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Abstract. Minimum action solutions for SU(2) Yang-Mills fields in Euclidean 4-
space correspond, via the Penrose twistor transform, to algebraic bundles on the
complex projective 3-space. These bundles in turn correspond to algebraic
curves. The implication of these results for the Yang-Mills fields is described. In
particular all solutions are rational and can be constructed from a series of
Ansatze Λt for ί^l.

§1. Introduction

The term instanton or pseudo-particle has been coined for the minimum action
solutions of SU(2) Yang-Mills fields in Euclidean 4-space R4. Conditions at infinity
are imposed which are tantamount to working on the 4-sphere S4 (which is the
conformal compactification of R4) and are classified by an integer fe, which is
interpreted as the "number of instantons". The most general solutions so far
constructed explicitly are those of Jackiw et al. [4]. They depend on 5|fe| + 4 real
parameters if |fc|^3, while for |fc| = l,2 the number of parameters are 5,13
respectively. On the other hand infinitesimal deformation theory shows that the
number of parameters for the complete family of solutions is 8|/c| —3 (see [1, 5, 9]).
The purpose of this note is to describe how the full (8|fc| — 3)-parameter family can in
principle be constructed by using algebraic geometry.

The basic idea is to use the Penrose Twistor approach to space-time [8] in which
field equations in 4-space are converted into complex analytic geometry on complex
projective 3-sρace P3. This approach was applied in [11] to the self-dual (or anti-
self dual) Yang-Mills equations (which correspond to minimum action). The
resulting geometrical objects on P 3 turn out to be complex analytic bundles. This
transformation can be applied both locally and globally and for either Minkowski
or Euclidean space. For the instanton problem we take the global Euclidean version
(i.e. for S4) and this leads to a complex analytic bundle defined over the whole of P3.
By Serre's basic theorems of analytic geometry [10] such bundles are necessarily
algebraic. Moreover algebraic geometers have recently made significant progress on
the study of precisely those algebraic bundles which correspond to the SU(2) Yang-
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Mills equations [2,3,6]. We shall apply these results and interpret them back in the
Euclidean picture.

From a computational point of view the conclusion may be described briefly as
follows. The instanton solutions so far known have been constructed by an Ansatz
due to tΉooft. This Ansatz which we shall label Aγ starts from a suitable solution of
the (linear) Laplace equation in 4-space. From the algebraic geometry we find that
there is a whole hierarchy of Ansatze Ax (/ = 1,2,...). The Ansatz A2 starts from a
solution of the (linear) anti-self dual Maxwell equations while Aι for / ^ 3 uses the
corresponding first order equations for fields of spin (/— 1). The solutions obtained
from Aι are included in those coming from Aι+1 but not vice-versa in general. For
k = 1,2 the Ansatz A1 suffices to give (8/c - 3)-parameters but for k = 3,4 we must use
A2. For any given k there exists a large integer l(k) so that all solutions come from
Am. There are conjectural values of l(k) but these are not yet established.

For solutions to be globally well-defined on S4 the solutions of the linear
equations have to be suitably chosen. For Aγ the appropriate solution φ of the

Laplace equation Λφ = 0 has -^ singularities at a given set of points. For A2 the

appropriate solution of the anti-self-dual Maxwell equations has a singularity along
a 2-dimensional surface in R4. However this surface is not arbitrary: it corresponds
to an elliptic curve in P 3 . Topologically it is a torus (with some self-crossing, i.e.
double points) but analytically it is constrained to satisfy a certain differential
equation which can be described in terms of its second fundamental form.

The algebraic character of our solutions is reflected in the fact that the field F on
4-space is, in a suitable gauge, given by rational functions. In particular the action
density is rational and its poles in the complex domain play an important role.

In this note detailed mathematical arguments will not be given. Instead we
concentrate on describing the conclusions. A fuller treatment which necessarily
involves extensive use of modern algebraic geometry will appear elsewhere.

Acknowledgment. We are much indebted to I. M. Singer for interesting us in Yang-Mills fields and to
R.Penrose, N.J.Hitchin, and R.Hartshorne for many stimulating and useful discussions.

§ 2. The Penrose Transform

In this section we shall describe briefly how the Penrose theory leads to a re-
interpretation of the self-dual Yang-Mills equations. Penrose's starting point is the
observation that the complexification Q4 of S 4 given by the homogeneous equation
5

Σzf = z% in P5 can be identified with the Grassmannian of lines in P3. This goes
1

back to Felix Klein and is based on the Plϋcker coordinates πaβ = xayβ — xβya of the
line x, y in P3. The πaβ are skew-symmetric, determined up to a scalar and satisfy the
quadratic identity

π o l π 2 3 + π O 2 π 3 1 + π O 3 π 1 2 = 0

which by a suitable complex change of coordinates is identified with the equation
5

£ zf = z\ of β 4 . One now transforms problems on S4 by first complexifying them to
1
Q4 and then using the Klein correspondence to pass to P3. Applying this Penrose
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transform to a solution of the self-dual SU(2) Yang-Mills equations on S4 one finds
quite easily (see [11]) that the corresponding object is a 2-dimensional complex
analytic (and therefore algebraic) vector bundle E over P 3 . Note that this bundle has
only its complex structure it does not have a connection. The data of the Yang-Mills
connection has become coded into pure complex structure. The fact that we work
with the real group SU(2) and not just with its complexification SL(2, C) leads to
some real algebraic constraints on E which we shall now describe.

It is convenient to introduce the quaternions H, obtained by adjoining an
element j to the complex field C: we take j to satisfy f= — 1, ji= — ij. Then
H = C + Cj^C2 and so # 2 ^ C 4 . Left multiplication by j on H2 then induces an
anti-linear map σ:P3-»P3 with σ2 = 1. This defines a "real structure" on P 3 different
from the usual real structure in which σ would be the standard complex conjuga-
tion. In terms of Lie groups the standard real structure corresponds to the real form
SL(4, R) of SL(4, C) while the real structure given by σ above corresponds to the real
form SO(5,1) of SO(6, C): recall that Spin(6, C)^SL(4, C). In other words the sub-
group of SL(4, C), acting on P 3, which commutes with σ is Spin(5,1), the double
cover of SO(5,1). Note that σ has no fixed points i.e. there are no "real points" in P 3

but it has fixed lines and these are naturally parametrized by the 1-dimensional
H-subspaces of H2 which correspond to points of Huoo=R 4 uoo = S4. Spin(5,1)
acts on this S4 as (the double cover of) the conformal group. Note that a line fixed by
σ (which we shall call a "real line") is a 2-sphere with σ being the anti-podal map.

If σ on P 3 can be lifted to an anti-linear involution (still called σ) on a vector
bundle E we say that E has a real structure. Concretely this means that we have, for
each xeP 3 , a linear isomorphism σx:Ex-*E^ix) varying algebraically (or holo-
morphically) with x and satisfying σ2 = l. If σ2 — — 1 we say E has a symplectic
structure. Note that the standard (Hopf) line-bundle L over P 3 has a symplectic
structure given by the quaternion;, but that L2 = L®L then has a real structure.
More generally if E has a real structure E®L is symplectic and vice-versa.

The constraints which we want to impose on a 2-dimensional algebraic vector
bundle over P 3 are now:

1) E has a symplectic structure.
2) The restriction of E to every real line of P 3 is (algebraically) trivial.
To understand the significance of (2) we recall that algebraic 2-dimensional

bundles over a projective line are isomorphic to a direct sum L1®L2 of line-
bundles, the Lt being essentially unique and each is determined by an integer kt. The
sum k1 + fc2 is a topological invariant called the first Chern class (hence will be
constant for the restriction of £ to any line in P3). However the difference kι — k2

can jump under small deformations. Under the assumption (2) kί=k2=0 for all real
lines of P 3 , hence (by semi-continuity) for the general line. However there will be an
exceptional set of so-called jumping lines for which ki + k2.

The precise reformulation of SU(2) Yang-Mills is then given by:

Theorem. There is a natural one-one correspondence between
a) self-dual solutions A of the SU(2) Yang-Mills equations on S4 up to gauge

equivalence and
b) isomorphism classes of 2-dimensional algebraic vector bundles E over P 3

satisfying conditions (1) and (2) above.
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Notes, (i) The instanton number k of A corresponds to the only topological
invariant of E [called the second Chern class c2(E)~].

(ii) To apply the Penrose transform one needs to assume that A is real-analytic.
However one can give an alternative differential geometric approach which turns
the self-dual Yang-Mills equations on S4 into the integrability conditions for a
complex analytic structure on E and then apply the Newlander-Nirenberg theorem
[7] which only requires mild differentiability. Thus analyticity is an automatic
consequence.

(in) If we replace condition (1) by the assumption that E has a real structure, then
we are led to self-dual SL(2,£) Yang-Mills fields. This is the other "real form".

The correspondence in the theorem is itself algebraic. Hence as a first Corollary
we deduce that any self-dual Yang-Mills field is itself rational (in a suitable gauge)
and that the action density is rational. Its poles in the complexifϊcation Q4 lie on the
hypersurface/(z1? ...,z6) = 0 corresponding to the jumping lines of E. Moreover a
result of Barth [2] shows that/is a polynomial of degree exactly k (the instanton
number).

§ 3. Algebraic Geometry of Bundles on P 3

We shall now review rapidly the main results concerning algebraic 2-dimensional
vector bundles over P 3. There is a good theory only for those bundles known as
stable bundles. These can be characterized by the property that any algebraic
endomorphism of E (i.e. a linear map EX^EX varying algebraically with x) is a
constant scalar. Fortunately the bundles E occurring in the theorem are easily seen
to have this property, unless fc = 0 in which case A is a pure gauge and E is trivial.

A bundle E on P 2 has 2 integer topological invariants, its Chern classes c^E),
c2(E). For our bundles c1(E) = 0 because of condition (2) [this corresponds to
passing from GL(2, C) to SL(2, C)]. This leaves k = c2(E)^0: we assume fc>0. The
first general result due to Maruyama (for preliminary results see [6]) is that the
isomorphism classes of all stable 2-dimensional algebraic vector bundles over P 3

with cx = 0, c2 = k are naturally parametrized by points of a (possibly reducible)
algebraic variety M(k). The real structure σ of P 3 induces a real structure σ on M(k)
[associate to E the bundle σ*(E), whose fibre at xeP3 is £σ(Λ;)]. The real points M(k)R

of M(k\ namely those fixed by σ, represent either real or symplectic bundles and the
action of σ on E is then unique (up to +1). Moreover the condition σ2 = +1 or
σ2 = — 1 must be constant on connected components of M(k)R. Thus we have a
disjoint union

where M(k)R represents the symplectic bundles (σ2 = — 1) while M(k)R represents
the real bundles (a2 = 1).

Finally the condition (2) of § 2 defines an open set oϊM(k)R. We know this set
is non-empty because self-dual solutions have been constructed for every k. By
the results of [1] we know that this open set of M(k)R is a real manifold of dimension
(8/c-3). Because it is given by algebraic conditions it has a finite number of com-
ponents.
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Complete information on the space M(k) is not yet available but quite a lot is
known. In describing this we will1 for simplicity work only over the complex field,
omitting any reference to the real (or unitary) restriction.

If £ is a stable bundle with cί(E) = 0, c2(E) = k then for some sufficiently large
integer / (depending on k) E{ΐ) = E®Lι will have an algebraic section s vanishing
along a non-singular algebraic curve Γ C P 3 . If Γ is connected it uniquely determines
E (up to isomorphism) while if Γ has (disjoint) components Γl9 ...,Γr we need to
specify certain non-zero constants cl9 ...,cΓ (up to a common multiple) in order to
determine E. Thus every E arises from some Z, some Γ and some (cί,..., cr). However
there is much redundancy here because E(l) will in general have many sections (the
number increases with /) and hence the same bundle E arises from many different
curves. In particular E is trivial (and the associated Yang-Mills field is zero) if and
only if Γ is the complete intersection of two algebraic surfaces. If E(ϊ) has an
unexpected section, i.e. when I is small compared with fc, then this section is likely to
be unique and is an invariant of the bundle. This happens for / = 1 and k ̂  3 with the
solutions of [4].

The component curves Γ{ are not arbitrary. First of all we have the following
numerical formulae for the degree d( and the genus gt:

Moreover the second of these, when multiplied by 2, underlies an equality between
divisor classes on Γ/5 namely K = 2(l — 2)Di where K is the canonical class of Γ£ and
Dt is the class of a plane section. If gt = 0 or 1 this gives no additional restriction but
for g{> 1 it is a severe restraint on the kind of curve which can occur.

The simplest solutions of the above equations are given by Z=l, dt = ί9 fiffi=0.
This means that each Γt is a projective line. These correspond precisely to the known
solutions of [4], provided we take the lines to be "real" i.e. corresponding to points
of S4. Note that the number of points is r = fc+1.

The next simplest solutions are for / = 2, gt = 1. The Γf are now elliptic curves of
degree dt where Γdf = fc + 4. For example, taking r= 1, we can take a single elliptic
curve of degree fc + 4. The bundle E defined by such an elliptic curve Γ coincides
with the bundle defined by fc+1 disjoint lines if and only if Γ lies on a cubic surface.
For k= 1,2 every such Γ can be shown to have this property but for fc^3 only a
subset of Γlie on cubic surfaces. For k = 3 one finds that elliptic curves of degree 7
give a 21-parameter family of bundles whereas the elliptic curves lying on cubic
surfaces depend on two parameters less and give only a 19-parameter family of
bundles.

The disjoint addition of curves Γi9 generalizing the case of lines, can be viewed as
some form of superposition principle for the nonlinear differential equations of the
Yang-Mills theory. This geometrical viewpoint may help to cast light on the whole
"soliton" phenomenon.

For k = 1 results of Barth [2] imply that the only bundles on P 3 are the null-
correlation bundles. These correspond to the SU(2)-bundles on S 4 which are
homogeneous under SO(5) and give rise to the standard instanton. Thus the
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parameter space for self-dual solutions in this case is just the hyperbolic 5-space
(interior of S4). For k>\ it is not yet known whether the parameter space is
connected.

§4. The AnsatzΛ,

If s is a section of E(ΐ) vanishing along Γ as above then on P 3 — Γ the bundle E(l) has
a non-vanishing section which therefore generates a trivial line-bundle, and E(l) is
an extension of this by the line-bundle L21. Extensions of this type are classified by
elements of the first sheaf cohomology group H1(P3-Γ, Θ{-21)) where Θ(-2l)
denotes the sheaf of algebraic sections of L~21 (the dual of L21). In more
computational terms the existence of a non-vanishing section s of E means that the
transition matrices of E, which normally lie in SL(2, C), can be put in triangular
form

1 a

P b

in a suitable gauge (on P 3 — Γ). The elements b can be standardized and correspond
to the line-bundle L21 while the elements a correspond to the element of
H1(P3—Γ, Θ(—2Ϊ)). In the Penrose transform one knows [8] that elements of
H1(P3-Γ, Θ(-2Ϊ)) correspond naturally to anti-self-dual solutions φ of the
Maxwell equations for Spin(Z — 1) fields (if / > 1) and to scalar densities satisfying the
Laplace equation if /= 1. These solutions φ have singularities on the surface f in S4

which corresponds to Γ. If one examines the details of the Penrose transform one
can in principle describe explicitly an Ansatz Aι that associates to each φ a solution
of the self-dual (SL(2, C)) Yang-Mills equations. We shall do this for the cases 1 = 1
and 1 = 2.

It is convenient to use an index notation1. Let {Pιμv,P2μv^?>μv} be an
orthonormal basis for the space of anti-self-dual 2-forms on R4 (thus *Pjμv = — Pjμv,
P/jVPkμv = δjk). The 1=1 Ansatz is the known one of [4]; it can be written

where Aμ

j=2PfVv\ogφ, with Aφ = 0. On S4, φ has to be interpreted as a scalar
density and the Laplace operator A has to be replaced by its conformally invariant
analogue.

The / = 2 Ansatz may be described as follows.
Define

Rμv«β = H

Rμvaβ = H

Let φμv be an anti-self-dual solution of Maxwell's equations, and write φ2 = φμvφ
μv.

1 The Greek indices μ, v, α, β, ... are 4-space indices, whereas j,k range over 1,2,3. The three Pauli
matrices are denoted σJ. The Einstein summation convention is employed, and square brackets enclosing
indices denote skew-symmetrization
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Then

A) = 2Rpψ(φρσP?Γ * W~ 2Φ«β)
is a self-dual solution of the Yang-Mills equations.

Note that the Rfaβ are complex: so the Maxwell field has to be complex if the A]
are to have a chance of being real. This is a feature of the Ansatze Aι for even values
of /: the reality conditions are trickier to describe and are not built into the Ansatz in
a manifest way.

Both for 1 = 1 and 1 = 2 the Ansatz leads to a potential A* which has apparent
singularities. These arise from singularities of φ and from zeros of φ (in case /= 1)
and of φ2 (in case / = 2). The singularity (for / = 2) arising from real zeros of φQσPf

appears to be a gauge artifact. For 1 = 1 poles of φ of the form -^ give a potential

whose corresponding singularities are removable by a gauge transformation: the
zeros are then kept off the real domain by taking φ positive as in [4]. For / = 2 non-
singular self-dual solutions of the Yang-Mills equations arise, as explained earlier,
from elliptic curves Γ in P 3 . This means that φ must be rational and its real poles
must be located on the corresponding surface Γ in S4 and be of a suitable type.
Moreover φ2 must have no real zeros.

The exact "type of singularity" of φ along Γ has yet to be made explicit. However
the case of 1=1 and algebraic geometric considerations strongly suggest that φ
should be defined as a distributional solution of the inhomogeneous anti-self-dual
Maxwell equations with an appropriate Dirac delta function along f as right-hand
side. The detailed working out of this idea will require extending the theory of the
Penrose transform so as to provide a translation of language between homological
algebra in P 3 and distribution theory in S4.

As an illustration of the formulae we consider the simple case when Γ is a
disjoint union of elliptic quartic curves Γh i= 1,2,..., r. Each such quartic curve is
the intersection of two quadric surfaces in P 3. A quadric in P 3, together with a scale
factor, corresponds to an anti-self-dual 2-form qμv in R4 of the form

where Bμv(Dμv) are constant self-dual (anti-self-dual) 2-forms and x2 = xμx
μ (cf.

Equation (4.12) of [4]). So qμv is determined by 10 complex parameters.
If Q is another quadric in P 3 and Qμv is the corresponding 2-form in R4, then the

Maxwell field corresponding to the elliptic quartic curve qnQ is

The Maxwell fields corresponding to r disjoint elliptic quartics are obtained by
simply taking linear combinations of the Maxwell fields obtained from each one.
Note that, for r = 1, Γ is a complete intersection so that the potential Aj

μ will be a
pure gauge, but this is no longer the case for r = 2.

Remark. The difference between self-dual and anti-self-dual is a matter of
orientation of 4-sρace. There is thus no essential difference between the two cases
but once an orientation has been chosen we must stick with it. The important thing
about our Ansatz Aι is that it associates, to a solution of the linear Maxwell
equations of one type of duality, a solution of the non-linear Yang-Mills equations
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of the opposite type of duality. This switch is of course not apparent for the case
1 = 1.

The surface f which carries the singularities of φ is the image of Γ under a
continuous map. This map f may either be 1-1 in general, in which case f is
orientable, or 2— 1 in general in which case f is non-orientable. In the orientable
case one can also show that f has precisely k double points or self-crossings, where
k is the instanton number of the Yang-Mills field.

§ 5. Further Comments

Although the algebraic geometry provides in theory a complete solution for the self-
dual Yang-Mills fields, there are a number of serious difficulties involved. First of
all the curves which correspond to / ̂  3 are of high genus and very special. Not much
is known about how to construct them, whereas for 1 = 2 the elliptic curves can be
quite explicitly described.

Secondly the reality conditions which require the complex singularities to avoid
S4 are not easy to work with. In geometric terms the jumping lines of a bundle on P 3

are hard to identify.
It may turn out that the reality constraints just mentioned can be put to

constructive use and may help in the classification problem, but this is speculative.
If we move from SU(2) to SU(3) then the Penrose transform still converts the

problem into one on P 3 but as yet the algebraic-geometric results here are
rudimentary. It is perhaps interesting to observe that SU(rc) for n^4 would lead to
^-dimensional bundles on P3 and that these can in a sense be reduced down to n = 3,
i.e. every rc-dimensional bundle for n^4 is an extension of a 3-dimensional bundle
by a sum of line-bundles.

Finally we should point out that by working on S4 instead of R4 we are making
an assumption about the asymptotic behaviour of the Yang-Mills field which may
be technically stronger than convergence of the action integral. This point deserves
further investigation and it can be studied via the Penrose transform where it
concerns the behaviour of a complex analytic bundle on P3 — Pv the line P x

corresponding to the point at infinity of R4.
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