fourth term is the map k → Ext1(L⊗ξ,L−1) given

by the class of the extension, so if the extension is nontrivial the map is injective and we have Hom(L′,E) = 0 in any

case.

Also we will need the following simple observation.

Lemma 5.4.
For any line bundle L on a curve of genus 2 one has L⊗τ∗L

∼= ω
degL
C . In particular, if degL = 0 then L∗ ∼= τ(L).

Proof. First take L
∼= OC (x) for some point x ∈ C . Then τ∗L

∼= OC (τ(x)) and L⊗τ∗L
∼= OC (x + τ(x)). But x + τ(x)

is the preimage of a point under the projection C → P
1, hence the corresponding line bundle is the canonical class. This

proves the formula for L = OC (x). After that the general case follows since any line bundle is a (multiplicative) linear

combination of line bundles OC (x), and both sides of the formula are (multiplicatively) linear in L.

The set of points y ∈ Y4 for which the bundle Sy fits into exact triple (19) is a curve isomorphic to

P
(
Ext1(L⊗ξ,L−1)

)
= P

1. We denote this curve by

LL ⊂ Y4.

Below we will show that it is a line on Y4. Recall that with each line L ⊂ Y4 we associate two objects, the ideal sheaf

IL ∈ BY4
and the object JL = RHom (IL,OY4

(−1))[1] ∈ BY4
as well.

Lemma 5.5.
There are isomorphisms φ0 : F (Y4)

∼
−→ Pic0C and φ1 : F (Y4)

∼
−→ Pic1C given by

φ0(L) = Φ−1(IL[−1]), φ1(L) = Φ−1(JL).

Moreover, the diagram

F (Y4)

φ0

vv

φ1

((
Pic0C

L 7→ L∗ ⊗ ωC ⊗ ξ−1

// Pic1C

is commutative.
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Proof. Let F = Φ−1(IL[−1]), so that Φ(F) = IL[−1]. Then for each point x ∈ C we have

Ext•(F,Ox ) ∼= Ext•(Φ(F), Φ(Ox )) ∼= Ext•(IL[−1], Sx ) ∼= Ext•(OL[−2], Sx )

(the last isomorphism follows from the exact sequence 0 → IL → OY4
→ OL → 0 since we have Sx ∈ BY4

). Note that Sx

is a vector bundle of rank 2 and degree −1, and its dual is globally generated. Hence (Sx )↾L = OL ⊕OL(−1), therefore

Ext•(OL, Sx ) = k[−2]. We conclude that Ext•(F,Ox ) ∼= k for all x ∈ C , hence F
∼= L where L is a line bundle. Since

c1(IL[−1]) = 0 we deduce from Lemma 5.2 that degL = 0, that is L ∈ Pic0C .

Vice versa, let L ∈ Pic0C . Since Φ(L) is the derived pushforward of a vector bundle p∗
1L⊗S on C ×Y4 along the

projection C ×Y4 → Y4, its cohomology sheaves a priori sit in degrees 0 and 1. We denote those by H0 and H1

respectively. Note that we have

H•(Lj∗
yΦ(L)) ∼= H•(C,L⊗Sy),

where jy : Spec k → Y4 is the embedding of the point y. By Lemma 5.3 we have

H0(C,L⊗Sy) =

{
k if y ∈ LL,

0 if y 6∈ LL,
H1(C,L⊗Sy) =

{
k2 if y ∈ LL,

k if y 6∈ LL.

On the other hand, we have a spectral sequence

Lt j
∗
yH

s → Hs−t(Lj∗
yΦ(L))

which can be rewritten as a long exact sequence

0 → L2j∗
yH

1 → L0j∗
yH

0 → H0(C,L⊗Sy) → L1j∗
yH

1 → 0,

and isomorphisms

L0j∗
yH

1 = H1(C,L⊗Sy), Lt j
∗
yH0 = Lt+2j∗

yH
1 for t ≥ 1.

It follows that for generic y ∈ Y4 we have L•j
∗
yH

0 = 0, hence the support of H0 is a proper subvariety of Y4. On the

other hand, H0 = R0p2∗(p
∗
1L⊗S) is torsion free, hence H0 = 0. Thus the above formulas say that

L0j∗
yH

1 = H1(C,L⊗Sy), L1j∗
yH

1 = H0(C,L⊗Sy), L≥2j∗
yH

1 = 0.

In other words, the sheaf H1 is locally free of rank 1 on Y4 \ LL and has a singularity along a curve LL. Note that it

follows that H1 is torsion free. Indeed, if H1 had a torsion, its support would lie in LL, hence would have codimension

at least 2, hence L2ij∗
yH

1 would be nonzero for any point y in the support of the torsion subsheaf, while we know that

it is zero.

Thus we know that H1 is a torsion free sheaf of rank 1. Moreover, by Lemma 5.2 its Chern character equals

ch(H1) = −ch(Φ(L)) = 1 − LY4
.

In particular, c1(H1) = 0, hence H1 is the sheaf of ideals of a subscheme Z , H1 ∼= IZ , where Z is a subscheme

set-theoretically supported on LL and such that

ch(OZ ) = LY4
.

It follows that Z is a line, but possibly with a non-reduced structure at some points. However, if Z had a non-reduced

structure at a point y, then OZ would have a subsheaf supported at this point and then L3j∗
yOZ 6= 0, hence L2j∗

yIZ 6= 0

which is a contradiction. Thus Z is a line, hence LL is a line and Φ(L) = ILL [−1].
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This proves that Φ induces an isomorphism of Pic0C with F (Y4) considered as the moduli space of sheaves of

ideals of lines, hence φ0 is an isomorphism of F (Y4) onto Pic0C . To relate F (Y4) with Pic1C we recall that

JL = RHom (IL[−1],OY4
(−1)), hence

JL = RHom (Φ(L),OY4
(−1)) = RHom

(
RpY ∗(S⊗p∗

CL), OY4
(−1)

) ∼= RpY ∗ RHom
(
S⊗p∗

CL, p!
YOY4

(−1)
)

∼= RpY ∗ RHom
(
S⊗p∗

CL, p∗
C ωC ⊗p∗

YOY4
(−1)[1]

) ∼= RpY ∗

(
S∗⊗p∗

C (L∗⊗ωC )⊗p∗
YOY4

(−1)[1]
)
,

where pY and pC are the projections of C ×Y4 onto the factors Y4 and C respectively. Note also that

S∗⊗p∗
C ξ ⊗p∗

YOY4
(−1) ∼= S since S is a vector bundle of rank 2 with determinant equal to ξ ⊠ OY4

(−1). Hence we

conclude that

JL
∼= RpY ∗

(
S⊗p∗

C (L∗⊗ωC ⊗ξ−1)[1]
)

= Φ(L∗⊗ωC ⊗ξ−1)[1]

which gives the commutativity of the diagram. Since both the left and the bottom arrows in the diagram are isomorphisms,

we conclude that the right arrow is an isomorphism as well.

Lemma 5.6.
Assume L = φ0(L) and let DL ⊂ F (Y4) be the curve parameterizing lines which intersect L. Then φ1(DL) ⊂ Pic1C is

a translate of the theta-divisor by L.

Proof. Recall that for any lines L, L′ on Y4 we can write IL = Φ(L)[1], JL′ = Φ(L′)[1], where L = φ0(L) ∈ Pic0C ,

L′ = φ1(L′) ∈ Pic1C . So,

Hom(IL, JL′ ) = Hom(Φ(L), Φ(L′)) = Hom(L,L′) = H0(L−1⊗L′).

Since L−1⊗L′ is a line bundle of degree 1, it has a global section if and only if it is isomorphic to the line bundle OC (x)

for some point x ∈ C , that is if L′ ∼= L(x). Thus by Lemma 3.20 we have φ1(DL) = {L′ ∈ Pic1C : Hom(IL, JL′ ) 6= 0} is

the theta-divisor translated by L.

5.3. The action of the antiautoequivalence

We also can identify the action of the antiautoequivalence D on Db(C ).

Proposition 5.7.
We have D(F) ∼= τ∗F∗[2].

Proof. Since C is a variety of general type, we know by [6] that any antiautoequivalence of Db(C ) is a composition of

the usual dualization with a shift, a twist, and an automorphism. First, let us check how D acts on the structure sheaves

of points, that is, in terms of BY , on spinor bundles Sx . First, note that H•(Y , S∗
x ) = k4, the induced map O⊕4

Y → S∗
x

is surjective and its kernel is Sτ(x) (this can be checked on the corresponding quadric). Thus D(Sx ) ∼= Sτ(x)[1]. In other

words, D(Ox ) ∼= Oτ(x)[1]. Since RHom (Ox ,OC ) ∼= Ox [−1], we see that the shift part is [2] and the automorphism part is

given by τ . To identify the twist part we apply D to a line bundle L of degree zero. Since Φ(L) ∼= IL[−1] for some line

L on Y and since D(IL) ∼= IL by Proposition 3.12, we conclude that

D(Φ(L)) ∼= IL[1] ∼= Φ(L[2]).

Since τ∗L
∼= L∗ by Lemma 5.4, the claim follows.
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5.4. Description of instantons

Now to get a description of the moduli space of instantons we will need to know Φ!(OY ). It turns out that (up to a shift)

it is a very interesting vector bundle on C , the so-called second Raynaud bundle [23]. By definition this is the (shift of

the) Fourier–Mukai transform of the bundle OPic C (−2Θ) with the kernel given by the Poincaré bundle. Note that the

theta divisor on Pic C is defined only up to a translation, accordingly the second Raynaud bundle is defined up to a

twist by a line bundle of degree 0 (so it would be more precise to speak about the Raynaud class of bundles). We will

need the following important property of the Raynaud class of bundles.

Lemma 5.8 ([22]).
Let R be a semistable vector bundle of rank 4 and of degree 4 on a curve C of genus 2. If for any line bundle L of

degree 0 on C we have Hom(L,R) 6= 0, then R is a second Raynaud bundle.

This property can be used to identify the object Φ!(OY4
).

Lemma 5.9.
We have Φ!(OY ) ∼= R[1], where R is a second Raynaud bundle on C .

Proof. We have Ext•(Ox , Φ!(OY )) = Ext•(Φ(Ox ),OY ) = Ext•(Sx ,OY ) = H•(Y , S∗
x ) ∼= k4. It follows that Φ!(OY ) ∼= R[1],

where R is a vector bundle of rank 4. Further, we have

Ext•(L,R) ∼= Ext•(L, Φ!(OY [−1])) ∼= Ext•(Φ(L),OY [−1]) ∼= Ext•(IL[−1],OY [−1]) = k⊕k[−1].

It follows from Riemann–Roch that the degree of R is 4. Also it follows that the main property of Raynaud bundles is

true for the bundle R. So it only remains to check that R is semistable.

First consider Φ(R) = Φ(Φ!(OY4
))[−1]. Note that by definition of the mutation functor we have a distinguished triangle

Φ(Φ!(OY4
)) → OY4

→ LBY4
(OY4

).

On the other hand, since we have a semiorthogonal decomposition Db(Y4) = 〈BY4
,OY4

,OY4
(1)〉 we know that LBY4

(OY4
) ∼=

S(ROY4
(1)(OY4

)), where S is the Serre functor. Since Ext•(OY4
,OY4

(1)) = V ∗ we deduce that ROY4
(1)(OY4

) ∼= TP(V )↾Y4
[−1],

the shift of the tangent bundle to P(V ) restricted to Y4. Hence LBY4
(OY4

) ∼= TP(V )↾Y4
(−2)[2]. Thus the above triangle

shows that Φ(Φ!(OY4
)) has two cohomology sheaves, OY4

in degree 0 and TP(V )↾Y4
(−2) in degree −1.

Assume that 0 → F → R → G → 0 is a destabilizing exact sequence of vector bundles with F stable. Applying the

functor Φ we get a distinguished triangle

Φ(F ) → Φ(R) → Φ(G)

which gives a long exact sequence of cohomology sheaves

0 → H0(Φ(F )) → TP(V )↾Y4
(−2) → H0(Φ(G)) → H1(Φ(F )) → OY4

→ H1(Φ(G)) → 0 (20)

(note that since dim C = 1 the functor Φ applied to a sheaf can have cohomology sheaves only in degrees 0 and 1).

Now since r(R) = 4 and degR = 4 we have either

• r(F ) = 1 and deg F ≥ 2, or

• r(F ) = 2 and deg F ≥ 3, or

• r(F ) = 3 and deg F ≥ 4.
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Consider the first two cases. Note that the slope of F is greater or equal than 3/2 in these cases. Note also that for

any y ∈ Y4 we have by the Serre duality

H1(C, Sy⊗F ) ∼= Hom(F, S∗
y⊗ωC )∗.

The second bundle here has slope 2 − 1/2 = 3/2 and F in the first two cases has slope which is not smaller. Hence

by stability of F and Sy the above space is zero unless F ∼= S∗
y⊗ωC . Since the above is possible only for one y, we

conclude that H1(Φ(F )) is either 0, or is the structure sheaf of a point. In any case its rank and c1 is zero. Thus the

rank and c1 of the sheaf H0(Φ(F )) coincide with those of Φ(F ) and so by the Grothendieck–Riemann–Roch formula,

Lemma 5.2, we have

µ(H0(Φ(F ))) = −
deg F

2 deg F − r(F )
.

Under our assumptions on F this is greater than −4/5, the slope of TP(V )↾Y4
(−2). This contradicts the stability of the

latter bundle (which can be easily shown by using Hoppe’s criterion, see Lemma 2.1) excluding the first two cases.

In the last case we have r(G) = 1, deg G ≤ 0. Such G can be embedded into appropriate line bundle L of degree 0,

hence H0(Φ(G)) ⊂ H0(Φ(L)) which was shown to be zero (see the proof of Lemma 5.5). Thus by Lemma 5.2 we have

r(H1(Φ(G))) = −r(Φ(G)) = 1 − 2 deg G.

Since deg G ≤ 0, this is greater than or equal 1. On the other hand, it follows from (20) that H1(Φ(G)) is a quotient

of OY4
. This is possible only if deg G = 0, so G = L ∈ Pic0C . Then as we know Φ(L) = IL[−1] with L a line. Since IL

is not a quotient of OY4
we get a final contradiction.

Now we are ready to give a description of instantons on Y4.

Theorem 5.10.
Let R be a second Raynaud bundle. The moduli space of instantons MIn(Y4) is isomorphic to the moduli space of simple

vector bundles F on C of rank n and degree 0 such that

F∗ ∼= τ∗F, (21)

H0(C,F⊗Sy) = 0 for all y ∈ Y4, (22)

dim Hom(F,R) = dim Ext1(F,R) = n − 2. (23)

Proof. For each instanton E consider its acyclic extension Ẽ . Then, as we know, Ẽ = Φ(F)[−1] for some F ∈ Db(C ).

We are going to show that F is a vector bundle. Indeed, since Φ: Db(C ) → BY4
is an equivalence we have F = Φ∗(Ẽ [−1]).

Since Φ∗(OY4
) = 0 we have Φ∗(Ẽ) = Φ∗(E), so finally

F = Φ∗(E)[−1].

Further, it is easy to check that the functor Φ∗ is also a Fourier–Mukai transform with the kernel S∗⊗q∗OY4
(−2)[3]. Thus

the fiber of the object F at a point x ∈ C is given by

Fx = H•+2(Y4, S∗
x ⊗E(−2)),

so our goal is to show only that H2 is nontrivial. First, we note that

H0(Y4, S∗
x ⊗E(−2)) = Hom(Sx , E(−2)) = 0
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by stability of Sx and E . Similarly, using the Serre duality we deduce that

H3(Y4, S∗
x ⊗E(−2)) = H0(Y4, Sx ⊗E)∗ = Hom(E, Sx )∗ = 0

again by stability of E and Sx . Finally, we note that for any x ∈ C one has a short exact sequence

0 → S∗
x → OY4

(1)4 → S∗
τ(x)(1) → 0

(this is the restriction of the standard exact sequence of spinor bundles from a 4-dimensional quadric). Since

H•(Y4, E(−1)) = 0 we conclude that

H1(Y4, S∗
x ⊗E(−2)) = H0(Y4, S∗

x (1)⊗E(−2)) = Hom(Sx (1), E) = 0

again by stability of E and Sx . Thus indeed we have only H2, so F is a vector bundle.

Since Φ(F) ∼= Ẽ [1], using Lemma 5.2 we see that r(F) = n and deg F = 0. Moreover, since Φ is fully faithful and Ẽ is

simple by Lemma 3.6, we conclude that F is simple.

Let us check that F enjoys (21), (22), and (23). The first follows immediately from D(Ẽ) ∼= Ẽ and Lemma 5.7. The

second follows from the fact that Φ(F) is a vector bundle shifted by −1. And for the third one can use the fact that, by

Lemma 5.9,

Ext•(F,R) = Ext•(F, Φ!(OY )[−1]) ∼= Ext•(Φ(F),OY [−1]) = Ext•(Ẽ [−1],OY [−1]) = Ext•(Ẽ,OY ) = H•(Y , Ẽ∗),

so (23) follows from Lemma 3.6.

Now let us check the inverse statement. If F is a vector bundle on C such that (22) holds then H0(Φ(F)) = 0 and

F = H1(Φ(F)) is a vector bundle, so one can write Φ(F) ∼= F [−1]. By Lemma 5.2 we deduce that r(F ) = n and

c1(F ) = 0. Since the image of the functor Φ is BY4
we conclude that H•(Y4, F ) = H•(Y4, F (−1)) = 0. Moreover,

D(F ) ∼= F by (21) and Proposition 5.7, and since

H i(Y4, F ∗) = Exti(F,OY ) = Exti(Φ(F)[1],OY ) ∼= Exti(F, Φ!(OY [−1])) ∼= Exti(F,R)

we see that (23) implies h0(F ∗) = h1(F ∗) = n − 2. Thus Theorem 3.10 applies and we conclude that F is the acyclic

extension of appropriate instanton of charge n on Y4.

5.5. Jumping lines

The curve DE of jumping lines of an instanton E together with its natural coherent sheaf LE can be described in terms

of the associated vector bundle FE on C . Recall that in Lemma 5.5 we have constructed an isomorphism φ1 of F (Y4)

and Pic1C .

Proposition 5.11.
Let FE be the simple vector bundle on C corresponding to an instanton E . Then isomorphism φ1 identifies the set of

jumping lines DE of E with the set of L ∈ Pic1C such that Ext•(F,L) 6= 0. Moreover, let P be the Poincaré line bundle

on C ×Pic1C and ΦP : Db(C ) → Db(Pic1C ) the associated Fourier–Mukai transform. Then LE = ΦP(F∗
E )[1].

Proof. Indeed, we have

Ext•(E, JL) ∼= Ext•(Ẽ, JL) ∼= Ext•
(
Φ(FE )[1], Φ(L)[1]

)
= Ext•(FE ,L) = H•(C,F∗

E ⊗L)

and we deduce the first part from Proposition 3.19. Moreover, the relative version of the above equality gives the second

part as soon as we observe that the restriction of P to the fiber of C ×Pic1C over the point of Pic1C corresponding to

L is L itself, so the RHS of the above formula computes the (derived) restriction of ΦP(F∗
E ) to the corresponding point

of Pic1C .
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The above proposition allows to reinterpret Conjectures 3.16 and 3.18.

Corollary 5.12.
Assume that for any vector bundle F on C of rank n and degree 0 which satisfy (21), (22), and (23) one has Hom(F,L) = 0
for generic L ∈ Pic1C . Then Conjecture 3.16 is true for the Fano threefold Y4.

On the other hand, one can check that Conjecture 3.18 is true in this case.

Proposition 5.13.
An instanton on Y4 can be reconstructed from the pair (DE ,LE ). In particular, Conjecture 3.18 is true for Fano threefolds

of degree 4.

Proof. Since we know that an instanton E can be reconstructed from the associated vector bundle FE on C , Theo-

rem 5.10, and since LE is the shift of the Fourier–Mukai image of F∗
E with respect to the Fourier–Mukai transform with

kernel given by the Poincaré bundle, it suffices to check that one can reconstruct a vector bundle on a curve C from its

Fourier–Mukai transform in Db(Pic1C ).

For this we compute the composition of Fourier–Mukai transforms ΦP∗ ◦ΦP : Db(C ) → Db(C ). Note that Pic1C is a self-

dual abelian variety and the Poincaré bundle on C ×Pic1C is the restriction of the Poincaré bundle from Pic1C ×Pic1C

which is considered as a product of an abelian variety and its dual. Moreover, since the canonical class of an abelian

variety is trivial, the Fourier–Mukai transform Db(Pic1C ) → Db(Pic1C ) with the kernel given by the dual of the Poincaré

bundle is the adjoint (shifted by 2) of the original Fourier–Mukai functor. Since the Fourier–Mukai functor between

the derived categories of Pic1C is an equivalence, see [17], the composition with the left adjoint functor is the identity,

hence the kernel giving the functor ΦP∗ ◦ΦP : Db(C ) → Db(C ) is the (derived) restriction of the structure sheaf of the

diagonal on Pic1C ×Pic1C shifted by −2. The above restriction is very easy to compute, it is isomorphic to a cone of

a morphism ∆∗OC [−2] → ∆∗N
∗
C/Pic1C

on C ×C (here ∆: C → C ×C is the diagonal embedding). In particular, it follows

that for any vector bundle F on C we have a distinguished triangle

F [−2] → F ⊗N∗
C/Pic1C

→ ΦP∗ (ΦP(F )).

Note that the map F [−2] → F ⊗N∗ is given by an element in Ext2(F, F ⊗N∗) = H2(C, F ∗⊗F ⊗N∗). Since C is a curve

this space is zero, whence we have

ΦP∗ (ΦP(F )) ∼= F [−1]⊕F ⊗N∗.

This shows that F ∼= H1(ΦP∗ (ΦP(F ))) can be reconstructed from ΦP(F ). Applying this to F = FE we deduce the

proposition.

6. Further remarks

One can continue research in several directions. First of all one can consider Fano threefolds of index 2 and degree ≤ 3.

6.1. Fano threefolds of degree 3

Let Y3 be a Fano threefold of index 2 and degree 3, that is a cubic threefold in P
4. There are at least two approaches to

the description of the category BY3
. First of all, it is proved in [13] that BY3

is equivalent to the nontrivial component of

the derived category of X14, a certain Fano threefold of index 1 and degree 14 which can be associated with Y3 (by the

way, to construct X14 from Y3 one needs to choose a minimal instanton on Y3). So, one can describe instantons on Y3

in terms of vector bundles on X14. This approach may give some interesting results, but it does not look as a way to

simplify the question. The manifold X14 does not look simpler than Y3 itself, so it is doubtful that it would be easier to

study vector bundles on X14 than on Y3.
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Another description of BY3
can be given as follows. Consider a line on Y3 and a projection from this line Y3 99K P

2. It is

a conic bundle, so one can consider the associated sheaf C0 of even parts of Clifford algebras on P
2. One can check that

BY3
is equivalent to a semiorthogonal component of the derived category of sheaves of C0-modules on P

2. This is more

promising, since P
2 has dimension smaller than Y3, so one can hope to have a grip on the structure of the moduli space

of instantons. We would also like to mention that this approach to the description of the category BY3
was used in [2].

6.2. Fano threefolds of degree 2

Let Y2 be a Fano threefold of index 2 and degree 2, that is a double covering of P3 ramified in a smooth quartic surface.

Then the category BY2
has the following interesting property – its Serre functor is isomorphic to the composition of the

shift by 2 with the action of the involution of the double covering. This behavior is very similar to the behavior of the

Serre functor of Enriques surfaces. And in fact, conjecturally the derived categories of some Enriques surfaces can be

obtained as specializations of BY2
for very special double coverings known as Artin–Mumford double solids, see [10] for

more details. We think it may be interesting to investigate what kind of moduli space on Enriques surface appears in

this way.

6.3. Matrix factorizations

For Fano threefolds which can be described as hypersurfaces in weighted projective spaces (i.e. those of degree 3, 2

and 1) the category BY can be also described as the category of graded matrix factorizations of the equation of the

hypersurface, see [21]. It may be interesting to describe the corresponding moduli spaces of matrix factorizations.

6.4. Minimal instantons

Another interesting question is to investigate the moduli spaces of minimal instantons on Fano threefolds of index 2. In

case of a cubic threefold Y3 this moduli spaces were investigated in [16] and [13]. Moreover, it was shown in [13] that

in this case minimal instantons provide a relation of cubic threefolds with Fano threefolds of index 1 and degree 14.

Because of this, it would be very interesting to understand the geometry of minimal instantons and their moduli spaces

for other Yd.
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