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Abstract. We study a spectral problem associated to the quantization of
a spectral curve arising in local mirror symmetry. The perturbative WKB
quantization condition is determined by the quantum periods, or equiva-
lently by the refined topological string in the Nekrasov–Shatashvili (NS)
limit. We show that the information encoded in the quantum periods is
radically insufficient to determine the spectrum: there is an infinite series
of instanton corrections, which are non-perturbative in �, and lead to an
exact WKB quantization condition. Moreover, we conjecture the precise
form of the instanton corrections: they are determined by the standard or
unrefined topological string free energy, and we test our conjecture suc-
cessfully against numerical calculations of the spectrum. This suggests
that the non-perturbative sector of the NS refined topological string con-
tains information about the standard topological string. As an application
of the WKB quantization condition, we explain some recent observations
relating membrane instanton corrections in ABJM theory to the refined
topological string.

1. Introduction

This paper is motivated by two different, but related problems. The first prob-
lem is the non-perturbative structure of topological string theory. Topological
strings, like many other string models, are only defined perturbatively, and it
is natural to ask whether one can define them non-perturbatively or find new
non-perturbative sectors. In the last years, there have been many different
proposals addressing this problem, but none of them seems to be conclusive.
A bona fide non-perturbative definition must be based on a manifestly well-
defined quantity, at least for a certain range of the relevant parameters of the
model. This quantity should have an asymptotic expansion, for small values of
the string coupling constant, which reproduces the original perturbative expan-
sion. The asymptotic expansion and the perturbative expansion can only differ
in quantities which are non-analytic at the origin (like for example instanton
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effects). Of course, one might find different non-perturbative definitions of the
same quantity, all of them differing in non-analytic terms. This is for exam-
ple what happens in two-dimensional gravity [1]. In some cases, a reasonable
physical criterium might single out one non-perturbative definition.

In this paper, we will analyze the non-perturbative structure of refined
topological strings in the Nekrasov–Shatashvili (NS) limit [2]. This theory
depends on the Calabi–Yau (CY) moduli and on a string coupling constant
which is usually denoted by �. In the original proposal of [2], this refined
string was related, for some special geometries, to quantum integrable systems.
It was later pointed out in [3–5] that the NS limit of the topological string
free energy can be computed by quantizing a spectral curve, given by the
mirror Calabi–Yau or a limit thereof. Using the quantum spectral curve, one
can construct quantum periods, depending on �, which define the free energy
through an �-deformed version of special geometry. The quantum periods have
a nice interpretation in terms of one-dimensional Quantum Mechanics: the
quantized spectral curve defines a spectral problem, and the quantum periods
are quantum-corrected WKB periods, which lead to a quantization condition,
at all orders in �.

In this paper, we study a spectral problem related to the quantization of
the curve describing the mirror of local P

1 × P
1. We show that the quantum

periods of [5] (which lead to a perturbative series in �) are insufficient to solve
the spectral problem: there is an infinite series of non-perturbative corrections
in �, of the instanton type. This is a well-known phenomenon in ordinary
Quantum Mechanics. For example, in the double-well potential, the standard
WKB quantization condition is insufficient to determine the spectrum, even
after including all perturbative corrections in �: one should also take into
account instantons tunneling between the two vacua, and including these leads
to a non-perturbative, exact quantization condition [6–9]. In the problem at
hand, a similar phenomena occurs, but it is even more dramatic: for some
values of �, the quantization condition based on the quantum periods leads to
an unphysical divergent expression. Instanton corrections are needed to cure
the divergence.

A first-principle calculation of these instanton corrections is difficult, but
we conjecture their precise form: they involve the standard (i.e., unrefined)
topological string free energy. In particular, we write down an exact WKB
quantization condition involving both the perturbative quantum periods and
the instanton corrections. We perform a very precise test of this conjecture
for some value of �, by comparing the exact quantization condition to the
numerical calculation of the spectrum. The agreement is excellent.

Our conjecture gives a novel realization of the Gopakumar–Vafa invari-
ants of local P

1 ×P
1 in terms of a spectral problem. More generally, it suggests

that the spectral problems associated to quantum spectral curves in local mir-
ror symmetry involve the standard topological string, non-perturbatively. It
also suggests that we should define non-perturbative topological strings on
local CYs through a well-defined spectral problem associated to the quantiza-
tion of the mirror curve. If the structure we find in our particular example does
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actually generalize to other cases, this definition will lead in a single strike to
the refined NS string (as the perturbative sector) and the conventional topolog-
ical string (as the non-perturbative sector). Notice that this non-perturbative
definition, in the example of local P

1 × P
1, satisfies the above two criteria: it

is based on a well-defined quantity (the spectrum), and it reproduces pertur-
batively the quantum B-period (which is the derivative of the free energy). Of
course, the most interesting aspect of this definition is the appearance of the
unrefined topological string free energy in the non-perturbative sector.

The second motivation for our work comes from ABJM theory [10]. In
[11], the partition function of this theory on a three sphere was obtained by
using localization techniques, and written as a matrix integral. Its full ’t Hooft
1/N expansion was obtained in [12] by using large N techniques. In the paper
[13], this matrix integral was written as the thermal partition function of an
ideal, one-dimensional Fermi gas. One advantage of this approach, as com-
pared to the standard large N techniques, is that one can also compute non-
perturbative effects due to membrane instantons, which go beyond the ’t Hooft
expansion. In [14], building on previous work [15–18], it was conjectured that
these non-perturbative effects are encoded in the quantum periods of local
P

1 × P
1. In this paper, we prove this conjecture to a large extent. The basic

idea is simple: the spectral problem associated to the one-particle Hamiltonian
of the Fermi gas is nothing but the spectral problem studied in this paper, i.e.,
it is a specialization of the spectral problem appearing in the quantization of
the spectral curve of local P

1 × P
1. The WKB analysis of the ABJM spectral

problem leads immediately to the connection with these quantum periods. The
grand potential of ABJM theory can be computed once we know the spectrum
from the WKB quantization condition, and this makes it possible to derive
many aspects of this grand potential which were conjectured in [14].

Many of our results on the WKB approach to the spectral problem are
dual to the results on the grand potential of ABJM theory. For example, the
fact that quantum periods are divergent for some values of � and should get
non-perturbative corrections which cancel these divergences is a dual version of
the HMO cancelation mechanism of [16]. Our conjecture on the instanton cor-
rections to the spectral problem was motivated to a large extent by the known
worldsheet instanton corrections to the grand potential of ABJM theory.

The organization of this paper is as follows: in Sect. 2, we present the
spectral problem we will focus on. In Sect. 3, we do a WKB analysis of this
problem. We first show that quantum periods are insufficient, we conjecture
the form of the instanton corrections, and we perform a detailed test against
the numerical calculation of the spectrum. In Sect. 4, we derive from the results
in Sect. 3 the structure of the grand potential of ABJM theory, proving in this
way some of the conjectures in [14]. Finally, in Sect. 5, we state our conclusions
and directions for further research. Appendix A contains some results on Mellin
transforms which are used in Sect. 4 whereas in Appendix B we find details
of a calculation of the first quantum correction to the perturbative WKB
quantization condition.



1040 J. Källén and M. Mariño Ann. Henri Poincaré

2. The Spectral Problem

We will consider a spectral problem arising in the quantization of the spec-
tral curve describing the local CY known as local P

1 × P
1. This is a spectral

problem for a difference equation, with an appropriate and natural choice of
analyticity and boundary conditions. The resulting problem can be equiva-
lently formulated in terms of an integral equation which plays a crucial role
in the Fermi gas approach to ABJM theory [13]. In this section, we will first
consider the integral equation formulation, and then the formulation in terms
of a difference equation.

Let us consider the following integral kernel

ρ(x1, x2) =
1

2πk

1
(
2 cosh x1

2

)1/2

1
(
2 cosh x2

2

)1/2

1
2 cosh

(
x1−x2

2k

) . (2.1)

Here, k is a real parameter. This is a particular case of the family of kernels
studied in [19,20]. The kernel (2.1) defines a non-negative, Hermitian, Hilbert–
Schmidt operator ρ̂ by

〈x|ρ̂|x′〉 = ρ(x, x′). (2.2)

Therefore, the spectral problem
∫ ∞

−∞
ρ(x1, x2)φ(x2)dx2 = e−Eφ(x1) (2.3)

leads to a discrete spectrum En, n = 0, 1, 2, . . ., if we require the corresponding
eigenfunctions φn(x) to be square-integrable. We will order the eigenvalues as

E0 ≤ E1 ≤ E2 ≤ · · · . (2.4)

In addition, by evaluating Trρ̂2, we obtain the upper bound

e−E0 ≤
(∫

ρ2(x1, x2)dx1dx2

)1/2

≤ 1
4k

, (2.5)

therefore E0 ≥ 0 for k ≥ 1/4.
It is easy to reformulate (2.3) as a spectral problem for a difference equa-

tion. To do this, we write ρ̂ as [13]

ρ̂ = e− 1
2U(x̂)e−T (p̂)e− 1

2U(x̂). (2.6)

In this equation, x̂, p̂ are canonically conjugate operators,

[x̂, p̂] = i�, (2.7)

where

� = 2πk, (2.8)

and

U(x) = log
(
2 cosh

x

2

)
, T (p) = log

(
2 cosh

p

2

)
. (2.9)

In this paper, we will use � and k interchangeably. The spectral problem (2.3)
can now be written as

ρ̂|φ〉 = e−E |φ〉. (2.10)
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Let us now define

|ψ〉 = e
1
2U(x̂)|φ〉. (2.11)

It follows that

eU(x̂)eT (p̂)|ψ〉 = eE |ψ〉 (2.12)

or, equivalently, in the coordinate representation,

ψ (x + iπk) + ψ (x − iπk) =
eE

2 cosh
(

x
2

)ψ(x). (2.13)

This difference equation is only equivalent to the original problem (2.3) pro-
vided some analyticity and boundary conditions are imposed on the function
ψ(x). Following [20], let us denote by Sa the strip in the complex x-plane
defined by

|Im(x)| < a. (2.14)

Let us also denote by A (Sa) those functions g which are bounded and analytic
in the strip, continuous on its closure, and for which g(x+iy) → 0 as x → ±∞
through real values, when y ∈ R is fixed and satisfies |y| < a. It can be seen,
by using the results in [20], that the equivalence of (2.13) and (2.3) requires
that ψ(x) belongs to the space A (Sπk).

The operator ρ̂ can be used to define a quantum Hamiltonian in the usual
way [13],

ρ̂ = e−Ĥ , (2.15)

whose classical limit is simply

Hcl(x, p) = T (p) + U(x). (2.16)

In [13], it was noticed that the curve

exp (T (p) + U(x)) = eE , (2.17)

defining the classical limit of the spectral problem, is a specialization of the
curve describing the mirror of the Calabi–Yau known as local P

1 × P
1. Let us

write this curve as in [5]

eu + z1e−u + ev + z2e−v = 1, (2.18)

where u, v are complex coordinates. Then, the curve (2.17) can be seen to be
equal to the curve (2.18) after the change of variables

u =
x + p

2
− E, v =

x − p

2
− E (2.19)

and the specialization

z1 = z2 = z, (2.20)

where we have denoted, for convenience,

z = e−2E . (2.21)
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Notice that the above change of variables is essentially a canonical transfor-
mation, since it preserves the symplectic form, up to an overall constant,

du ∧ dv = −1
2
dx ∧ dp. (2.22)

The curve (2.18) can be quantized, leading to a quantum spectral curve. One
simply promotes u, v to quantum operators û, v̂ satisfying canonical commu-
tation relations. The equation satisfied by wave functions is

(
eû + z1e−û + ev̂ + z2e−v̂ − 1

) |ψ〉 = 0. (2.23)

We can now regard (2.13) as a particular case of (2.23) by promoting the
classical change of variables (2.19) to a quantum one,

û =
x̂ + p̂

2
+

iπk

4
− E, v̂ =

x̂ − p̂

2
− iπk

4
− E, (2.24)

while the specialization (2.20) has now the quantum correction1

z1 = q1/2z, z2 = q−1/2z, (2.25)

where

q = e
i�
2 = eπik. (2.26)

In terms of � as defined in (2.8), we have

[v̂, û] =
i�
2

. (2.27)

We conclude that the results for the quantum spectral curve (2.23) obtained
for example in [5,14] can be specialized to study the spectral problem (2.3)
and (2.13). We emphasize that our original spectral problem is defined by the
integral kernel (2.1). The results of [5] will be used to obtain the all-orders
perturbative WKB series for the quantum volume associated to the spectral
problem (2.3).

The difference Eq. (2.13) has the structure of Baxter’s TQ equation,
which determines the spectrum of a quantum integrable system and can be
regarded as a quantization of the spectral curve of the classical system. This
similarity is not surprising: as it is well known, the curve (2.18), describing the
mirror of local P

1 × P
1, can be regarded as a relativistic deformation of the

spectral curve of the periodic Toda chain [21]. The Baxter equations for Toda
and relativistic Toda have been studied in [22] and [23], respectively. Similar
difference equations also appear in the study of N = 2 supersymmetric gauge
theories in the NS limit [24,25]. (2.13) is also a close cousin of the difference
equation studied in [26], which has its origin in the integral equation of the
’t Hooft model.

Unfortunately, the spectral problem (2.3) does not seem to be exactly
solvable, and one has to use numerical or approximate methods.

1 This change of variables was previously observed by Kazumi Okuyama.
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3. The Exact WKB Quantization Condition

3.1. Perturbative WKB Quantization

We will now analyze the spectral problem (2.13) by using the WKB method. At
leading order in �, the WKB method for bound states is the Bohr–Sommerfeld
quantization condition. In this approximation, one calculates the classical vol-
ume of phase space as a function of the energy, vol0(E) (here, the subscript 0
means that we are working at zero order in the � expansion). The quantiza-
tion condition says that this volume should be a half-integer multiple2 of the
volume of an elementary cell in phase space, 2π�, and one obtains

vol0(E) = 2π�

(
n +

1
2

)
, n = 0, 1, 2, . . . . (3.1)

The classical volume of phase space was already determined in [13]. It is given
by a period integral on the curve (2.17). Since this is an elliptic curve, it has
two periods, the A and the B periods. The spectral problem we are looking at
involves the B period, and we find

vol0(E) =
∮

B

λ, λ = p(x)dx, (3.2)

where p(x) is obtained by solving (2.17). The calculation in [13] expresses this
period in terms of a Meijer G-function

vol0(E) =
eE

π
G2,3

3,3

(
e2E

16

∣
∣
∣
∣

1
2 , 1

2 , 1
2

0, 0,− 1
2

)
− 4π2 = 8E2 − 4π2

3
+ O (E e−2E

)
.

(3.3)

In the WKB method, we are interested in large energies as compared to �,
i.e., in large quantum numbers. It is then useful to have a basis of classical
periods of the curve which is appropriate for the E 
 1 regime. Since the curve
(2.17) is a specialization of the mirror of local P

1 × P
1, the relevant periods

are nothing but the large radius periods of this CY. Let us now review some
basic facts about these periods.

In the full CY (2.18), i.e., for generic values of z1, z2, it is useful to consider
two different A periods and two different B periods. The A periods are given
by

ΠAI
(z) = log zI + Π̃A(z1, z2), I = 1, 2, (3.4)

where

Π̃A(z1, z2) = 2
∑

k,l≥0,
(k,l) �=(0,0)

Γ(2k + 2l)
Γ(1 + k)2Γ(1 + l)2

zk
1zl

2

= 2z1 + 2z2 + 3z2
1 + 12z1z2 + 3z2

2 + · · · (3.5)

2 The fact that this is a half-integer, and not an integer, can be shown by using a next-to-
leading WKB analysis, as in [22]: the presence of an inverse square-root factor in the WKB
wave function leads to an extra phase in going around a cut.
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There are two independent B-periods, ΠBI
(z1, z2), I = 1, 2, which are related

by the exchange of z1 and z2,

ΠB2(z1, z2) = ΠB1(z2, z1). (3.6)

The B1 period is given by

ΠB1(z1, z2) = −1
8
(
log2 z1 − 2 log z1 log z2 − log2 z2

)

+
1
2

log z2 Π̃A(z1, z2) +
1
4
Π̃B(z1, z2), (3.7)

where

Π̃B(z1, z2) = 8
∑

k,l≥0,
(k,l) �=(0,0)

Γ(2k + 2l)
Γ(1 + k)2Γ(1 + l)2

(ψ(2k + 2l) − ψ(1 + l)) zk
1zl

2

= 8z1 + 22z2
1 + 40z1z2 + 4z2

2 + · · · (3.8)

In our spectral problem we have z1 = z2 classically [see (2.20)]. In this limit,
one has

Π̃A(z) ≡ Π̃A(z, z) =
∑

�≥1

â
(0)
� z�, Π̃B(z) ≡ Π̃B(z, z) =

∑

�≥1

b̂
(0)
� z�, (3.9)

where

â
(0)
� =

1
�

(
Γ
(
� + 1

2

)

Γ( 1
2 )�!

)2

16�,

b̂
(0)
� =

4
�

(
Γ
(
� + 1

2

)

Γ( 1
2 )�!

)2

16�

[
ψ

(
� +

1
2

)
− ψ(� + 1) + 2 log 2 − 1

2�

]
.

(3.10)

The classical B-period becomes

ΠB(z) ≡ ΠB1,2(z, z) =
1
4

(log z)2 +
1
2

log z Π̃A(z) +
1
4
Π̃B(z), (3.11)

and one finds that the volume of phase space can be written in terms of this
period as

vol0(E) = 8ΠB

(
e−2E

)− 4π2

3

= 8E2 − 4π2

3
− 8E

∑

�≥1

â
(0)
� e−2�E + 2

∑

�≥1

b̂
(0)
� e−2�E . (3.12)

It is well known that the Bohr–Sommerfeld quantization condition has
perturbative corrections in �. These can be obtained in a straightforward way
by solving the Eq. (2.13) with a WKB ansatz,

ψ(x, �) = exp
(

1
�
S(x, �)

)
, (3.13)

where

S(x, �) =
∑

n≥0

Sn(x)�n, (3.14)
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and interpreting ∂xS(x, �)dx as a “quantum” differential. The leading order
approximation gives

S′
0(x) = p(x) (3.15)

and reproduces the Bohr–Sommerfeld quantization condition. Using this
quantum differential, we can define the perturbative, “quantum” volume of
phase space as

volp(E; �) =
∮

B

∂xS(x, �)dx. (3.16)

We could calculate these corrections directly in the Eq. (2.13). However, it is
more illuminating to obtain them as particular cases of the quantum correc-
tions for the spectral curve (2.23). Indeed, as explained in [3–5] and reviewed
in [14], these corrections promote the classical periods ΠAI

(z1, z2), ΠBI
(z1, z2)

to quantum A-periods

ΠAI
(z1, z2; �) = log zI + Π̃A(z1, z2; �), I = 1, 2, (3.17)

and quantum B-periods ΠBI
(z1, z2; �), I = 1, 2. As in the classical case, there

are two of them, but they are related by the exchange of the moduli,

ΠB2(z1, z2; �) = ΠB1(z2, z1; �). (3.18)

The quantum counterpart of (3.7) is

ΠB1(z1, z2; �) = −1
8
(
log2 z1 − 2 log z1 log z2 − log2 z2

)
+

1
2

log z2 Π̃A(z1, z2; �)

+
1
4
Π̃B(z1, z2; �). (3.19)

These quantum periods can be computed systematically in a power series in
z1,2 [5,14]. One finds, to the very first orders,

Π̃A (z1, z2; �)= 2(z1 + z2) + 3
(
z2
1 + z2

2

)
+ 2

(
4 + q + q−1

)
z1z2 +

20
3
(
z3
1 + z3

2

)

+ 2
(
16 + 6q + 6q−1 + q2 + q−2

)
z1z2(z1 + z2) + O (z4

i

)
,

Π̃B (z1, z2; �)= 8
[

q + 1
2(q − 1)

log q

]
z1 + 4

[
1 +

5q2 + 8q + 5
2(q2 − 1)

log q

]
z2
1

+ 8
[
1 +

(1 + q)3

2q(q − 1)
log q

]
z1z2 + 4z2

2 + O (z3
i

)
, (3.20)

where q is given in (2.26).
Let us now come back to the problem of calculating (3.16). This is a

quantum period for the spectral curve defined by (2.13), but this curve is
just a specialization of (2.23) with the dictionary (2.25) and after a canonical
transformation. Therefore, (3.16) should be a combination of the quantum
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periods of local P
1 × P

1, specialized to the “slice” (2.25). Let us denote

Π̃A(z; �) ≡ Π̃A

(
q1/2z, q−1/2z; �

)
=
∑

�≥1

â�(�)z�,

Π̃B(z; �) ≡ 1
2

(
Π̃B

(
q1/2z, q−1/2z; �

)
+ Π̃B

(
q−1/2z, q1/2z; �

))
=
∑

�≥1

b̂�(�)z�,

(3.21)

where â�(�), b̂�(�) have the �-expansion,

â�(�) =
∞∑

n=0

â
(n)
� �

2n, b̂�(�) =
∞∑

n=0

b̂
(n)
� �

2n. (3.22)

Requiring the combination of quantum periods to have the correct classical
limit, and that only even powers of � appear, we find,

volp(E; �) = 4ΠB1

(
q1/2z, q−1/2z; �

)
+ 4ΠB2

(
q1/2z, q−1/2z; �

)
− 4π2

3
− �

2

12

= 8E2 − 4π2

3
+

�
2

24
−8E

∑

�≥1

â�(�)e−2�E +2
∑

�≥1

b̂�(�)e−2�E . (3.23)

The third term in the last line of (3.23) is an E-independent correction to the
quantum period which was already computed in [13]. Notice that the pertur-
bative quantum volume has an �-expansion of the form,

volp(E) =
∑

n≥0

voln(E)�2n. (3.24)

The first term in this expansion is the function of E given in (3.3). By the
WKB expansion of the wave function (3.13), (3.14), it is possible to find an
exact expression for the first quantum correction, which reads

vol1(E) =
e−E

((
32 e−2E − 1

)
E(k) − K(k)

)

6 (16 e−2E − 1)
, (3.25)

where K(k), E(k) are elliptic integrals of the first and second kind, respectively,
and their modulus is given by

k2 = 1 − e2E

16
. (3.26)

The derivation of this result is sketched in Appendix B.
The Eq. (3.16) gives the full series of perturbative � corrections to the

classical phase-space volume. The perturbatively exact quantization condition
involves the quantum B-periods of the spectral curve, and it reads

volp(E; �) = 2π�

(
n +

1
2

)
, n = 0, 1, 2, . . . (3.27)

We can now use (3.27) to compute the quantum-corrected spectrum. For exam-
ple, we can use the explicit expressions (3.3) and (3.25) to compute the energies
En perturbatively, as a power series expansion around � = 0, i.e.,
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Ep
n =

∞∑

�=0

En,��
�. (3.28)

The leading order term corresponds to the zero of vol0(E), and as found in
[13] this is,

En,0 = 2 log 2. (3.29)

Plugging now the series (3.28) in (3.27), we find

En,1 =
2n + 1

8
, En,2 = −2n2 + 2n + 1

128
. (3.30)

These values agree with a calculation starting directly from the density oper-
ator (2.6) [28].

3.2. Non-Perturbative WKB Quantization

As we have seen, the perturbative WKB quantization condition (3.27) makes
it possible to compute the energies as a power series in �. However, when
we consider finite values of �, we find a key problem: the coefficients b̂�(�)
appearing in the expansion (3.23) diverge for any rational k, and lead to a
nonsensical WKB expansion when � approaches 2π times a rational number.
At the same time, there is no physical source for this divergence in the spectral
problem itself: the eigenvalues for E appearing in (2.13) and in the associated
integral Eq. (2.3) are perfectly well defined for any real value of �, and in
particular for rational k. As a matter of fact they can be computed numerically,
as we will see in the next subsection. We stress that the divergence problem
in (3.27) is not an artifact of the large E expansion used to obtain (3.23).
This leads to an asymptotic expansion for the energy levels valid for large
quantum numbers, which should be well defined. It can be shown, by using
the BPS structure of the refined topological string free energy [29,30], that
the quantum B-periods of any local CY manifold are divergent for an infinite
number of values of �. In particular, the WKB quantization condition for B-
periods written down in [5] has an infinite number of poles in the complex
�-plane.

We conclude that the expression (3.23) is incomplete, and there must be
an extra correction which makes the quantum volume of phase space finite
and leads to a reasonable quantization condition. Since (3.27) already incor-
porates all the perturbative information available, this correction must be non-
perturbative in �.

The possibility of having instanton corrections to the quantum volume
of phase space was already anticipated in [13]. As pointed out there, to under-
stand these corrections we need the geometric approach to the WKB method
developed in for example [31–35]. In this approach, the perturbative WKB
quantization condition is associated to a classical periodic orbit of energy E
and the quantum fluctuations around it. The classical action of this trajectory
is the classical B-period, and the perturbative � corrections promote it to a
quantum period. In our example, this perturbative analysis leads to the result



1048 J. Källén and M. Mariño Ann. Henri Poincaré

(3.23). In fact, the classical periodic orbits can be described in detail. The
classical Hamiltonian (2.16) leads to the equations of motion

ẋ =
1
2

tanh
p

2
, ṗ = −1

2
tanh

x

2
. (3.31)

For an orbit of energy E, we find

ẋ =
1
2

√
1 − 16 e−2E cosh2 x

2
, (3.32)

which can be integrated in terms of Jacobi’s elliptic sine,

tanh
x

2
= k sn

(
t

4
, k

)
, (3.33)

where the modulus k is now given by

k2 = 1 − 16 e−2E . (3.34)

The function sn(u, k) is doubly periodic in u. It has a real period given by

ω1 = 4K(k), (3.35)

where K(k) is the complete elliptic integral of the first kind. The action around
this periodic trajectory is

SB(E) =
∫ 8K(k)

−8K(k)

p(t)ẋ(t)dt = vol0(E), (3.36)

where we took into account a relative factor of 4 coming from u = t/4.
However, as pointed out in [31,32], to obtain a non-perturbative quanti-

zation condition one should take into account as well complexified trajectories.
These trajectories are allowed because the curve (2.17) has genus one and
therefore it has an imaginary period, on top of the real period associated to
the real periodic orbit (an example of such a situation was discussed recently in
[37]). In our case, this is just the imaginary period of the Jacobi sine function,

ω2 = 2iK ′(k), (3.37)

where

K ′(k) = K(k′), k′2 = 1 − k2. (3.38)

In the complexified orbit, time is imaginary, as in [31,32]: t = iτ . If we now
use the relation

sn(iu, k) = i tn(u, k′), (3.39)

where tn = sn/cn, we find that x is also imaginary: x = iθ. The equation for
the complex trajectory becomes

tan
θ

2
= k tn

(τ

4
, k′
)

. (3.40)

The real and complexified trajectories, (3.33), (3.40), are represented in Fig. 1
for the value of the energy E = 3.

Geometrically, the trajectory (3.33) describes a closed orbit in phase
space, along the hypersurface of constant energy Hcl(x, p) = E. This is the
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Figure 1. For a given energy E, we have a real periodic
trajectory given by (3.33), which is shown in the figure on the
left for E = 3. The horizontal axis represents the time t and
it runs through a full period, from −8K(k) to 8K(k). There
is also an imaginary periodic trajectory for θ = Im(q), given
by (3.40), which is shown in the figure on the right, also for
E = 3. Here, the imaginary time τ runs from −4K(k′) to
4K(k′)

Fermi surface of the ideal Fermi gas introduced in [13]. After complexifying
the exponentiated variable ex/2, this closed orbit becomes a torus. The imagi-
nary trajectory (3.40) is a closed orbit around the A-cycle of this torus, while
(3.33) is now regarded as a closed orbit around the B-cycle. We depict both
orbits in Fig. 2.

In the original Hamiltonian, θ has a periodicity of 4π, therefore the rele-
vant action is

SA(E) = 2i
∫ 4K′(k)

−4K′(k)

p(τ)θ̇(τ)dτ = −4πiΠA(z), (3.41)

where we have denoted

ΠA(z) = log z + Π̃A(z, z). (3.42)

The contribution of such a complex trajectory to the quantization condition
is of the form

exp
(

i
�
SA

)
= exp

(
2
k

ΠA(z)
)

. (3.43)

Including the quantum corrections simply promotes the classical period to its
quantum counterpart, as already noticed in [31,32]. As in [34,35], we will call
the exponentiated quantum period associated to a cycle a Voros multiplier.
The quantum A-period, specialized to the “slice” (2.25), is

ΠAI

(
q1/2z, q−1/2z; �

)
= log z ± iπk

2
+
∑

�≥1

â�(�)z�, I = 1, 2, (3.44)
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B

A

Figure 2. The trajectory (3.33) describes a closed orbit in
the phase space (x, p), represented schematically in the figure
on the left. After complexifying the exponentiated variable
ex/2, this closed orbit becomes a torus, as shown in the figure
on the right. The imaginary trajectory (3.40) is a closed orbit
around the A-cycle of the torus

where the ± sign corresponds to I = 1, 2, respectively. We conclude from (3.43)
that the appropriate Voros multiplier for the A-period in this theory is

exp
[

2
k

ΠAI

(
q1/2z, q−1/2z; �

)]
= −e−4Eeff/k, (3.45)

where

Eeff = E − 1
2

∞∑

�=1

â�(�)e−2�E . (3.46)

This result was also obtained in [13].3 In general, the non-perturbative correc-
tion to the quantum volume is a formal power series in the Voros multiplier
for the quantum A-period. In our case, it takes the form,

volnp(E; �) =
∞∑

m=1

sm(k)(−1)me−4mEeff/k. (3.47)

This is clearly non-perturbative in � (or equivalently, in k), and it is invisible
in the standard perturbative correction to the WKB condition.

The calculation of sm(k) from first principles is difficult. In the case
of the Schrödinger equation studied in [31–35], the instanton corrections are
determined by the vanishing of the so-called Jost function, and their calcu-
lation requires a detailed analysis of the spectral problem and of the WKB
wave function. We will now present a conjecture for the form of the instanton
corrections for the spectral problem (2.13). To write down our formula, let

3 In [13], what is here called the A-period was called the B-period, and viceversa. The
notation we are using agrees with the standard conventions for periods in local Calabi–Yau
manifolds.
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us consider the worldsheet instanton corrections to the unrefined topological
string free energy on local P

1 × P
1, in the Gopakumar–Vafa form [27]:

F (T1, T2, gs)

=
∑

g≥0

∑

w≥1

∑

d1,d2

(−1)g−1

w
nd1,d2

g

(
qw/2
s − q−w/2

s

)2g−2

e−w(d1T1+d2T2). (3.48)

Here,

qs = egs , (3.49)

and gs is the topological string coupling constant. In (3.48), T1, T2 are the com-
plexified Kähler classes, corresponding to the two compact P

1s in the geometry,
and nd1,d2

g are the Gopakumar–Vafa invariants of local P
1 ×P

1 for genus g and
degrees d1, d2. Along the “slice”

T1 = T2 = T (3.50)

the natural invariant is the diagonal one,

nd
g =

∑

d1+d2=d

nd1,d2
g . (3.51)

We are now ready to state our conjecture about the form of the instanton
corrections. We claim that the coefficients sm(k) in (3.47) are given by

sm(k) = −4πk sin
(

4πm

k

)
dm(k), (3.52)

where

dm(k) =
1
m

∑

g≥0

∑

d|m
dnd

g

(
2 sin

2πm

dk

)2g−2

. (3.53)

The coefficients dm(k) have a simple interpretation: they are the coefficients
of e−mT in the topological string free energy of local P

1 × P
1, along the slice

(3.50), and for

gs =
4πi
k

. (3.54)

We then conjecture that the non-perturbative contribution to the quantum
volume of phase space is

volnp(E; �) = −4πk

∞∑

m=1

sin
(

4πm

k

)
(−1)mdm(k)e−4mEeff/k, (3.55)

and the total quantum volume is

vol(E; �) = volp(E; �) + volnp(E; �). (3.56)

Notice that the non-perturbative volume (3.55) is also divergent for rational
values of k. We will now show that the total volume (3.56) is well defined, i.e.,
the divergences in volp(E; �) cancel against the divergences in volnp(E; �).
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Before showing this, let us give some indications on the origin of this con-
jecture. As we will see in the next section, the spectral problem (2.13) appears
in the Fermi gas approach to ABJM theory. It turns out that the grand poten-
tial of ABJM theory is closely related to the volume of phase space. The
perturbative part (3.23) leads to the non-perturbative membrane corrections
to the grand potential, while the non-perturbative part (3.55) leads to the
worldsheet instanton corrections to the grand potential. The conjecture (3.55)
is inspired by the known form of these corrections [12,16,36]. The requirement
that divergences should cancel in the total volume (3.56) is a dual manifes-
tation of the HMO cancelation mechanism discovered in [16]. According to
this mechanism, the divergences in the worldsheet instanton part of the grand
potential of ABJM theory should cancel against the divergences in the mem-
brane instanton part, since the total grand potential is well defined and finite
for any k. We have here a similar mechanism, which is based this time on the
fact that the spectral problem is well defined for any value of k. The cance-
lation mechanism in the quantum volume is simpler however than the HMO
mechanism, since it only involves simple poles, while the HMO mechanism
involves double poles.

Let us now verify that vol(E; �) is well defined for any value of k. Since
the non-perturbative contribution is defined in terms of Eeff , instead of E, let
us reexpress the perturbative part volp(E; �) in terms of this variable. This
defines a new set of coefficients b̃�(k) as follows,

volp(E; �) = 8E2
eff − 4π2

3
+

�
2

24
+ 4π2k

∞∑

�=1

b̃�(k)e−2�Eeff . (3.57)

These coefficients were first introduced in [18], in the context of ABJM theory,
and their geometric meaning was uncovered in [14]: they can be expressed in
terms of the refined BPS invariants Nd1,d2

jL,jR
of local P

1 × P
1 as

b̃�(k) = − �

2π

∑

jL,jR

∑

�=dw

∑

d1+d2=d

Nd1,d2
jL,jR

q
w
2 (d1−d2)

× sin πkw
2 (2jL + 1) sin πkw

2 (2jR + 1)
w2 sin3 πkw

2

. (3.58)

This formula is based on the fact that the combination of B-periods appearing
in (3.23) is a derivative of the refined topological string free energy, which in
turn can be written in terms of refined BPS invariants (see for example [30] for
a summary of these facts, and a list of values of the refined invariants for low
degrees). On the other hand, the coefficient (3.53) can be expressed in terms
of the same invariants by the formula,

dm(k) =
∑

jL,jR

∑

m=dn

∑

d1+d2=d

Nd1,d2
jL,jR

2jR + 1
(
2 sin 2πn

k

)2
sin
(

4πn
k (2jL + 1)

)

sin 4πn
k

1
n

,

(3.59)
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see [14] for a derivation. We can now use a simplified version of the argument
appearing in [14] to check that the singularities in (3.56) cancel. First of all,
notice that the singularities appear when k takes the form

k =
2n

w
=

2m

�
. (3.60)

The singularities are simple poles. The poles appearing in volnp(E; �) are of
the form

(−1)m 8m

w3
(
k − 2n

w

) (1 + 2jL) (1 + 2jR) Nd1,d2
jL,jR

e− 2mw
n Eeff . (3.61)

The corresponding poles appearing in (3.57) are of the form

− eπikw(d1−d2)/2 8m

w3
(
k− 2n

w

) (−1)n(2jL+2jR−1)(1+2jL)(1+2jR)Nd1,d2
jL,jR

e−2�Eeff .

(3.62)

By using (3.60), one notices that

eπikw(d1−d2)/2 = (−1)m, (3.63)

and it is easy to see that all poles in (3.61) cancel against the poles in (3.62),
for any value of Eeff , provided that

(−1)n(2jL+2jR−1) = 1. (3.64)

This can be seen to be the case by a geometric argument explained in [14]. We
conclude that vol(E; �) is well defined and finite for any real value of �, as a
series in e−2E .

The exact WKB quantization condition reads now

vol(E; �) = 2π�

(
n +

1
2

)
, n = 0, 1, 2, . . . , (3.65)

where vol(E; �) is a sum of the perturbative part (3.23) and the non-
perturbative part (3.55). This condition determines the energy levels En as
functions of n and �. As in similar examples of exact WKB quantization con-
ditions, the total vol(E) is a trans-series involving various small parameters,
on top of � itself. On one hand, we have of course �, but we also have exponen-
tially small quantities in �, and non-analytic functions of � at � = 0, like the
trigonometric functions of 1/k appearing in (3.55). We can solve this quantiza-
tion at small �, as one does for example in the case of the double-well potential
in Quantum Mechanics [8,9]. To give a flavor of the type of expressions one
finds, let us calculate the first non-perturbative correction to the perturbative
series in (3.28). To do this calculation, we need the leading term of Eeff in an
expansion around � = 0. We find, after using (3.10),

Eeff(E) = E
(0)
eff (E) + O(�2), (3.66)
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where

E
(0)
eff (E) = E − 2e−2E

4F3

(
1, 1,

3
2
,
3
2
; 2, 2, 2; 16e−2E

)
. (3.67)

After expanding it around E = 2 log 2, we find,

E
(0)
eff (E) =

4K
π

+
1
π

(E − 2 log 2)
(

1 − log
(

E − 2 log 2
8

))

+O
(
(E − 2 log 2)2

)
, (3.68)

where K is the Catalan number. A simple calculation shows that

En = Ep
n + Enp

n , (3.69)

where, as � → 0,

Enp
n ≈ − 1

4π

(
2n + 1

64

)2n+1

sin
(

4π

k

)
d1(k)e−2n−1

�
2n+2e−A/k, (3.70)

and

A =
16K
π

. (3.71)

It seems that Enp
n is a trans-series involving the small parameter e−A/k, log �

and trigonometric functions of 1/k.
Before closing this subsection, let us summarize the two most important

consequences of our proposal for the exact quantization condition:

1. In solving the spectral problem (2.13) associated to the quantum curve
of local P

1 × P
1, the information encoded in the quantum periods (or,

equivalently, in the NS limit of the refined topological string), evaluated
with the perturbative WKB method as in [3–5], is not enough. The per-
turbative quantization condition is insufficient and even ill defined for
some values of �, and has to be corrected by an infinite series of instan-
tons. In the terminology of [34,35], we can say that the WKB method of
[3–5] gives the Voros multipliers of the problem, but does not contain the
information about the Jost function solving the spectral problem.

2. The information about the instanton corrections involves the stan-
dard topological string free energy, and in particular the standard
Gopakumar–Vafa invariants. This is a statement dual to the conjecture
in [14], where evidence was given that the non-perturbative corrections to
the standard topological string free energy involves the refined topological
string. The fact that the unrefined topological string and the NS refined
topological string are intimately related in a non-perturbative treatment
is reminiscent of the observations made in [38].

Although our conjecture is well motivated by the relationship to ABJM
theory, it can be tested in detail. After all, our conjecture gives the exact
WKB quantization condition of the spectral problem, and we can (and should)
compare it to the actual values of the energy levels.
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3.3. Testing the Non-Perturbative WKB Quantization Condition

The goal of this subsection is to compute the energy levels using (3.65), but
this time at large quantum number n and fixed k. In this computation, the
non-perturbative part of vol(E; �) plays a crucial role. We will then compare
the energy levels obtained in this way with numerical values obtained directly
from the integral Eq. (2.3), and find an impressive agreement.

Since the numerical spectrum is easier to compute with high accuracy
when k = 1, 2, we will study (3.65) for these values of k (corresponding to
� = 2π and � = 4π, respectively). In these cases, we can see from (3.23) and
(3.55) that vol(E; �) is given as an expansion in powers of e−2E . In fact, for
k = 1, the coefficients of the odd powers

e−2(2m+1)E , m = 0, 1, 2, . . . , (3.72)

vanish. Therefore, for k = 1, we will have an expansion in powers of e−4E . Let
us write the total quantum volume, for k = 1 and k = 2, as

vol(E; �)
2π�

= Ĉ(�)E2 + n̂0(�) +
∞∑

�=1

(A�(�)E + B�(�)) e− 4�E
k , (3.73)

where

Ĉ(�) =
4
π�

, n̂0(�) = −2π

3�
+

�

48π
. (3.74)

The coefficients B�(�) will in general have contributions from both the pertur-
bative and the non-perturbative part.

Since the volume is given as a large E expansion, we will calculate the
energy levels in an asymptotic expansion for large quantum numbers. Let us
assume an ansatz for the solution of the exact WKB quantization condition of
the form

En = E(0)
n +

∞∑

�=1

E(�)
n e− 4�E

(0)
n

k . (3.75)

Plugging it into (3.65) we find,

E(0)
n =

√
n + 1/2 − n̂0(�)

Ĉ(�)
,

E(1)
n = − 1

2Ĉ(�)E(0)
n

(
B1(�) + A1(�)E(0)

n

)
,

E(2)
n =

1

2Ĉ(�)E(0)
n

(

− B2(�) − A2(�)E(0)
n +

4
k

A1(�)E(1)
n E(0)

n − Ĉ(�)(E(1)
n )2

− A1(�)E(1)
n +

4
k

B1(�)E(1)
n

)

, (3.76)

as well as
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E(3)
n =

1

2Ĉ(�)E(0)
n

(

− B3(�) − A3(�)E(0)
n − A2(�)

(
E(1)

n − 8
k

E(0)
n E(1)

n

)

+
8
k

B2(�)E(1)
n − 2Ĉ(�)E(1)

n E(2)
n + B1(�)

(
4
k

E(2)
n − 8

k2
(E(1)

n )2
)

+ A1(�)
(

4
k

(E(1)
n )2 − 8

k2
E(0)

n (E(1)
n )2 − E(2)

n +
4
k

E(0)
n E(2)

n

))

. (3.77)

To lowest order, plugging in the values we find

E(0)
n =

√
kπ√
2

(
n +

1
2

+
1
3k

− k

24

)1/2

. (3.78)

This expression is valid for any k > 0, provided n is large enough. The leading
growth of the eigenvalues derived from the lowest order approximation,

E2
n − E2

0 ≈ kπ2

2
n, n 
 1, (3.79)

has been verified numerically in [15] for k = 1, by computing the spectrum for
n = 0, . . . , 6.

To obtain subleading corrections, we have to calculate the coefficients
A�(�) and B�(�), which are determined by the coefficients â�(�), b̂�(�) in (3.23)
and sm(k) in (3.55). For the first few values of �,m, they can be read off from
(3.20) and (3.21), and from the Gopakumar–Vafa invariants of local P

1 × P
1,

as listed in for example [16]. For the first five orders, we find

vol(E; � = 2π)
4π2

=
2
π2

E2 − 7
24

+
1
π2

(8E + 1) e−4E − 1
π2

(
52E − 1

4

)
e−8E

+
1
π2

(
1472

3
E− 152

9

)
e−12E − 1

π2

(
5402E− 13949

48

)
e−16E

+
1
π2

(
323648

5
E − 317122

75

)
e−20E + O (Ee−24E

)
,

vol(E; � = 4π)
8π2

=
1
π2

E2 − 1
12

+
1
π2

(8E + 2) e−2E − 1
π2

(
52E +

1
2

)
e−4E

+
1
π2

(
1472

3
E− 304

9

)
e−6E − 1

π2

(
5402E− 13949

24

)
e−8E

+
1
π2

(
323648

5
E − 634244

75

)
e−10E + O (Ee−12E

)
, (3.80)

and the poles cancel, as expected.
Explicit calculations of the coefficients (3.21) and (3.53) in [14] indicate

that (3.73) is a convergent series when |q| = 1 and for sufficiently large E.
Notice that, for small �, i.e., q → 1, the coefficients in (3.21) are just the
coefficients of the classical B-period, which are known to lead to a series with
a finite radius of convergence. It seems that these convergence properties are
preserved as long as q stays in the unit circle of the complex plane. It fol-
lows that the series (3.75) should also be convergent, for n large enough. Our
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Table 1. The lowest and next-to-lowest energy eigenvalues
for k = 1 were calculated analytically, including higher and
higher orders of exponentially small corrections in (3.75)

Order Energy levels for k = 1

E0 E1

0 1.97654203314 2.973469456
1 1.97575850097 2.973455218
2 1.97575795136 2.973455217

3 1.97575795105 2.973455217

Numerical value 1.97575795105 2.973455217

In the last line, numerical values are given. At each order of the approximation, we
underline the digits which agree with the numerical result

Table 2. The lowest and next-to-lowest energy eigenvalues
for k = 2 were calculated analytically, including higher and
higher orders of exponentially small corrections in (3.75)

Order Energy levels for k = 2

E0 E1

0 2.399431022965 3.953084066277
1 2.363040773485 3.951517001949
2 2.362388178770 3.951515902713
3 2.362377640277 3.951515902099

Numerical value 2.362377493014 3.951515902099

In the last line, numerical values are given. At each order of the approximation, we
underline the digits which agree with the numerical result

numerical calculations indicate that, in fact, this series converges very rapidly
already for n = 0, 1. The results for En, for n = 0, 1, as computed with the
WKB quantization condition, and up to third order for k = 1 and k = 2 are
listed in Tables 1 and 2, respectively.

We can now compare these results with numerical values obtained start-
ing from the integral Eq. (2.3). To get numerical values with high accuracy we
will use that, as shown in [15], this equation can be rewritten in the form of an
eigenvalue equation for an infinite-dimensional matrix M . For the derivation
we refer to [15], here we only quote the results that we need to numerically test
the energy eigenvalues we have obtained. The matrix elements Mnm depend
only on m+n. Such a matrix is called a Hankel matrix. Moreover, in this case,
they are zero if m + n is odd, that is, M has the following form

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m0 0 m1 0 m2 0 . . .

0 m1 0 m2 0 m3

m1 0 m2 0 m3 0
0 m2 0 m3 0 m4

m2 0 m3 0 m4 0
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.81)
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Such a matrix can be decomposed into two blocks of Hankel matrices, M+ and
M−:

M+ =

⎛

⎜
⎜
⎜
⎝

m0 m1 m2 . . .

m1 m2 m3

m2 m3 m4

...
. . .

⎞

⎟
⎟
⎟
⎠

, M− =

⎛

⎜
⎜
⎜
⎝

m1 m2 m3 . . .

m2 m3 m4

m3 m4 m5

...
. . .

⎞

⎟
⎟
⎟
⎠

. (3.82)

The eigenspaces of M decompose into a direct product of the eigenspaces of
M±. Let the eigenvalues of M be denoted by λn, ordered such that

λ0 > λ1 > λ2 > · · · , (3.83)

and let the eigenvalues of M± be denoted by λ±,n, ordered in the same way.
We then have

λ+,n = λ2n, λ−,n = λ2n+1. (3.84)

The relation between the eigenvalues of M and the energy eigenvalues is

En = − log λn. (3.85)

Different values of k give different Mnm. For k = 1 we have (for m + n even,
otherwise we get zero)

Mk=1
nm =

Cm+n
2

2n+m+3
(3.86)

where Cn is the Catalan number

Cn =
(2n)!

(n + 1)!n!
. (3.87)

For k = 2, we have (again for m + n even, otherwise we get zero)4

Mk=2
nm =

1
4π

[
− 2

n + m + 1
+ ψ

(
n + m + 3

4

)
− ψ

(
n + m + 1

4

)]
(3.88)

where ψ(x) is the digamma function.
We have calculated the lowest and next-to-lowest energy eigenvalues

obtained from these two matrices numerically. In principle, we have to diago-
nalize an infinite-dimensional matrix, but in practice we have to truncate the
Hankel matrices to an L × L matrix. The eigenvalues of this truncated matrix
En(L) give numerical approximations to the exact En, and they converge to it
as L → ∞. To incorporate finite-size effects, let us assume that the eigenvalues
depend on L as

En(L) = En +
∑

j≥1

Ej
n

Lj
. (3.89)

We can accelerate the convergence of the sequence En,L to En by using for
example Richardson extrapolation [39]. The results obtained with this method
for k = 1 and k = 2 are given in Tables 1 and 2, respectively, with the dis-
played numerical accuracy. In all cases, the series of instanton corrections add

4 Note that there is a factor of 2 missing in equation 2.41 in the first version of [15].
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up to values closer and closer to the numerical value. For k = 1, and for the
first excited state with k = 2, the exponential corrections of fourth order and
higher are not visible in the numerical approximation to the eigenvalue, due to
the limited accuracy of our calculation. In the case of the ground state energy
E0 for k = 2, the corrections are moderately large: the approximation obtained
by including up to the third exponentially small correction is only correct to
order 10−7. However, we have checked that our quantization condition cor-
rectly reproduces the numerical eigenvalue E0, which we have obtained with
an accuracy of 18 significant digits, by including further exponentially small
corrections.

It seems clear from this numerical analysis that our ansatz (3.55) for the
non-perturbative corrections to the quantum volume is not only divergence-
free: it is also in excellent agreement with the true spectrum of eigenvalues.

4. The Grand Potential of ABJM Theory

As we explained in the introduction, the second motivation for looking at the
spectral problem (2.3) is the study of non-perturbative effects in the partition
function of ABJM theory [10]. This partition function Z(N, k) depends on
two parameters: the rank of the gauge group N and the Chern–Simons level
k. Building on [11,40], it was shown in [13] that Z(N, k) can be written as

Z(N, k) =
1

N !

∑

σ∈SN

(−1)ε(σ)

∫
dNx

∏

i

ρ(xi, xσ(i)), (4.1)

where ρ(x1, x2) is the kernel defined in (2.1). This is nothing but the partition
function of an ideal Fermi gas with one-particle energies En, n ≥ 0, determined
by the spectral problem (2.3). The grand potential of the Fermi gas is given
by

J(μ, k) =
∑

n≥0

log
(
1 + eμ−En

)
, (4.2)

where the energy levels En are determined by the WKB quantization condition
(3.65), which defines in fact an implicit function E(n) for arbitrary values of n.
To perform the sum over discrete energy levels, we will use the Euler–Maclaurin
formula, which reads

∑

n≥0

f(n) =
∫ ∞

0

f(n)dn +
1
2

(f(0) + f(∞))

+
∑

r≥1

B2r

(2r)!

(
f (2r−1)(∞) − f (2r−1)(0)

)
. (4.3)

Notice that, in general, this formula gives an asymptotic expansion for the
sum. However, as noticed in [41], this asymptotic expansion is Borel summable
under mild assumptions for the function f(n), and this can be used to write an
exact formula. In this paper, we will not explore this possibility. In our case,
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the function f(n) is given by

f(n) = log
(
1 + eμ−E(n)

)
. (4.4)

Since E(n) → ∞ as n → ∞, we have f(∞) = 0, f (2r−1)(∞) = 0 for all r ≥ 1.
The first terms of (4.3) give,

∫ ∞

E0

dn(E)
dE

log
(
1 + eμ−E

)
dE +

1
2
f(0) =

1
2π�

∫ ∞

E0

vol(E)
1 + eE−μ

dE. (4.5)

In deriving this equation, we first changed variables from n to E, used

n(E) =
vol(E)
2π�

− 1
2
, (4.6)

we integrated by parts, and we took into account that

vol(E0)
2π�

=
1
2
, (4.7)

as well as the asymptotic behavior

vol(E) ≈ E2, E → ∞. (4.8)

We conclude that5

J(μ, k) =
1

2π�

∫ ∞

E0

vol(E)dE

eE−μ + 1
−
∑

r≥1

B2r

(2r)!
f (2r−1)(0). (4.9)

The first term in this formula is nothing but an integral transform of the
quantum volume of phase space studied in the previous section. To analyze it,
we just have to compute the integrals

R
(j)
� (E0, μ) =

∫ ∞

E0

Eje−2�E

eE−μ + 1
dE, j = 0, 1, � ∈ N, (4.10)

which appear when considering the perturbative quantum volume (3.23), as
well as the integrals

Rσ(E0, μ) =
∫ ∞

E0

e−σE

eE−μ + 1
dE, (4.11)

where σ /∈ N. These appear when we consider the non-perturbative quantum
volume (3.55) for k arbitrary.

The calculation of these integrals is not elementary, and we will use a
variant of the Mellin transform used in [8,9]. It is defined as

ĝ(s) =
∫ 1

0

g(u)u−s−1du. (4.12)

This will make it possible to calculate analytically the integral over the density
of states.

5 In the first version of this paper, we did not include the corrections involving the derivatives
of f(n) at n = 0, and some of the resulting formulae were incorrect, as pointed out to us
by Yasuyuki Hatsuda. We would like to thank him for his precious observations, which
prompted us to find the correct formula for the grand potential.
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We will first consider the contribution to the integral due to the pertur-
bative quantum volume. To have a more compact notation for the answer, it
is useful to define the functions

â�(s; �) = â�(�)e−(2�−s)E0 (1 + (2� − s) E0) ,

b̂�(s; �) = b̂�(�)e−(2�−s)E0 ,
(4.13)

as well as the elementary integrals

Ij(n) =
∫ ∞

E0

Eje−nEdE =
(

− ∂

∂n

)j ( 1
n

e−nE0

)
, j ≥ 0. (4.14)

Using the results collected in Appendix A, one finds

1
2π�

∫ ∞

E0

volp(E)dE

eE−μ + 1
=

2μ3

3kπ2
+
(

1
3k

+
k

24

)
μ + Â(�)

+
∑

�≥1

(

− â�(�)
π2k

μ2 +
b̂�(�)
2π2k

μ +
ĉ�(�)
2π2k

)

e−2�μ −
∑

�≥0

d̂�(�)
2π2k

e−(2�+1)μ. (4.15)

In this expression, the μ-independent function Â(�) is given by

Â(�) = − 1
2π2k

⎡

⎣4
3
E3

0 −
(

2π2

3
− �

2

48

)
E0 +

∑

�≥1

â�(0; �)
�2

−
∑

�≥1

b̂�(0; �)
2�

⎤

⎦ ,

(4.16)

and the coefficients ĉ� and d̂� are given by

ĉ�(�) = −2π2

3
â�(�) + 2â�(�)E2

0 − b̂�(�)E0 −
∑

m �=�

âm(2�; �)
(m − �)2

+
∑

m �=�

b̂m(2�; �)
2(m − �)

+ 4I2(−2�) −
(

2π2

3
− �

2

48

)
I0(−2�),

d̂�(�) = −4
∑

m≥1

âm(2� + 1; �)
(2m − (2� + 1))2

+
∑

m≥1

b̂m(2� + 1; �)
2m − (2� + 1)

+ 4I2(−(2� + 1))

−
(

2π2

3
− �

2

48

)
I0(−(2� + 1)). (4.17)

Although these expressions look complicated, the derivatives of these quanti-
ties w.r.t. E0 have a simple expression in terms of the perturbative quantum
volume. This is because

∂

∂E0

(
1

2π�

∫ ∞

E0

volp(E)dE

eE−μ + 1

)
= − 1

2π�

volp(E0)
eE0−μ + 1

, (4.18)
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and we deduce

∂Â(�)
∂E0

= − 1
2π�

volp(E0),

∂ĉ�(�)
∂E0

= −e2�E0

2π�
volp(E0),

∂d̂�(�)
∂E0

= −e(2�+1)E0

2π�
volp(E0),

(4.19)

where E0 is regarded as an independent variable (in particular, independent of
�). We can use these expressions to obtain explicit formulae for the � expansion
of Â(�), ĉ�(�), d̂�(�) in terms of integrals of voln(E). This makes it possible
to evaluate analytically the infinite sums appearing in (4.16) and (4.17), order
by order in �.

Let us now consider the contribution to the grand potential coming from
the non-perturbative part of the quantum volume. We expand the exponent
of (3.47) and write

volnp(E) =
∞∑

m=1

∞∑

�=0

s�,m(k)(−1)me−( 4m
k +2�)E , (4.20)

where the coefficients s�,m(k) can be obtained from sn(k) and âr(�), with
n ≤ m, r ≤ �. By using now (A.13), with

σ =
4m

k
+ 2�, m = 1, 2, . . . , � = 0, 1, . . . , (4.21)

we find

1
2π�

∫ ∞

E0

volnp(E)dE

eE−μ + 1
= − 1

2�

∞∑

m=1

csc
(

4πm

k

) ∞∑

�=0

s�,m(k)(−1)me−( 4m
k +2�)μ

+
1

4π2

∑

n≥0

{ ∞∑

m=1

∞∑

�=0

(−1)ms�,m(k)
4m + k (2� − n)

e−( 4m
k +2�)E0

}

× (−1)ne−n(μ−E0). (4.22)

If our conjecture (3.52) is true, we can write the first line of (4.22) as
∞∑

m=1

dm(k)(−1)me−4mμeff/k, (4.23)

where μeff is defined by the same equality as (3.46), i.e.,

μeff = μ +
π2k

2

∞∑

�=1

a�(k)e−2�μ. (4.24)

To obtain the grand potential, we have to add to the integral (4.15) the infinite
series of corrections in (4.9). Since

f ′(n) = − E′(n)
eE(n)−μ + 1

, (4.25)
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it is easy to see that, when expanded around μ → ∞, these corrections can
only lead to a constant term, plus a series in e−μ. In addition, if we evaluate
these corrections perturbatively in �, we find that f (2r−1)(0) is of order �

2r−1.
We can now compare this calculation to the existing results on the per-

turbative grand potential of ABJM theory [13–18]

J(μ, k) =
2μ3

3kπ2
+
(

1
3k

+
k

24

)
μ + A(k)

+
∑

�≥1

(
a�(k)μ2 + b�(k)μ + c�(k)

)
e−2�μ

+
∞∑

m=1

dm(k)(−1)me−4mμeff/k. (4.26)

As we have seen, the correction terms in (4.9) only affect the constant term
and the series in e−μ. In particular, the terms in μ2e−2�μ and μe−2�μ in J(μ, k)
are completely captured by the integral (4.15). We conclude that:

a�(k) = − â�(�)
π2k

, b�(k) =
b̂�(�)
2π2k

. (4.27)

This is the main conjecture in [14], which was tested there by direct compu-
tation. Here, we have derived this conjecture from the WKB solution of the
spectral problem. Furthermore, (4.23) is exactly the non-perturbative contri-
bution (in k) to the grand potential. It contains the contribution of worldsheet
instantons, which is determined by the relation to standard topological string
theory [12,13,16,36], as well as the contribution of bound states conjectured
in [18]. In fact, our conjecture (3.52) was tailored to reproduce the worldsheet
instanton contribution. Although we can not derive (4.23) from first principles
(since we have not proved (3.52)), the appearance of the “effective” chemical
potential μeff is a simple consequence of the fact that instanton corrections in
the WKB method involve the exponentiated quantum A-period (3.45), as it
was already pointed out in [13].

The conclusion of this analysis is that the conjecture of [14] relating the
a, b coefficients of the grand potential to the refined topological string can
be derived from the perturbative WKB analysis of the spectral problem, and
the conjecture on the contribution of bound states in [18] can be also par-
tially justified. Conversely, the known results about the worldsheet instanton
contribution to the grand potential lead to the conjecture (3.55) for the non-
perturbative correction to the WKB quantization condition.

However, our analysis of (4.9) leads to further results for the grand poten-
tial, since we have not yet considered the constant term and the series in e−μ.
Let us first look at the constant term. First of all, it is easy to see that the
constant part (in μ) of the series of corrections in (4.9), as μ → ∞, is given by

∑

r≥1

B2r

(2r)!
E(2r−1)(0), (4.28)
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and involve the derivatives of the function E(n) at n = 0. We conclude that

A(k) = Â(�) +
1

4π2

∞∑

m=1

∞∑

�=0

(−1)ms�,m(k)
4m + 2�k

e−( 4m
k +2�)E0 +

∑

r≥1

B2r

(2r)!
E(2r−1)(0).

(4.29)

The second term in the r.h.s. comes from the contribution of n = 0 appearing
in (4.22), and it is non-perturbative in �. We can still analyze this equality by
looking at the perturbative expansion around k = 0. The l.h.s. has a power
series expansion of the form [13,42]

A(k) =
2ζ(3)
π2k

− k

12
+ · · · (4.30)

To test the equality of these two expressions, we can expand the first and
third term in the r.h.s. of (4.29) in powers of k and compare the resulting
series order by order. Notice however that each order in (4.16) is given by an
infinite sum. At leading order, the third term in (4.29) does not contribute,
and in the expression (4.16) we can use the values of the coefficients (3.10) as
well as the leading order term for n = 0 in (3.28). If we plug in these values in
(4.16), we reproduce (numerically) the first term in (4.30), testing in this way
the proposed equality at leading order. Alternatively, writing

Â(�) =
∑

n≥0

Ânk2n−1 (4.31)

we can use the first equation in (4.19) and (3.3) to obtain the expression

Â0 = E0 +
2ζ(3)
π2

− eE0

8π3
G2,4

4,4

(
e2E0

16

∣
∣
∣
∣

1
2 , 1

2 , 1
2 , 1

2
0, 0,− 1

2 ,− 1
2

)
, (4.32)

where the constant of integration is fixed by matching the expansion (4.16).
With this expression we can perform an analytic check.6

Similarly, we can now look at the coefficients in the expansion in powers
of e−μ in both sides of (4.9). The equality in (4.9) implies that the coefficients
ĉ�(�) are related to the coefficients c�(k) appearing in (4.26) by the equation

c�(k) =
ĉ�(�)
2π2k

+
e2�E0

4π2

∞∑

m=1

∞∑

r=0

(−1)msr,m(k)
4m + 2k (r − �)

e−( 4m
k +2r)E0

−
∑

r≥1

B2r

(2r)!

[
f (2r−1)(0)

]

−2�
, � ≥ 1, (4.33)

6 This analytic check has also been independently performed by Yasuyuki Hatsuda in an
unpublished note.
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where the bracket [·]−2� means the term in e−2�μ in the expansion of f (2r−1)(0)
at large μ. Finally, we obtain the condition,

d̂�(�)
2π2k

+
e(2�+1)E0

4π2

∞∑

m=1

∞∑

r=0

(−1)msr,m(k)
4m + k (2r − 2� − 1)

e−( 4m
k +2r)E0

+
∑

r≥1

B2r

(2r)!

[
f (2r−1)(0)

]

−2�−1
= 0, � ≥ 0. (4.34)

As before, these equations can be tested in perturbation theory around k = 0.
In this case, the terms coming from the last sum in (4.22) do not contribute.
In fact, the function c�(k) is known to be an analytic function of k at the
origin, therefore it should be given by the perturbative series around k = 0
of the r.h.s., while the non-perturbative terms in k in the r.h.s. should cancel.
At leading order in k, the corrections involving f (2r−1)(0) do not contribute
either, and the resulting equalities can be checked for the very first values of
�, by performing numerically the sums or by using the Eq. (4.19).

It is instructive to perform a test of the various equalities we have written
down, again in perturbation theory around k = 0, but at next-to-leading order
in k. This can be done in a single strike by looking at (4.9) in perturbation
theory. After taking into account the various expansions in �, and after writing
down7

Jp(μ, k) =
∑

n≥0

Jn(μ)�2n−1, (4.35)

it is easy to see that a next-to-leading order test amounts to checking that

J1(μ) =
1
2π

∫ ∞

E
(0)
0

vol1(E)dE

eE−μ + 1
− 1

96(1 + 4 e−μ)
. (4.36)

The second term in the r.h.s. has two contributions: one coming from the
expansion of Ep

0 at order �
2, where we have taken into account (3.30), and

another from the term r = 1 in the series of corrections in (4.9). The integral
appearing in the r.h.s. can be evaluated explicitly, as a power series in eμ, by
using the explicit result (3.25). The result is,

1
2π

∫ ∞

E
(0)
0

vol1(E)dE

eE−μ + 1
= −

∑

n≥1

(rn + sn) (−1)nenμ, (4.37)

where

rn =
1
3
2−2n−5, sn = −4−n−4n

(
n2 − 1

)
Γ
(

n
2

)2

3Γ
(

n+3
2

)2 . (4.38)

It is easy to see that

−
∑

n≥1

rn(−1)nenμ =
1

96(1 + 4 e−μ)
, (4.39)

7 Jp(µ, k) denotes the perturbative, in k, part of J(µ, k).
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and also that

sn =
Z

(1)
n

n
, (4.40)

where

J1(μ) = −
∑

n≥1

Z
(1)
n

n
(−eμ)n

, (4.41)

and the explicit expression for Z
(1)
n was derived in [13] from the Wigner–

Kirkwood expansion and written down in eq. (5.20) of that paper. This proves
(4.36).

Although we have tested these equalities perturbatively, it would be also
very interesting to test them non-perturbatively, for finite values of k, even
numerically. To do this, one might need to perform a Borel resummation of the
asymptotic series appearing in the Euler–Maclaurin expansion, following [41].

It should be stressed that the relationship between the quantum volume
and the grand potential that we have analyzed in this section is not without
subtleties. To understand this relationship better, we should have a clearer
analytic understanding of the terms in the second line of (4.22). It is possible
that such an improved understanding leads to corrections to our proposal
(3.55), although such corrections do not seem to be present in the cases k = 1
and k = 2 that we have analyzed in detail.

We conclude that our calculation of the quantum volume for the spectral
problem (2.13) proves, to a large extent, the conjectures made in [14] relating
the membrane instanton part of the grand potential to the refined topological
string in the NS limit. This is the content of our result (4.27). The incorporation
of “bound states” by promoting μ to μeff , as proposed in [18], follows also from
our WKB analysis. For a complete derivation of the known results, one should
also prove the equalities (4.29), (4.33) and (4.34).

5. Conclusions and Open Problems

In this paper, we have analyzed in detail a spectral problem which appears in
ABJM theory and in the theory of quantum spectral curves. This problem is a
particular case of the quantization of the mirror curve of local P

1×P
1, for some

particular values of the complex parameters z1, z2. This choice of parameters
is very convenient since, after imposing appropriate analyticity conditions, it
leads to a reformulation of the problem in terms of an integral Eq. (2.3) for
which we have a lot of information —numerical and analytical—thanks to its
rôle in ABJM theory.

Our main conclusion is that the WKB analysis of [3–5] (which reproduces
the known results for the refined topological string in the NS limit) is insuffi-
cient for actually calculating the spectrum: there are instanton effects which
should be added, just as in other quantum-mechanical situations [6–9]. Surpris-
ingly, the relevant instanton series is essentially the free energy of the standard
topological string. This shows that the NS limit of the refined string (i.e., the
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choice ε2 = 0 in the Omega background) and the conventional topological
string (i.e., the choice ε1 = −ε2) are intimately related in a non-perturbative
treatment. This was already shown in the “dual” calculation of [14], by using
the non-perturbative definition provided by the lens space matrix model.

Mathematically, the conjectural WKB quantization condition for the
spectral problem (2.3) or (2.13) is very surprising. In particular, it contains
information about the Gopakumar–Vafa invariants of local P

1 × P
1. It would

be interesting to derive this quantization condition analytically, perhaps along
the lines of [26]. The spectral problem for integral equations like (2.3) is also
related to a TBA equation [19,20], and it would be also interesting to under-
stand the non-perturbative corrections from the point of view of the TBA.

Our exact quantization condition is also very interesting from the point of
view of the WKB method. Usually, the perturbative WKB quantization leads
to an asymptotic series in the energy which has to be resummed with some
appropriate prescription. Instanton corrections are typically needed when the
series is not Borel summable, and they cancel the non-perturbative ambiguities
appearing in the resummation process, as in the double-well potential studied
in [8,9]. In the case studied here, the WKB quantization condition leads to an
infinite series which seems to be convergent in the energy plane. However, its
coefficients develop simple poles at values of � of the form 2πn, where n is a
rational number. Instanton corrections are needed to cancel these non-physical
poles, as in the closely related HMO mechanism of [18]. Therefore, the analytic
mechanism for combining non-perturbative and perturbative corrections in our
example is very different from standard quantum-mechanical situations: for
generic, real values of �, we have a WKB convergent series which requires
however non-perturbative corrections.

Of course, the main question for future research is the following: is this
story an accident of this example, or is it a general feature of local CY man-
ifolds? One possible strategy to answer this question would be to look at the
quantized curves of local CYs and take the spectral problem seriously. For
example, the quantization of the mirror curve for local P

2 leads to the opera-
tor [5]:

− 1 + eû + ev̂ + ze−û−v̂. (5.1)

After a choice of polarization, we can require this operator to annihilate the
wave function and obtain a difference equation. This equation can be analyzed
as in [5], where it was shown that the perturbative WKB periods give the
standard refined topological string on local P

2, in the NS limit. However, this
does not lead by itself to a quantized spectrum, since we need additional
analyticity conditions on the wave function. One could impose a natural set
of conditions similar to the ones we imposed on (2.13) (see [23] for a related
discussion). As we mentioned before, the quantum B-period is singular for
infinitely many values of �. If the difference equation defined by (5.1) with
the appropriate analyticity conditions leads to a well-defined spectral problem
for these values of �, then non-perturbative instanton corrections are needed.
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It might be the case that these corrections involve the standard topological
string, as in the example studied in this paper.

Our result suggests in fact a new point of view on the non-perturbative
definition of topological string theory: start with a well-defined spectral prob-
lem arising in the quantization of the spectral curve, and find its exact WKB
quantization condition. The perturbative part will be given by the refined
topological string in the NS limit, and the non-perturbative corrections might
lead to the Gopakumar–Vafa expansion of the usual topological string, just as
in our example.

This non-perturbative definition depends ultimately on an appropriate
definition of the spectral problem. There is however a family of CY geometries
in which this problem should be well defined, thanks to the result of [2]: these
are the AN−1 local geometries, which generalize local P

1 ×P
1. In this case, the

spectral problem is the Baxter equation obtained by quantizing the spectral
curve of the relativistic Toda lattice. However, this equation is an auxiliary tool
to solve the original quantum integrable system, and the analyticity properties
of the solution to the Baxter equation should follow from the original problem
of determining the spectrum of the conserved Hamiltonians for the quantum,
relativistic Toda lattice (this is well understood in the non-relativistic limit,
see for example [22,43]). Interestingly, the AN−1 geometries also have a dual
large N Chern–Simons description, as well as a matrix model description [44].
It would be very interesting to study non-perturbatively the quantum spectral
curves of these geometries and understand their relation to the matrix models.
In the case studied in this paper, the matrix model partition function is the
partition function of an ideal gas of N fermions with the energy eigenvalues
determined by the spectral problem.

Another possible extension of this paper is the analysis of the spectral
problem appearing in the Fermi gas formulation of N = 3 Chern–Simons–
matter models. In [13], generalized kernels were defined for many of these
theories; it would be interesting to study their spectrum with the techniques
developed here. This would lead to new results for non-perturbative effects in
the type IIA/M-theory duals to these theories.

We hope to report on these problems in the near future.

Note added: Since this paper was first posted, there have been various devel-
opments closely related to the problems raised here. It was noted in [45], by
performing detailed numerical calculations of the spectrum for various values
of k, that the proposal (3.55) for non-perturbative corrections is only valid in
the so-called maximally supersymmetric cases k = 1, 2. A corrected quantiza-
tion condition for the operator (2.1), which so far agrees with all existing data,
has been proposed in [46,47].

Appendix A. Mellin Transform

We will use the Mellin transform as defined in (4.12). The inverse Mellin
transform can be computed by inspection after using the following elementary
integral:
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∫ 1

0

un−s−1 (log u)m du = − Γ(m + 1)
(s − n)m+1

. (A.1)

Regular terms in s do not contribute to μ expansion of the inverse Mellin
transform. Therefore, we first compute the Mellin transform, consider the polar
part of the Laurent series, and perform the inverse Mellin transform by using
(A.1).

We will do a Mellin transform of quantities in the grand canonical ensem-
ble with respect to the variable

u = e−μ. (A.2)

The Mellin transform of the Fermi occupation number is
∫ 1

0

u−s−1

eEu + 1
du = esEI(s) +

∑

k≥1

(−1)ke−kE

s + k
, (A.3)

where

I(s) =
∫ ∞

0

xs

1 + x
dx = −π csc(πs). (A.4)

Notice that the function in the r.h.s. of (A.3) does not have poles at negative
integer values of s. The function I(s) has simple poles at the positive integers.
The Laurent series around even non-negative integers is,

I(s) = − 1
s − 2�

− π2

6
(s − 2�) + · · · (A.5)

while for odd positive integers we find,

I(s) =
1

s − (2� + 1)
+

π2

6
(s − (2� + 1)) + · · · . (A.6)

Using these results, it is easy to compute the Mellin transform of Jp(μ, k):

Ĵp(s, k) =
1

2π2k

{

4I2(−s) −
(

2π2

3
− �

2

48

)
I0(−s)

−4
∑

�≥1

â�(�)I1(2� − s) +
∑

�≥1

b̂�(�)I0(2� − s)

}

I(s) + · · · , (A.7)

where Ij(n) are defined in (4.14), and the dots in (A.7) denote terms which are
regular in s or come from the second term in (A.3). To implement the inverse
Mellin transform, we notice that this function has a pole of order fourth at
s = 0, with Laurent expansion

4
π2k

1
s4

+
(

1
3k

+
k

24

)
1
s2

− Â(�)
s

+ · · · (A.8)

where Â(�) is given in (4.16). At even positive integers, we have triple poles
with the Laurent expansion

2
π2k

â�(�)
(s − 2�)3

+
1

2π2k

b̂�(�)
(s − 2�)2

− 1
2π2k

ĉ�(�)
s − 2�

+ · · · (A.9)
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where ĉ� is given in the first line of (4.17). At odd positive integers, we have
simple poles with the structure

1
2π2k

d̂�(�)
s − (2� + 1)

, (A.10)

where d̂� is given in the second line of (4.17). Putting all the results together,
we derive the result in (A.7).

Equivalently, one can use the Mellin transform to calculate the integrals
(4.10). Their values are easily found to be,

R
(0)
� (E0, μ) =

∑

n=1,
n�=2�

(−1)n

2� − n
e−(2�−n)E0e−nμ + (μ − E0) e−2�μ +

e−2�E0

2�
,

R
(1)
� (E0, μ) =

∑

n=1,
n�=2�

(−1)n

(
1

(2� − n)2
+

E0

2� − n

)
e−(2�−n)E0e−nμ

+
(

π2

6
+

μ2 − E2
0

2

)
e−2�μ +

(1 + 2�E0)
(2�)2

e−2�E0 . (A.11)

These expressions are valid for real μ > E0. Finally, we compute the integral
(4.11). The Mellin transform is

R̂σ(E0, s) = I0(σ − s)I(s) + · · · . (A.12)

If σ is not an integer, we have two types of simple poles in this expression:
poles at s = σ coming from I0(σ − s), and poles coming from I(s) at integer
values s = n (like before, there are no poles at negative integers). A simple
calculation shows that the inverse Mellin transform is given by

Rσ(E0, μ) = −π csc(πσ)e−σμ +
∑

n≥0

(−1)n

σ − n
e−(σ−n)E0e−nμ, (A.13)

which again is valid for real μ > E0. Notice that the first term is what we
would obtain with the Sommerfeld expansion of the Fermi factor used in for
example [48], and the second term is a non-perturbative correction. This result
can be also written down in terms of the Hurwitz Lerch transcendent Φ(a, b, c),

Rσ(E0, μ) = −π csc(πσ)e−σμ +
1
σ

e−σE0 + eE0(1−σ)−μΦ
(
eE0−μ, 1, 1 − σ

)
.

(A.14)

Appendix B. Higher Order Quantum Volume

In this appendix, we will sketch how to derive the result (3.25). It is obtained
by solving Eq. (2.13) with the ansatz (3.13) and then performing the period
integral (3.16). When solving (2.13), we will follow the approach given in [49,
50].
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Let us write the difference Eq. (2.13) as
[
e

i�
2 ∂x + e− i�

2 ∂x

]
ψ(x) = 2r(x)ψ(x) (B.1)

where

r(x) =
eE

4 cosh
(

x
2

) . (B.2)

Plugging in the ansatz (3.13) in the above equation and expanding around
� = 0 keeping S(x, �) fixed we get the following equation:

cosh
(

1
2
S(1)(x, �) − �

2

23

S(3)(x, �)
3!

+ · · ·
)

exp
(

− i�
22

S(2)(x, �)
2!

+ · · ·
)

=r(x),

(B.3)

where

S(m)(x, �) = ∂m
x S(x, �). (B.4)

We notice that a derivative of S(x, �) of order m always comes with a factor
�

m−1, m > 0. If we plug in the expansion (3.14), we can therefore first solve
for ∂xS0 and then find ∂xSn(x), n > 0, in terms of derivatives of ∂xSm(x) with
m < n. For the first three orders, we find

∂xS0(x) = 2 cosh−1 [r(x)] = p(x),

∂xS1(x) =
ir(x)S(2)

0 (x)
4
√

r(x)2 − 1
,

∂xS2(x) =
r(x)

64 (r(x)2 − 1)3/2

[(
S

(2)
0 (x)

)2

+16
(
r(x)2 − 1

)
S

(2)
1 (x)

]
+

S
(3)
0 (x)
48

.

(B.5)

The perturbative part of the quantum volume is given by (3.16), and it has
an expansion for small � given in (3.24). To find voln(E) we use (B.5) and
calculate the integral. To lowest order, we find the result (3.3). The order
� contribution vanishes as it should and at order �

2 we obtain the result
(3.25).
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[19] Zamolodchikov, A.B.: Painlevé III and 2-d polymers. Nucl. Phys. B 432, 427
(1994). arXiv:hep-th/9409108

http://arxiv.org/abs/hep-th/9306153
http://arxiv.org/abs/0908.4052
http://arxiv.org/abs/0910.5670
http://arxiv.org/abs/0911.2396
http://arxiv.org/abs/1105.0630
http://arxiv.org/abs/quant-ph/0501136
http://arxiv.org/abs/quant-ph/0501137
http://arxiv.org/abs/0806.1218
http://arxiv.org/abs/0909.4559
http://arxiv.org/abs/1007.3837
http://arxiv.org/abs/1110.4066
http://arxiv.org/abs/1306.1734
http://arxiv.org/abs/1207.4283
http://arxiv.org/abs/1211.1251
http://arxiv.org/abs/1212.5118
http://arxiv.org/abs/1301.5184
http://arxiv.org/abs/hep-th/9409108


Vol. 17 (2016) Instanton Effects and Quantum Spectral Curves 1073

[20] Tracy, C.A., Widom, H.: Proofs of two conjectures related to the ther-
modynamic Bethe ansatz. Commun. Math. Phys. 179, 667–680 (1996).
arXiv:solv-int/9509003

[21] Nekrasov, N.: Five dimensional gauge theories and relativistic integrable sys-
tems. Nucl. Phys. B 531, 323 (1998). arXiv:hep-th/9609219

[22] Gaudin, M., Pasquier, V.: The periodic Toda chain and a matrix generalization
of the Bessel function’s recursion relations. J. Phys. A 25, 5243 (1992)

[23] Sergeev, S.M.: Quantization scheme for modular q-difference equations. Theor.
Math. Phys. 213, 422 (2005). arXiv:nlin/0402008

[24] Poghossian, R.: Deforming SW curve. JHEP 1104, 033 (2011). arXiv:1006.4822
[hep-th]

[25] Fucito, F., Morales, J.F., Pacifici, D.R., Poghossian, R.: Gauge theories on Ω-
backgrounds from non commutative Seiberg–Witten curves. JHEP 1105, 098
(2011). arXiv:1103.4495 [hep-th]

[26] Fateev, V.A., Lukyanov, S.L., Zamolodchikov, A.B.: On mass spectrum in ’t
Hooft’s 2D model of mesons. J. Phys. A 42, 304012 (2009). arXiv:0905.2280
[hep-th]

[27] Gopakumar, R., Vafa, C.: M theory and topological strings. 2.
arXiv:hep-th/9812127

[28] Hatsuda, Y., Moriyama, S., Okuyama, K.: Unpublished.

[29] Iqbal, A., Kozcaz, C., Vafa, C.: The Refined topological vertex. JHEP 0910, 069
(2009). arXiv:hep-th/0701156

[30] Choi, J., Katz, S., Klemm, A.: The refined BPS index from stable pair invariants.
Commun. Math. Phys. 328, 903 (2014). arXiv:1210.4403 [hep-th]

[31] Balian, R., Parisi, G., Voros, A.: Discrepancies from asymptotic series and their
relation to complex classical trajectories. Phys. Rev. Lett. 41, 1141 (1978)

[32] Balian, R., Parisi, G., Voros, A.: Quartic oscillator. In: Feynman Path Integrals,
Lecture Notes in Physics, vol. 106, pp. 337 (1979)

[33] Voros, A.: The return of the quartic oscillator. The complex WKB method. Ann.
Inst. H. Poincaré A 39, 211 (1983)
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