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The noncommutative version of ADHM construction of instantons, which was proposed
by Nekrasov and Schwarz, is carefully studied. Noncommutative R4 is described by an
algebra of operators acting in a Fock space. In the ADHM construction of instantons, one
looks for zero-modes of the Dirac-like operator. The feature peculiar to the noncommutative
case is that these zero-modes project out some states in the Fock space. The mechanism
of these projections is clarified in the case that the gauge group is U(1). In U(N) cases,
it is shown in some explicit examples that projections similar to those in the U(1) cases
also appear. A physical interpretation of these projections in the IIB matrix model is also
discussed.

§1. Introduction

One of the most important reasons to consider physics in noncommutative space-
time is that the behavior of the theory at short distances is expected to become
manageable, due to the noncommutativity of the spacetime coordinates. It has be-
come clear recently that a noncommutative geometry appears 1) in a definite limit
of string theory, BFSS matrix theory 2) and IIB matrix theory. 3) In these cases,
noncommutativity should be relevant to the short-scale physics of D-branes.

Among D-brane systems, Dp-brane-D(p + 4)-brane bound states are of interest
because this system has two different descriptions: one in terms of the worldvolume
theory of Dp-branes and another in terms of the worldvolume theory of D(p + 4)-
branes. The D-flat condition of the worldvolume theory of Dp-brane coincides with
the ADHM equations, 5), 6) and Dp-branes are described as instantons in the D(p+4)-
brane worldvolume theory. These descriptions should be equivalent, because they
describe the same system, and indeed the moduli space of the worldvolume theory
of Dp-branes is identical to the instanton moduli space. In the constant NS-NS
B-field background in the worldvolume of D(p + 4)-branes, the coordinates on the
D(p+ 4)-branes become noncommutative, and the worldvolume theory of Dp-branes
acquires a Fayet-Iliopoulos D-term. 16), 11) The equivalence of the two descriptions
follows from the pioneering work of Nekrasov and Schwarz. 12) In order to construct
instantons on noncommutative R4, one adds a constant (corresponding to the Fayet-
Iliopoulos term) to the ADHM equations.∗∗) The modified ADHM equations describe

∗) E-mail: furu@het.phys.sci.osaka-u.ac.jp
∗∗) The case of equivariant instantons is studied in Ref. 14).
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1044 K. Furuuchi

the resolutions of singularities in the moduli space of instantons on R4. 8) This mod-
uli space has provided an important clues to the nonperturbative aspects of string
theory 17) - 22) and matrix theory. 11), 23) - 26) Further studies from the viewpoints of
both string theory and noncommutative geometry were recently given in Ref. 15).
More recently, Braden and Nekrasov constructed instantons on blowups of C2, which
are conjectured to be related to instantons on noncommutative R4. 13),∗)

In Ref. 12) Nekrasov and Schwarz explicitly constructed some instanton solutions
and showed that they are non-singular. An interesting point is that they are non-
singular even if their commutative counterparts in the original ADHM construction
are singular, the case of so-called small instantons. In these cases, the noncom-
mutativity of the coordinates actually eliminates the singular behavior of the field
configurations. What is special to the noncommutative case is the appearance of
projection operators which project out potentially dangerous states in Fock space,
where Fock space is introduced to describe the noncommutative R4. 12) The purpose
of this paper is to investigate this mechanism. It is shown that this mechanism has
rich structures, and it gives insight into the short-scale structures near the core of
instantons on noncommutative space. An important point is that the existence of
the projection forces us to express gauge fields in reduced Fock space, where some
of the states have been projected out. It is shown that this modification of the Fock
space corresponds to the modification of the spacetime topology.

The outline of this paper is as follows. In §2, gauge theory on noncommutative
space and the ADHM construction on commutative R4 are briefly reviewed. In §3,
the ADHM construction on noncommutative R4 is studied. The reason we must
consider the projections is explained. In §4, the mechanism of the projections is
clarified in the case that the gauge group is U(1), utilizing Nakajima’s beautiful
results. 8), 10) In §5, it is demonstrated that similar projections also occur in the
U(N) case. In §6, embedding of the U(1) instanton solution into the IIB matrix
model is considered. The solution is understood as representing D-instantons within
the D3-brane in IIB matrix model. It is shown that the role of the projection is to
remove anti-D-instantons and create holes in the D3-brane worldvolume.

When the previous version of this paper was in the final stage of preparation,
Ref. 13) appeared. Some issues discussed in this paper have commutative coun-
terparts in that paper. Explanations of the modification of spacetime topology
have been added to this paper after taking into due consideration the relation to
Ref. 13).∗∗)

∗) In most of this paper I use the term “commutative” with the usual commutative R4 in

mind, and explicitly refer to Ref. 13) when I compare our noncommutative descriptions to their

commutative descriptions.
∗∗) I would like to thank N. Nekrasov for explaining their work to me, and pointing out my

misleading statement in the earlier version of this paper.
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Instantons on Noncommutative R4 and Projection Operators 1045

§2. Preliminaries

In this section we briefly review the theory of gauge fields on noncommutative
R4 and ADHM construction on commutative R4, as preliminaries to the ADHM
construction on noncommutative R4.

2.1. Gauge fields on noncommutative R4

Noncommutative R4 is described by an algebra generated by xµ (µ = 1, · · · , 4)
obeying the commutation relations

[xµ, xν ] = iθµν , (2.1)

where θµν is real and constant. In this paper we restrict ourselves to the case in
which θµν is self-dual and set∗)

θ12 = θ34 =
ζ

4
. (2.2)

Then the algebra depends on only one constant parameter, ζ.
Next, we introduce the generators of noncommutative C2 ≈ R4 by

z1 = x2 + ix1, z2 = x4 + ix3 . (2.3)

Their commutation relations are

[z1, z̄1] = [z2, z̄2] = −ζ

2
. (others: zero) (2.4)

We choose ζ > 0 . The commutation relations (2.1) have a group of automorphisms
of the form xµ �→ xµ + cµ, where cµ is a commuting real number. We denote the Lie
algebra of this group by g . Following Ref. 12), we start with the algebra End H of
operators acting in the Fock space H =

∑
(n1,n2)∈Z2

≥0
C |n1, n2〉, where z and z̄ are

represented as creation and annihilation operators:√
2
ζ
z1 |n1, n2〉 =

√
n1 + 1 |n1 + 1, n2〉 ,

√
2
ζ
z̄1 |n1, n2〉 =

√
n1 |n1 − 1, n2〉 ,√

2
ζ
z2 |n1, n2〉 =

√
n2 + 1 |n1, n2 + 1〉 ,

√
2
ζ
z̄2 |n1, n2〉 =

√
n2 |n1, n2 − 1〉 . (2.5)

The algebra EndH has a subalgebra of operators which have finite norm. We define
the norm of operators by ||a|| := sup ||aφ||/||φ||, where a ∈ EndH, |φ〉 �= 0, and
|φ〉 ∈ Dom(a) ⊂ H. Dom(a) is the domain of the operator a, and ||φ|| := 〈φ|φ〉1/2.
We denote this algebra by Aζ . Whenever we consider the derivative of an operator
a ∈ Aζ , we assume that it is also contained in Aζ , i.e. ∂µa ∈ Aζ . Here ∂µ is
understood as the action of g = R4 on Aζ by translation. The U(N) gauge field

∗) See Ref. 15) for the meaning of this choice of parameters in string theory.
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1046 K. Furuuchi

on noncommutative R4 is defined as follows. First we consider the N -dimensional
vector space E := (Aζ)⊕N , which carries the right representation of Aζ

E × Aζ � (e, a) �→ ea ∈ E , e(ab) = (ea)b,

e(a + b) = ea + eb,

(e + e′)a = ea + e′a, (2.6)

for any e, e′ ∈ E and a, b ∈ Aζ .∗) The elements of E can be thought of as an N -
dimensional vector with entries in Aζ . Let us consider the unitary action of U on an
element of E :

e → Ue, (2.7)

where U is an N × N matrix, where components are in Aζ , and satisfying UU † =
U †U = IdH ⊗ IdN . Here IdH is the identity operator in Aζ , and IdN is the N ×N

identity matrix. Under this unitary transformation, De, the covariant derivative of
e ∈ E , is required to transform covariantly:

De → UDe. (2.8)

The covariant derivative D is written as

D = d + A. (2.9)

Here the U(N) gauge field A is introduced to ensure covariance, as explained below.
A is a matrix-valued one-form: A = Aµdx

µ with Aµ being an anti-hermitian N ×N

matrix. The action of the exterior derivative d is defined as

da := (∂µa) dxµ, a ∈ Aζ . (2.10)

Here, the dxµ commute with xµ and anti-commute among themselves, and hence
d2a = 0 for a ∈ Aζ . From (2.7) and (2.8), the covariant derivative transforms as

D → UDU †. (2.11)

Hence the gauge field A transforms as

A → UdU † + UAU †. (2.12)

The field strength is defined by

F := D2 = dA + A2. (2.13)

We can construct a gauge invariant action S by∗∗)

S = − 1
4g2

TrH,U(N) FµνF
µν . (2.14)

∗) E is a right module over Aζ . (See, for example, Refs. 31) and 32).)
∗∗) In this paper we only consider the case in which the metric on R4 is flat: gµν = δµν .

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/5/1043/1806389 by guest on 21 August 2022



Instantons on Noncommutative R4 and Projection Operators 1047

For later use, let us consider the projection operator P ∈ MN (Aζ), P † = P ,
P 2 = P , where MN (Aζ) denotes the algebra of N ×N matrices whose entries are
in Aζ . For every projection operator P , we can consider the vector space PE :∗)

e ∈ PE ⇐⇒ e ∈ E , e = Pe. (2.15)

We can consider the unitary action on PE :

e → UPe, UP = PUP = UPP,

U †
PUP = UPU

†
P = P. (2.16)

Then we can construct a covariant derivative DP for PE by

DP = Pd + A, A = PA = AP. (2.17)

Note that DP = PDP . We require DPe to transform as

DPe → UPDPe. (2.18)

Then the covariant derivative DP must transform as

DP → UPDPU
†
P . (2.19)

For any e ∈ PE , one can show

UPDPU
†
Pe = UP (Pd + A)U †

Pe = UPd(P (U †
Pe)) + UPAU †

Pe

= UPPdU †
Pe + PUP (U †

Pde) + UPAU †
Pe (UPP = PUP )

= Pde + (UPdU
†
P + UPAU †

P )e. (2.20)

Hence the gauge transformation rule of the gauge field A is given by

A → UPdU
†
P + UPAU †

P . (2.21)

The field strength becomes

F := D2
P

= PdA + A2 + PdPdP. (2.22)

Indeed, for e ∈ PE , one can show

Fe = (Pd + A)(Pde + Ae)

= Pd(Pde) + Pd(Ae) + APde + A2e

= Pd(Pde) + PdAe + A2e, (2.23)

∗) PE is a right projective module over Aζ .
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1048 K. Furuuchi

and since e = Pe and P 2 = P , we can rewrite (2.23) using the following equations:

Pd(Pde) = Pd(Pd(Pe))

= Pd(PdPe + Pde)

= PdPdPe− PdPde + PdPde

= PdPdPe. (2.24)

Hence we obtain (2.22). We can construct a gauge invariant action SP by

SP = − 1
4g2

TrH,U(N) PFµνF
µνP. (2.25)

The gauge field A is called “anti-self-dual”, or “instanton”, if its field strength
satisfies the conditions

F+ :=
1
2

(F + ∗F ) = 0, (2.26)

where ∗ is the Hodge star.

2.2. Review of ADHM construction on commutative R4

ADHM construction 7) is a method to obtain an anti-self-dual gauge field on R4

from solutions of some quadratic matrix equations. More specifically, in order to
construct the anti-self-dual U(N) gauge field with instanton number k, one starts
from the following data (ADHM data):

1. A pair of complex hermitian vector spaces V = Ck and W = CN .
2. The operators B1, B2 ∈ Hom(V, V ), I ∈ Hom(W,V ), J = Hom(V,W ) satisfying

the equations

µR = [B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0,

µC = [B1, B2] + IJ = 0. (2.27)

Next we define the Dirac-like operator Dz : V ⊕ V ⊕W → V ⊕ V by

Dz =

(
τz

σ†
z

)
,

τz = (B2 − z2, B1 − z1, I ),

σ†
z = (−(B†

1 − z̄1), B†
2 − z̄2, J

† ). (2.28)

Equation (2.27) is equivalent to the set of equations

τzτ
†
z = σ†

zσz, τzσz = 0, (2.29)

which are important conditions in ADHM construction. There are N zero-modes of
Dz:

Dzψ
(a) = 0, a = 1, · · · , N. (2.30)
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Instantons on Noncommutative R4 and Projection Operators 1049

We can choose an orthonormal basis in the space of these zero-modes:

ψ(a)†ψ(b) = δab. (2.31)

The change of basis in the space of orthonormal zero-modes ψ(a) becomes U(N) gauge
symmetry. The anti-self-dual U(N) gauge field is constructed with the formula

Aab = ψ(a)†dψ(b). (2.32)

There is an action of U(k) that does not change (2.32):

(B1, B2, I, J) �−→ (gB1g
−1, gB2g

−1, gI, Jg−1), g ∈ U(k). (2.33)

The moduli space of the anti-self-dual U(N) gauge field with instanton number k is
given by

M(k,N) = µ−1
R

(0) ∩ µ−1
C

(0)/U(k), (2.34)

where the action of U(k) is the one given in (2.33). When (B1, B2, I, J) is a fixed
point of the U(k) action, M(k,N) is singular. Such a singularity corresponds to an
instanton shrinking to zero size.

§3. ADHM construction on noncommutative R4 and the appearance of
the projection operator

The singularities in (2.34) have a natural resolution. 8) First, we modify (2.27)
as

µR = [B1, B
†
1] + [B2, B

†
2] + II† − J†J = ζ IdV ,

µC = [B1, B2] + IJ = 0, (3.1)

and then consider the space

Mζ(k,N) = µ−1
R

(ζ IdV ) ∩ µ−1
C

(0) /U(k). (3.2)

Then Mζ(k,N) is a smooth 4kN -dimensional hyper-Kähler manifold. Although the
absence of singularities is interesting from the physical point of view, construction of
instantons from (3.1) cannot be done straightforwardly. The main problem in this
regard is that the key equations in (2.29) are not satisfied on the usual commutative
R4. However, Nekrasov and Schwarz realized that τz and σz do satisfy (2.29) if
the coordinates are noncommutative, as in (2.4). 12) Once (2.29) is satisfied, we can
expect that the construction of instantons is similar to therein the usual commutative
case. But there are some features peculiar to the noncommutative case. In particular,
since the ADHM construction on noncommutative R4 starts from the space (3.2),
in which the small instanton singularities are absent, one expects that a crucial
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1050 K. Furuuchi

difference will appear when the size of the instanton is small. It is interesting to
study such situations and see how the effects of the noncommutativity appear.

The ADHM construction on noncommutative R4 is as follows. 12) We define the
operator Dz : (V ⊕ V ⊕W ) ⊗Aζ → (V ⊕ V ) ⊗Aζ by the same formula (2.28):

Dz =

(
τz

σ†
z

)
,

τz = (B2 − z2, B1 − z1, I ),

σ†
z = (−(B†

1 − z̄1), B†
2 − z̄2, J

† ). (3.3)

The operator DzD†
z : (V ⊕ V ) ⊗Aζ → (V ⊕ V ) ⊗Aζ has the block diagonal form

DzD†
z =

(
✷z 0
0 ✷z

)
, ✷z ≡ τzτ

†
z = σ†

zσz, (3.4)

which is a consequence of (2.29) and important for ADHM construction. Next, we
look for solutions to the equation

DzΨ
(a) = 0, (a = 1, · · · , N) (3.5)

where the components of Ψ (a) are operators: Ψ (a) : Aζ → (V ⊕ V ⊕W )⊗Aζ . If we
can normalize the Ψ (a) as

Ψ †(a)Ψ (b) = δab IdH, (3.6)

we can construct an anti-self-dual U(N) gauge field by the same formula (2.32):

Aab = Ψ (a)†dΨ (b), (3.7)

where a and b are U(N) indices. Then the field strength becomes

F = F−
ADHM ≡ Ψ †

(
dτ †z

1
✷z

dτz + dσz
1
✷z

dσ†
z

)
Ψ

=

(
ψ†

1 ψ†
2 ξ†

) 


dz1
1
✷z

dz̄1 + dz̄2
1
✷z

dz2 −dz1
1
✷z

dz̄2 + dz̄2
1
✷z

dz1 0
−dz2

1
✷z

dz̄1 + dz̄1
1
✷z

dz2 dz2
1
✷z

dz̄2 + dz̄1
1
✷z

dz1 0
0 0 0




×

 ψ1

ψ2

ξ


 , (3.8)

where we have written

Ψ ≡



ψ1

ψ2

ξ


 ≡


 Ψ (1) · · · Ψ (N)


 ,

ψ1 : CN ⊗Aζ → V ⊗Aζ ,

ψ2 : CN ⊗Aζ → V ⊗Aζ ,

ξ : CN ⊗Aζ → W ⊗Aζ .

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/5/1043/1806389 by guest on 21 August 2022



Instantons on Noncommutative R4 and Projection Operators 1051

The derivation here is similar to that in the commutative case. The field strength
in (3.8) is anti-self-dual.

However, as we will see shortly, there are some states in H which are annihilated
by Ψ (a) for some a. More precisely, all the components of Ψ (a) annihilate these states.
This is not a special phenomenon, and its study is the purpose of this paper. Let us
consider the case in which there is one such zero-mode Ψ (1). In this case, we cannot
normalize Ψ (1) as in (3.6). We may normalize Ψ (1) as

Ψ (1)†Ψ (1) = P, (3.9)

where P ∈ Aζ is a projection operator that projects out the states annihilated by
Ψ (1). However, the projection operator gives an additional contribution to the field
strength, because the projection operator depends on z and z̄.∗) The derivative of
the projection operator gives an additional contribution to the field strength, which
is not anti-self-dual.

The appearance of the projection operator P indicates that we should consider
the restricted vector space PE rather than E . Indeed, as we will see shortly, ADHM
construction works perfectly in this setting.

Let us concentrate on the simplest U(1) case. Here, the covariant derivative is
given by the formula (2.17):

DP = Pd + A, (3.10)

with A = PAP . The field strength is given by (2.22):

F = PdA + A2 + PdPdP. (3.11)

We can construct an anti-self-dual gauge field by setting

A = Ψ †dΨP, (3.12)

where Ψ is a zero-mode of Dz and normalized as Ψ †Ψ = P . Note that Ψ † = PΨ †.
Let us check that (3.12) is really anti-self-dual. The first term in (3.11) becomes

PdA = PdΨ †dΨP − PΨ †dΨdP, (3.13)

and the last term above can be rewritten as

PΨ †dΨdP = P (d(Ψ †Ψ) − dΨ †Ψ)dP

= PdPdP − PdΨ †ΨdP. (3.14)

The first term in (3.14) cancels PdPdP in (3.11). The last term in (3.14) vanishes
when acting on e = Pe ∈ PE , since ΨdPP = −ΨPd(1 − P )P = 0. The second term

∗) For example, |0, 0〉 〈0, 0| =: e
− 2

ζ
(z1z̄1+z2z̄2)

: , where : O : indicates normal ordering of the

operator O.
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1052 K. Furuuchi

in (3.11) then becomes

A2 = PΨ †dΨΨ †dΨP

= P (d(Ψ †Ψ)) − dΨ †Ψ)Ψ †dΨP

= PdPΨ †dΨ − PdΨ †ΨΨ †dΨP. (3.15)

The first term in (3.15) vanishes because PdPΨ † = −Pd(1 − P )PΨ † = 0. Then the
field strength becomes

F = PdΨ †(1 − ΨΨ †)dΨP

= PF−
ADHMP = F−

ADHM, (3.16)

where F−
ADHM is defined in (3.8) and is anti-self-dual. Generalization to the U(N)

case is straightforward.
The absence of singular behavior in the field configuration follows rather straight-

forwardly from the explicit formula (3.8). Since we have normalized the zero-modes
in the subspace where zero-modes do not vanish, these normalized zero-modes are
well defined. Moreover, as shown in Appendix A, the operator ✷z has no zero-mode,
and hence its inverse does not cause divergences. Therefore, from the explicit formula
(3.8), we can see no source of divergence in either (3.8) or (3.16).

§4. U(1) instantons and projection operators

4.1. Projection operators in U(1) instanton solutions and their relation to the ideal

In the previous section it was shown how to construct anti-self-dual gauge fields
in the case that the zero-mode annihilates some states. Then the natural question is,
how should the states annihilated by the zero-modes be determined? In this section
the answer to this question is given in the case that the gauge group is U(1).

Let us consider the solution to the equation

Dz |U〉 = 0, (4.1)

where |U〉 ∈ H⊕k ⊕ H⊕k ⊕ H; i.e. the components of |U〉 are vectors in the Fock
space H. We call |U〉 a “vector zero-mode”, and call Ψ in (3.5) an “operator zero-
mode”. We can construct an operator zero-mode if we know all the vector zero-
modes. The advantage of considering vector zero-modes is that we can relate them
to the ideal discussed in Refs. 9) and 10). The point is that we can regard vector
zero-modes as holomorphic vector bundles described in purely commutative terms.
Noncommutativity appears when we construct an operator zero-mode treating all
the vector zero-modes as a whole.

Let us write

|U〉 =




|u1〉 ,
|u2〉 ,
| f 〉 ,


 ,

|u1〉 ≡ u1(z1, z2) | 0, 0 〉 ,
|u2〉 ≡ u2(z1, z2) | 0, 0 〉 ,
| f 〉 ≡ f(z1, z2) | 0, 0 〉 ,

(4.2)
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Instantons on Noncommutative R4 and Projection Operators 1053

where |u1〉 , |u2〉 ∈ H⊕k; i.e. they are vectors in V = Ck and vectors in H, and | f 〉 ∈
H. The space of solutions of (4.1) (i.e. kerDz = ker τz ∩ kerσ†

z � ker τz/Imσz
∗)) is

isomorphic to the ideal I defined by

I =
{
f(z1, z2)

∣∣∣∣ f(B1, B2) = 0
}
, (4.3)

where B1 and B2 together with I and J give a solution to (3.1). In the U(1) case,
one can show J = 0, and the isomorphism is given by the inclusion of the third factor
in (4.2): 9), 10)

ker τz/Imσz ↪→ O
C

2 : |U〉 =




|u1〉
|u2〉
| f 〉


 ↪→ f(z1, z2). (4.4)

Let us define the “ideal state” by

|ϕ〉 ∈ ideal states of I ⇐⇒ ∃f(z1, z2) ∈ I, |ϕ〉 = f(z1, z2) |0, 0〉 (4.5)

and denote the space of all the ideal states by HI . We define H/I∗∗) as a subspace
in H orthogonal to HI :

|g〉 ∈ H/I ⇐⇒ ∀f(z1, z2) ∈ I, 〈0| f †(z̄1, z̄2) |g〉 = 0. (4.6)

Here H/I is a k-dimensional space. 10) Let us denote the complete basis of H/I by
| gα 〉 , α = 1, 2, · · · , k, and the orthonormalized complete basis of HI by | fi 〉 , i =
k + 1, k + 2, · · ·. Altogether, they span the complete basis of H. We can label them
by the positive integer n:

{ |hn 〉 , n ∈ Z+} = { | gα 〉 , | fi 〉 , α = 1, 2, · · · , k, i = k + 1, k + 2, · · · }. (4.7)

As we can see from (4.4), the zero-modes (4.1) are completely determined by the
ideal fi(z1, z2): 10)

|U(fi)〉 =




|u1(fi)〉
|u2(fi)〉
| fi 〉


 . (4.8)

We can construct the operator zero-mode (3.5) with the formula

Ψ =
∑

i

∑
n

(Ψ)in |U(fi)〉 〈hn| , (4.9)

∗) Note that since τzσz = 0 [see (2.29)], ker τz/Imσz is well defined. The relation ker τz∩kerσ†
z �

ker τz/Imσz is understood as follows: The condition kerσ†
z | U 〉 = 0 fixes the “gauge freedom” mod

Im σz in ker τz/Imσz.
∗∗) The meaning of this notation is as follows: H/I corresponds to C[z1, z2]/I, where C[z1, z2]

is the ring of polynomials of z1 and z2.
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1054 K. Furuuchi

where (Ψ)in is a commuting number. From (4.9), one can see that there are infinitely
many operator zero-modes. Since the Fock space H is divided into two orthogonal
subspaces, HI and H/I , through the isomorphism (4.3), it is natural to restrict the
action of operators to HI . We call Ψ0 the “minimal operator zero-mode” if it has
the form

Ψ0 =
∑
i,j

(Ψ0)ij |U(fi)〉 〈fj | , |fj〉 ∈ HI ,

∀j, ∃i such that (Ψ0)ij �= 0; (4.10)

i.e. (Ψ0)in = 0 for n = α = 1, 2, · · · , k. We call it the “normalized” minimal operator
zero-mode if it is normalized in HI :

Ψ †
0Ψ0 = PI , (4.11)

where PI is a projection operator which represents the projection on HI , the space of
ideal states. The uniqueness of the normalized minimal operator zero-mode up to the
gauge transformation (2.16) is demonstrated in Appendix B. This implies that the
normalized minimal operator zero-mode contains minimal information regarding the
ideal (4.3). From the above definition, the minimal operator zero-mode annihilates
states in H/I ; i.e. Ψ0 |ϕ〉 = 0 for |ϕ〉 ∈ H/I . Note that if we write

Ψ0 =




ψ1

ψ2

ξ


 , (4.12)

then ξ |ϕ〉 = 0 ⇒ ψ1 |ϕ〉 = ψ2 |ϕ〉 = 0. Hence the states annihilated by the minimal
operator zero-mode Ψ0 are completely determined by the third factor ξ in (4.12).

An interesting point is that the noncommutative operators appear from the ideal
described in purely commutative terms by treating an infinite number of elements
of the ideal simultaneously.

As an illustration, let us construct a U(1) one-instanton solution from the ideal.
First, let us recall the U(1) one-instanton solution constructed in Ref. 12). The
solution to the modified ADHM equations (3.1) is given by

B1 = B2 = 0, I =
√

ζ , J = 0. (4.13)

The following is a solution to the equation DzΨ̃0 = 0:

Ψ̃0 =




ψ̃1

ψ̃2

ξ̃


 =




√
ζz̄2√
ζz̄1

(z1z̄1 + z2z̄2)


 . (4.14)

Note that all the components of Ψ̃0 annihilate |0, 0〉. As a consequence, Ψ̃ †
0 Ψ̃0 =

(z1z̄1 +z2z̄2)(z1z̄1 +z2z̄2 +ζ) annihilates |0, 0〉. Therefore, the inverse of (z1z̄1 +z2z̄2)
is only defined in the subspace of the Fock space where |0, 0〉 is projected out:

(z1z̄1 + z2z̄2)−1 := P (z1z̄1 + z2z̄2)−1P, (4.15)
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where P is the projection operator that projects out |0, 0〉:

P = IdH − |0, 0〉 〈0, 0| . (4.16)

Therefore

Ψ0 = Ψ̃0(Ψ̃ †
0 Ψ̃0)−1/2 (4.17)

is normalized as Ψ †
0Ψ0 = P .

Let us reconstruct this zero-mode from the ideal. The ideal that corresponds
to (4.13) is generated by z1 and z2, which we represent as I = (z1, z2). The basis
vector of H/I is |0, 0〉, which is orthogonal to all the ideal states. We can use
|n1, n2〉 , (n1, n2) �= (0, 0), as basis vectors of HI , the space of ideal states. The
solutions of Dz |U〉 = 0 are given by

|Un1n2〉 =




|u1n1n2〉
|u2n1n2〉
| fn1n2 〉


 =




√
n2 |n1, n2 − 1〉√
n1 |n1 − 1, n2〉

1√
2
(n1 + n2) |n1, n2〉


 , (n1, n2) �= (0, 0). (4.18)

From (4.18), we obtain the operator zero-mode DzΨ = 0:

Ψ =
∑

(m1,m2)
=(0,0)

∑
(n1,n2)

(Ψ)(m1,m2)(n1,n2) |Um1m2〉 〈n1, n2| . (4.19)

The normalized minimal operator zero-mode Ψ0 is required to satisfy

Ψ0 =
∑

(m1,m2)
=(0,0)

∑
(n1,n2)
=(0,0)

(Ψ)(m1,m2)(n1,n2) |Um1m2〉 〈n1, n2| ,

Ψ †
0Ψ0 = IdH − |0, 0〉 〈0, 0| . (4.20)

From the normalization condition in (4.20), we obtain

∑
(m1,m2)
=(0,0)

1
2

(m1 + m2)(m1 + m2 + 2) (Ψ †)(l1,l2)(m1,m2)(Ψ)(m1,m2)(n1,n2)

= δ(l1,l2)(n1,n2). (4.21)

The solution of (4.21) is

(Ψ0)(m1,m2)(n1,n2) =

√
2

(n1 + n2)(n1 + n2 + 2)
δ(m1,m2)(n1,n2) . (4.22)

Equations (4.20) and (4.22) are equivalent to (4.14) and (4.17).

4.2. Some U(1) instanton solutions

Construction of the operator zero-mode from the vector zero-modes is useful for
the purpose of understanding the notion of the minimal operator zero-mode. But
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1056 K. Furuuchi

in some simple cases, it is easier to directly look for the operator zero-modes. It is
interesting to observe that the operator zero-modes that are most naturally obtained
actually annihilate states in H/I .
U(1) two-instanton solution∗)

Let us study the two-instanton solutions that are degenerateing at the origin.
The corresponding solution to the matrix equations (3.1) is given by

B1 =

(
0

√
ζλ1

0 0

)
, B2 =

(
0

√
ζλ2

0 0

)
, I =

(
0√
2ζ

)
, J = 0, (4.23)

where λ1 and λ2 are complex numbers satisfying |λ1|2 + |λ2|2 = 1. Note that B1

and B2 are upper-half triangular matrices. λ1 and λ2 are parameters that represents
the direction between two instantons before they collide and degenerate. 10) 20) The
corresponding ideal is I =

(
z2
1 , −λ2z1 + λ1z2

)
. Hence the states orthogonal to all

the ideal states are annihilated by z̄2
1 , −λ∗

2z̄1 + λ∗
1z̄2. The states annihilated by z̄2

1

is |0, n2〉 and |1, n2〉 for all non-negative integers n2. In order to describe the states
annihilated by −λ∗

2z̄1 +λ∗
1z̄2, it is simpler to use the basis constructed by the rotated

creation and annihilation operators z′ and z̄′ defined as follows:

z′1 ≡ λ∗
1z1 + λ∗

2z2, z′2 ≡ −λ2z1 + λ1z2,

|0, 0〉 = |0, 0〉λ ,√
2
ζ
z′1
∣∣n′

1, n
′
2

〉
λ =

√
n′

1 + 1
∣∣n′

1 + 1, n′
2

〉
λ ,

√
2
ζ
z̄′1
∣∣n′

1, n
′
2

〉
λ =

√
n′

1

∣∣n′
1 − 1, n′

2

〉
λ ,

√
2
ζ
z′2
∣∣n′

1, n
′
2

〉
λ =

√
n′

2 + 1
∣∣n′

1, n
′
2 + 1

〉
λ ,

√
2
ζ
z̄′2
∣∣n′

1, n
′
2

〉
λ =

√
n′

2

∣∣n′
1, n

′
2 − 1

〉
λ .

(4.24)

Then the states annihilated by z̄′2 = −λ∗
2z̄1 +λ∗

1z̄2 are |n′
1, 0〉λ for all non-negative n′

1.
Therefore the basis vectors of the states orthogonal to all the ideal states are |0, 0〉
and |1, 0〉λ. Now let us study operator zero-mode. The (unnormalized) minimal
operator zero-mode can be directly obtained from (4.23):

Ψ̃0 =




ψ̃1

ψ̃2

ξ̃


 , ψ̃1 =

( √
ζz̄2z̄

′
1

z̄2
ζ
2(N̂ − 1) + ζλ1z̄

′
2

)
,

ψ̃2 =

( √
ζz̄1z̄

′
1

z̄1
ζ
2(N̂ − 1) − ζλ2z̄

′
2

)
,

ξ̃ =
1√
2ζ

(
ζ

2

)2 (
N̂(N̂ − 1) + 2n′

2

)
, (4.25)

∗) Although we only consider solutions of the matrix equation (3.1) and do not construct a gauge
field explicitly, we call the solutions “instanton solutions”, because in principle we can construct

instantons from the matrix data. We regard k as the number of instantons.
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where ζ
2N̂ ≡ z1z̄1 + z2z̄2, ζ

2 n̂
′
2 ≡ z′2z̄′2. The zero-mode represented by (4.25) is truly

minimal: |0, 0〉 and |1, 0〉λ are annihilated by all the components of Ψ̃0.
U(1) three-instanton solutions

Let us consider the k = 3 solution corresponding to the following simple ideal:∗)

I =


f(z1, z2) =

∑
n1,n2

an1n2z
n1
1 zn2

2

∣∣∣∣∣∣
an1n2 = 0 when (n1, n2) belongs
to the Young tableau (Y1).


 , (4.26)

(1, 0)
(0, 0) (0, 1)

(Y1)
. (4.27)

The solution to (3.1) is given by

B1 =




0 0 0
0 0

√
ζ

0 0 0


 , B2 =




0 0
√
ζ

0 0 0
0 0 0


 , I =




0
0√
3ζ


 , J = 0.

(4.28)

We can find the (unnormalized) minimal operator zero-mode:

Ψ̃0 =




ψ̃1

ψ̃2

ξ̃


 , ψ̃1 =




√
ζz̄2

2√
ζz̄1z̄2

ζ
2N̂ z̄2


 , ψ̃2 =




√
ζz̄1z̄2√
ζz̄2

1
ζ
2N̂ z̄1


 ,

ξ̃ =
1√
3ζ

(
ζ

2

)2

N̂(N̂ − 1). (4.29)

The zero-mode represented by (4.29) actually annihilates |0, 0〉 , |1, 0〉 , |0, 1〉 and
hence is minimal.

Next consider the ideal corresponding to the following Young tableau (Y2):

(2, 0)
(1, 0)
(0, 0)
(Y2)

. (4.30)

The solution to (3.1) is given by

B1 =


 0

√
ζ 0

0 0
√

2ζ
0 0 0


 , B2 = 0, I =


 0

0√
3ζ


 , J = 0. (4.31)

∗) This kind of ideal corresponds to fixed points of the T 2 action in Refs. 9) and 10).

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/5/1043/1806389 by guest on 21 August 2022



1058 K. Furuuchi

The (unnormalized) minimal operator zero-mode is given as

Ψ̃0 =




ψ̃1

ψ̃2

ξ̃


 , ψ̃1 =




2ζz̄2
1 z̄2√

2ζ ζ
2N̂ z̄1z̄2(

ζ
2

)2 {
(N̂ + 1)(N̂ + 4) − 2(n̂1 − 1)

}
z̄2


 ,

ψ̃2 =




2ζz̄3
1√

2ζ ζ
2N̂ z̄2

1(
ζ
2

)2 {
(N̂ + 1)N̂ − 2n̂1

}
z̄1


 ,

ξ̃ =
1√
3ζ

(
ζ

2

)3

N̂
{
N̂(N̂ + 3) − 2(3n̂1 − 1)

}
. (4.32)

We can check that the zero-mode represented by (4.32) annihilates |0, 0〉, |1, 0〉, |2, 0〉 .

§5. U(N) instantons and projection operators

In the previous section we clarified the notion of the minimal operator zero-mode
for the U(1) case. In this section we study the U(2) instanton solutions and observe
that the projection of states by zero-modes also occurs. Since the U(N) instanton
solutions are essentially embeddings of U(2) instanton solutions in U(N), this implies
that the projection of states is a general phenomenon in the ADHM construction of
instantons on noncommutative R4. In the following, we make two observations:

1. The minimal operator zero-mode appears in the U(1) subgroup of the U(2)
gauge group. It annihilates some states even when the size of the instanton is
not small.

2. When the size of the instanton becomes small, only the contribution from the
U(1) subgroup described by the minimal operator zero-mode remains.

Although we have not defined a minimal operator zero-mode for the U(N) case,
zero-modes similar to the minimal operator zero-mode in the U(1) case appear in
explicit solutions. Hence in the above we have also referred to them as minimal
operator zero-modes. The second observation can be understood as follows. We
may define a “small instanton” on noncommutative R4 as the J = 0 solution of the
modified ADHM equations (3.1). Then the solution is essentially the embedding of
a U(1) instanton in U(N).
U(2) one-instanton solution

The solution to the modified ADHM equations (3.1) is given by∗)

B1 = B2 = 0, I =
( √

ρ2 + ζ 0
)
, J† =

(
0 ρ

)
, (5.1)

∗) There is of course a family of solutions with different orientation in the gauge group U(2).

The conclusions in this case, however, are the same.
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where ρ is a real non-negative number that parameterizes the size of the instanton.
The two “orthonormal” operator zero-modes of Dz are given by

Ψ (1) =




ψ
(1)
1

ψ
(1)
2

ξ(1)


 =




√
ρ2 + ζ z̄2√
ρ2 + ζ z̄1

(z1z̄1 + z2z̄2)
0



(
(z1z̄1 + z2z̄2)(z1z̄1 + z2z̄2 + ζ + ρ2)

)−1/2
,

(5.2)

Ψ (2) =




ψ
(2)
1

ψ
(2)
2

ξ(2)




=




−ρz1

ρz2

0
(z1z̄1 + z2z̄2 + ζ)



(
(z1z̄1 + z2z̄2 + ζ)

(
z1z̄1 + z2z̄2 + ζ + ρ2

))−1/2
.

(5.3)

The zero-mode Ψ (1) is a straightforward modification of (4.17). Ψ (1) annihilates |0, 0〉
for any values of ρ, and is normalized in the subspace where |0, 0〉 is projected out.
The zero-mode Ψ (2) annihilates no state in H and is manifestly non-singular even
if ρ = 0. When ρ = 0, we have ψ

(2)
1 = ψ

(2)
2 = 0, and from (3.8), Ψ (2) does not

contribute to the field strength. Therefore the structure of the instanton at ρ = 0
is completely determined by the U(1) subgroup described by the minimal operator
zero-mode Ψ (1).
U(2) two-instanton solution

We can also construct a two-instanton solution and check the assertion made
in the beginning of this section. Here we only construct one simple solution. The
solution of the modified ADHM equations (3.1) is given by

B1 =

(
0

√
ζ

0 0

)
, B2 = 0, I =

(
0 0√

2(ρ2 + ζ) 0

)
, J† =

(
0 0
0 ρ

)
. (5.4)

We can obtain two (unnormalized) orthogonal zero-modes:

Ψ (1) =




ψ
(1)
1

ψ
(1)
2

ξ(1)


 , ψ

(1)
1 =

( √
ρ2 + ζ

√
ζz̄1z̄2√

ρ2 + ζz̄2(z1z̄1 + z2z̄2 + ζ
2)

)
,

ψ
(1)
2 =

( √
ρ2 + ζ

√
ζz̄2

1√
ρ2 + ζz̄1(z1z̄1 + z2z̄2 − ζ

2)

)
,

ξ(1) =

(
1√
2
(z1z̄1 + z2z̄2)(z1z̄1 + z2z̄2 − ζ

2) + ζz2z̄2

0

)
, (5.5)
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and

Ψ (2) =




ψ
(2)
1

ψ
(2)
2

ξ(2)


 , ψ

(2)
1 =

(
ρ
√
ζz̄2z2

ρz1(z1z̄1 + z2z̄2 + ζ
2)

)
,

ψ
(2)
2 =

(
ρ
√
ζz̄1z2

ρz2(z1z̄1 + z2z̄2 + ζ
2)

)
,

ξ(2) =

(
0

1√
2

(
(z1z̄1 + z2z̄2)(z1z̄1 + z2z̄2 + ζ

2) + ζ(z2z̄2 + ζ
2)
) )

. (5.6)

Here, Ψ (1) is a slight modification of (4.25) with (λ1, λ2) = (1, 0). It annihilates |0, 0〉
and |1, 0〉. Ψ (2) is apparently non-singular, and ψ

(2)
1 = ψ

(2)
2 = 0 when ρ = 0. Hence,

when the size of the instanton is small, only the U(1) subgroup described by Ψ (1)

contributes to the field strength.

§6. D-instanton creates a hole in the D3-brane

The existence of the projection operator forces us to consider the reduced Fock
space. In this section it is shown that the projection can be interpreted as a mod-
ification of spacetime topology. Usual Yang-Mills theory cannot describe such a
spacetime topology change. However, as we see below, the IIB matrix model 3), 4)

gives an appropriate framework. The action of the IIB matrix model is obtained by
dimensionally reducing the ten-dimensional U(N) super Yang-Mills theory down to
zero dimensions:∗)

S = − 1
g2

Tr
(

1
4

[Xµ, Xν ][Xµ, Xν ] +
1
2
Θ̄Γµ[Xµ, Θ]

)
, (6.1)

where Xµ and Θ are N × N hermitian matrices and each component of Θ is a
Majorana-Weyl spinor. The action (6.1) has the following N = 2 supersymmetry:

δ(1)Θ =
i

2
[Xµ, Xν ]Γ µνε(1),

δ(1)Xµ = iε̄(1)ΓµΘ,

δ(2)Θ = ε(2),

δ(2)Xµ = 0. (6.2)

The classical equation of motion is given by

[Xµ, [Xµ, Xν ]] = 0. (6.3)

∗) We have slightly changed the notation from that in the previous sections: In this section, N

denotes the rank of the gauge group of the IIB matrix model. We only consider U(1) instantons in

the following.
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The IIB matrix model has classical D-brane solutions:

Xµ = i∂̂µ,

[i∂̂µ, i∂̂ν ] = −iBµν , (6.4)

where the components of the matrix Bµν are real constants. Hereafter we consider
the (Euclidean) D3-brane solution; i.e., the rank of Bµν is four and Bµν = 0 when
µ, ν �= 1, 2, 3, 4. We define “coordinate matrices” x̂µ by

x̂µ = −iθµν ∂̂ν , (6.5)

where θµν is an inverse matrix of Bµν . Then their commutation relations are the
same as those in (2.1):

[x̂µ, x̂ν ] = iθµν . (6.6)

Hence by defining θµν (or equivalently Bµν) as self-dual as in (2.2); i.e. θ12 = θ34 = ζ
4 ,

and representing operators by infinite rank matrices,∗) we can embed the instanton
solution (3.12) in the IIB matrix model:

Xµ = P (i∂̂µ + iAµ)P, (6.7)

where Aµ is the U(1) instanton solution obtained through the ADHM construction:

Aµ = Ψ †[∂̂µ, Ψ ]P. (6.8)

Here Ψ is a zero-mode (3.5), and P is the projection operator determined by the
zero-mode, as described in §4. From (6.7) the solution can be represented within
reduced Fock space PH :=

∑
(n1,n2)∈Z2

≥0
C(P |n1, n2〉). Therefore, the solution is

realized by N ×N matrices with N = (dimH− k), where k is an instanton number.
Note that in (6.7), the instanton and geometry (D3-brane) are combined into a single
solution. Indeed, we can rewrite (6.7) into a simpler form:

Xµ = P (i∂̂µ + iAµ)P

= P (i∂̂µ)P + P (iΨ †∂̂µΨ)P − P (iΨ †ΨP ∂̂µ)P

= iPΨ †∂̂µΨP = iΨ †∂̂µΨ. (6.9)

From (6.7) we obtain

[Xµ, Xν ] = P (−iBµν − F−
µνADHM)P. (6.10)

The derivation is similar to (3.12)–(3.16), and F−
µνADHM is anti-self-dual. From (6.10)

it is easy to check that Xµ in (6.9) solves the equation of motion (6.3).

∗) (6.4) is not satisfied in the U(N) IIB matrix model with finite N .
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Let us consider the supersymmetry transformation in this background:

δ(1)Θ =
i

2
[Xµ, Xν ]Γ µνε(1)

=
i

2
P

(
−iBµν − F−

µνADHM

1 + Γ5

2

)
PΓµνε(1),

δ(2)Θ = ε(2). (6.11)

From (6.11) we can see that the solution (6.7) preserves one fourth of the supersym-
metry: 4)

Γ5ε
(1) = −ε(1),

ε(2) = −1
2
PBµνPΓµνε(1). (6.12)

Note that the projection operator is an identity operator in the reduced Fock space
PH. Hence, the second supersymmetry transformation is proportional to the identity
matrix in the U(N) IIB matrix model, with N = dimH− k.

The physical interpretation of the projection in this setting is as follows. The
matrix Bµν in (6.4) is interpreted as a NS-NS B-field in the D3-brane worldvolume. 4)

We have set Bµν self-dual. Since the self-dual B-field in the D3-brane induces neg-
ative D-instanton charge,∗) we can regard that the D3-brane is made of infinitely
many constituent anti-D-instantons. Now let us consider D-instantons within this
infinite number of anti-D-instantons. In order for this configuration to become BPS,
it is necessary to change the configurations of constituent anti-D-instantons. The
projection removes anti-D-instantons at the positions of D-instantons and creates
holes in the D3-brane worldvolume.

We can express the holes created by the projection by rewriting the above op-
erator formulas using ordinary functions and the star-product. More precisely, we
map operators to normal symbols (see Appendix C). ∗∗) For example, consider the
projection corresponding to the ideal I generated by (z1−wi

1, z2−wi
2) (i = 1, · · · , k).

Then, all normal symbols corresponding to operators acting in the reduced Fock
space EndPH vanish at (z1, z2) = (wi

1, w
i
2) (i = 1, · · · , k). This is equivalent to the

assertion that the points (z1, z2) = (wi
1, w

i
2) (i = 1, · · · , k) do not exist, or appear as

holes.
Using operator symbols, one can show that the projection removes k units of the

anti-D-instanton charge. Let us calculate the (anti-)instanton number in the case

∗) Our convention is: D-instanton ∼ instanton ∼ anti-self-dual.
∗∗) Here we use normal symbols only to give concrete expressions of holes in R4 ≈ C2. It may be

interesting to formulate field theory on noncommutative R4 using normal symbols. It may also be

interesting to investigate the relation to superstring theory. These are, however, beyond the scope

of this paper.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/5/1043/1806389 by guest on 21 August 2022



Instantons on Noncommutative R4 and Projection Operators 1063

that there are no D-instantons. Using (C.4), we have

1
16π2

∫
d4xBµνB̃

µν =
1

16π2

(
2π

ζ

4

)2

TrH 4
(

4
ζ

)2

= TrH,

B̃µν =
1
2
εµν

ρσBρσ. (6.13)

Since the projection reduces the dimension of the Fock space by k, it removes k

units of anti-D-instanton charge. (Of course there are also contributions from the
anti-self-dual part. Here we only mention the role of the projection.) This result
also supports the idea that the projection removes anti-D-instantons.

§7. Conclusions and speculations

In this paper we have found that the appearance of projection operators is a
general phenomenon in the ADHM construction on noncommutative R4. We have
determined how to treat these projections. The existence of the projection operator
forces us to consider gauge fields on reduced Fock space. Since noncommutative
R4 is defined by an algebra over the entire Fock space, this projection implies the
change of the spacetime topology from (noncommutative) R4. In order to describe
such a change of the spacetime topology, it seems appropriate to consider a theory
which can describe both the gauge theory and the geometry. Therefore we have
embedded the instanton solution in the IIB matrix model. In the IIB matrix model,
the instanton and the geometry are combined into a single classical solution.

In Ref. 13) it is conjectured that the U(1) instanton on noncommutative R4 ≈
C2 can be transformed into a U(1) instanton on the commutative Kähler manifold
which is a blowup of C2, via the field redefinition described in Ref. 15). The ideal
used to describe the projection in this paper is essentially the same as that used
to describe the blowup in Ref. 13). Since both instantons are constructed from the
same ADHM data, the correspondence is of course one-to-one. It is interesting to
understood the correspondence as a field redefinition along the lines of Ref. 15).

In §6 we have embedded instanton solutions into the IIB matrix model. Instan-
tons on noncommutative R4 represent D-instantons within the D3-brane worldvol-
ume. We interpret the D3-brane as bound states of infinitely many anti-D-instantons.
Then the bound states of D-instantons and the D3-brane can be interpreted as bound
states of D-instantons and anti-D-instantons. As shown in (6.11) and (6.12), this
co-existence of positive and negative D-instanton charges preserves one fourth of
the supersymmetry. However, anti-D-instantons are removed at the positions of
D-instantons. This fact strongly suggests a relation to brane-anti-brane pair anni-
hilation. 27) The IIB matrix model describes the above D-instanton-D3-brane bound
states simply as its classical solution. This fact indicates the power of the IIB ma-
trix model in the description of the fate of brane-anti-brane unstable systems. It
is also straightforward to embed the noncommutative instanton solution into the
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BFSS matrix model. It is interesting to study the instanton solution in the IIB
matrix model or the BFSS matrix model from the point of view of brane-anti-brane
pair annihilation. 28) In order to classify the topological charges which will be pre-
served during pair annihilations, investigations from K-theoretical viewpoints may
be important. 29), 30)

From the above considerations, the D3-brane may be regarded as a kind of
“Dirac sea” for D-instantons. This gives new viewpoints for the second quantization
of branes. 20), 21)
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Appendix A
The Absence of a Zero-Mode of ✷z

In this appendix we show that ✷z in (3.4) has no zero-mode. Suppose

✷z |v〉 = 0 (A.1)

for some |v〉, where |v〉 ∈ H⊕k (i.e. |v〉 is a vector in V = Ck and a vector in H).
Then,

〈v|✷z |v〉 = 0

⇒ 〈v| τzτ
†
z |v〉

= 〈v| (B1 − z1)(B†
1 − z̄1) |v〉 + 〈v| (B2 − z2)(B†

2 − z̄2) |v〉 + 〈v| II† |v〉 = 0,

〈v|σ†
zσz |v〉

= 〈v| (B†
1 − z̄1)(B1 − z1) |v〉 + 〈v| (B†

2 − z̄2)(B2 − z2) |v〉 + 〈v|J†J |v〉 = 0.

(A.2)

Since the norm of vectors in V is non-negative, we have

(B†
1 − z̄1) |v〉 = 0, (B†

2 − z̄2) |v〉 = 0, I† |v〉 = 0,

(B1 − z1) |v〉 = 0, (B2 − z2) |v〉 = 0, J |v〉 = 0. (A.3)

From (A.3), we obtain

〈v| ζ |v〉 = 〈v| [B1, B
†
1] + [B2, B

†
2] + II† − J†J |v〉

= 〈v| [z1, z̄1] + [z2, z̄2] |v〉
= −〈v| ζ |v〉 . (A.4)

This implies that |v〉 = 0.
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Appendix B
The Uniqueness of the Normalized Minimal Operator Zero-Mode

In this appendix we demonstrate the uniqueness of the normalized minimal op-
erator zero-mode (up to a gauge transformation) when the gauge group is U(1). Let
us consider the operator zero-mode with the following form:

Ψ0 =
∑
i,j

(Ψ0)ij |U(fi)〉 〈fj | . (B.1)

Then its norm is

Ψ †
0Ψ0 =

∑
(Ψ †

0)ik(Ψ0)lj |fi〉 〈U(fk)|U(fl)〉 〈fj | , (B.2)

where

〈U(fk)|U(fl)〉 = 〈u1(fk)|u1(fl)〉 + 〈u2(fk)|u2(fl)〉 + 〈fk|fl〉 . (B.3)

Let us rewrite the equation Dz |U(fi)〉 = 0 as

D u(f i) = −f i, (B.4)

where

D =

(
B2 − z2 B1 − z1

−(B†
1 − z̄1) B†

2 − z̄2

)
, u(f i) =

(
|u1(fi)〉
|u2(fi)〉

)
, f i =

(
|fi〉 I

0

)
.

(B.5)

Since the correspondence between the elements of the ideal and vector zero-modes
is one-to-one, we can consider the inverse operator of D:

u(f i) = − 1
D

f i. (B.6)

Then, (B.3) can be written as

〈U(fk)|U(fl)〉
= u†(fk) u(f l) + f †

kf l = f †
k

(
1

DD† + 1
)

f l

= 〈fk| I†
((

1
DD†

)
11̇

+ 1
)
I |fl〉 , (B.7)

where we denote the components of (DD†)−1 as

(DD†)−1 =

(
(DD†)−1

11̇
(DD†)−1

12̇

(DD†)−1
21̇

(DD†)−1
22̇

)
. (B.8)

From (B.7), the matrix Ckl = 〈U(fk)|U(fl)〉 has no zero-eigenvalue vector, and we
can consider (C−1)kl. The normalized minimal operator zero-mode is uniquely de-
termined (up to a gauge transformation):

(Ψ0)ij = (C−1/2)ij . (B.9)
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Appendix C
Calculations Using the Method of Operator Symbols

We can represent the equations over the algebra Aζ by mapping operators to
ordinary c-number functions (operator symbols) and using the star product. Some
calculations become simpler when we use operator symbols. The map from operators
to ordinary functions depends on operator ordering procedures. In order to express
holes in the D3-brane (see §6), we utilize a normal symbol that corresponds to
the normal ordering. Here we review the properties of this normal symbol. (For
more detailed discussion on the operator symbols, see for example 33) and references
therein.) In this appendix, we use the symbol ˆ to denote operators: the x̂µ are
noncommutative operators and the xµ are c-number coordinates of R4.

Let us consider a normal-ordered operator of the form

f̂(x̂) =
∫

d4k

(2π)4
f̃(k) : eikx̂ : , (C.1)

where kx̂ := kµx̂
µ. Here : O : denotes the normal ordering of the operator O. For

the operator valued function (C.1), the corresponding normal symbol is defined by

fN(x) =
∫

d4k

(2π)4
f̃(k) eikx , (C.2)

where the xµ are commuting coordinates of R4. We define ΩN as a map from
operators to the normal symbols:

ΩN (f̂(x̂)) = fN(x) :=
∫

d4k

(2π)4

((
2π

ζ

4

)2

TrH
{
f̂(x̂) : e−ikx̂ :

})
eikx. (C.3)

Note that from the relation TrH
{

: exp (ikx̂) :
}

=
(
2π 4

ζ

)2
δ(4)(k), it follows that

(
2π

ζ

4

)2

TrH f̂(x̂) =
∫

d4x fN(x). (C.4)

The inverse map of ΩN is given by

Ω−1
N (f(x)) = f̂N(x̂) :=

∫
d4k

(2π)4

(∫
d4xf(x) e−ikx

)
: eikx̂ : . (C.5)

The star product of functions is defined by

f(x) <ΩN
g(x) := ΩN (Ω−1

N (f(x))Ω−1
N (g(x))) . (C.6)

Since

: eikx̂ : : eikx̂ := ew̄ẑewˆ̄zew̄′ẑew′ˆ̄z = e
ζ
2
ww̄′

e(w̄+w̄′)ẑe(w+w′)ˆ̄z, (C.7)
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where

w1 = − i

2
(k2 + ik1), w2 = − i

2
(k4 + ik3),

w̄ẑ = w̄1ẑ1 + w̄2ẑ2, etc., (C.8)

the explicit form of the star product is given by

f(z, z̄) <ΩN
g(z, z̄) = e

ζ
2

∂
∂z̄

∂
∂z′ f(z, z̄)g(z′, z̄′)

∣∣∣∣
z′=z,z̄′=z̄

. (C.9)

From the definition (C.6), it is seen that the star product is associative:

(f(x) <ΩN
g(x) ) <ΩN

h(x) = f(x) <ΩN
(g(x) <ΩN

h(x) ). (C.10)

If we use coherent states, the expression of the normal symbol becomes simpler. The
coherent states |z̄1, z̄2〉 are eigenstates of the annihilation operators ˆ̄z1, ˆ̄z2:

ˆ̄z1 |z̄1, z̄2〉 = z̄1 |z̄1, z̄2〉 ,

ˆ̄z2 |z̄1, z̄2〉 = z̄2 |z̄1, z̄2〉 . (C.11)

Then the normal symbol of the operator f̂ is given by

fN(z, z̄) = 〈z̄1, z̄2| f̂ |z̄1, z̄2〉 . (C.12)

(C.12) follows from (C.1), (C.2) and the relation

〈z̄1, z̄2| : eikx̂ : |z̄1, z̄2〉 = 〈z̄1, z̄2| ew̄ẑewˆ̄z |z̄1, z̄2〉 = ew̄zewz̄

= eikx. (C.13)

Here we have normalized the coherent states as 〈z̄1, z̄2 |z̄1, z̄2〉 = 1. From (C.12) it
is easy to see that the normal symbol fN(z, z̄) vanishes at (z1, z2) when the corre-
sponding operator f̂ annihilates |z̄1, z̄2〉 or 〈z̄1, z̄2|; i.e.

f̂ |z̄1, z̄2〉 = 0 or 〈z̄1, z̄2| f̂ = 0 =⇒ fN(z, z̄) = 0. (C.14)
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