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1 Introduction

The Swampland Program [1] (see [2, 3] for reviews) addresses one of the most fascinating

questions in modern theoretical High Energy Physics: the constraints that quantum gravity

imposes on effective field theories. It also lies at the core of one of the most important

aspects of String Theory: its predictivity. A large fraction of the recent activity in this topic

stems from the initial swampland conjectures [4, 5]. From these, particular attention has

recently been given to the Swampland Distance Conjecture (SDC), which states that the

field space of the effective theory contains geodesic paths of infinite distance and that, when

reaching their endpoints, an infinite tower of resonances decrease their mass exponentially

fast. The analysis of this conjecture in different string theory setups [6–28], has eventually

led to support the Emergence Proposal [3, 12, 13, 29, 30], in which weak gauge couplings

and infinite distances in field space are postulated to arise from the integration of a tower

of light fields.

Besides trying to understand the different proposals within the Swampland Program

at a fundamental level, one would also like to test them in the current set of string theory
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vacua [31, 32]. To do so, one must understand the interplay of the different Swampland

Conjectures with the ingredients in such string constructions. Two ingredients of this

sort are internal background fluxes and non-perturbative effects, which play a key role in

the proposals for de Sitter vacua populating the Landscape [33, 34]. On the one hand,

potentials generated by fluxes do play a role in Swampland-related ideas challenging such

proposals [35, 36], which have been connected to the SDC and the Emergence Proposal

in [3, 19]. On the other hand, the role of non-perturbative effects remains less clear in this

picture. In fact, the interplay between the Swampland Conjectures and non-perturbative

effects has mostly originated from the Weak Gravity Conjecture (WGC) for axions [4],

which constrains models of natural inflation and generalisations, see e.g. [37–39].

The purpose of this work is to confront non-perturbative effects with yet another

Swampland Conjecture, namely the Swampland Distance Conjecture. Notice that, a pri-

ori, the WGC for axions does not prevent trans-Planckian periodicities. It only states

that in this case non-perturbative effects will be strong enough to spoil the one-instanton

approximation. This is a serious drawback when trying to generate monotonic potentials

via non-perturbative effects, but it may not be an issue in other instances. In particular,

one may consider models with extended supersymmetry like 4d N = 2 theories, where the

effect of instantons is to modify the metric for the moduli space of hypermultiplets, but no

potential is generated.

A well-known set of 4d N = 2 theories is obtained from compactifying type II string

theory on Calabi-Yau manifolds. This class of compactifications has been extensively stud-

ied in the literature, and has led to remarkable results like the resolution of the conifold

singularity in the vector multiplet moduli space by taking into account the presence of a

light D-particle [40], and its counterpart in the hypermultiplet moduli space by a large

number of D-instantons [41]. The relation between these two effects can be made precise

by means of the c-map [42, 43], which maps D-particles charged under the vector multiplets

of type IIA/B string theory on X to D-instantons modifying the hypermultiplet moduli

space of type IIB/A on the same Calabi-Yau. Interestingly, the same underlying principle

that allows to resolve the conifold singularity in [40] was invoked in [12] to propose the

emergence of infinite distances and weakly coupled gauge interactions in CY vector moduli

spaces. The main difference with respect to the case in [40] is that, instead of one, an infi-

nite set of D-particles becomes light when reaching an infinite distance point, in agreement

with the Swampland Distance Conjecture.

In this paper we analyse the behaviour of the N = 2 theory along trajectories in the

hypermultiplet moduli space. This is in general a complicated problem because, unlike its

vector multiplet counterpart, the classical metric for hypermultiplets receives gs and α′-

corrections, both at the perturbative and non-perturbative level. Nevertheless, we consider

a region in moduli space in which the quantum corrected metric can be computed. In

this region one may define infinite distance geodesics in terms of the classical moduli

space metric, before any perturbative or non-perturbative corrections have been taken into

account, and then see what is the effect of the quantum corrections. We find that, as

we approach certain (classical) infinite distance point, towers of towers of D-instantons

decrease their action very fast — exponentially fast in the classical proper distance —
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substantially modifying the metric. The modification is such that the infinite distance

geodesic is no longer so in the quantum corrected metric.

Besides the metric, the presence of small-action instantons modify the classical relation

between the 4d Planck mass and the string scale. Near the classical infinite distance point

the ratio MP/Ms blows up, and goes like
√
N , where N can be understood as the number

of D-instantons towers that contribute non-trivially to the metric. Therefore, if one insists

to keep the 4d Planck mass constant the string scale has to be lowered accordingly, acting

like a species scale. If on the contrary one keeps Ms fixed, these become points in which

gravity inevitably decouples.

These two results are very suggestive from the viewpoint of the setup in [12], which can

be related to ours by compactifying on a circle and applying a chain of dualities. Indeed,

they can both be related to one-loop corrections involving N light D-particles in the dual

theory. In particular, the quantum corrected metric can be understood as generated from

one-loop corrections as in the original Emergence proposal, but now in the case of a three-

dimensional effective theory. This can in turn be interpreted as an interesting extension

of the Swampland Distance Conjecture to the three-dimensional case. Moreover, it shows

that the use of instanton-corrected metrics constitutes a systematic and precise method

to encode the physics of many light D-particles, and therefore a powerful tool to test

Swampland criteria.

The paper is organised as follows. In section 2 we describe the setup in which we will

perform our computations, namely type IIB string theory on a Calabi-Yau, and the classi-

cal infinite distance trajectory that we consider. The main tool for our analysis will be the

so-called tensor potential, which automatically encodes the relevant D-instanton effects. In

section 3 we will analyse the behaviour of this tensor potential along the said trajectory,

together with that of the quantum corrected metric that can be derived from it. We com-

pute the trajectory length in the quantum corrected metric, finding it to be finite, and the

quantum corrected kinetic terms for the periodic directions, which we interpret in terms of

the electric and magnetic WGC for axions. Finally, we interpret our findings in terms of the

dual setup with D-particles in three-dimensions, and we draw our conclusions in section 4.

Several technical details have been relegated to the appendices. In appendix A we re-

view the c-map relating vector multiplet and hypermultiplet moduli spaces. In appendix B

we discuss how the contact potential can be used to resolve conifold singularities in the

hypermultiplet moduli space of type IIB CY compactifications. In appendix C we detail

the prescription used to compute the asymptotic behaviour of the type IIB hypermultiplet

moduli space metric for the region of interest in the main text. Finally, appendix D extends

our discussion to the case of hypermultiplet moduli spaces in type IIA compactifications,

where we compute the exact metric using the standard methods in the literature.

2 Type IIB on Calabi-Yau manifolds and instantons

In this section we describe the framework in which we perform our analysis. Throughout

most of the paper we consider type IIB string theory compactified on a Calabi-Yau. The

instantons that appear in the 4d N = 2 effective theory will affect the metric of the
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universal hypermultiplet τ = C0 + ie−φ, b0, c0

h1,1 hypermultiplets za = ba + ita, ca, da

Table 1. Type IIB hypermultiplet scalar content, whose vevs are the coordinates of MHM.

hypermultiplet moduli space. As we will discuss, along a trajectory of infinite distance

which increases the volume and the string coupling, such non-perturbative effects can be

encoded in a function dubbed tensor potential, which we estimate. In the next section we

analyse the consequences of such corrections for the hypermultiplet moduli space metric.

2.1 The type IIB hypermultiplet moduli space

Let us consider type IIB string theory compactified on a Calabi-Yau three-fold X. At low

energies, one obtains a 4d N = 2 effective theory whose field content is given by a gravity

multiplet, h2,1(X) vector multiplets and h1,1(X) + 1 hypermultiplets. The scalars within

these multiplets parametrise the moduli space of the effective theory which, by general 4d

N = 2 arguments, factorises at the two-derivative level as

M = MVM ×MHM . (2.1)

Here MVM is a special Kähler manifold described by h2,1 vector multiplet complex

scalars [44], and MHM is a quaternionic-Kähler manifold parametrised by 4(h1,1 + 1) real

scalars within the hypermultiplets [45]. In the following we will be mostly interested in the

hypermultiplet sector of the theory, whose scalar field content is summarised in table 1.

The universal hypermultiplet contains the axion dilaton τ = τ1 + iτ2 = C0 + ie−φ

and the scalar duals b0, c0 of the 4d two-forms coming from the B-field B and the RR

potential C2, respectively. The remaining h1,1 hypermultiplets contain the complexified

Kähler coordinates of the Calabi-Yau

za = ba + ita = ℓ−2
s

∫

γa

B + iJ , (2.2)

where ℓs = 2π
√
α′ is the string length, and {γa} is a basis of H2(X,Z) such that all areas

ta are positive. They also contain the integrals of the RR potentials over such two-cycles

ca = ℓ−2
s

∫

γa

C2 , da2 = ℓ−2
s

∫

γa

C4 , (2.3)

where the two-forms da2 are the 4d duals of the scalars da.

Describing the type IIB hypermultiplet moduli space metric is in general seen as an

arduous problem because, unlike its vector multiplet counterpart, its classical expression

receives all kinds of gs and α′-corrections, both at the perturbative and non-perturbative

level. Particularly difficult to handle are the non-perturbative corrections that that arise

from D-branes and NS5-branes wrapping even-dimensional cycles in the internal manifold

X, and seen as instantons in the 4d effective theory [46, 47]. Nevertheless, a remarkable

amount of progress has been achieved in this direction, by a combined use of dualities,
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discrete symmetries and twistor methods [48–55] (see [56] for a review). One key ingre-

dient in this approach is the transformation known as c-map [42, 43], which we review

in appendix A. The c-map relates the vector moduli space of type IIA/IIB string theory

compactified on X with the hypermultiplet moduli space of type IIB/IIA compactified

on the same Calabi-Yau, embedding MIIA/IIB
VM (X) into MIIB/IIA

HM (X) as a totally geodesic

manifold [57]. Moreover, it maps IIA/IIB 4d D-particles to type IIB/IIA D-instantons

wrapping the same internal cycles of X.

The properties of the c-map are very suggestive when combined with the results

of [12, 20, 24], and allow to analyse them from a different perspective. Indeed, in the

setup in [12, 20, 24] infinite towers of D-particles become massless exponentially fast when

approaching points of infinite distance along geodesics of MVM, giving a neat realisation of

the Swampland Distance Conjecture [5]. When embedding such geodesics into MHM via

the c-map, D-particles should be replaced by D-instantons with exponentially decreasing

action. The importance of such D-instanton effects on the moduli space metric should

parallel the relevance of the light D-particles one-loop contribution, whose precise form is

crucial to the Emergence Proposal. In the following we will see that, indeed, along paths

of infinite distance in MIIB
HM(X) infinite towers of D-instantons develop an exponentially

suppressed action, dramatically modifying the classical moduli space metric.

2.2 Geodesics of infinite distance

Within the scalar field content of table 1, only τ2 = e−φ and the ta are non-periodic

coordinates of MIIB
HM(X). It is thus natural to construct geodesics of infinite distance by

performing rescalings on such fields. One may in particular consider rescalings increasing

the value of the Kähler coordinates ta, corresponding to different decompactification limits.

As discussed in [24, 28], the monodromy orbits around the corresponding points of infinite

distance are well understood and can be classified.

In the following we will consider the following trajectory in MIIB
HM(X)

ta(σ) = eσta(x0) , τ2(σ) = e−
3

2
στ2(x0) , (2.4)

where σ ∈ (0,∞) parametrises the trajectory and x0 is an interior point of MIIB
HM(X). For

simplicity we will consider x0 such that the periodic fields in table 1 have vanishing vev.

One can then easily show that, with the classical metric, the above path corresponds to a

geodesic of infinite length, as we discuss in the next section. This choice also allows to use

the c-map to describe a trajectory in MIIA
VM(X), where the periodic fields (b0, c0, ca, da) are

absent. In this sense, notice that the trajectory (2.4) is different form the ones taken in [24]

because it not only takes us to large volume, but also to strong coupling. The reason for

taking this limit is to keep the classical 4d Planck mass invariant

MP = τ2
√

2πV (t)Ms , (2.5)

where Ms = ℓ−1
s is the string scale, and V (t) = 1

6Kabct
atbtc stands for the volume of

the Calabi-Yau manifold X in string units and in the string frame, with Kabc the triple

intersection numbers of X. This kind of field space trajectory keeping the Planck mass

constant has also been considered in [28], among other possibilities.
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In [24] it was argued that, even if the large volume limit takes MP → ∞, one may still

consider quotients of the form m/MP, where m is the mass of a certain mode, and that

such quotients may decrease exponentially near the infinite distance point. It is easy to see

that if m corresponds to, e.g. a D-particle, the dilaton dependence will cancel out, and the

mass ratio along the path will not depend on whether we rescale τ2 or not. However, the

same kind of reasoning cannot be applied to D-instantons, because in this case there is no

scale to which to compare their individual action. We will therefore stick to the dilaton-

dependent trajectory (2.4) which, in the original spirit of the Swampland Program [1, 5],

in principle avoids gravity-decoupling limits.

In fact, following the trajectory (2.4) in MIIA
VM(X) is mirror symmetric to the kind of

infinite distance directions studied in [12] forMIIB
VM(Y ), where Y is the Calabi-Yau manifold

mirror to X. Indeed, for such a Calabi-Yau manifold we have that

VY =
i

8

∫

Y
Ω ∧ Ω ≃ |X0|2 1

6
Kabcζ

aζbζc (2.6)

where in the last step we have approximated Ω by its large complex structure expression.

Here ζa = Im(Xa/X0) are defined in terms of the periods
∫

Πa Ω over the A-cycles, and in

particular X0 stands for the period of the reference three-cycle Π0. In the large complex

structure limit ζa → ∞, one can only keep VY finite by taking |X0| → 0, collapsing the

reference A-cycle Π0, whose volume plays the same role as τ2 in (2.4). In fact, upon mirror

symmetry a D3-brane wrapping X0 ⊂ Y becomes a D0-brane pointlike in X, and g−1
s, IIB|X0|

is mapped to g−1
s, IIA. Therefore, a decreasing volume of the reference A-cycle in Y maps to

a strong coupling limit on its mirror manifold X.1

Just like in [24, 28], one may consider different geodesic trajectories of infinite distance

by applying different scalings for the Kähler coordinates ta. Rather than analysing such

different possibilities, we will focus on the simple case (2.4) where all the Kähler coordinates

are treated universally and so are the 4d instantons. Indeed, one can easily check that the

actions of the different instantons scale as follows:

SD(−1) → e−
3

2
σSD(−1)

SD1 → e−
1

2
σSD1

SD3 → e
1

2
σSD3

SD5 → e
3

2
σSD5

SF1 → eσSF1

SNS5 → SNS5 .

Therefore, for large values of σ, the relevant non-perturbative corrections amount to

D(-1) and D1-brane instantons or bound states of them. In the following we will analyse

their effect, together with those of perturbative corrections, on the metric of MIIB
HM(X).

1Conversely, the mirror trajectory to (2.4) in MIIA
HM(Y ) does not involve any strong coupling regime. As

discussed in appendix D, all our results can also be recovered in this type IIA framework.
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2.3 The tensor potential at infinite distance

The metric of the quaternionic-Kähler manifold MHM can be encoded in a real function

χ, which essentially plays the role of a Kähler potential [58, 59]. In the type IIB case,

whenever D3, D5 and NS5 instantons can be neglected, the hypermultiplet sector can be

described in terms of tensor multiplets, and χ can be computed in terms of a potential

for the latter [60]. Such a potential, usually dubbed tensor or contact potential, has been

obtained in [50] and can be seen as a sum of two terms

χ = χcl + χcorr , (2.7)

where

χcl =
1

12
τ22Kabct

atbtc , (2.8)

is the classical contribution to the potential and

χcorr =
τ22

8(2π)3

∑

k≥0

n
(0)
k

∑

(m,n)∈Z2\0

1 + 2π|mτ + n|kata
|mτ + n|3 e−Sk

m,n , (2.9)

are the relevant perturbative and non-perturbative corrections. Here k is a vector of h1,1

entries ka ∈ N, such that kaγ
a scans the homology classes in H+

2 (X,Z). The terms with

k 6= 0 represent the corrections coming from Euclidean (m,n)-strings wrapping two-cycle

classes with non-vanishing genus-zero Gopakumar-Vafa invariant n
(0)
k

, with action

Sk

m,n = 2πka (|mτ + n|ta − imca − inba) . (2.10)

The contribution from the term k = 0 corresponds to the D(-1)-brane corrections, together

with the one-loop corrections on gs and α′, if one sets n
(0)
k=0

= −χE(X), that is to (minus)

the Euler characteristic of X.

In general, the metric in MIIB
HM(X) will receive further corrections not captured by

χcorr, coming from Euclidean D3, D5 and NS5-branes. These will be however negligible

in certain limits, like when resolving conifold singularities via instantons [41]. Indeed, as

shown in [61] and in appendix B, one may use (2.9) to see how a conifold singularity in

MIIB
HM is resolved by the contributions of Euclidean D1-instantons.

In a similar spirit, one may use (2.9) to analyse the effect of D-instantons when ap-

proaching the infinite distance limit σ → ∞ in (2.4). Again, the effects of Euclidean D3,

D5 and NS5-branes are negligible, so the potential (2.7) should determine the metric of this

region of MIIB
HM(X). Notice that, even if this is a region of strong coupling, by construction

the SL(2,Z)-invariant expression for (2.7) provides exact results on gs [50].
2 Alternatively,

since the scaling (2.4) takes us to the strong coupling and large Einstein frame volumes,

one may consider computing the metric of this region in F-theory or, via the c-map, in

the M-theory context. The latter computation was carried out in [62], where the same

expression for χ was recovered. Finally, as discussed in appendix D one may perform the

2Strictly speaking, it is the metric derived from (2.7) that is SL(2,Z)-invariant, while (2.7) undergoes

Kähler transformations under the action of SL(2,Z).
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same computations as below in the type IIA mirror trajectory within MIIA
HM(Y ), where no

strong coupling limit is involved.

Before taking the limit, it is useful to perform a Poisson resummation on the integer

n in (2.9), that makes manifest the origin of each of the corrections. One finds [52]

χcorr = χpert + χWS + χD , (2.11)

where

χpert = −χE(X)

8(2π)3

[

ζ(3)τ22 +
π2

3

]

, (2.12)

χWS =
τ22

4(2π)3

∑

k>0

n
(0)
k

Re
[

Li3

(

e2πikaz
a
)

+ 2πkat
aLi2

(

e2πikaz
a
)]

, (2.13)

χD =
τ2
8π2

∑

kΛ 6=0

n
(0)
k

∞∑

m=1

|kΛzΛ|
m

cos (2πmkΛζ
Λ)K1

(
2πm|kΛzΛ|τ2

)
. (2.14)

Here χpert can be interpreted as the one-loop corrections in α′ and gs, respectively, while

χWS are the world-sheet instanton corrections. In the latter, the vector k > 0 runs over

effective homology classes H+
2 (X,Z), and it is such that at least one of its entries ka ∈ N

is non-vanishing, while Lis(x) =
∑∞

r=1 r
−sxr is the polylogarithm function. Finally, χD

can be interpreted as the contribution from bound states of Euclidean D1 and D(-1)-

branes. To describe it we define the extended vectors zΛ = (1, za), ζΛ = (τ1, τ1b
a − ca)

and kΛ = (k0,k) 6= 0, where now k ≥ 0 and kΛ 6= 0. Each term of the sum corresponds

to a bound state of m D1-branes wrapping rational curves on the class kaγ
a and mk0

D(-1)-branes, with classical action

Sm,kΛ
= 2πm|kΛzΛ|τ2 + 2πimkΛζ

Λ . (2.15)

Clearly, most of the terms in χpert + χWS quickly vanish along the trajectory (2.4), with

the exception of one constant term that can also be neglected when χcl is much larger.

Regarding χD the different terms in the sum will be negligible or not, depending on the

argument of the modified Bessel function K1. On the one hand, for x ≫ 1 we can approx-

imate K1(x) ∼
√

π
2x e

−x and such terms can be neglected. On the other hand, for x ≪ 1

the leading behaviour is K1(x) ∼ 1
x and therefore such terms cannot be neglected. As the

argument of K1 is the real part of (2.15), this translates into the fact that instantons with

large ReSm,kΛ
can be neglected in χD, while those with small ReSm,kΛ

may give a sub-

stantial correction to χcl. To sum up, we find that in the large volume and strong coupling

limit, and more precisely as we proceed along the infinite distance trajectory (2.4), the

non-negligible part of the contact potential will read

χ =
1

12
τ22Kabct

atbtc +
τ2
8π2

∑

kΛ

n
(0)
k

∑

m

|kΛzΛ|
m

cos (2πmkΛζ
Λ)K1

(
2πm|kΛzΛ|τ2

)
, (2.16)

where kΛ = (k0,k) ∈ Z× N
h1,1+1\0 and m ∈ N are such that

2πm|k0 + kaz
a|τ2 ≪ 1 , (2.17)
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since these are the terms that will dominate the sum. Applying the above asymptotics one

then obtains

χ ∼ 1

12
τ22Kabct

atbtc +
1

16π3

∑

kΛ

n
(0)
k

∑

m

1

m2
cos (2πmkΛζ

Λ) , (2.18)

where m, kΛ are still such that (2.17) holds. Of course, the set of instantons satisfying

this condition depends on the value of σ along the trajectory. Switching off the vev of the

periodic fields, in particular those of ba, we have that (2.17) translates into the condition

2πm|k0e−
3

2
σ + kat

a(x0)e
− 1

2
σ|τ2(x0) ≪ 1. There will be then several towers of instantons

contributing to χ, with the following spectrum of actions:

kΛ = (k0,0) → SkΛ
∼ mk0

V (t)1/2
,

kΛ = (0,k) → SkΛ
∼ m

V (t)1/6
,

kΛ = (k0,k) → SkΛ
∼ mk0+mV (t)1/3

V (t)1/2
.

This spectrum reproduces the mass spectrum of D-particles found in [12] for their case

d = 3, as expected from applying the c-map and mirror symmetry. Notice that in our

case we have a natural way of selecting a subset of instantons within the whole tower.

As dictated from the general expression for χ, only those instantons satisfying (2.17) will

significantly correct the metric in MHM. In the D-particle setup of [12], a similar cut-

off was invoked in terms of the species bound, leading to specific corrections for gauge

couplings and field space metrics which then led to the Emergence Proposal. In the next

section we will discuss how to address the same questions from the instanton viewpoint.

3 Towers of instantons and emergence

In the following we will explore the consequences of the instanton corrections to the hy-

permultiplet moduli space metric, as codified in the corrected potential (2.16). First, the

instanton effects correct the relation between the string scale and the 4d Planck mass, such

that it overcomes the classical relation as we approach the infinite distance point. As a

consequence, if the string scale is kept constant along the trajectory the 4d Planck mass

blows up. Second, the corrections to the metric are such that they also overcome the clas-

sical metric, and render the trajectory of finite length. Finally, we analyse the corrected

axion decay constants from the viewpoint of the Weak Gravity Conjecture, and show that

their value is in agreement with the appearance of tensionless strings.

3.1 The 4d Planck mass

One interesting observations (see e.g. [53]) is that the tensor potential in (2.7) can be

interpreted as χ = e−2φ4 , where φ4 is the T-duality invariant quantity known as the four-

dimensional dilaton. In particular, χcl can be interpreted as the classical value for e−2φ4

and χ as the quantum corrected version of the same quantity. Notice that at the classical

level we have the relation

M2
P = 4πχM2

s , (3.1)
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which one may promote to the full χ, giving a quantum corrected version of the relation

between the Planck and string scales. Indeed, in [63] the term k = 0 in (2.9), was argued

to correct such a relation, so (3.1) can be seen as an extension to the full set of instantons.

Let us see the consequences of the relation (3.1) in our setup, namely as we approach

the infinite distance point along (2.4). Taking the approximation (2.18) and for simplicity

switching off the vevs of the periodic fields τ1, b
a, ca, so that ζΛ = 0 one obtains

χ ∼ 1

12
τ22Kabct

atbtc +
1

16π3

∑

kΛ

n
(0)
k

∑

m

1

m2

∼ 1

12
τ22Kabct

atbtc +
1

96π

[

−χE(X) +
∑

k>0

n
(0)
k

]
∑

k0

1 (3.2)

where the condition 2πm|k0e−
3

2
σ + kae

− 1

2
σ| ≪ 1 must be imposed. In the second line we

have used that
∑∞

m=1
1
m2 = π2

6 converges very quickly for the first few terms, and so in

practice the restriction on the sum over m can be neglected. One can also see that, for a

given value of k, the number of k0 that satisfy the above condition is essentially always the

same, and that it is similar to the k0’s satisfying the condition 2π|k0| ≪ e
3

2
σ. As a result

the sum over the D(-1) instanton number k0 factors out. Finally, for large values of σ, one

may replace the condition 2π|k0| ≪ e
3

2
σ by |k0| ≤ e(

3

2
−ǫ)σ, with ǫ > 0 parametrising the

growth of the number of D(-1) instantons contributing significantly to χ. Taking all this

into account, we end up having an asymptotic behaviour of the form

χ
σ→∞∼ 1

2
τ22V (t) +

ΞX(σ)

96π
e(

3

2
−ǫ)σ (3.3)

where ΞX =
∑

k>0 n
(0)
k

−χE(X) is a growing function of σ, as the sum includes those vectors

k > 0 such that 2πka ≪ e
1

2
σ. Again, one may replace this condition by ka ≤ e(

1

2
−ǫ)σ,

with the same value for ǫ as above. Because the actual dependence of ΞX is related to

the distribution of non-vanishing genus-zero Gopakumar-Vafa invariants n
(0)
k

, one may

parametrise its total growth as ΞX(σ) ∼ eh
1,1( 1

2
−η)σ. For instance, if the n

(0)
k

were non-

zero for any value of k and of similar magnitude we would have η = ǫ, while if they were

bounded one should have η = 1/2 for some σ large enough. Plugging this result into (3.1),

we see that as we approach the infinite distance point the 4d Planck mass behaves as

M2
P = M2

P,cl +M2
P,corr(σ) =

(

2πτ22V (t) +
Nsp(σ)

24

)

M2
s (3.4)

where essentially Nsp is the number of instantons contributing significantly to χ, and

therefore to the redefinition of the 4d Planck mass. As Nsp grows rapidly with σ, it soon

dominates the contribution to MP , which quickly grows to infinity along the trajectory.

Needless to say, the behaviour Mp → ∞ goes against the initial motivation to take the

specific trajectory (2.4) and, in general, against the philosophy of the Swampland Program.

The most natural way to circumvent this problem and have a finite 4d Planck mass for

each value of σ is to redefine the value of the string scale accordingly. In the region in
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which MP,corr ≫ MP,cl this amounts to impose that

Ms ∼
MP

√
Nsp

(3.5)

where MP is fixed and Ms and Nsp depend on σ. If on the contrary one insists to keep the

string scale fixed, (3.5) provides a lower bound for the 4d Planck mass in terms of Nsp.

Remarkably, the r.h.s. of this expression is similar to the one defining the species scale

Λs at which, in the presence of a large number of particle states Nsp, gravity becomes

strongly coupled [64]. In our setup the number of particles is essentially replaced by the

number of instantons that contribute to the divergence of the corrected Planck mass, while

the cut-off scale Λ < Λs at which the effective field theory must break down is identified

with the string scale. In general, whenever the relation (3.4) is valid with Nsp a rapidly

growing function along a trajectory in field space, the above reasoning will apply. As Nsp

grows, either one decreases the string scale or the 4d Planck mass grows like its square root.

3.2 Removing the infinite distance

At the classical level the metric of MIIB
HM restricted to the coordinates (τ2, z

a) reads

1

2
(dφ4)

2 + gab̄dz
adz̄b , (3.6)

where φ4 is the classical four-dimensional dilaton and the metric along the Kähler coordi-

nates is computed via a Kähler potential

gab̄ = ∂za∂z̄bK with K = −logχcl . (3.7)

We then obtain

gclab̄ =
3

2K2

(
3

2
KaKb −KKab

)

, (3.8)

where K = Kabct
atbtc, Ka = Kabct

btc, Kab = Kabct
c. By construction, the trajectory (2.4)

leaves invariant the classical 4d dilaton, and so the first factor of (3.6) will not contribute to

the path length. Such length is computed by taking the tangent vector along the trajectory,

namely

∂σ(τ2, z
a) =

(

−3

2
τ2(σ), it

a(σ)

)

, (3.9)

and plugging it into the second factor of (3.6), obtaining a constant norm ‖∂σz‖2 = 3
4 ,

which is a requirement for a geodesic path. Integrating ‖∂σz‖ over the range (0,∞) is

equivalent to compute the proper classical distance of the corresponding direction in field

space, which is obviously infinite.

However, as we proceed along the trajectory, the effect of D1/D(-1)-instantons will

become more and more relevant, and will significantly modify the classical metric. As

discussed in appendices C and D, one may capture the asymptotic behaviour of this metric

by simply replacing χcl → χ in the above Ansatz, which implies taking K = −2φ4 = logχ.

Then one obtains that, asymptotically

(dlogχ)2 ∼ exp [−2ǫσ] (dσ)2 , gzz̄ ∼ exp [− (2 + ǫ)σ] . (3.10)
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Notice that the asymptotic behaviour of the quantum corrected metric is the same as for

the classical metric (3.8), up to the correction given by ǫ. Recall that, by the discussion

of the previous subsection, this correction is by construction always non-vanishing, or else

we would not be capturing the set of instantons that become relevant as we proceed along

the trajectory. More precisely, for consistency it must be that this parameter lies in the

range 0 < ǫ ≤ 1/2, see also the discussion in appendix C.

In the corrected metric, the trajectory (2.4) is not strictly speaking a geodesic, because

the norm of the velocity vector is no longer constant. Instead we have that

‖∂σz‖2 ∼ e−ǫσ , (3.11)

and that this contribution dominates the vector length for sufficiently large values of σ. In

this region, the parametrisation that gives a velocity vector of constant norm is instead

ta(ρ) = ρ−2/ǫta(x0) , τ2(ρ) = ρ3/ǫτ2(x0) , (3.12)

with ρ ∈ [0, 1]. As the domain of the new parameter is now bounded, the decompactification

limit — which now corresponds to ρ = 0 — no longer is at infinite distance in field space.

In terms of ρ the Kähler coordinate metric near this point reads

gzz̄ ∼ ρ2(2+ǫ)/ǫ . (3.13)

Finally, from the results of appendix C one may extract the kinetic terms for the peri-

odic fields τ1 and ca which, in the regimes where D1/D(-1)-instanton effects are irrelevant,

can be considered as axions of the compactification. The decay constant of these would-be

axions evaluated at zero vev is given by

f00 = ρ(ǫ−3)/ǫMP , (3.14)

faa = ρ(ǫ−1)/ǫMP , (3.15)

which become infinite at ρ = 0. Notice however that the quantum corrected metric heavily

depends on τ1, b
a and ca through the factor cos (2πmkΛζ

Λ), see eq. (2.16) and the expres-

sions in appendices C and D. For this reason, extending the classical metric Ansatz (C.1)

along these directions is not justified, and therefore it is not clear that one can interpret

such periodic directions have infinite radius at ρ = 0. In any case, they are clearly not

isometries of MIIB
HM that can be interpreted as global symmetries in the effective theory.

Despite this, an amusing fact is that the conditions |k0| ≤ e(
3

2
−ǫ)σ and ka ≤ e(

1

2
−ǫ)σ used

above to define ǫ can be rewritten as

|k0| ≤
f00
MP

, ka ≤ faa
MP

. (3.16)

This is reminiscent of the electric Weak Gravity Conjecture for axions fS ≤ MP [4], which

can be rewritten as S−1 ≥ f/MP. Indeed, recall that (3.16) selects those k0 and ka that

corresponds to instantons whose action is small enough to have a significant contribution

to χ. Because increasing (k0, ka) lowers S
−1, eq. (3.16) can be interpreted as a lower bound
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for S−1 in terms of f/MP, much in the spirit of the WGC. Notice that, remarkably, this

statement is made in terms of quantum corrected quantities f , MP and not in terms their

classical counterparts. For the latter, one could have already made this observation directly

by inspecting (2.15).

While τ1 and ca can only be considered periodic coordinates in the quantum corrected

metric, the scalars c0 and da are still axions, since the instantons that would break their

shift symmetry are negligible in the limit ρ = 0. The corresponding decay constants are

f̃00 = ρ
h1,1+6

ǫ
−2h1,1−3MP , (3.17)

f̃aa = ρ
h1,1+4

ǫ
−2h1,1−3MP , (3.18)

which vanish as ρ → 0. As these are isometries of MIIB
HM, they a priori represent global sym-

metries in the 4d effective field theory, in conflict with standard wisdom [65, 66]. However,

in the same limit where they become exact symmetries, 4d strings become tensionless, as

we now turn to discuss.

3.3 Tensionless strings

Just like when proceeding along the trajectory (2.4) several towers of D1/D(-1)-instantons

dramatically decrease their action, the same is true for the tension of certain D-strings.

In particular, bound states of D3/D1-branes wrapping holomorphic cycles are seen as 4d

strings which, in the limit σ → ∞, become tensionless.3 It is in fact instructing to analyse

the behaviour of their (classical) tension in the quantum corrected trajectory (3.12). The

tensions of a D1-brane pointlike in X and a D3-brane wrapping a holomorphic 2-cycle of

X is given by

TD1 = ρ3/ǫM2
s = ρ

h1,1+6

ǫ
−2(h1,1+1)M2

P , (3.19)

TD3 = ρ1/ǫM2
s = ρ

h1,1+4

ǫ
−2(h1,1+1)M2

P , (3.20)

where we have used eq. (C.17) to relate the string scale with the corrected Planck scale.

In both cases, for 0 < ǫ ≤ 1/2 the exponent of ρ is positive, and so these tensions decrease

to zero as we reach the limit ρ → 0.

Let us now compare these tensions with the decay constants of the axions which are

magnetically charged under each of these strings. One finds that

TD1 = f̃00MP ρ ≤ f̃00MP , (3.21)

TD3 = f̃aaMP ρ ≤ f̃aaMP , (3.22)

in agreement with the magnetic version of the Weak Gravity Conjecture for axions [17, 67]

(see also [68]), with an intriguing extra factor of ρ. In this sense, one may interpret
√
TD1

as the cut-off scale of the effective field theory, lying below
√
TD3 and Ms. As this cut-

off approaches zero at the same point where the field space metric becomes singular, it

is tempting to speculate whether the tensionless string states may have a similar role to

3For a more general analysis of the spectrum 4d strings in different limits of infinite distance see [28].
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the massless hypermultiplet in the conifold case, and if they could also shed light into the

asymptotics of the axion decay constants (3.14) and (3.15) which, despite instanton effects,

still become infinite at ρ = 0.

One important question in this respect is the precise spectrum of tensionless strings

and the corresponding excitations that may affect the hypermultiplet metric. First, the

complete set of stable bound states is not obvious to determine, even if one resorts to

monodromy arguments [12, 28]. Second, in this regime the tension of the strings could

be modified by the same non-perturbative effects that removed the infinite distance, and

this could in turn prevent some D3/D1-strings to become tensionless. Because of the

magnetic version of the WGC for axions, one would expect at least some D-strings to

become tensionless, given that the r.h.s. of (3.21) and (3.22) are computed for quantum

corrected quantities. Finally, one should understand which subset of massive states should

be integrated out to connect with physics at the IR scale.

In any event, it would be interesting to see if the effect of tensionless strings can be

incorporated to that of instantons, perhaps via some dual description of our setup. This

could involve performing an SL(2,Z) transformation to a weakly coupled regime, in which

the tensionless D1-strings become fundamental strings. Alternatively, one could consider a

chain of dualities that maps the tensionless D3-strings into tensionless fundamental strings

much in the spirit of [16, 18, 25]. Indeed, notice that the appearance of tensionless D3-

strings in our setup is reminiscent of the constructions in [16, 18, 25] upon replacing the

vanishing gauge coupling constants by infinite axion decay constants. Therefore, it would

be interesting to see the result of combining both pictures, a problem to which we hope to

return in the future.

3.4 D-particles and emergence

At the classical level, the type IIB hypermultiplet moduli space MIIB
HM(X) metric reads [43]

ds2HM,IIB =
1

2
dφ4 + ds2VM,IIA + ds2axions , (3.23)

where φ4 is the four-dimensional dilaton, ds2VM,IIA depends on the complex coordinates za

and is identical to the type IIA vector multiplet metric on the same Calabi-Yau X, and

ds2axions is the metric along the axionic directions b0, c0, ca, da, see (C.1) for a more detailed

expression.

The D-instanton action (2.15) expressed in these coordinates is (see e.g. [72])

Sm,kΛ
=

2πm

g4
eK/2|ZkΛ

|+ 2πimkΛζ
Λ , (3.24)

where g4 = eφ4 . Here eK/2|ZkΛ
| is the normalised central charge function that depends on

the complexified Kähler moduli za and that, when we compactify type IIA on X, governs

the mass of the D-particles, see [24]. Clasically, we thus find that the magnitude of the

instanton correction |e−Sm,kΛ | depends on the coordinates corresponding to the first two

factors in (3.23). We may thus conceive two types of infinite geodesics, under which the

D-instanton corrections behave quite differently:
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- φ4 → ∞, za constant: All D-instanton actions vanish asymptotically Sm,kΛ
→ 0,

and the same is true for the NS5-brane instanton. In the large volume region one

may also neglect α′ and gs corrections and describe the trajectory classically. We

thus find an infinite trajectory in which Ms/MP ≃ Ms/MP,cl = e−φ4 tends to zero

exponentially. The SDC is satisfied by the tower of string states.

- φ4 constant, za approach infinite distances in ds2VM,IIA: Then ReSm,kΛ
behaves like

the spectrum of D-particles when we approach infinite distance points in ds2VM,IIA,

except that now we have the additional integer m indexing the instanton expansion.

Therefore, for each tower of D-particles that becomes massless exponentially fast

along an infinite trajectory in ds2VM,IIA we will have a tower of towers of instantons

whose action will have the same behaviour. We can therefore borrow the results

in [12, 20, 24] to conclude that at infinite distance points of this sort the D-instanton

corrections may substantially modify the moduli space metric. Finally, if φ4 is fixed

at a large enough value, the NS5-instanton effects will be negligible.

The trajectory (2.4) can be seen as a particular case of these (classical) infinite dis-

tance trajectories, in which D1/D(-1)-instantons effects become dominant over all other

corrections to the classical metric. It seems reasonable to expect that, in all of these cases,

the D-instanton quantum corrections to 4d dilaton dominate over the others, and one ob-

tains a relation of the form (3.5), with Nsp growing exponentially fast along the trajectory.

Then, if the distance remains of infinite length after quantum corrections, the SDC would

be satisfied by the tower of fundamental string states. In fact, quite probably there will

be further 4d strings whose tension in 4d Planck units decay even faster, as it happens in

eqs. (3.21), (3.22) in our example. Then there will be several towers of string excitations

satisfying the Swampland Distance Conjecture.

On the contrary it could occur that the same result found for (2.4) applies to other

trajectories, namely that the instanton effects render finite the classically infinite length.

If this was true for all the infinite distance trajectories of this kind then, naively, in the

quantum corrected hypermultiplet moduli space only the direction φ4 → ∞ would remain

of infinite distance. It would be very interesting to gather further evidence on whether this

may actually be the case.

One interesting direction to gain some intuition on this matter would be to apply the

c-map to the above setup, in order to interpret it in terms of D-particles. In order to do

so, one must further compactify the theory on a circle, and apply T-duality along such

new compact direction. One then obtains type IIA compactified on X × S1, where the

S1 has the dual radius. The moduli space (3.23) arises from compactifying the type IIA

Vector Multiplet sector on such S1. The axions arise from the Wilson lines of the 4d gauge

bosons along the circle, as well as from dualising the 3d gauge bosons. The direction φ4

corresponds to the radius of the circle. In fact by T-duality one obtains the relation [73]

gIIB4 =
gIIA4

2πMsRIIA
, (3.25)
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which helps to identify type IIB D-instantons with type IIA D-particles. Indeed, one may

take (3.24) and translate it to type IIA vector multiplet quantities as

ReSIIB
m,kΛ

= 2πmRIIAm
IIA
kΛ

(3.26)

wheremIIA
kΛ

is the mass of the type IIA D-particle wrapping the internal cycle corresponding

to kΛ in units of type IIA 4d Planck mass. As in [73], one then identifies the IIB D-instanton

in the sector m,kΛ with the IIA D-particle from the sector kΛ whose worldline wraps m

times the S1. Interestingly, the condition that makes the IIB instantons correct significantly

the metric, namely (2.17) or more generally SIIB
m,kΛ

≪ 1, translate in the type IIA side to

mIIA
kΛ

≪ 1/RIIA , (3.27)

so these are D-particles way below the 3d → 4d Kaluza-Klein scale, and may be seen as

a tower of particles in 3d. Following again [73], one concludes that one should be able to

generate the quantum corrected 4d hypermultiplet metric by a one-loop computation of an

infinite tower of 3d D-particles, and that such integral should not receive further correc-

tions. Needless to say, this picture is very suggestive from the viewpoint of the Emergence

Proposal, as it allows to recover the IR metric of a compactification via integrating out

states. Notice that in this case the said one-loop integral should be strictly thought as the

running of couplings created by virtual particles, as actual ones would generate a deficit

angle, and it is not clear how to accommodate an infinite tower of them. In this sense, our

result could interpreted as that, unlike in 4d, towers of light particles in 3d do not nec-

essarily generate infinite distances. In fact, it would be very interesting to show whether

no infinite distances exist or emerge in the IR moduli space of 3d quantum gravitational

theories. If such infinite distances were absent in both cases, it would not only constitute

further evidence for the Emergence Proposal, but it would also provide an interesting ex-

tension of the SDC for the three-dimensional case. Indeed, one would then conclude that

the SDC is trivially satisfied in 3d Minkowski. There would be no infinite distances because

there is no infinite tower of particles that could become light when approaching them.

4 Conclusions

In this paper we have analysed the hypermultiplet moduli space metric of type II string

CY compactifications, along a large volume, strong coupling trajectory. At the classical

level, such a trajectory is of infinite distance, and corresponds to a decompactification

limit in F/M-theory. At the quantum corrected level, the metric is heavily modified as we

proceed along the trajectory, rendering such a decompactification limit at finite distance.

The microscopic mechanism behind this effect is an infinite amount of D-instantons with

rapidly decreasing action as we proceed along the trajectory. Their effect on the metric

can be codified in the contact potential (2.18), which in addition measures the evolution of

the quotient Ms/MP along the said trajectory. We find that this quotient vanishes at the

trajectory endpoint, even if it is at finite distance. If MP is kept fixed then the string scale

must be lowered as we proceed along the trajectory, and if Ms is kept fixed then gravity
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effectively decouples at the trajectory endpoint. In hindsight, this seems a rather universal

behaviour for points in moduli space where the effective theory displays a large number

of light resonances and/or instantons with small action. Points of this sort in field space

presumably contain important information with respect to the limits of the corresponding

effective field theory, being related to the Swampland Distance Conjecture and certain

aspects of the Emergence Proposal.

As we have discussed in section 3.4, one can divide the infinite geodesics in the classical

Hypermultiplet moduli space in two classes. The first one is weak coupling limit in which

the four-dimensional dilaton eventually vanishes. In this limit the D-instanton corrections

to the metric are negligible, and if in addition we are in a large volume regime so will be

the ones coming from worldsheet and NS5-branes instantons. One can then see that this

geodesic direction remains infinite, and that the tower of states descending to zero mass

exponentially fast are the tower of fundamental string states. This already implies that

the hypermultiplet moduli space is non-compact, in agreement with the results in [74–76].

The other geodesics of infinite length in the classical metric of MIIB/IIA
HM are directly

related to those found in the vector multiplet moduli space MIIA/IIB
VM of the same Calabi-

Yau. By keeping the four-dimensional dilaton fixed one obtains the same dependence for the

spectrum of instanton actions in MIIB/IIA
HM as for the spectrum of D-particle masses in MP

units in MIIA/IIB
VM , except that there is a tower of instantons per each D-particle. One can

then borrow the results of [12, 20, 24] to argue that at each infinite distance point there are

towers of towers of instantons with vanishing action, and therefore significant corrections

to the classical metric. In this paper we have considered a particular, universal geodesic of

classical infinite distance and shown that, upon taking into account the relevant D-instanton

effects, the distance is rendered finite in the quantum corrected metric. A natural extension

of this analysis would be to consider other trajectories of this sort, for instance by using

SL(2,Z) duality and the Fourier-Mukai transform to access infinite distance points at weak

coupling and/or small volume, as in [24]. For these remaining trajectories it could be that

the infinite distance is also removed by quantum corrections. Alternatively, it could happen

that it is only removed for some of them, perhaps depending of the type of infinite distance

according to the classification in [12, 20, 24]. In either case, it seems quite reasonable that

the Swampland Distance Conjecture is satisfied for each of the trajectories. Indeed, even

if the infinite distance is not removed, the reasoning taking us to the relation (3.4) should

still apply. As this result implies a string scale decreasing exponentially fast along the

trajectory, it provides a tower of string resonances satisfying the conjecture. In fact, one

would expect that even a lower tower of 4d D-string resonances is present in these regions,

satisfying the magnetic Weak Gravity Conjecture for axions not only in the classical metric

but also in the quantum corrected one, as we checked in our example. Finally, if quantum

corrections are able to remove infinite distance points, they may also change the curvature

around them. Indeed, one of the conjectures of [5] states that around points of infinite

distance the scalar curvature must be negative, this being related with the volume of the

moduli space being finite. It would be interesting to see if the removal of such points is

connected to a change in the local curvature.
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This picture also provides further support for the recent Emergence Pro-

posal [3, 12, 13, 29, 30]. Indeed, as discussed in section 3.4, for the infinite geodesics with

constant four-dimensional dilaton the relevant D-instanton effects that correct the metric

significantly should be captured, via the c-map, in the one-loop effects of a tower of 3d

virtual particles. In fact, the most relevant terms of the whole quantum corrected metric

should correspond to the IR metric generated by such one-loop corrections.

Finally, another important direction would be to check if similar effects can occur in the

context ofN = 1 compactifications. There the general corrections to the Kähler metrics are

less understood, but some of them may be analysed in certain constructions. In particular

it would be interesting to see if towers of non-perturbative effects become relevant near

infinite distance points in Calabi-Yau orientifold compactifications, whose Kähler metrics

can be partially understood in terms of the ones analysed here. As in this context non-

perturbative effects are oftentimes invoked to achieve realistic features, understanding their

interplay with quantum gravity could be essential to sharpen the predictive power of the

string Landscape.

Acknowledgments

We would like to thank Sergei Alexandrov, Florent Baume, Álvaro Herráez, Luis E. Ibáñez,
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A The c-map

In this appendix, we review the c-map construction [42, 43] used in the main text to relate

the analysis of instanton corrections in the hypermultiplet moduli space of type IIB string

theory to 1-loop corrections of the vector multiplet moduli space in type IIA string theory.

The hypermultiplet moduli space MIIB
HM(X) of IIB string theory compactified on a CY X

can be described as a quaternionic Kähler manifold of quaternionic dimension h1,1(X)+1.

At the same time, the vector multiplet moduli space MIIA
VM(X) of IIA string theory on the

same CY X is a projective special Kähler manifold of complex dimension h1,1(X). The

two moduli spaces MIIB
HM(X) and MIIA

VM(X) can now be related to each other using the

c-map, which associates to every projective special Kähler manifold a quaternionic Kähler

manifold in the following way:

Consider the 4d N = 2 effective supergravity theory as obtained from a type IIA CY

compactification and further compactify on an additional circle to get a 3d N = 4 theory.
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The 4d moduli space, which is a product space

M4d = MIIA
VM ×MIIA

HM ,

gets modified due to additional scalars which arise in 3d. In particular, these are one

scalar R from the metric (the radius of the S1) and the h1,1(X) + 1 Wilson line moduli ζΛ
of the 4d graviphoton and vector multiplets along the S1. Moreover, dualising the 3d

graviphoton, vector multiplet and KK vector gives rise to h1,1+2 additional scalars
(

ζ̃Λ, σ
)

in 3d. Due to the N = 4 supersymmetry in 3d, the moduli space after compactification to

3d is still of product form

M3 = MIIA
twisted ×MIIA

HM .

While MIIA
HM is independent of the radius of the S1 and is thus the same in 3- and 4-

dimensions, the scalars in the 4d vector multiplet pair with the new scalars to form twisted

hypermultiplets. The latter space has real dimension 4
(
h1,1 + 1

)
and is a quaternionic-

Kähler manifold. The compactification to 3d thus gives us a map

c :
MIIA

VM −→ MIIA
twisted

(za, Aµ) −→
(

za, ζΛ, ζ̃
Λ, R, σ

) , (A.1)

where za are the complexified Kähler moduli of X, between the 4d and 3d moduli spaces:

the c-map. Recall that the metric of a projective special Kähler manifold can be determined

by a degree 2 homogeneous prepotential F (xI). The c-map now associates to such a

prepotential a quaternionic Kähler metric Gij with the special property that the embedding

of MIIA
VM inside MIIA

twisted is a totally geodesic submanifold [43].

Let us now perform a T-duality transformation to type IIA on X × S1 along the

additional S1. This gives type IIB on X × S̃1, with S̃1 the T-dual circle, while exchanging

the hyper- and twisted moduli spaces. Thus we can identify the IIB hypermultiplet moduli

space MIIB
HM with MIIA

twisted, the image of MIIA
VM under the c-map. In particular, the IIB

RR axions get identified with the Wilson line moduli ζΛ and scalar duals ζ̃Λ of the IIA

graviphoton and vector multiplets. Moreover, this T-duality maps D-brane particles arising

in the IIA compactification from D2-branes wrapped along holomorphic 2-cycles and with

momentum along the S1 to D1-brane instantons on the IIB side wrapped along the same

2-cycle. As a result, 1-loop corrections of these D-brane particles to the vector multiplet

moduli space of the IIA compactification are captured in the c-dual IIB hypermultiplet

moduli space by the corresponding D-brane instanton corrections.

A non-zero vev for the axions in the IIB hypermultiplet moduli space corresponds using

the c-map to non-zero Wilson lines of the graviphoton and vector multiplets in IIA. When

calculating 1-loop corrections to the vector multiplet moduli space of IIA in 4D, the gauge

fields are assumed to have vanishing Wilson lines in all extended directions. Therefore,

the 1-loop corrections for the vector multiplet moduli space in 4D should correspond to

instanton corrections in IIB for vanishing axions vevs.
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B The conifold limit

The intuition for resolving the infinite distance in the hypermultiplet moduli space of type

IIB CY compactifications is based on the same physical principle that resolves the conifold

singularity in the same moduli space [40]. In this appendix we discuss the resolution of the

conifold singularity of the type IIB hypermultiplet moduli space due to D1/D(-1)-brane

instantons, following a slightly different approach to the one taken in [61].

Consider the instanton corrected expression for the Kähler potential of the type IIB

hypermultiplet moduli space (2.7) and let us focus in this appendix on the case h1,1(X) = 1

with a single complexified Kähler modulus z. The moduli space conifold singularity now

corresponds to z → 0 which we want approach in the weak-coupling limit τ2 → ∞ while

keeping τ2z finite. In this limit, the classical contribution to the Kähler potential, being

proportional to the volume, vanishes while worldsheet and D-brane instantons become

important.

The perturbative, α′ and worldsheet instanton corrections to the Kähler potential read

χWS+pert. =− χXζ(3)

8(2π)3
τ22 − χX

192π

+
τ22

4(2π)3

∑

kaγa∈H+
2 (X)

n
(0)
ka

Re
[

Li3

(

e2πikaz
a
)

+ 2πkat
aLi2

(

e2πikaz
a
)]

,
(B.1)

where Lik is the k’th Polylogarithm. The contribution of the worldsheet instantons to the

hypermultiplet metric is then given by

gWS
zz̄ ≡ −∂z∂z̄logχWS+pert. = − 1

χWS+pert.

τ22
16π

∑

k1

n
(0)
k1

k21

[

log
(

1− e2πik1z
)

+ c.c.
]

+ . . .

≃ 1

χWS+pert.

τ22
16π

∑

k1

n
(0)
k1

k21 log

(
(2π)2

zz̄

)

+ . . . ,

(B.2)

where the . . . represent subleading terms that we disregard here.

The other important contribution to the metric comes from the D1-brane instantons.

As argued in appendices C and D, in the regions of the moduli space where only D(-1)

and/or D1-instantons become very relevant, one may capture their effect on the metric by

means of the expression (C.3). In the following we will demonstarate this observation in

the simple case of the conifold, recovering the results of [61] from it.

The instantons that become important in the conifold limit wrap the S2 that shrinks

to zero size at the conifold point. For these D1-brane instantons in the limit k → 0 the

argument of the Bessel function K0

|kΛzΛ|τ2 = |z + k0| τ2 , (B.3)

is clearly dominated by the instanton with D(-1) charge k0 = 0. Hence the leading piece

of the hypermultiplet moduli space metric close to the conifold point at z → 0 is given by

gleadingzz̄ ≃ 1

χWS+pert.

τ22
4π

{

1

4π
log

(
(2π)2

zz̄

)

+
1

2π

∞∑

m=1

cos(2πmζ)K0 (2π|mz|τ2)
}

, (B.4)
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where ζ is the axion obtained by reducing the RR 2-form over the shrinking S2. This result

for the metric agrees with what was found for the conifold metric in [41] in the mirror dual

type IIA hypermultiplet moduli space and can be re-expressed as

gzz̄ =
1

4π

∞∑

n=−∞

[

1
√

(ζ − n)2 − τ22 zz̄)
− 1

|n|

]

+ const. , (B.5)

which is regular as z → 0 .

We thus observe that the logarithmic divergence of the field-space metric near the

conifold point, as caused by the worldsheet instantons, gets resolved by the corrections due

to D1-brane instantons.

C Quantum corrected metric components

In this section we collect the expressions for the relevant components of the hypermultiplet

moduli space metric as calculated from χ, seen as a Kähler potential. We are mainly inter-

ested in the contributions to the metric that are non-negligible in the large volume/strong

coupling limit considered in section 2.

Classically, the metric on the entire hypermultiplet can be calculated from the Kähler

potential χcl along the Kähler submanifold spanned by the complexified Kähler coordinates

za. This metric, up to order one constants, is given by [43]

huvdq
udqv ⊃(d logχcl)

2

8
+

1

2τ22
(dτ1)

2 + gab̄dz
adz̄b +

gab̄
τ22

dζadζb +
τ22
χ2
cl

gab̄dζ̃adζ̃b

+
1

χ2
cl

(

τ22

(

dζ̃0

)2
+ (dσ)2

)

.

(C.1)

where recall that

ζa = τ1b
a − ca , ζ̃a = da −

1

2
Kabcb

bζc , ζ̃0 = c0 +
1

6
Kabcb

abbζc

σ = −2

(

b0 +
1

2
c0τ1

)

− caζ
a +

1

6
Kabcb

acbζc ,
(C.2)

and χcl is the type IIB 4d dilaton, given by (2.8). The metric gab̄ for the complexified

Kähler moduli can be obtained by taking derivatives with respect to the Kähler potential

K = −logχcl.

We now consider the same Ansatz but, instead of using χcl, we apply it to the quan-

tum corrected, SL(2,Z)-invariant 4d dilaton χ in (2.7), and more precisely to the expres-

sion (2.16) that is relevant in the limit taken in section 2.2. Such a prescription to compute

the instanton-corrected metric in this specific region in moduli space is motivated by the

results of appendix B, because it allows to recover well-known results in the literature that

are based on the same physical principle. More importantly, they are justified by compar-

ing the results below with the exact hypermultiplet metric results computed in the type

IIA mirror symmetric setup, see appendix D.
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Following this approach, the metric components along the Kähler coordinates are

gzaz̄b =− ∂za∂z̄b logχ

=
1

χ2



−τ22
8
iKacet

cte − τ22
8π

∑

kΛ

n
(0)
k

∑

m

kΛz̄
Λka cos(2πmkΛζ

Λ)K0

(
2πm|kΛzΛ|τ2

)





×




τ22
8
iKbdf t

dtf − τ22
8π

∑

kΛ

n
(0)
k

∑

m

kΛz
Λkb cos(2πmkΛζ

Λ)K0

(
2πm|kΛzΛ|τ2

)





− 1

χ




τ22
8
Kabct

c − τ22
8π

∑

kΛ

n
(0)
k

∑

m

kakb cos(2πmkΛζ
Λ)K0

(
2πm|kΛzΛ|τ2

)

+
τ22
16π

∑

kΛ

n
(0)
k

∑

m

kakb2πm|kΛzΛ|τ2 cos(2πmkΛζ
Λ)K1

(
2πm|kΛzΛ|τ2

)



 ,

(C.3)

which to great extent specifies the metric (C.1), and in particular the length of the tra-

jectory (2.4). The other relevant contribution comes from the first factor in (C.1). Recall

that at the classical level the 4d dilaton ∼ χcl. stays constant along (2.4), and so this term

does not contribute to the path length. As discussed in the main text, this changes dra-

matically once that D1/D(-1)-instanton effects are taken into account. One may compute

this contribution by rewriting the first term in (C.1) as

(d logχ)2

8
=

1

8χ2

(
∂χ

∂σ

)2

(dσ)2 , (C.4)

where χ as a function of σ is directly obtained from (2.16)

χ(σ) = const. +
1

8π2

∑

kΛ

n
(0)
k

∑

m

f(σ)

m
cos (2πmkΛζ

Λ)K1 (2πmf(σ)) ,

with f(σ) = τ2(x0)e
− 3

2
σ |ka (ba + ita(x0)e

σ)| .
(C.5)

Here we have introduced the function f(σ) that captures the entire σ dependence of χ. We

can now evaluate ∂σχ and obtain

∂σχ = − 1

4π

∑

kΛ

n
(0)
k

∑

m

f(σ)∂σf(σ) cos (2πmkΛζ
Λ)K0 (2πmf(σ)) ,

f(σ)∂σf(σ) = −3

2
f2(σ) + τ22 (x0)e

−3σ (kat
a(x0)e

σ)2 ,

(C.6)

which can now be inserted into (C.4) to obtain the said contribution to the path length.

To analyse the asymptotic behaviour of the metric components (C.3) and (C.4) in the

limit (2.4), let us first rewrite the sums over the Bessel functions K0 and K1 by performing

a Poisson resummation over the integer m. We therefore use

√
α

(

1

2
f(0) +

∞∑

n=1

f(αn)

)

=
√

β

(

1

2
Fc(0) +

∞∑

n=1

Fc(βn)

)

, αβ = 2π , (C.7)
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where

Fc(ω) =

√

2

π

∞∫

0

f(t) cos(ωt)dt (C.8)

is the cosine Fourier transform. The sum over m containing the Bessel function K1(. . . )

can thus be rewritten as

∞∑

m=1

2πm|kΛzΛ|τ2 cos(2πmkΛζ
Λ)K1

(
2πm|kΛzΛ|τ2

)

=

(
|kΛzΛ|τ2

)2

4

∞∑

m=−∞

1
(

(m− kΛζΛ)2 + (|kΛzΛ|τ2)2
)3/2

− 1

2

(C.9)

For the sum containing the Bessel function K0(. . . ) we can use the Ooguri-Vafa metric

close to the conifold (B.5) and (B.4) to find

∞∑

m=1

cos(2πmkΛζ
Λ)K0

(
2πm|kΛzΛ|τ2

)
(C.10)

=
1

2

∞∑

n=−∞

[

1

[(|kΛzΛ|τ2)2 + (kΛξΛ + n)2]1/2
− 1

|n|

]

+ log

( |kΛzΛ|2τ22
2µ2

)

.

Using these expressions, we want to analyse what happens in the large volume, strong

coupling limit (2.4) for which a tower of instantons has asymptotically vanishing action

Re
(
SD1/D(−1)

)
= 2π|kΛzΛ|τ2 . e−ǫσ/2 → 0. We first focus on the gzaz̄b component of the

metric, and in particular on the term proportional to 1/χ in (C.3). The first term within

the brackets, which originates from the classical contribution to χ, scales in this limit as

τ22
8
Kabct

c ∼ e−2σ · const. (C.11)

For analysing the second and third terms we will restrict to the regions of moduli space

where kΛζ
Λ ∈ Z, which is also the case analysed in the main text and Appedix D. In this

case, the constant or logarithmic part are not the leading contribution to the r.h.s. of (C.9)

and (C.10) anymore since now the m = kΛζ
Λ ∈ Z term in the sum dominates, which in

the limit (2.4) scales like

1

|kΛzΛ|τ2
∼ 1

|∑
a
ka + k0e−σ|e

σ/2 . (C.12)

Using the scaling behaviour (C.12), we find

1

χ

τ22
8π

∑

kΛ

n
(0)
k

∑

m

kakbK0

(
2πm|kΛzΛ|τ2

)
∼ 1

χ

∑

kΛ

n
(0)
k

kakb
|∑

a
ka + k0e−σ|e

−5/2σ ,

1

χ

τ22
16π

∑

kΛ

n
(0)
k

∑

m

kakb2πm|kΛzΛ|τ2K1

(
2πm|kΛzΛ|τ2

)
∼ 1

χ

∑

kΛ

n
(0)
k

kakb
|∑

a
ka + k0e−σ|e

−5/2σ .
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We are thus left with evaluating the sum over the kΛ. Recall from section 3.1 that the

maximal allowed values for the D1/D(-1) charges of the instantons that contribute to the

prepotential are given by

kmax
a = e(

1

2
−ǫ)σ , kmax

0 = e(
3

2
−ǫ)σ . (C.13)

We can now evaluate the sum above, which can be divided into two sums depending on

whether k0e
−σ <

∑

c
kc or not. If it is the case we can write

kmax
c∑

kc=1

∑
kceσ∑

k0=1

n
(0)
k

kakb
|∑

c
kc + k0e−σ| ∼ exp

{[
h1,1(X) + 4

2
−
(
2 + h1,1(X)

)
ǫ

]

σ

}

+ . . . , (C.14)

where the . . . stand for subleading terms in the limit σ → ∞, and we have approximated

the GV invariants to be all of the same order.4 The contribution to the sum coming from

the sector k0e
−σ >

∑

c
kc can be shown to have the same scaling behaviour. As a result,

the 1/χ term in (C.3) scales like

gzz̄|1/χ ∼ 1

χ






− exp (−2σ)
︸ ︷︷ ︸

class.

+exp

{[
h1,1(X)− 1

2
−
(
2 + h1,1(X)

)
ǫ

]

σ

}

︸ ︷︷ ︸

inst.







. (C.15)

For the 1/χ2 term a similar analysis is possible, yielding

gzz̄|1/χ2 ∼ 1

χ2






exp (−σ)
︸ ︷︷ ︸

class.

− exp

{[
h1,1(X) + 1

2
−

(
2 + h1,1(X)

)
ǫ

]

σ

}

︸ ︷︷ ︸

inst.







2

. (C.16)

We thus see that in both terms in (C.15) and (C.16), the instanton contribution dominates

over the classical contribution if ǫ ≤ 1/2. Recall that, given the definition (C.13), 1/2 is

the maximum consistent value for the parameter ǫ.

To get the full scaling behaviour of the metric, we still have to include the scaling of

χ as discussed in section 3.1. Imposing the same assumptions on the maximal D1/D(-1)

charges as above, we find the scaling

χ ∼ exp

{(
h1,1(X) + 3

2
−
(
h1,1(X) + 1

)
ǫ

)

σ

}

, (C.17)

which grows as we take the limit σ → ∞ if ǫ ≤ 1/2. Thus the metric of the complexified

Kähler moduli in total scales to leading order like

gzz̄ ∼ exp [− (2 + ǫ)σ] . (C.18)

4This is a very rough estimate and e.g. in the case of one-parameter CYs not the case [77]. However,

we are interested in the contribution to the metric due to the fact that towers of instantons with different

charges acquire a very small action in our limit, rather than the correction to the metric due to BPS

degeneracies. As it turns out, the latter cancel out in the final expression for the metric.
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The scaling for the metric component (C.4) can be deduced along the same lines. In

particular one can see that in the limit (2.4) this term scales as

exp [−2ǫσ] (dσ)2 . (C.19)

With the help of these scalings of the metric components associated to the saxionic

coordinates of the hypermultiplet moduli space, we can also infer the decay constants for

the periodic fields. We again use (C.1) to compute the the matrix of axion decay constants

for the axions ca and da. The diagonal elements scale like

F 2
aa ≡ τ−2

2 gaā ∼ exp [(1− ǫ)σ] , (C.20)

F̃ 2
aa ≡ τ22

χ2
gaā ∼ exp

[

−σ

(

h1,1(X) + 4− 2

(

h1,1(X) +
3

2

)

ǫ

)]

, (C.21)

in units of the corrected Planck mass. As before, one can derive these results from a direct

computation of the metric, as we discuss in the appendix D. The same analysis can be used

to compute the decay constants for the remaining axions which, unlike the others, do not

fit into the metric Ansatz (C.1). One instead finds that

F 2
00 ∼ exp [(3− ǫ)σ] , (C.22)

F̃ 2
00 ∼ exp

[

−σ

(

h1,1(X) + 6− 2

(

h1,1(X) +
3

2

)

ǫ

)]

, (C.23)

with the first and second lines being the decay constants for τ1 and c0, respectively.

D Instantons in type IIA CY compactifications

In this work we have mostly focused on the type IIB hypermultiplet moduli space of a CY

X. However, a similar reasoning can be applied to the hypermultiplet moduli space of type

IIA compactified on the CY Y , mirror dual to X. The hypermultiplet moduli space of type

IIA on Y contains, besides the complex structure moduli of the Y , the RR 3-form axions

obtained by reducing the IIA 3-form C3 along 3-cycles. To describe the complex structure

moduli space, define an integral symplectic basis of 3-cycles (AΛ, B
Λ), Λ = 0, . . . h2,1(Y ),

satisfying

AI ·BJ = −BJ ·AI = δIJ . (D.1)

The coordinates of the complex structure moduli space are now defined via the periods of

the holomorphic 3-form Ω of Y over these 3-cycles

FΛ =

∫

BΛ

Ω , XΛ =

∫

AΛ

Ω , zΛ =
XΛ

X0
. (D.2)

In the same basis of 3-cycles, the 3-form axions are given by

ζΛ =

∫

AΛ

C3 , ζ̃Λ =

∫

BΛ

C3 . (D.3)
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Applying the mirror map to the SL(2,Z)-completed expression for χ in the IIB hypermul-

tiplet moduli space, one obtains the corresponding expression for the IIA hypermultiplet

moduli space [53]

χIIA =
R2

4
K(z, z̄) +

χY

192π
+

R
8π2

∑

γ

Ωγ

∑

m>0

|Zγ |
m

cos (2πmΘγ)K1 (4πmR|Zγ |) , (D.4)

where the coordinate R is the mirror dual of the IIB dilaton τ2 and K(z, z̄) = 2Im
(
zΛF̄Λ

)

is the classical Kähler potential in complex structure moduli space. Moreover, χY = −χX

is the Euler characteristic of the mirror Y of X and we have defined

Zγ ≡
(
kΛz

Λ − lΛFΛ

)
, (D.5)

Θγ ≡ kΛζ
Λ − lΛζ̃Λ . (D.6)

Finally, the instanton measure Ωγ counts the number of special Lagrangian 3-cycles ho-

mologous to kΛA
Λ in H3(Y,Z).

The large volume/strong coupling limit analysed in the type IIB setup now translates

into the large complex structure limit, as can easily be seen by looking at ta ≡ Imza in

the limit

ta → eσta0 , R ∼ e−3σ/2R(t0) , σ → +∞ . (D.7)

For lΛ = 0, i.e. the case where the D2-brane instantons only wrap A-cycles, the instanton

action thus scales like

R|Zγ | ∼ e−
σ
2

(∑
ka

t
1/2
0

)

+ e
−3σ
2

(

k0

t
3/2
0

)

. (D.8)

Hence, we identify our case to be correspond to d = 3 in the language of [12] and we

see that, as in the IIB case, there are towers of instantons which have an asymptotically

vanishing action.

The metric for the type IIA hypermultiplet moduli space for the case of purely electri-

cally charged D2-brane instantons, i.e. lΛ = 0, has already been calculated in [78]. In the

following we review their result and analyse the behaviour of the metric in the particular

limit (D.7). As in the IIB case in the main text, we consider a path on the hypermultiplet

moduli space along which the vevs for the periodic coordinates vanish, which simplifies the

analysis of the metric significantly.

In general, the function χIIA can be used to calculate the metric on the so-called

twistor space Z associated to the hypermultiplet moduli space MHM. Z is a CP 1 bundle

over MHM with connection given by the SU(2) part of the the Levi-Civita connection on

MHM. The Kähler-Einstein metric for the twistor space can be written as

ds2Z =
|Dt|2

(1 + tt̄)2
+

ν

4
ds2MHM

(D.9)
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where t is a complex coordinate on CP 1 and ν sets the curvature of MHM. The 1-form

Dt is given by

Dt = dt+ p+ − ip3t+ p−t
2 , (D.10)

where the p∗ are the components of the SU(2) connection on M. The Kähler potential for

the twistor space reads

KZ = log
1 + tt̄

|t| +Re logχIIA(xµ, t) . (D.11)

In [78] the metric is however not calculated directly from χIIA, but by exploiting the SU(2)

connection underlying the quaternionic Kähler geometry which is given by

p+ = − i

4r

R
8π2

∑

γ

nγZγdJ
(1)
γ ,

p3 =
1

8r

[

2R2K (Nadz
a −Nādz̄

a)− R
4π2

∑

γ

Ωγ

(

J (1,+)
γ dZγ − J (1,−)

γ dZ̄γ

)
]

,

p− = (p+)
∗ .

(D.12)

Here, the functions J (⋆,⋆)
γ are twistorial integrals given by

J (1)
γ =

∫

lγ

dt

t
log

(

1− σγe
−2πiΞγ(t)

)

, J (2)
γ =

∫

lγ

dt

t

1

σγe−2πiΞγ(t) − 1

J (1,±)
γ = ±

∫

lγ

dt

t1±1
log

(

1− σγe
−2πiΞγ(t)

)

, J (2,±)
γ = ±

∫

lγ

dt

t1±1

1

σγe−2πiΞγ(t) − 1
,

(D.13)

where lγ is a “BPS ray” on CP 1 and σγ = ±1 which, for instantons with only electric

charges, can be chosen to be +1. Note that the functions on the right are the derivatives

of the funcitons on the left. Furthermore, we introduced Ξγ which in our case (vanishing

vevs for the axion fields) is given by

Ξγ = R
(
t−1Zγ − tZ̄γ

)
. (D.14)

Next, we note that our expression for χIIA actually corresponds to the type IIA 4d dilaton

r which in terms of the Jγ functions can be written as

r =
R2

4
K +

χY

192π
− iR

32π2

∑

γ

Ωγ

(

ZγJ (1,+)
γ + Z̄γJ (1,−)

γ

)

. (D.15)

Comparing this expression with (D.4), we can express the functions Jγ in terms of sums

over Bessel functions:

J (1,+)
γ = 4i

√

Z̄γ

Zγ

∑

m>0

1

m
cos (2πmΘγ)K1 (4πmR|Zγ |) , J (1,−)

γ =
Zγ

Z̄γ
J (1,+)
γ . (D.16)
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This identification can also be seen by using the representation of the Bessel function

∞∫

0

dt

t

(

αt+
β

t

)

e−
1

2(αt+
β
t ) = 4

√

αβK1

(√

αβ
)

, (D.17)

and using that log (1− x) = −
∞∑

m=1

xm

m . In particular we can rewrite the instanton part

of (D.15) as

− iR
32π2

∑

γ

Ωγ

(

ZγJ (1,+)
γ + Z̄γJ (1,−)

γ

)

=
1

32π3

∞∫

0

dt

t

∞∑

m=1

1

4m2

(

αmt+
βm
t

)

e−
1

2(αmt+βm
t ) ,

where for simplicity we have set Θγ = 0 — which is also the case considered below — and

defined

αm = −4πRmZ̄γ , βm = 4πiRmZγ .

Using (D.17), we then see that

− iR
32π2

∑

γ

Ωγ

(

ZγJ (1,+)
γ + Z̄γJ (1,−)

γ

)

=
1

32π3

∞∑

m=1

√

αmβmK1

(√

αmβm

)

, (D.18)

which reduces to the expression in (D.4) upon inserting αm and βm.

To find the metric on the hypermultiplet moduli space it suffices to know the triplet

of quaternionic 2-forms on the quaternionic manifold. This can be expressed through the

SU(2) connection as

−→ω = −2

(

d−→p +
1

2
−→p ×−→p

)

, (D.19)

and so ω3 is for instance given by

ω3 = −2dp3 + 4ip+ ∧ p− . (D.20)

For a given compatible almost complex structure J3, the metric can be calculated from

g(X,Y ) = ω3(X, J3Y ) . (D.21)

This almost complex structure can be specified by choosing a basis of (1,0)-forms. A

suitable set in this case is given by [78]

dza ,

YΛ = dζ̃Λ − FΛΣdζ
Σ − 1

8π2

∑

γ

ΩγqΛdJ (1)
γ ,

Σ = dr + 2c d logR− i

16π2

∑

γ

Ωγ

(

RZγdJ (1,+)
γ − J (1,−)

γ d
(
RZ̄γ

))

+
i

4

(

dσ − ζΛdζ̃Λ + ζ̃Λdζ
Λ
)

.

(D.22)
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Using (D.20) and (D.12) as well as the basis of (1,0)-forms, one can show that ω3 can be

written as (cf. eq. (B.37) of [78])

ω3 = i
Σ̂ ∧ ˆ̄Σ

4r2
(
1− 2r

R2U

) +
iR2

4r2
zΛz̄ΣYΛ ∧ YΣ

− iR2

2r
NΛΣdz

Λ ∧ dz̄Σ − iR2

8πr

∑

γ

ΩγJ (2)
γ qΛqΣdz̄

Λ ∧ dzΣ

+
iK

rU

[

R2K

4

(

Nadz
a +Nb̄dz̄

b
)

+
R2

8π

∑

γ

ΩγJ (2)
γ d|Zγ |2)

]

∧
(

Nadz
a −Nb̄dz̄

b
)

+ . . .

(D.23)

where a new (1,0)-form Σ̂ has been introduced, which in terms of the above basis reads

Σ̂ = Σ + fΛdz
Λ + gΛYΛ , (D.24)

with the functions fΛ and gΛ such that (D.23) reproduces (D.20). Finally, Na = ∂za logK

and the dots stand for terms that are quadratic in the periodic directions, and which do

not play any role in computing the line element along the trajectory (D.7).

In fact, since we are just interested in the directions in which the RR-fields do not

change, we may project the above (1,0)-forms onto their components corresponding to

complex structure and dilaton directions. The corresponding components of Σ̂ are

Σ̂ ⊃
(

2− 2r

R2U

)

dr +
i

4

[

2R2K

(

1− 4r

R2U

)(

Nadz
a −Nb̄dz̄

b
)

− R
4π2

∑

γ

Ωγ

(

J (1,+)
γ dZγ − J (1,−)

γ dZ̄γ

)
]

.

(D.25)

Here U is given by [78]

U = K − 1

2π

∑

γ

Ωγ |Zγ |2J (2)
γ + vΛM

ΛΣv̄Σ , (D.26)

where MΛΣ is the inverse matrix of

MΛΣ = NΛΣ −
∑

γ

ΩγJ (2)
γ qΛqΣ , (D.27)

and the vector vΛ is given by

vΛ =
1

4π

∑

γ

ΩγqΛ

(

ZγJ (2,+)
γ + Z̄γJ (2,−)

γ

)

. (D.28)

Reading off the metric for the non-periodic directions from (D.23), one finds that it can be

split into four parts

ds2 = ds21 + ds22 + ds23 + ds24 . (D.29)
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The first one is given by

ds21 =

(
1− 2r

R2U

)

2r2
dr2 +

R4K2
(
1− 4r

R2U

)2

4r2
(
1− 2r

R2U

) NaNb̄dz
adz̄b

+

{

R3K
(
1− 4r

R2U

)

32π2r2
(
1− 2r

R2U

)

∑

γ

Ωγ

(

qbNaJ (1,−)
γ + qaNb̄J (1,+)

γ

)

+
1

32r2
(
1− 2r

R2U

)
R2

16π4

(
∑

γ

ΩγqaJ (1,+)
γ

)(
∑

γ

ΩγqbJ (1,−)
γ

)

+
R4

4r2

∣
∣
∣
∣
∣

1

8π2

(
∑

γ

ΩγqaZγ

(

J (2,−)
γ + J (2,+)

γ

)
)∣
∣
∣
∣
∣

2





dzadz̄b ,

(D.30)

which contains the metric along the r direction and the dzadz̄b components that go with

1/r2. The next part of the metric contains all the terms that go like 1/r:

ds22 = −R2

r

(

NΛΣ − 1

4π

∑

γ

ΩγJ (2)
γ qΛqΣ

)

dzΛdz̄Σ . (D.31)

The third part of the metric comes from the last term in (D.23) and includes terms that

go like 1/(rU):

ds23 =
KR2

rU

(

KNaNb̄ +
1

4π

∑

γ

ΩγJ (2)
γ

[
ZγqbNa + Z̄γqaNb̄

]

)

dzadz̄b (D.32)

The last contribution to (D.29) originates from the term in (D.23) containing YΛ and the

fact that the differential dJ 1
γ has a dR component. Thus, this part of the metric involves

terms like dR2 and dRdz and it is given by

ds24 =
R3dR
32πr2

(
∑

γ

ΩγZγqa

[

J (2,+)
γ dza + J (2,−)

γ dz̄a
]
)(

∑

γ

ΩγZ̄γ

[

J̄ (2,+)
γ Z̄γ + J̄ (2,−)

γ Zγ

]
)

+
R2

32r2

∣
∣
∣
∣
∣

∑

γ

ΩγZγ

(

ZγJ (2,+)
γ + Z̄γJ (2,−)

γ

)
∣
∣
∣
∣
∣

2

dR2 + c.c. . (D.33)

We thus see that all terms of the metric including dR go like 1/r2 unlike the terms in ds22
that go like 1/r.

Let us now compare the metric obtained above with the expressions that we get in

appendix C, where we adapted the FS metric Ansatz (C.1) to the quantum corrected,

SL(2,Z)-completed Kähler potential χ in the mirror dual IIB hypermultiplet moduli space.

For this we will use that in the presence of D(-1)/D1-brane instantons, the quantum cor-

rected mirror map coincides with the classical one except for the axions ζ̃Λ [79], whose vev

is however set to zero in the following.

Let us first focus on the metric components along za, which correspond to (C.3). We

start with the part of the metric ds22, which goes like 1/r and consists of a classical and a

quantum part given by the first and second term respectively. The analog of the first term

in the expression (C.3) is just the classical part of the 1/χ contribution and we identify
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IIA exact result IIB Kähler potential approximation

R2

r NΛΣ
τ22
8χKab

The second part of ds22 appears when taking the second derivatives of r w.r.t. za and z̄b

and we thus can identify

IIA exact result IIB Kähler potential approximation

R2

4πr

∑

γ
ΩγJ (2)

γ qaqb
τ22
8πχ

∑

kΛ
n
(0)
k

∑

m kakbK0

(
2πm|kΛzΛ|τ2

)

We saw in appendix C that the IIB expression above is the leading contribution to the

metric in our limit. Thus, to leading order, the approximation for the metric in the IIB

case in appendix C has the same behaviour as the exact result in the IIA case, as long as

the terms in ds21 and ds23 of the exact metric are not dominant over the contributions in

ds22. To see this, we find the analogues of these terms in (C.3).

Let us start with noting that in our limit to leading order we have the scaling U ∼ r/R2.

Looking at (D.30) we see that

r

R2U
∼ O(1) . (D.34)

Thus indeed all the terms in (D.30) scale like 1/r2 up to corrections that become negligible

in our limit, and in particular also the terms in (D.32) scale like 1/r2. Up to the corrections

induced by U , the second term in (D.30) and the first term in (D.32) can be identified as the

classical contribution to the metric. We can furthermore identify them with the classical

contribution to the 1/χ2 term in (C.3):

IIA exact result IIB Kähler potential approximation

K2R4

r2
NaNb̄

τ42K
2

64χ2 KaKb

The terms on the left side can be obtained from the product of the first-derivatives of the

classical expression for log r with respect to za and z̄b, respectively. Taking the quantum-

corrected expression for r in (D.15), we see that we get the term in the brackets of (D.30)

and the second term in (D.32) which we can thus identify with the corresponding quantum

corrections of (C.3) to the 1/χ2 term, e.g.

IIA exact result IIB Kähler potential approximation

KR4

r2
1
4π

∑

γ
ΩγJ (2)

γ ZγqbNa
τ42

16πχ2Ka
∑

kΛ

n
(0)
k

∑

m kΛz
ΛkbK0

(
2πm|kΛzΛ|τ2

)

R4

4r2

∣
∣
∣

1
8π2

(
∑

γ
ΩγqaZγ

(

J (2,−)
γ + J (2,+)

γ

))∣
∣
∣

2 τ42
64π2χ2

∣
∣
∣
∑

kΛ

n
(0)
k

∑

m kΛz̄
ΛkaK0

(
2πm|kΛzΛ|τ2

)
∣
∣
∣

2

The remaining terms can be identified accordingly. Note that in the IIB Kähler approxi-

mation we set the periodic coordinates to zero in comparison to (C.3).
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We thus see that, in this limit, the contribution from ds22 to the metric is dominant

over the others, which correspond to sub-leading terms in appendix C. Notice that, as far

as the z components of the metric are considered, the results of appendix C carry over to

the leading order of the exact metric in type IIA.

Having analysed the metric along the coordinates za, we can now turn to the 4d

dilaton. Recall that in appendix C we promoted the Ansatz (C.1), for which the 4d dilaton

and the other moduli decouple, to the quantum corrected regime. There, an important

contribution to the line element along the trajectory (2.4) arises from (C.4). In the exact

type IIA metric, the analogous term is given by the first term in (D.30) which in the IIA

limit (D.7) reduces to dr2/r2. Evaluating this term in our limit thus gives rise to the same

behaviour as displayed in (C.19).

However, in the IIA exact metric there are also the terms in (D.33), which give us an

additional contribution for the metric components involving the coordinate R dual to the

10d type IIB dilaton. Since the limit (D.7) is defined via the scaling of R, it is important

to analyze the behaviour of these contributions, to make sure that they do not dominate

over the part that is already present in the Ansatz (C.1). The functional dependence of

the terms in (D.33) suggests that they have the same behaviour as dr2/r2, since they can

be written as the pull-back of log r:

R2

32r2

∣
∣
∣
∣
∣

∑

γ

ΩγZγ

(

ZγJ (2,+)
γ + Z̄γJ (2,−)

γ

)
∣
∣
∣
∣
∣

2

dR2 ∼
(
∂ log r

∂R

)2

dR2

R3dR
32πr2

(
∑

γ

ΩγZγqaJ (2,+)
γ dza

)(
∑

γ

ΩγZ̄γ

[

J̄ (2,+)
γ Z̄γ + J̄ (2,−)

γ Zγ

]
)

∼
(
∂ log r

∂R
∂ log r

∂za

)

dRdza .

(D.35)

Therefore in the limit (D.7) these terms scale similarly to dr2/r2. We can then conclude that

the Ansatz (C.1) also captures the leading behaviour of the exact metric in the limit (D.7)

along the direction R.

So far, we have only investigated the metric components for the dilaton and the complex

structure moduli za. In the main text, we are also interested in the metric components

quadratic in the RR fields since, classically, these correspond to the decay constants of the

corresponding axions. We first focus on the RR fields ζΛ arising from reducing the IIA

3-form along the A-cycles. In this case, we directly use the expression for the metric found

in [78]. This metric contains to leading order two terms quadratic in dζΛ that are induced

fully by the instanton corrections. The first term arises from

R2

2r2
∣
∣zΛYΛ

∣
∣ ⊃ R2

32r2

(
∑

γ

ΩγZγJ (2)
γ qΛdζ

Λ

)(
∑

γ

ΩγZ̄γJ̄ (2)
γ qΣdζ

Σ

)

, (D.36)

and the second term is given by

−1

r
MΛΣYΛȲΣ ⊃ −1

r
MΛΣ

(
∑

γ

ΩγJ (2)
γ qΛqΠdζ

Π

)(
∑

γ

ΩγJ̄ (2)
γ qΣqΠ′dζΠ

′

)

, (D.37)
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where we recall that MΛΣ is the inverse of (D.27) which in our limit is dominated by the

instanton contribution. Since we are only interested in the scaling behaviour of the metric

component quadratic in the RR fields, we can approximate the above expression by

(D.37) ∼ 1

r

∑

γ

ΩγqΛqΣJ (2)
γ dζΛdζΣ . (D.38)

Thus comparing with the result for the metric components quadratic in the Kähler moduli,

we see that the metric gζζ behaves to leading order in our limit like

gζΛζΣ ∼ 1

R2
gzΛz̄Σ . (D.39)

Here, gzΛz̄Σ reduces to the leading contribution of gzaz̄b for (Λ,Σ) = (a, b) and in

analogy to the leading expression for gzaz̄b we further defined the components gz0z̄0 ≡
R2

4πr

∑

γ
ΩγJ (2)

γ q0q0 and similar for gz0z̄a even though they do not correspond to metric com-

ponents for physical field. We note that (D.39) is reminiscent of the expression for the

components quadratic in the RR field of the classical IIB hypermultiplet moduli space

metric given by (C.1).

From the term on the l.h.s. of (D.37) we can also infer the behaviour of the decay

constants of the axions ζ̃Λ obtained by reducing the IIA 3-form along the B-cycles. We

obtain to leading order in our limit

−1

r
MΛΣYΛȲΣ ⊃ −1

r
MΛΣdζ̃Λdζ̃Σ ∼

[

r

2π

∑

γ

ΩγJ (2)
γ qΛqΣ

]−1

dζ̃Λdζ̃Σ ∼ R2gz
Λz̄Σ

r2
dζ̃Λdζ̃Σ ,

(D.40)

where we used in the last step that the term in bracket resembles the leading contribution

to the metric component quadratic in the complexified Kähler moduli. Here, gz
Λz̄Σ is to

be understood as the inverse of the gzΛz̄Σ defined above. Again the above result shows

that the quantum corrected decay constants for the ζ̃Λ have, to leading order, a similar

dependence on gzz̄ as the classical decay constants in (C.1).

To sum up, in the IIA case we also have towers of instantons becoming very relevant

due to their small action in the large complex structure limit. By directly computing

the quantum corrected metric, one finds that its leading behaviour reproduces the one

obtained in appendix C by adapting the classical metric Ansatz (C.1) to the type IIB

SL(2,Z)-invariant 4d dilaton. As such, the analysis of the main text applies to this case as

well, and the classical infinite distance along (D.7) is resolved by quantum corrections.
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[59] B. de Wit, M. Roček and S. Vandoren, Hypermultiplets, hyperKähler cones and quaternion

Kähler geometry, JHEP 02 (2001) 039 [hep-th/0101161] [INSPIRE].

– 36 –

https://doi.org/10.1016/0550-3213(95)00287-3
https://arxiv.org/abs/hep-th/9504090
https://inspirehep.net/search?p=find+EPRINT+hep-th/9504090
https://doi.org/10.1103/PhysRevLett.77.3296
https://arxiv.org/abs/hep-th/9608079
https://inspirehep.net/search?p=find+EPRINT+hep-th/9608079
https://doi.org/10.1142/S0217751X89000972
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A4,2475%22
https://doi.org/10.1016/0550-3213(90)90097-W
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B332,317%22
https://doi.org/10.1016/0550-3213(84)90425-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B245,89%22
https://doi.org/10.1016/0550-3213(83)90605-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B222,1%22
https://doi.org/10.1016/0550-3213(95)00487-1
https://arxiv.org/abs/hep-th/9507158
https://inspirehep.net/search?p=find+EPRINT+hep-th/9507158
https://doi.org/10.1088/1126-6708/2000/01/005
https://arxiv.org/abs/hep-th/9911206
https://inspirehep.net/search?p=find+EPRINT+hep-th/9911206
https://doi.org/10.1088/1126-6708/2006/02/062
https://arxiv.org/abs/hep-th/0512206
https://inspirehep.net/search?p=find+EPRINT+hep-th/0512206
https://doi.org/10.1088/1126-6708/2006/03/081
https://arxiv.org/abs/hep-th/0602164
https://inspirehep.net/search?p=find+EPRINT+hep-th/0602164
https://doi.org/10.1103/PhysRevLett.98.211602
https://arxiv.org/abs/hep-th/0612027
https://inspirehep.net/search?p=find+EPRINT+hep-th/0612027
https://doi.org/10.1088/1126-6708/2007/04/038
https://arxiv.org/abs/hep-th/0701214
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701214
https://doi.org/10.4310/CNTP.2007.v1.n4.a3
https://arxiv.org/abs/0707.0838
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0838
https://doi.org/10.1088/1126-6708/2009/03/044
https://arxiv.org/abs/0812.4219
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4219
https://doi.org/10.1088/1751-8113/42/33/335402
https://arxiv.org/abs/0902.2761
https://inspirehep.net/search?p=find+EPRINT+arXiv:0902.2761
https://doi.org/10.1007/JHEP03(2011)111
https://arxiv.org/abs/1010.5792
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5792
https://doi.org/10.1016/j.physrep.2012.09.005
https://arxiv.org/abs/1111.2892
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2892
https://doi.org/10.1016/S0550-3213(99)00726-9
https://arxiv.org/abs/hep-th/9909228
https://inspirehep.net/search?p=find+EPRINT+hep-th/9909228
https://doi.org/10.1088/1126-6708/2001/02/039
https://arxiv.org/abs/hep-th/0101161
https://inspirehep.net/search?p=find+EPRINT+hep-th/0101161


J
H
E
P
0
8
(
2
0
1
9
)
0
8
8

[60] B. de Wit and F. Saueressig, Off-shell N = 2 tensor supermultiplets, JHEP 09 (2006) 062

[hep-th/0606148] [INSPIRE].

[61] F. Saueressig and S. Vandoren, Conifold singularities, resumming instantons and

non-perturbative mirror symmetry, JHEP 07 (2007) 018 [arXiv:0704.2229] [INSPIRE].

[62] A. Collinucci, P. Soler and A.M. Uranga, Non-perturbative effects and wall-crossing from

topological strings, JHEP 11 (2009) 025 [arXiv:0904.1133] [INSPIRE].

[63] I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R4 couplings in M and type-II

theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].

[64] G. Dvali, Black Holes and Large N Species Solution to the Hierarchy Problem,

Fortsch. Phys. 58 (2010) 528 [arXiv:0706.2050] [INSPIRE].

[65] T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry,

Nucl. Phys. B 307 (1988) 93 [INSPIRE].

[66] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity,

Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

[67] A. Hebecker and P. Soler, The Weak Gravity Conjecture and the Axionic Black Hole

Paradox, JHEP 09 (2017) 036 [arXiv:1702.06130] [INSPIRE].

[68] A. Hebecker, P. Henkenjohann and L.T. Witkowski, What is the Magnetic Weak Gravity

Conjecture for Axions?, Fortsch. Phys. 65 (2017) 1700011 [arXiv:1701.06553] [INSPIRE].

[69] N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a

TeV, hep-th/0501082 [INSPIRE].

[70] J. Distler and U. Varadarajan, Random polynomials and the friendly landscape,

hep-th/0507090 [INSPIRE].

[71] S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003

[hep-th/0507205] [INSPIRE].

[72] B. Pioline and S. Vandoren, Large D-instanton effects in string theory, JHEP 07 (2009) 008

[arXiv:0904.2303] [INSPIRE].

[73] N. Seiberg and S.H. Shenker, Hypermultiplet moduli space and string compactification to

three-dimensions, Phys. Lett. B 388 (1996) 521 [hep-th/9608086] [INSPIRE].

[74] S. Kachru and C. Vafa, Exact results for N = 2 compactifications of heterotic strings,

Nucl. Phys. B 450 (1995) 69 [hep-th/9505105] [INSPIRE].

[75] P.S. Aspinwall, Aspects of the hypermultiplet moduli space in string duality,

JHEP 04 (1998) 019 [hep-th/9802194] [INSPIRE].

[76] J. Louis and R. Valandro, Heterotic-Type II Duality in the Hypermultiplet Sector,

JHEP 05 (2012) 016 [arXiv:1112.3566] [INSPIRE].

[77] M.-x. Huang, A. Klemm and S. Quackenbush, Topological string theory on compact

Calabi-Yau: Modularity and boundary conditions, Lect. Notes Phys. 757 (2009) 45

[hep-th/0612125] [INSPIRE].

[78] S. Alexandrov and S. Banerjee, Hypermultiplet metric and D-instantons,

JHEP 02 (2015) 176 [arXiv:1412.8182] [INSPIRE].

[79] S. Alexandrov and F. Saueressig, Quantum mirror symmetry and twistors,

JHEP 09 (2009) 108 [arXiv:0906.3743] [INSPIRE].

– 37 –

https://doi.org/10.1088/1126-6708/2006/09/062
https://arxiv.org/abs/hep-th/0606148
https://inspirehep.net/search?p=find+EPRINT+hep-th/0606148
https://doi.org/10.1088/1126-6708/2007/07/018
https://arxiv.org/abs/0704.2229
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.2229
https://doi.org/10.1088/1126-6708/2009/11/025
https://arxiv.org/abs/0904.1133
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1133
https://doi.org/10.1016/S0550-3213(97)00572-5
https://arxiv.org/abs/hep-th/9707013
https://inspirehep.net/search?p=find+EPRINT+hep-th/9707013
https://doi.org/10.1002/prop.201000009
https://arxiv.org/abs/0706.2050
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.2050
https://doi.org/10.1016/0550-3213(88)90523-8
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B307,93%22
https://doi.org/10.1103/PhysRevD.83.084019
https://arxiv.org/abs/1011.5120
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5120
https://doi.org/10.1007/JHEP09(2017)036
https://arxiv.org/abs/1702.06130
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.06130
https://doi.org/10.1002/prop.201700011
https://arxiv.org/abs/1701.06553
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.06553
https://arxiv.org/abs/hep-th/0501082
https://inspirehep.net/search?p=find+EPRINT+hep-th/0501082
https://arxiv.org/abs/hep-th/0507090
https://inspirehep.net/search?p=find+EPRINT+hep-th/0507090
https://doi.org/10.1088/1475-7516/2008/08/003
https://arxiv.org/abs/hep-th/0507205
https://inspirehep.net/search?p=find+EPRINT+hep-th/0507205
https://doi.org/10.1088/1126-6708/2009/07/008
https://arxiv.org/abs/0904.2303
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2303
https://doi.org/10.1016/S0370-2693(96)01189-6
https://arxiv.org/abs/hep-th/9608086
https://inspirehep.net/search?p=find+EPRINT+hep-th/9608086
https://doi.org/10.1016/0550-3213(95)00307-E
https://arxiv.org/abs/hep-th/9505105
https://inspirehep.net/search?p=find+EPRINT+hep-th/9505105
https://doi.org/10.1088/1126-6708/1998/04/019
https://arxiv.org/abs/hep-th/9802194
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802194
https://doi.org/10.1007/JHEP05(2012)016
https://arxiv.org/abs/1112.3566
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3566
https://doi.org/10.1007/978-3-540-68030-7_3
https://arxiv.org/abs/hep-th/0612125
https://inspirehep.net/search?p=find+EPRINT+hep-th/0612125
https://doi.org/10.1007/JHEP02(2015)176
https://arxiv.org/abs/1412.8182
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8182
https://doi.org/10.1088/1126-6708/2009/09/108
https://arxiv.org/abs/0906.3743
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3743

	Introduction
	Type IIB on Calabi-Yau manifolds and instantons
	The type IIB hypermultiplet moduli space
	Geodesics of infinite distance
	The tensor potential at infinite distance

	Towers of instantons and emergence
	The 4d Planck mass
	Removing the infinite distance
	Tensionless strings
	D-particles and emergence

	Conclusions
	The c-map
	The conifold limit
	Quantum corrected metric components
	Instantons in type IIA CY compactifications

