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We review and elaborate on certain aspects of the connections between instanton counting in
maximally supersymmetric gauge theories and the computation of enumerative invariants of
smooth varieties. We study in detail three instances of gauge theories in six, four, and two
dimensions which naturally arise in the context of topological string theory on certain noncompact
threefolds. We describe how the instanton counting in these gauge theories is related to the
computation of the entropy of supersymmetric black holes and how these results are related
to wall-crossing properties of enumerative invariants such as Donaldson-Thomas and Gromov-
Witten invariants. Some features of moduli spaces of torsion-free sheaves and the computation of
their Euler characteristics are also elucidated.

1. Introduction

Topological theories in physics usually relate BPS quantities to geometrical invariants of the
underlyingmanifolds onwhich the physical theory is defined. For the purposes of the present
article, we will focus on two particular and well-known instances of this. The first is instanton
counting in supersymmetric gauge theories in four dimensions, which gives the Seiberg-
Witten and Donaldson-Witten invariants of four-manifolds. The second is topological string
theory, which is related to the enumerative geometry of Calabi-Yau threefolds and computes,
for example, Gromov-Witten invariants, Donaldson-Thomas invariants, Gopakumar-Vafa
BPS invariants, and key aspects of Kontsevich’s homological mirror symmetry conjecture.

From a physical perspective, these topological models are not simply of academic
interest, but they also serve as exactly solvable systems which capture the physical content
of certain sectors of more elaborate systems with local propagating degrees of freedom. Such
is the case for the models we will consider in this paper, which are obtained as topological
twists of a given physical theory. The topologically twisted theories describe the BPS sectors
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of physical models, and compute nonperturbative effects therein. For example, for certain
supersymmetric charged black holes, the microscopic Bekenstein-Hawking-Wald entropy
is computed by the Witten index of the relevant supersymmetric gauge theory. This is
equivalent to the counting of stable BPS bound states of D-branes in the pertinent geometry,
and is related to invariants of threefolds via the OSV conjecture [1].

From a mathematical perspective, we are interested in counting invariants associated
to moduli spaces of coherent sheaves on a smooth complex projective variety X. To define
such invariants, we need moduli spaces that are varieties rather than algebraic stacks. The
standard method is to choose a polarization onX and restrict attention to semistable sheaves.
If X is a Kähler manifold, then a natural choice of polarization is provided by a fixed Kähler
two-form on X. Geometric invariant theory then constructs a projective variety which is a
coarse moduli space for semistable sheaves of fixed Chern character. In this paper we will
be interested in the computation of suitably defined Euler characteristics of certain moduli
spaces, which are the basic enumerative invariants. We will also compute more sophisticated
holomorphic curve counting invariants of a Calabi-Yau threefold X, which can be defined
using virtual cycles of the pertinent moduli spaces and are invariant under deformations of
X. In some instances the two types of invariants coincide.

An alternative approach to constructing moduli varieties is through framed sheaves.
Then there is a projective Quot scheme which is a fine moduli space for sheaves with a given
framing. A framed sheaf can be regarded as a geometric realization of an instanton in a
noncommutative gauge theory on X [2–4]which asymptotes to a fixed connection at infinity.
The noncommutative gauge theory in question arises as the worldvolume field theory on
a suitable arrangement of D-branes in the geometry. In Nekrasov’s approach [5], the set
of observables that enter in the instanton counting are captured by the infrared dynamics
of the topologically twisted gauge theory, and they compute the intersection theory of the
(compactified) moduli spaces. The purpose of this paper is to overview the enumeration of
such noncommutative instantons and its relation to the standard counting invariants of X.

In the following we will describe the computation of BPS indices of stable D-
brane states via instanton counting in certain noncommutative and q-deformations of
gauge theories on branes in various dimensions. We will pay particular attention to three
noncompact examples which each arise in the context of Type IIA string theory.

(1) D6-D2-D0 bound states in D6-brane gauge theory—These compute Donaldson-
Thomas invariants and describe atomic configurations in a melting crystal model
[6]. This also provides a solid example of a (topological) gauge theory/string
theory duality. The counting of noncommutative instantons in the pertinent
topological gauge theory is described in detail in [7, 8].

(2) D4-D2-D0 bound states in D4-brane gauge theory—These count black hole
microstates and allow us to probe the OSV conjecture. Their generating functions
also appear to be intimately related to the two-dimensional rational conformal field
theory.

(3) D2-D0 bound states in D2-brane gauge theory—These compute Gromov-Witten
invariants of local curves. Instanton counting in the two-dimensional gauge theory
on the base of the fibration is intimately related to instanton counting in the
four-dimensional gauge theory obtained by wrapping supersymmetric D4-branes
around certain noncompact four-cycles C, and also to the enumeration of flat
connections in Chern-Simons theory on the boundary ofC. These interrelationships
are explored in detail in [9–13].
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These counting problems provide a beautiful hierarchy of relationships between topological
string theory/gauge theory in six dimensions, four-dimensional supersymmetric gauge
theories, Chern-Simons theory in three dimensions, and a certain q-deformation of two-
dimensional Yang-Mills theory. They are also intimately related to two-dimensional
conformal field theory.

2. Topological String Theory

The basic setting in which to describe all gauge theories that we will analyse in this paper
within a unified framework is through topological string theory, although many aspects of
these models are independent of their connection to topological strings. In this section, we
briefly discuss some physical and mathematical aspects of topological string theory, and
how they naturally relate to the gauge theories that we are ultimately interested in. Further
details about topological string theory can be found in, for example, [14, 15], or in [16]which
includes a more general introduction. Introductory and advanced aspects of toric geometry
are treated in the classic text [17] and in the reviews [18, 19]. The standard reference for the
sheaf theory that we use is the book [20], while a more physicist-geared introduction with
applications to string theory can be found in the review [21].

2.1. Topological Strings and Gromov-Witten Theory

Topological string theory may be regarded as a theory whose state space is a “subspace”
of that of the full physical Type II string theory. It is designed so that it can resolve the
mathematical problem of counting maps

f : Σg −→ X (2.1)

from a closed oriented Riemann surface Σg of genus g into some target space X. In the
physical Type II theory, any harmonic map f, with respect to chosen metrics on Σg and X,
is allowed. They are described by solutions to second-order partial differential equations,
the Euler-Lagrange equations obtained from a variational principle based on a sigma-model.
The simplification supplied by topological strings is that one replaces this sigma-model on
the worldsheet Σg by a two-dimensional topological field theory, which can be realized as
a topological twist of the original N = 2 superconformal field theory. In this reduction, the
state space descends to its BRST cohomology defined with respect to theN = 2 supercharges,
which naturally carries a Frobenius algebra structure. This defines a consistent quantum
theory if and only if the target space X is a Calabi-Yau threefold, that is, a complex Kähler
manifold of dimension dimC(X) = 3 with trivial canonical holomorphic line bundle KX , or
equivalently trivial first Chern class c1(X) := c1(KX) = 0. We fix a closed nondegenerate
Kähler (1, 1)-form ω on X.

The corresponding topological string amplitudes Fg have interpretations in compacti-
fications of Type II string theory on the product of the target space X with four-dimensional
Minkowski space R3,1. For instance, at genus zero the amplitude F0 is the prepotential for
vector multiplets of N = 2 supergravity in four dimensions. The higher genus contributions
Fg , g ≥ 1 correspond to higher derivative corrections of the schematic form R2T2g−2, where R
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is the curvature and T is the graviphoton field strength. We will now explain how to compute
the amplitudes Fg . There are two types of topological string theories that we consider in turn.

2.1.1. A-Model

The A-model topological string theory isolates symplectic structure aspects of the Calabi-Yau
threefold X. It is built on holomorphically embedded curves (2.1). The holomorphic string
maps f in this case are called worldsheet instantons. They are classified topologically by their
homology classes

β = f∗
[
Σg

]
∈ H2(X,Z). (2.2)

With respect to a basis Si of two cycles on X, one can write

β =
b2(X)∑

i=1

ni[Si], (2.3)

where the Betti number b2(X) is the rank of the second homology group H2(X,Z), and
ni ∈ Z. Due to the topological nature of the sigma-model, the string theory functional
integral localizes equivariantly (with respect to the BRST cohomology) onto contributions
from worldsheet instantons.

The sum over all maps can be encoded in a generating function FX
top(gs,Q) which

depends on the string coupling gs and a vector of variables Q = (Q1, . . . , Qb2(X)) defined as
follows. Let

ti =

∫

Si

ω (2.4)

be the complex Kähler parameters ofX with respect to the basis Si. They appear in the values
of the sigma-model action evaluated on a worldsheet instanton. For an instanton in curve
class (2.3), the corresponding Boltzmann weight is

Qβ :=
b2(X)∏

i=1

(Qi)
ni with Qi := e−ti . (2.5)

Then the quantum string theory is described by a genus expansion of the free energy

FX
top

(
gs,Q

)
=

∞∑

g=0

g
2g−2
s Fg(Q) (2.6)

weighted by the Euler characteristic χ(Σg) = 2 − 2g of Σg , where the genus g contribution to
the statistical sum is given by

Fg(Q) =
∑

β∈H2(X,Z)

Ng,β(X)Qβ,
(2.7)
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and in this formula the classes β /= 0 correspond to worldsheets of genus g. The numbers
Ng,β(X) are called the Gromov-Witten invariants of X and they “count”, in an appropriate
sense, the number of worldsheet instantons (holomorphic curves) of genus g in the two-
homology class β. They can be defined as follows.

A worldsheet instanton (2.1) is said to be stable if the automorphism group Aut(Σg , f)
is finite. Let Mg(X, β) be the (compactified) moduli space of isomorphism classes of stable
holomorphic maps (2.1) from connected genus g curves to X representing β. This is the
instanton moduli space onto which the path integral of topological string theory localizes. It is
a proper Deligne-Mumford stack over C which generalizes the moduli space Mg of “stable”
curves of genus g. While the dimension of Mg is 3g − 3, the moduli space Mg(X, β) is in
general reducible and of impure dimension, as all possible stable maps occur. However, there
is a perfect obstruction theory [22] which generically has virtual dimension

(
1 − g

)
(dimC(X) − 3) +

∫

β

c1(X). (2.8)

When X is a Calabi-Yau threefold, this integer vanishes and there is a virtual fundamental
class [22]

[Mg

(
X, β
)
]
vir ∈ CH0

(
Mg

(
X, β
))

(2.9)

in the degree zero Chow group. In this case, we define

Ng,β(X) :=

∫

[Mg(X,β)]vir
1, (2.10)

and so the Gromov-Witten invariants give the “virtual numbers” of worldsheet instantons.
One generically has Ng,β(X) ∈ Q due to the orbifold nature of the moduli stack Mg(X, β).
One can also define invariants by integrating the Euler class of an obstruction bundle over
Mg(X, β). There are precise recipes for computing the Gromov-Witten invariantsNg,β(X) for
toric varieties X.

2.1.2. B-Model

The B-model topological string theory isolates complex structure aspects of the Calabi-Yau
threefold X. It enumerates the constant string maps which send the entire surface Σg to a
fixed point in X, and hence have trivial curve class β = 0. The Gromov-Witten invariants in
this case are completely understood. There is a natural isomorphism

Mg(X, 0) ∼= Mg ×X, (2.11)

and the degree zero Gromov-Witten invariantsNg,0(X) involve only the classical cohomology
ring H•(X,Q) and “Hodge integrals” over the moduli spaces of Riemann surfaces Mg

defined as follows.
There is a canonical stack line bundle L → Mg with fibre T ∗

Σg
over the moduli point

[Σg], the cotangent space of Σg at some fixed point. We define the tautological class ψ to be
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the first Chern class of L, ψ := c1(L) ∈ H2(Mg ,Q). The Hodge bundle E → Mg is the complex
vector bundle of rank g whose fibre over a point Σg is the spaceH0(Σg , KΣg

) of holomorphic
sections of the canonical line bundle KΣg

→ Σg . Let λj := cj(E) ∈ H2j(Mg ,Q). A Hodge
integral over Mg is an integral of products of the classes ψ and λj .

Explicit expressions for Ng,0(X) for generic threefolds X are then obtained as follows.
Let {γa}a∈A be a basis for H•(X,Z) (modulo torsion), and let D2 ⊂ A index the generators of
degree two. Then one has

N0,0(X) =
∑

ai∈A

1

3!

∫

X

(
γa1 ⌣ γa2 ⌣ γa3

)
,

N1,0(X) = −
∑

a∈D2

1

24

∫

X

γa ⌣ c2(X),

Ng≥2,0(X) =
(−1)g
2

∫

X

(c3(X) − c1(X) ⌣ c2(X))

∫

Mg

λ3g−1,

(2.12)

where the Hodge integral can be expressed in terms of Bernoulli numbers as

∫

Mg

λ3g−1 =

∣∣B2g

∣∣
2g

∣∣B2g−2
∣∣

2g − 2

1(
2g − 2

)
!
. (2.13)

Note that c1(X) = 0 above when X is Calabi-Yau.
Thus we know how to compute everything in the B-model, and it is completely under

control. Our main interest is thus in extending these computations to the A-model. In analogy
with the above considerations, one can note that there is a natural forgetful map

π : Mg

(
X, β
)
−→ Mg ,

(
f,Σg

)
	−→ Σg , (2.14)

and then reduce any integral over Mg(X, β) to Mg using the corresponding Gysin push-
forward map π!. However, this is difficult to do explicitly in most cases. The Gromov-Witten
theory ofX is the study of tautological intersections in the moduli spaces Mg(X, β). There is a
string duality between the A-model and the B-model which is related to homological mirror
symmetry.

2.2. Open Topological Strings

An open topological string in X is described by a holomorphic embedding f :Σg,h → X
of a curve Σg,h of genus g with h holes. A D-brane in X is a choice of Dirichlet boundary
condition on these string maps, which ensures that the Cauchy problem for the Euler-
Lagrange equations on Σg,h locally has a unique solution. They correspond to Lagrangian
submanifolds L of the Calabi-Yau threefold X, that is, ω|L = 0. If ∂Σg,h = σ1 ∪ · · · ∪ σh, then we
consider holomorphic maps such that

f(σi) ⊂ L. (2.15)
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This defines open string instantons, which are labelled by their relative homology classes

f∗
[
Σg,h

]
= β ∈ H2(X,L). (2.16)

If we assume that b1(L) = 1, so that H1(L,Z) is generated by a single nontrivial one-cycle γ ,
then

f∗[σi] = wiγ, (2.17)

where wi ∈ Z, i = 1, . . . , h, are the winding numbers of the boundary maps f |σi
.

The free energy of the A-model open topological string theory at genus g is given by

Fw,g(Q) =
∑

β

Nw,g,β(X)Qβ,
(2.18)

where w = (w1, . . . , wh) and the numbers Nw,g,β(X) are called relative Gromov-Witten
invariants. To incorporate all topological sectors, in addition to the string coupling gs
weighting the Euler characteristics χ(Σg,h) = 2 − 2g − h, we introduce an N × N Hermitean
matrix V to weight the different winding numbers. This matrix is associated to the holonomy
of a gauge connection (Wilson line) on the D-brane. Then, taking into account that the holes
are indistinguishable, the complete genus expansion of the generating function is

FX
top

(
gs,Q;V

)
=

∞∑

g = 0

∞∑

h= 1

∑

w∈Zh

1

h!
g
2g−2+h
s Fw,g(Q)

h∏

i=1

Tr(Vwi). (2.19)

The traces are computed by formally taking the limit N → ∞ and expanding in irreducible
representations R of the D-brane gauge group U(∞).

2.3. Black Hole Microstates and D-Brane Gauge Theory

When X is a Calabi-Yau threefold, certain BPS black holes on X × R3,1 can be constructed by
D-brane engineering. D-branes in X correspond to submanifolds of X equipped with vector
bundles with connection, the Chan-Paton gauge bundles, and they carry charges associated
with the Chern characters of these bundles. This data defines a class in the differential K-
theory of X, which provides a topological classification of D-branes in X.

The microscopic black hole entropy can be computed by counting stable bound
states of D0–D2–D4–D6 branes wrapping holomorphic cycles of X with the following
configurations:

(i) D6-brane charge Q6,

(ii) D4-branes wrapping an ample divisor

[C] =
b2(X)∑

i= 1

Qi
4 [Ci] ∈ H4(X,Z) (2.20)

with respect to a basis of four-cycles Ci, i = 1, . . . , b4(X) = b2(X), of X,
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(iii) D2-branes wrapping a two-cycle

[S] =
b2(X)∑

i= 1

Qi
2 [Si] ∈ H2(X,Z), (2.21)

(iv) D0-brane charge Q0.

These D-brane charges give the black hole its charge quantum numbers. If we consider large
enough numbers of D-branes in this system, then they form bound states which become large
black holes with smooth event horizons, that can be counted and therefore account for the
microscopic black hole entropy. In this scenario, pI = (Q6,Qi

4) are interpreted as magnetic
charges and qI = (Q0,Qi

2) as electric charges. The thermal partition function defined via a
canonical ensemble for the D0 and D2 branes with chemical potentials μI = (φ0, φ2

i ), and a
microcanonical ensemble for the D4 and D6 branes, is given by

ZBH

(
Q6,Q4,φ

2, φ0
)
=
∑

Q0,Qi
2

Ω(Q0,Q2,Q4,Q6) e
−Q0φ

0−Qi
2φ

2
i , (2.22)

where Ω is the degeneracy of BPS states with the given D-brane charges.
As we mentioned in Section 2.1., the closed topological string amplitudes Fg are

related to supergravity quantities on Minkowski spacetime R3,1. The fact that the genus
zero free energy F0 for topological strings on X is a prepotential for BPS black hole charges
in N = 2 supergravity determines the entropy SBH(p, q) of an extremal black hole as a
Legendre transformation of F0, provided that one fixes the charge moduli by the attractor
mechanism. The genus zero topological string amplitude F0 is a homogeneous function of
degree two in theN = 2 vector multiplet fieldsXI . The black hole entropy in the supergravity
approximation is then

SBH

(
p, q
)
= μIqI − ImF0

(
XI = pI + iμI

)
, (2.23)

where the chemical potentials μI are determined by the charges pI and qI by solving the
equation

qI =
∂ ImF0

∂μI
. (2.24)

Further analyses of the entropy of N = 2 BPS black holes on R3,1 have been extended
to higher genus and suggest the relationship

ZBH

(
Q6,Q4,φ

2, φ0
)
=
∣∣∣ZX

top

(
gs,Q

)∣∣∣
2

(2.25)

between the black hole partition function (2.22) and the topological string partition function

ZX
top

(
gs,Q

)
= expFX

top

(
gs,Q

)
, (2.26)
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where the moduli on both sides of this equation are related by their fixing at the attractor
point

gs =
4πi

(i/π) φ0 +Q6
, ti =

2φ2
i + iQi

4

(i/π) φ0 +Q6
. (2.27)

The remarkable relationship (2.25) is called the OSV conjecture [1]. It provides a means
of using the perturbation expansion of topological strings and Gromov-Witten theory to
compute black hole entropy to all orders. Alternatively, although the evidence for this
proposal is derived for large black hole charge, the left-hand side of the expression (2.25)
makes sense for finite charges and in some cases is explicitly computable in closed form.
It can thus be used to define nonperturbative topological string amplitudes, and hence a
nonperturbative completion of a string theory.

In the following, we will focus on the computation of the black hole partition function
(2.22). The fact that this partition function is computable in a D-brane gauge theory will
then give a physical interpretation of the enumerative invariants of X in terms of black hole
entropy. Suppose that we have a collection of Dp-branes wrapping a submanifold Mp+1 ⊂ X,
with dimR(Mp+1) = p + 1 and Chan-Paton gauge field strength F. D-branes are charged with
respect to supergravity differential form fields, the Ramond-Ramond fields, which are also
classified topologically by differential K-theory. Recall that such an array couples to all n-
form Ramond-Ramond fields C(n) through anomalous Chern-Simons couplings

∫

Mp+1

∑

n≥0
C(n) ∧ Tr exp

(
2πα′F

)
, (2.28)

where
√
α′ is the string length. In particular, these couplings contain all terms

∫

Mp+1

C(p+1−2m) ∧ Tr(Fm), (2.29)

and so the topological charge chm(E) of a Chan-Paton gauge bundle E → Mp+1 on a Dp-
brane is equivalent to D(p − 2m)-brane charge. A prominent example of this, which will be
considered in detail later on, is the coupling

∫
Mp+1

C(p−3) ∧Tr(F ∧F). For p = 3, this shows that

the counting of D4-D0 brane bound states is equivalent to the enumeration of instantons
on the four-dimensional part of the D4-brane in X. The remaining sections of this paper
look at these relationships from the point of view of various BPS configurations of these
D-branes. We will study the enumeration problems from the point of view of gauge theories
on the D-branes in order of decreasing dimensionality, stressing the analogies between each
description.

3. D6-Brane Gauge Theory and Donaldson-Thomas Invariants

In this section we will look at a single D6-brane (Q6 = 1) and turn off all D4-brane charges
(Qi

4 = 0). Wewill discuss various physical theories which aremodelled by the D6-brane gauge
theory in this case, but otherwise have no a priori relation to string theory. These will include
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a tractable model for quantum gravity and the statistical mechanics of certain atomic crystal
configurations. From the perspective of enumerative geometry, these partition functions will
compute the Donaldson-Thomas theory of X.

3.1. Kähler Quantum Gravity

Wewill construct a model of quantum gravity on any Kähler threefoldX, which will motivate
the sorts of counting problems that we consider in this section. The partition function is
defined by

Z =
∑

quantized
ω

e−S,
(3.1)

where

S =
1

g2
s

∫

X

1

3!
ω ∧ω ∧ω. (3.2)

The sum is over “quantized” Kähler two-forms on X, in the following sense. We decompose
the “macroscopic” form ω into a fixed “background” Kähler two-form ω0 on X and the
curvature F of a holomorphic line bundle L over X as

ω = ω0 + gsF. (3.3)

To satisfy the requirement that there are no D4-branes in X, we impose the fluctuation
condition

∫

β

F = 0 (3.4)

for all two-cycles β ∈ H2(X,Z).
Substituting (3.3) together with (3.4) into (3.2) gives the action

S =
1

g2
s

1

3!

∫

X

ω3
0 +

1

2

∫

X

F ∧ F ∧ω0 + gs

∫

X

1

3!
F ∧ F ∧ F. (3.5)

The statistical sum (3.1) thus becomes (dropping an irrelevant constant term)

Z =
∑

line
bundles L

qch3(L)
b2(X)∏

i= 1

(Qi)
∫
Ci

ch2(L)
, (3.6)

where q = −e−gs , Qi = e−ti , and chm(L) denotes the mth Chern character of the given line
bundle L → X. Note the formal similarity with the A-model topological string partition
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function constructed in Section 2.1. However, there is a problem with the way in which
we have thus far set up this model. The fluctuation condition (3.4) on F implies ch2(L) =

ch3(L) = 0. Hence only trivial line bundles can contribute to the sum (3.6), and the partition
function is trivial.

The resolution to this problem is to enlarge the range of summation in (3.6) to include
singular gauge fields and ideal sheaves. Namely, we take F to correspond to a singular U(1)
gauge field A on X. This can be realized in two (related) possible ways:

(1) we can make a singular gauge field A nonsingular on the blow-up

X̂ −→ X (3.7)

of the target space, obtained by blowing up the singular points ofA onX into copies
of the complex projective plane P2. This means that the quantum gravitational path
integral induces a topology change of the target space X. This is referred to as
“quantum foam” in [23, 24], or

(2) we can relax the notion of line bundle to ideal sheaf. Ideal sheaves lift to line
bundles on X̂. However, there are “more” sheaves on X than blow-ups X̂ of X.

In this paper we will take the second point of view. Recall that torsion-free sheaves E
on X can be defined by the property that they sit inside short exact sequences of sheaves of
the form

0 −→ E −→ F −→ SZ −→ 0, (3.8)

where F is a holomorphic vector bundle on X, and SZ is a coherent sheaf supported at the
singular points Z ⊂ X of a gauge connection A of F. Applying the Chern character to (3.8)
and using its additivity on exact sequences give

chm(E) = chm(F) − chm(SZ) (3.9)

for each m. Thus torsion-free sheaves E fail to be vector bundles at singular points of gauge
fields, and including the singular locus can reinstate the nontrivial topological quantum
numbers that we desired above.

As we will discuss in detail in this section, this construction is realized explicitly by
considering a noncommutative gauge theory on the target space X = C3. We will see that
the instanton solutions of gauge theory on a noncommutative deformation C3

θ
are described

in terms of ideals I in the polynomial ring C[z1, z2, z3]. For generic X, the global object that
corresponds locally to an ideal is an ideal sheaf, which in each coordinate patch Uα ⊂ X is
described as an ideal IUα

in the ring OUα
of holomorphic functions on Uα. More abstractly,

an ideal sheaf is a rank one torsion-free sheaf E with c1(E) = 0. This is a purely commutative
description, since the holomorphic functions on C3 form a commutative subalgebra of C3

θ

for the Moyal deformation that we will consider. Thus the desired singular gauge field
configurations will be realized explicitly in terms of noncommutative instantons [23, 24].
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3.2. Crystal Melting and Random Plane Partitions

As we will see, the counting of ideal sheaves is in fact equivalent to a combinatorial problem,
which provides an intriguing connection between the Kähler quantum gravity model of
Section 3.1. and a particular statistical mechanics model [6]. Consider a cubic crystal

located on the lattice Z3
≥0 ⊂ R3. Suppose that we start heating the crystal at its outermost right

corner. As the crystal melts, we remove atoms, depicted symbolically here by boxes, and
arrange them into stacks of boxes in the positive octant. Owing to the rules for arranging the
boxes according to the order in which they melt, this configuration defines a plane partition
or a three-dimensional Young diagram.

Removing each atom from the corner of the crystal contributes a factor q= e−μ/T to the
Boltzmann weight, where μ is the chemical potential and T is the temperature.
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Let us define more precisely the combinatorial object that we have constructed, which
generalizes the usual notion of partition and Young tableau. A plane partition is a semiinfinite
rectangular array of nonnegative integers

π =

π1,1 π1,2 π1,3 . . .
π2,1 π2,2 π2,3 . . .
π3,1 π3,2 π3,3 . . .
...

...
...

(3.10)

such that πi,j ≥ πi+1,j , and πi,j ≥ πi,j+1 for all i, j ≥ 1. We may regard a partition π as a three-
dimensional Young diagram, in which we pile πi,j cubes vertically at the (i, j)th position in
the plane as depicted above. The volume of a plane partition

|π | =
∑

i,j≥1
πi,j (3.11)

is the total number of cubes. The diagonal slices of π are the partitions (πi,i+m)i≥1, m ≥ 0,
obtained by cutting the three-dimensional Young diagram with planes, and they represent a
sequence of ordinary partitions (Young tableaux) λ = (λ1, λ2, . . .), with λi ≥ λi+1 for all i ≥ 1.
Here λi ≥ 0 is the length of the ith row of the Young diagram, viewed as a collection of unit
squares, and only finitely many λi are nonzero.

The counting problem for random plane partitions can be solved explicitly in closed
form. For this, we consider the statistical mechanics in a canonical ensemble in which each
plane partition π has energy proportional to its volume |π |. The corresponding partition
function then gives the generating function for plane partitions

Z :=
∑

π

q|π |

=
∞∑

N = 0

pp(N)qN

=
∞∏

n= 1

1

(1 − qn)n
=: M

(
q
)
,

(3.12)

where pp(N) is the number of plane partitions π with |π | = N boxes. The function M(q) is
called theMacMahon function.

3.3. Six-Dimensional Cohomological Gauge Theory

We will now describe a U(1) gauge theory formulation of the above statistical models [7, 8,
24]. If we gauge-fix the residual symmetry of the quantized Kähler gravity action (3.5), we
obtain the action

S =
1

2

∫

X

(
dAΦ ∧ ⋆dAΦ +

∣∣∣F2,0
∣∣∣
2
+
∣∣∣F1,1

∣∣∣
2
)
+
1

2

∫

X

(
F ∧ F ∧ω0 +

gs

3
F ∧ F ∧ F

)
, (3.13)
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where dA = d − i [A,−] is the gauge covariant derivative acting on the complex scalar field
Φ, ⋆ denotes the Hodge operator with respect to the Kähler metric of X, and F = dA is the
curvature two-formwhich has the Kähler decomposition F = F2,0+F1,1+F0,2. The field theory
defined by this action arises in three (related) instances such as:

(1) a topological twist of maximally supersymmetric Yang-Mills theory in six
dimensions,

(2) the dimensional reduction of supersymmetric Yang-Mills theory in ten dimensions
on X,

(3) the low-energy effective field theory on a D6-brane wrapping X in Type IIA string
theory, with D2 and D0 brane sources.

The gauge theory has a BRST symmetry [25, 26] and its partition function localizes at
the BRST fixed points described by the equations

F2,0 = 0 = F0,2, (3.14)

F1,1 ∧ω0 ∧ω0 = 0, (3.15)

dAΦ = 0. (3.16)

These equations also describe three (related) quantities:

(i) the Donaldson-Uhlenbeck-Yau (DUY) equations expressing Mumford-Takemoto slope
stability of holomorphic vector bundles over X with finite characteristic classes,

(ii) BPS solutions in the gauge theory which correspond to (generalized) instantons,

(iii) bound states of D0–D2 branes in a single D6-brane wrapping X.

Recall that (3.14) and (3.15) are a special instance of the Hermitean Yang-Mills equations
in which a constant λ is added to the right-hand side of (3.15). These equations arise in
compactifications of heterotic string theory. The condition that the compactification preserves
at least one unbroken supersymmetry requires λ = 0. These are the natural BPS conditions
on a Kähler manifold (X,ω0) which generalize the usual self-duality equations in four
dimensions.

The localization of the gauge theory partition function Z onto the corresponding
instanton moduli space MX can be written symbolically as [24, 26]

Z =

∫

MX

e(NX), (3.17)

where e(NX) is the Euler class of the obstruction bundle NX whose fibres are spanned by
the zero modes of the antighost fields. The zero modes of the fermion fields in the full
supersymmetric extension of (3.13) [25, 26] are in correspondence with elements in the
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cohomology groups of the twisted Dolbeault complex

Ω0,0(X, ad P)
∂A−−−−−−−→ Ω0,1(X, ad P)

∂A−−−−−−−→ Ω0,2(X, ad P)
∂A−−−−−−−→ Ω0,3(X, ad P) (3.18)

with ad P the adjoint gauge bundle overX. By incorporating the gauge fields, one can rewrite
this complex in the form [24]

Ω0,0(X, ad P) −→
Ω0,1(X, ad P)

⊕
Ω0,3(X, ad P)

−→ Ω0,2(X, ad P), (3.19)

which describes solutions of the DUY equations up to linearized complex gauge transforma-
tions. The morphism Ω0,3(X, ad P) → Ω0,2(X, ad P) here is responsible for the appearance
of the obstruction bundle in (3.17) [24, 26].

In order for the integral (3.17) to be well defined, we need to choose a compactification
of MX . In light of our earlier discussion, we will take this to be the Gieseker compactification,
that is, the moduli space of ideal sheaves on X. The corresponding variety MX stratifies into
components Hilbn,β(X) given by the Hilbert scheme of points and curves in X, parameterizing
isomorphism classes of ideal sheaves Ewith ch1(E) = c1(E) = 0, ch2(E) = −β, and ch3(E) = −n.
The partition function (3.17) is the generating function for the number of D0-D2 brane bound
states in the D6-brane wrappingX. Mathematically, these are theDonaldson-Thomas invariants
ofX. We will define this moduli space integration, and hence these invariants, more precisely
in Section 3.9.

3.4. Localization in Toric Geometry

Toric varieties provide a large class of algebraic varieties in which difficult problems in
algebraic geometry can be reduced to combinatorics. Much of this paper will be concerned
with these geometries as they possess symmetries which facilitate computations, particularly
those involving moduli space integrations. Let us start by recalling some basic notions from
toric geometry. Below we give the pertinent definitions specifically in the case of varieties of
complex dimension three, the case of immediate interest to us, but they extend to arbitrary
dimensions in the obvious ways.

A smooth complex threefoldX is called a toric manifold if it densely contains a (complex
algebraic) torus T3 and the natural action of T3 on itself (by translations) extends to the whole
of X. Basic examples are the torus T3 itself, the affine space C3, and the complex projective
space P3. If in addition X is Calabi-Yau, then X is necessarily noncompact.

One of the great virtues of working with toric varieties X is that their geometry can be
completely described by combinatorial data encoded in a toric diagram. The toric diagram is
a graph consisting of the following ingredients:

(i) a set of vertices f which are the fixed points of the T3-action on X, such that X can
be covered by T3-invariant open charts homeomorphic to C3,

(ii) a set of edges ewhich are T3-invariant projective lines P1 ⊂ X joining particular pairs
of fixed points f1, f2,
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(iii) a set of “gluing rules” for assembling the C3 patches together to reconstruct the
variety X. In a neighbourhood of each edge e, X looks like the normal bundle over
the corresponding P1. Since this normal bundle is a holomorphic bundle of rank two
and every bundle over P1 is a sum of line bundles (by the Grothendieck-Birkhoff
theorem), it is of the form

OP1(−m1) ⊕ OP1(−m2) (3.20)

for some integers m1, m2. The normal bundle in this way determines the local
geometry of X near the edge e via the transition function

(w1, w2, w3) 	−→
(
w−1

1 , w2w
−m1

1 , w3w
−m2

1

)
(3.21)

between the corresponding affine patches (going from the north pole to the south
pole of the associated P1). In the Calabi-Yau case, the Chern numbers c1(X) = 0 and
c1(P1) = 2 imply the condition m1 +m2 = 2.

For an open toric manifold X, we can exploit the toric symmetries to regularize the
infrared singularities on the instanton moduli space MX by “undoing” the T3-rotations by
gauge transformations [5]. In this way we will compute our moduli space integrals by using
techniques from equivariant localization, which in the present context will be refered to as
toric localization. Recall that the bosonic sector of the topologically twisted theory comprises
a gauge connection Ai and a complex Higgs field Φ. In particular, the supercharges contain
a scalar Q and a vector Qi. Generically, only Q is conserved and can be used to define the
topological twist of the gauge theory. If the threefold X has symmetries then one can also use
Qi. In the generic formulation of the theory, one only considers the scalar topological charge
Q and restricts attention to gauge-invariant observables. But in the present case one can also
use the linear combination

QΩ = Q + ǫaΩ
a
ijx

iQj , (3.22)

where ǫa are the parameters of the isometric action of T3 ⊂ U(3) on the Kähler space C3, and
Ωa = Ωa

ij x
j(∂/∂xi) are vector fields which generate SO(6) rotations of C3 ∼= R6. In this case

we also consider observables which are only gauge-invariant up to a rotation. This means
that the new observables are equivariant differential forms and the BRST charge QΩ can be
interpreted as an equivariant differential d + ιΩ on the space of field configurations, where ιΩ
acts by contraction with the vector field Ω.

This procedure modifies the action and the equations of motion by mixing gauge
invariance with rotations. This set of modifications can sometimes be obtained by defining
the gauge theory on an appropriate supergravity background called the “Ω-background”. In
particular, the fixed point equation (3.16) is modified to

dAΦ = ιΩF. (3.23)
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The set of equations (3.14), (3.15), and (3.23) minimizes the action of the cohomological
gauge theory in the Ω-background and describes T3-invariant instantons (or, as we will
see, ideal sheaves). In particular, there is a natural lift of the toric action to the instanton
moduli space MX . We will henceforth study the gauge theory equivariantly and interpret
the truncation of the partition function (3.17) as an equivariant integral over MX . This will
always mean that we work solely in the Coulomb branch of the gauge theory. Due to the
equivariant deformation of the BRST charge, these moduli space integrals can be computed
via equivariant localization.

3.5. Equivariant Integration over Moduli Spaces

We now explain the localization formulas that will be used to compute partition functions

throughout this paper. Let M be a smooth algebraic variety. Then we can define the T̃ -
equivariant cohomology H•

T̃
(M,Q) as the ordinary cohomology H•(MT̃ ,Q) of the Borel-

Moore homotopy quotient MT̃ := (M × ET̃)/T̃ , where ET̃ = (C∞ \ {0})N+k is a contractible

space on which T̃ = U(1)N × Tk acts freely. In the present example of interest, N = 1 and

k = 3. Given a T̃ -equivariant vector bundle E → M, the quotient ET̃ = (E × ET̃)/T̃ is a vector

bundle over MT̃ = (M × ET̃)/T̃ . The T̃ -equivariant Euler class of E is the invertible element
defined by

eT̃ (E) := e
(
ET̃

)
∈ H•

T̃
(M,Q), (3.24)

where e is the ordinary Euler class for vector bundles (the top Chern class).

Let BT̃ := ET̃/T̃ = (P∞)k+N . Then ET̃ → BT̃ is a universal principal T̃ -bundle, and

there is a fibration MT̃ → BT̃ with fibre M. Integration in equivariant cohomology is defined
as the pushforward

∮
M

of the collapsing map M → pt, which coincides with integration

over the fibres M of the bundle MT̃ → BT̃ in ordinary cohomology. Let pi : BT̃ → P∞

for i = 1, . . . , k and let ql :BT̃ → P∞ for l = 1, . . . ,N be the canonical projections onto the
ith and lth factors. Introduce equivariant parameters ǫi = (c1)T̃ (p

∗
iOP∞(1)), with ti = eǫi =

(chT̃ )1(p
∗
iOP∞(1)) and al = (c1)T̃ (q

∗
l
OP∞(1)), with el = eal = (chT̃ )1(q

∗
l
OP∞(1)).

The Atiyah-Bott localization formula in equivariant cohomology states that

∮

M

α =

∮

MT̃

α|
MT̃

eT̃ (N)
(3.25)

for any equivariant differential form α ∈ H•
T̃
(M,Q), where the complex vector bundle N →

MT̃ is the normal bundle over the (compact) fixed point submanifold inM. WhenMT̃ consists
of finitely many isolated points f, this formula is simplified to

∮

M

α =
∑

f∈MT̃

α
(
f
)

eT̃
(
TfM

) . (3.26)
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Each term in this sum takes values in the polynomial ring

H•
T̃

(
f,Q
)
= H•

(
BT̃,Q

)
∼= Q[ǫ1, . . . , ǫk, a1, . . . , aN] (3.27)

in the generators of T̃ = U(1)N × Tk. When the manifold M is noncompact, integration

along the fibre is not a well-defined Q-linear map. Nevertheless, when MT̃ is compact, we
can formally define the equivariant integral

∮
M
α by the right-hand side of the formula (3.25).

Going back to our example, when X = C3, one has ch2(E) = 0 and the partition
function Z is saturated by contributions from isolated, pointlike instantons (D0-branes) by
a formal application of the localization formula (3.26). However, these expressions are all
rather symbolic, as we are not guaranteed that the algebraic scheme MX is a smooth variety,
that is, the instanton moduli space has a well-defined stable tangent bundle with tangent
spaces all of the same dimension. However, the variety MX is generically smooth and there
is a well-defined virtual tangent bundle. The moduli space integration (3.26) can then be
formally defined by virtual localization in equivariant Chow theory. As discussed in [27],
the (stratified components of the) instanton moduli space MX carries a canonical perfect
obstruction theory in the sense of [22]. In obstruction theory, the virtual tangent space at
a point [E] ∈ MX is given by

Tvir
[E]MX = Ext1OX

(E,E) ⊖ Ext2OX
(E,E), (3.28)

where Ext1OX
(E,E) is the Zariski tangent space and Ext2OX

(E,E) the obstruction space of MX at
[E]. Its dimension is given by the difference of Euler characteristics χ(OX ⊗ O∨

X) − χ(E ⊗ E∨).
The kernel of the trace map

Ext2OX
(E,E) −→ H2(X,OX) (3.29)

is the obstruction to smoothness at a point [E] of the moduli space.
The bundles Ei := ExtiOX

(E,E), i = 1, 2 for [E] ∈ MX define a canonical Tk-equivariant
perfect obstruction theory E• = (E1 → E2) (see [22, Section 1]) on the instanton moduli
space M = MX . In this case, one may construct a virtual fundamental class [M]vir and apply
a virtual localization formula. The general theory is developed in [22] and requires a Tk-
equivariant embedding of M in a smooth variety Y. The existence of such an embedding in
the present case follows from the stratification of MX into Hilbert schemes of points and
curves. Then one can deduce the localization formula over M from the known ambient
localization formula over the smooth variety Y, as above. In this paper we will only need
a special case of this general framework, the virtual Bott residue formula.

We can decompose Ei into Tk-eigenbundles. The scheme theoretic fixed point locus

MTk
is the maximal Tk-fixed closed subscheme of M. It carries a canonical perfect obstruction

theory, defined by the Tk-fixed part of the restriction of the complex E• to MTk
, which may be

used to define a virtual structure on MTk
. The sum of the nonzero Tk-weight spaces of E•|MTk

defines the virtual normal bundle Nvir to MTk
. Define the Euler class of a virtual bundle

A = A1 ⊖ A2 using formal multiplicativity, that is, as the ratio of the Euler classes of the two
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bundles, e(A) = e(A1)/e(A2). Then the virtual Bott localization formula for the Euler class of
a bundle A of a rank equal to the virtual dimension of M reads [22]

∮

[M]vir
e(A) =

∮

[MTk ]
vir

eTk

(
A|

MTk

)

eTk(Nvir)
, (3.30)

where the integration is again defined via pushforward maps. The equivariant Euler classes
on the right-hand side of this formula are invertible in the localized equivariant Chow
ring of the scheme M given by CH•

Tk(M)⊗Q[ǫ1,...,ǫk]Q[ǫ1, . . . , ǫk]m, where Q[ǫ1, . . . , ǫk]m is the
localization of the ring Q[ǫ1, . . . , ǫk] at the maximal ideal m generated by ǫ1, . . . , ǫk.

If M is smooth, then MTk
is the nonsingular set theoretic fixed point locus, consisting

here of finitely many points [E]. However, in general the formula (3.30) must be understood
scheme theoretically, here as a sum over Tk-fixed closed subschemes of M supported at the

points [E] ∈ MTk
(with k = 3). With ρiE : T

k → EndC(Ext
i
OX

(E,E)), i = 1, 2, denoting the
induced torus actions on the tangent and obstruction bundles on M, one generically has
decompositions

ExtiOX
(E,E) = Exti1(E,E) ⊕ ker

(
ρiE

(
Tk
))

, (3.31)

where Exti1(E,E) is a Tk-invariant subspace of ExtiOX
(E,E). As demonstrated in [27, Section

4.5], the kernel module in (3.31) vanishes. Hence each subscheme here is just the reduced
point [E] and the Tk-fixed obstruction theory at [E] is trivial. Under these conditions, the
virtual localization formula (3.30)may be written as

∮

[M]vir
e(A) =

∑

[E]∈MTk

eTk(A([E]))
eTk

(
Tvir
[E]M

) . (3.32)

The right-hand side of this formula again takes values in the polynomial ring Q[ǫ1, . . . , ǫk].
When Ext0OX

(E,E) = Ext2OX
(E,E) = 0 for all [E] ∈ MX , the moduli space MX is a smooth

algebraic variety with the trivial perfect obstruction theory and this equation reduces
immediately to the standard localization formula in equivariant cohomology given above.
In this paper, we will make the natural choice for the bundle A, the virtual tangent bundle
TvirM itself.

3.6. Noncommutative Gauge Theory

To compute the instanton contributions (3.17) to the partition function of the cohomological
gauge theory, we have to resolve the small instanton ultraviolet singularities of MX . This can
be achieved by replacing the space X = C3 ∼= R6 with its noncommutative deformation R6

θ

defined by letting the coordinate generators xi, i = 1, . . . , 6, satisfy the commutation relations
of the Weyl algebra

[
xi, xj

]
= iθij , (3.33)
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where

(
θij
)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 θ1
−θ1 0

0 θ2
−θ2 0

0 θ3
−θ3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.34)

is a constant 6 × 6 skew-symmetric matrix which we take in Jordan canonical form without
loss of generality (by a suitable linear transformation of R6 if necessary). We will assume that
θ1, θ2, θ3 > 0 for simplicity. The noncommutative polynomial algebra

A =
C
[
x1, x2, x3

]
〈[
xi, xj

]
− iθij

〉 (3.35)

is regarded as the “algebra of functions” on the noncommutative space R6
θ
.

We can represent the algebra A on the standard Fock module

H = C
[
α†
1, α

†
2, α

†
3

]
|0, 0, 0〉 =

∞⊕
i,j,k = 0

C
∣∣i, j, k

〉
, (3.36)

where the orthonormal basis states |i, j, k〉 are connected by the action of creation and

annihilation operators α†
a and αa, a = 1, 2, 3. They obey αa|0, 0, 0〉 = 0 and

[
α†
a, αb

]
= δab, [αa, αb] = 0 =

[
α†
a, α

†
b

]
. (3.37)

In the Weyl operator realization with the complex combinations of operators

za = x2a−1 − ix2a =
√
2θa αa, za = x2a−1 + ix2a =

√
2θa α

†
a (3.38)

for a = 1, 2, 3, derivatives of fields are replaced by the inner automorphisms

∂zaf −→ 1

2θa
δab

[
zb, f

]
, (3.39)

while spacetime averages are replaced by traces over H according to

∫

R6

d6xf(x) −→ (2π)3θ1θ2θ3 TrH
(
f
)
. (3.40)

In the noncommutative gauge theory, we introduce the covariant coordinates

Xi = xi + iθijAj (3.41)



Advances in Mathematical Physics 21

and their complex combinations

Za =
1√
2θa

(
X2a−1 + iX2a

)
(3.42)

for a = 1, 2, 3. Then the (1, 1) and (2, 0) components of the curvature two-form can be,
respectively, expressed as

Fab =
[
Za, Zb

]
+

1

2θa
δab, Fab = [Za, Zb], (3.43)

while the covariant derivatives of the Higgs field become

(∂A)aΦ = [Za,Φ]. (3.44)

The instanton equations (3.14), (3.15), and (3.23) then become algebraic equations

[
Za, Zb

]
= 0,

[
Za, Z†

a

]
= 3,

[Za,Φ] = ǫaZa.

(3.45)

These equations describe BPS bound states of the D0–D6 system in a B-field background,
which is necessary for reinstating supersymmetry [28, 29]. In addition, T3-invariance of the
(unique) holomorphic three-form on X imposes the Calabi-Yau condition

ǫ1 + ǫ2 + ǫ3 = 0. (3.46)

3.7. Instanton Moduli Space

A major technical advantage of introducing the noncommutative deformation is that the
instanton moduli space can be constructed explicitly, by solving the noncommutative
instanton equations (3.45). First we construct the vacuum solution of the noncommutative
gauge theory, with F = 0. It is obtained by setting A = 0 and is given explicitly by harmonic
oscillator algebra

Za = αa, Φ =
3∑

a=1

ǫaα
†
aαa. (3.47)

Other solutions are found via the solution generating technique described in, for
example, references [30, 31]. For the general solution, fix an integer n ≥ 1 and let Un be a
partial isometry on the Hilbert spaceHwhich projects out all states |i, j, k〉with i + j + k < n.
Such an operator satisfies the equations

U†
nUn = 1 −Πn, UnU

†
n = 1, (3.48)
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where

Πn =
∑

i+j+k<n

∣∣i, j, k
〉〈
i, j, k

∣∣
(3.49)

is a Hermitean projection operator onto a finite-dimensional subspace of H. Then we make
the ansatz

Za = Unαaf(N)U
†
n, Φ = Un

(
3∑

a=1

ǫaα
†
aαa

)
U†

n, (3.50)

where f is a real function of the number operator

N =
3∑

a=1

α†
aαa. (3.51)

Using standard harmonic oscillator algebra, we can write the DUY equations (3.45) as

Un

(
Nf2(N − 1) − (N + 3)f2(N) + 3

)
U†

n = 0. (3.52)

This recursion relation has a unique solution with the initial conditions f(i) = 0, i= 0, 1, . . . , n−
1, and the finite energy condition f(r) → 1 as r → ∞. It is given by [32]

f(N) =

√
1 − n (n + 1)(n + 2)

(N + 1)(N + 2)(N + 3)
(1 −Πn). (3.53)

The topological charge of the corresponding noncommutative instanton is

ℓ(n) = ch3(E) = − i

6
θ1θ2θ3 TrH(F ∧ F ∧ F) =

1

6
n(n + 1)(n + 2). (3.54)

Thus the instanton number is the number of states in H with N < n, that is, the number of
vectors removed by Un, or equivalently the rank of the projector Πn.

The partial isometryUn identifies the full Fock spaceH = C[α†
1, α

†
2, α

†
3]|0, 0, 0〉with the

subspace

HI = ⊕
f∈I

f
(
α†
1, α

†
2, α

†
3

)
|0, 0, 0〉, (3.55)

where

I = C
〈
wi

1 w
j

2 wk
3 | i + j + k ≥ n

〉
(3.56)
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is a monomial ideal of codimension ℓ = ℓ(n) in the polynomial ring C[w1, w2, w3]. The
instanton moduli space can thus be identified as the Hilbert scheme

MX = Hilbℓ,0(X) = X[ℓ] (3.57)

of ℓ points in X = C3. The Hilbert-Chow morphism

X[ℓ] −→ Symℓ(X) =
Xℓ

Sℓ

(3.58)

identifies the Hilbert scheme of points as a crepant resolution of the (coincident point)
singularities of the ℓth symmetric product orbifold ofX. The ideal I defines a plane partition
π with |π | = ℓ boxes given by

π =
{(

i, j, k
)
| i, j, k ≥ 1, wi−1

1 w
j−1
2 wk−1

3 /∈I
}
. (3.59)

Heuristically, this configuration represents instantons which sit on top of each other at
the origin of C3, and along its coordinate axes where they asymptote to four-dimensional
noncommutative instantons at infinity described by ordinary Young tableaux λ.

3.8. Donaldson-Thomas Theory

We can finally compute the instanton contributions to the partition function of the
cohomological gauge theory on any toric Calabi-Yau threefold X [7, 8, 24]. Let us start with
the case X = C3. Using (3.54), the contribution of an instanton corresponding to a plane
partition π contributes a factor

exp

(
− igs

48π3
TrHI

(
F3
))

= e−gs|π | (3.60)

to the Boltzmann weight appearing in the functional integral. There is also a measure factor
which comes from integrating out the bosonic and fermionic fields in the supersymmetric
gauge theory. This yields a ratio of fluctuation determinants

Zπ =
det(adΦ)

∏
i<j det

(
adΦ + ǫi + ǫj

)

det(adΦ + ǫ1 + ǫ2 + ǫ3)
∏3

i=1 det(adΦ + ǫi)

= exp

(
−
∫∞

0

dt

t

chI(t)chI(−t)
(1 − etǫ1)(1 − etǫ2)(1 − etǫ3)

) (3.61)
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with the normalized character

chI(t) =
3∏

i=1

(
1 − etǫi

)
TrHI

(
etΦ
)

= 1 −
3∏

i=1

(
1 − etǫi

) ∑

(i,j,k)∈π
et(ǫ1(i−1)+ǫ2(j−1)+ǫ3(k−1)),

(3.62)

where we have used the solution forΦ in (3.50). Using the Calabi-Yau condition ǫ1+ǫ2+ǫ3 = 0,
it is easy to see that these determinants cancel up to a sign.

After some computation, one can explicitly determine this sign to get

Zπ = Zπ=∅ · (−1)|π |. (3.63)

The contribution Z∅ from the empty partition is the one-loop perturbative contribution to
the functional integral, and hence will be dropped. Then the instanton sum for the partition
function is given by

ZC3

DT

(
q
)
=
∑

π

(−e−gs)|π | =
∑

π

q|π | (3.64)

which is just the MacMahon functionM(q)with q = −e−gs . This is the known formula for the
Donaldson-Thomas partition function on C3.

For later use, let us note a convenient resummation formula for this partition function
[6]. Using interlacing relations, the sum over plane partitions π can be converted into a triple
sum over the Young tableaux obtained from the main diagonal slice λ = (πi,i)i≥1, together
with a sum over pairs of semistandard tableaux of shape λ obtained by puttingm+ 1 of them
in boxes of the skew diagram associated to the mth diagonal slice for each m ≥ 0. The partial
sum over each semistandard tableaux coincides with the combinatorial definition of the Schur
functions at a particular value, which can be expressed through the hook formula

sλ
(
qρ
)
= qn(λ)+|λ|/2

∏

(i,j)∈λ

1

1 − qh(i,j)
, (3.65)

where n(λ) =
∑

i(i − 1)λi, and h(i, j) is the hook length of the box located at position (i, j) in
the Young tableau λ ⊂ Z2

≥0. Then the partition function can be rewritten as a sum over ordinary
partitions

ZC3

DT

(
q
)
=
∑

λ

sλ(q
ρ)2. (3.66)

This construction can be generalized to arbitrary toric Calabi-Yau threefoldsX by using
the gluing rules of toric geometry. The two simplest such varieties are described by the toric
diagrams
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C3

Conifold

with a single vertex representing X = C3,whose partition function was computed above and
is the basic building block for the generating functions on more complicated geometries, and
a single line joining two vertices representing the resolved conifold X = OP1(−1) ⊕ OP1(−1),
where the P1 contribute to the F ∧ F ∧ ω0 term of the gauge theory action (3.13). The T3-
invariant noncommutative U(1) instantons on X correspond to ideal sheaves E and are
described by the following combinatorial data:

(1) three-dimensional partitionsπf at each vertex f of the toric diagram, corresponding
to monomial ideals If ⊂ C[w1, w2, w3],

(2) two-dimensional partitions λe at each edge e of the toric diagram, representing the
four-dimensional instanton asymptotics of πf .

This description requires generalizing the calculation on X = C3 above to compute the
perpendicular partition function Pλ,μ,ν(q) [6], which is defined to be the generating function
for three-dimensional partitions with fixed asymptotics λ, μ, and ν in the three coordinate
directions. Such partitions correspond to instantons on C3

θ
with nontrivial boundary

conditions at infinity along each of the coordinate axes. It can be expressed in terms of skew

Schur functions, with ZC3

DT(q) = P∅,∅,∅(q).
For the example of the resolved conifold, using the gluing rules one easily computes

Zconifold
DT

(
q,Q
)
=
∑

πf

q|πf |+
∑

(i,j)∈λ(i+j+1)(−1)|λ|Q|λ|

=
∞∏

n=1

(1 − (−1)nqnQ)
n

(
1 − (−1)nqn

)2n = M(−q)2
∞∏

n=1

(1 − (−q)nQ)
n
.

(3.67)

More generally, with these rules one finds that the instanton partition function is the
generating function

ZX
DT

(
q,Q
)
=
∑

n∈Z

∑

β∈H2(X,Z)

In,β(X)qnQβ

(3.68)

for the Donaldson-Thomas invariants In,β(X) ∈ Z, which are defined as follows. The moduli
variety Hilbn,β(X) of ideal sheaves on X is a projective scheme with a perfect obstruction
theory. For general threefolds X, it has virtual dimension [33, Lemma 1]

∫

β

c1(X) (3.69)
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which coincides with that of Mg(X, β) from Section 2.1. In the Calabi-Yau case, the virtual
dimension is zero, and the corresponding virtual cycle is

[Hilbn,β(X)]vir ∈ CH0

(
Hilbn,β(X)

)
. (3.70)

Then the Donaldson-Thomas invariants

In,β(X) :=

∫

[Hilbn,β(X)]vir
1 (3.71)

count the virtual numbers of ideal sheaves on X with the given Chern character. The right-
hand side is defined via equivariant integration, as explained in Section 3.5. The torus action

on X lifts to the moduli scheme Hilbn,β(X). The T̃ -fixed locus Hilbn,β(X)T̃ has a T̃ -equivariant

virtual theory with cycle [Hilbn,β(X)T̃ ]vir ∈ CH0(Hilbn,β(X)T̃ ) and virtual normal bundle Nvir
X

in the equivariant K-theory K0

T̃
(Hilbn,β(X)T̃ ). This construction gives precise meaning to the

moduli space integral (3.17) via application of the virtual localization formula in equivariant
Chow theory, described in Section 3.5.

3.9. Wall-Crossing Formulas

We will now make contact with Section 2. For the present class of threefolds X, there is a
gauge theory/string theory duality [27]. This follows from the fact that the perpendicular
partition function Pλ,μ,ν(q) is related to the Calabi-Yau crystal formulation of the topological
vertex

Cλ,μ,ν

(
q
)
= M

(
q
)−1

q(1/2) (‖λ‖
2+‖μ‖2+‖ν‖2)Pλ,μ,ν

(
q
)

(3.72)

with ‖λ‖2 =
∑

i λ
2
i , which are the building blocks for the computation of the generating

function for Gromov-Witten invariants using rules analogous to those described in Section 3.8
[14, 15]. Using these relations one can show that the six-dimensional cohomological gauge
theory is S-dual to the A-model topological string theory. The respective partition functions
are related by

ZX
top

(
gs,Q

)
= M

(
q
)−χ(X)

ZX
DT

(
q = −e−gs ,Q

)
, (3.73)

where the Euler characteristic χ(X) ofX is the number of vertices in its toric diagram. For the
conifold example, the gluing rules for the topological vertex yield [14, 15]

Zconifold
top

(
gs, Q

)
=
∑

λ

C∅,∅,λ
(
q
)
C∅,∅,λ

(
q
)
Q|λ| = exp

( ∞∑

n=1

Qn

n

1
(
qn/2 − q−n/2

)2

)
, (3.74)

which should be compared with (3.67). This Gromov-Witten/Donaldson-Thomas correspon-
dence is known to hold for arbitrary toric threefolds [34]. The relationship (3.73) can be
thought of as a wall-crossing formula, as we now explain.
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The relationship (3.73) is in apparent contradiction with the OSV conjecture (2.25)
if we wish to interpret the right-hand side as the generating function ZBH(1, 0, φ

2, φ0) of a
suitable index for black hole microstates. However, the conjectural relations (2.25) and (3.73)
hold in different regimes of validity. The number of BPS particles in four dimensions formed
by wrapping supersymmetric bound states of D-branes around holomorphic cycles of X
depends on the choice of a stability condition, and the BPS countings for different stability
conditions are related bywall-crossing formulas. For example, stability of black holes requires
that their chemical potentials μI lie in the ranges Q0φ

0 > 0 and Qi
2φ

2
i > 0.

On the other hand, the validity of (3.73) is related to the existence of BPS invariants
Bg,β(X) ∈ Z such that the topological string amplitudes have an expansion given by [35, 36]

ZX
top

(
gs,Q

)
=

∞∑

g=0

∑

β∈H2(X,Z)

Qβ
∑

γ∈H2(X,Z)\{0}
β=k γ

Bg,β(X)
1

k

(
2 sinh

(
kgs

2

))2g−2
, (3.75)

of which the conifold partition function (3.67) is an explicit case. These are partition functions
of D6-D2-D0 brane bound states only for certain Kähler moduli. Analyses of Calabi-Yau
compactifications of Type II string theory show that the Hilbert spaces of BPS states jump
discontinuously across real codimension one walls in the moduli space of vacua, known
as walls of marginal stability. The noncommutative instantons do not account for walls of
marginal stability extending to infinity. One should instead apply some sort of stability
condition (such as Π-stability) to elements of the bounded derived category of coherent
sheaves Db(coh(X)) of the given charge, which gives a topological classification of A-model
D-branes on X. These issues are discussed in more detail in [37–39].

From a mathematical perspective, we can study this phenomenon by looking at
framedmoduli spaces, which consist of instantons that are trivial “at infinity”.More precisely,
we can consider a toric compactification of X obtained by adding a compactification divisor
D∞, and consider sheaves F with a fixed trivialization on D∞. The Kähler polarization
defined by ω0 allows us to define the moduli space M

ω0

X = MX of stable sheaves. Then
the symbolic definition of the gauge theory partition function (3.17) as a particular Euler
characteristic can be made precise in the more local definition of Donaldson-Thomas
invariants given by [40].

As a scheme with a perfect obstruction theory, the instanton moduli space MX can
be viewed locally as the scheme theoretic critical locus of a holomorphic function, the
superpotential W , on a compact manifold X with the action of a gauge group G. MX has
virtual dimension zero, and at nonsingular points, the obstruction sheaf NX on MX coincides
with the cotangent bundle. Hence if MX were everywhere nonsingular, then the partition

function (3.17) would just compute the signed Euler characteristic (−1)dimC(MX) χ(MX). At
singular points, however, the invariants differ from these characteristics.

There is a constructible function ν : MX → Z which can be used to define the weighted
Euler characteristic

χ(MX , ν) :=
∑

n∈Z

n · χ
(
ν−1(n)

)
. (3.76)
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For sheaves of fixed Chern character, this coincides with the curve-counting invariants

In,β(X). At nonsingular points, ν = (−1)dimC(MX), while at singular points it is the more
complicated function given by

ν(E) = (−1)dimC(X/G) (1 −MFW(E)), (3.77)

where MFW(E) is the Milnor fibre of the superpotential W at the point corresponding to E.
The weighted Euler characteristic is a deformation invariant of X.

In this approach, one can use topological Euler characteristics to define In,β(X) as
invariants associated to moduli varieties of framed sheaves. Fixing β ∈ H2(X,Z) and
n ∈ Z, the variety Hilbn,β(X) equivalently parametrizes isomorphism classes of the following
objects:

(a) surjections (framings)

OX −→ F −→ 0 (3.78)

with ch(F) = (1, 0, β, n),

(b) stable sheaves Ewith ch(E) = (1, 0,−β,−n) and trivial determinant,

(c) subschemes S ⊂ X of dimension ≤ 1 with curve class [S] = β and holomorphic
Euler characteristic χ(OS) = n.

The equivalences between these three descriptions are described explicitly for X = C3 in
[7, 8].

As we vary the polarization ω0, the moduli spaces M
ω0

X (X) change and so do the
associated counting invariants, leading to a wall-and-chamber structure. The wall-crossing
behaviour of the enumerative invariants is studied in [41, 42]. The analog of varying ω0

for framed sheaves is to consider quotients of the structure sheaf OX in different abelian
subcategories of the bounded derived category Db(coh(X)) of coherent sheaves on X. The
analog of wall-crossing gives the Pandharipande-Thomas theory of stable pairs [43, 44] and
the BPS invariants above. For this, the quotients of OX are the stable pairs (E, α), where E is a
coherentOX-module of pure dimension one with ch2(E) = −β and χ(E) = −n, and α : OX → E
is a nonzero sheaf map such that coker(α) is of pure dimension zero, together with le Poitier’s
δ-stability condition for coherent systems. In this case the change of Donaldson-Thomas
invariants is described by the Kontsevich-Soibelman wall-crossing formula [42].

To cast these constructions into the language of noncommutative instantons, a proper
definition of noncommutative toric manifolds is desired, beyond the heuristic approach
presented above whereby only open C3 patches are deformed. Isospectral type deformations
of toric geometry, and instantons therein, are investigated in [45]. It may also aid in the
classification of U(N) noncommutative instantons on C3 for rank N > 1, along the lines
of what was done in Section 3.7. (See [7, 8] for some explicit examples.) This appears to be
related to the problem of defining a nonabelian version of Donaldson-Thomas theory which
counts higher-rank torsion-free sheaves, for which no general, appropriate notion of stability
is yet known.
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4. D4-Brane Gauge Theory and Euler Characteristics

In this section we will take Q6 = 0 (no D6-branes) and consider N D4-branes wrapping a
four-cycle C ⊂ X. In this case the worldvolume gauge theory on the D4-branes is the N = 4
Vafa-Witten topologically twisted U(N) Yang-Mills theory on C, where the topological twist
is generically required in order to realize covariantly constant spinors on a curved geometry.
When the gauge theory is formulated on an arbitrary toric singularity C in four dimensions,
we may regard C as a four-cycle inside the Calabi-Yau threefold X = KC, and we will obtain
an explicit description of the instanton moduli spaces and their Euler characteristics. The
precise forms of the partition functions will be amenable to checks of the OSV conjecture
(2.25), and hence a description of wall-crossing phenomena.

4.1. N = 4 Supersymmetric Yang-Mills Theory on Kähler Surfaces

Vafa and Witten [46] introduced a topologically twisted version of N = 4 supersymmetric
Yang-Mills theory in four dimensions. The twisting procedure modifies the quantum
numbers of the fields in the physical theory in such a way that a particular linear
combination of the supercharges becomes a scalar. This scalar supercharge is used to define
the cohomological field theory and its observables on an arbitrary four-manifold C. In the
followingwewill only consider the case whereC is a connected smooth Kähler manifold with
Kähler two-form k0. When certain conditions are met, the partition function of the twisted
gauge theory computes the Euler characteristic of the instanton moduli space.

Let gij be the Kähler metric of (C, k0). Then the twisted gauge theory corresponds to
the moduli problem associated with the equations

σij := F+
ij +

1

4

[
B+
ik, B

+
jl

]
gkl +

1

2

[
Φ, B+

ij

]
= 0,

κi := d
j

AB
+
ij + (dA)iΦ = 0,

(4.1)

where F+ = (1/2)(F − ⋆F) is the self-dual part of the curvature two-form with respect to
the Kähler metric. The field space W is spanned by a connection Ai on a principal G-bundle
P → C, a scalar field Φ, and a self-dual two-form B+

ij , so that

W = AP ×Ω0(C, ad P) ×Ω2,+(C, ad P), (4.2)

where AP denotes the space of connections on P and ad P is the adjoint bundle of P. Their
superpartners ψi, ζ, and ψ̃+

ij live in the tangent space to W. Associated with the equations of

motion are two multiplets (χ+
ij ,H

+
ij) and (χ̃i, H̃i)which are sections of the bundle

F = Ω2,+(C, ad P) ⊕Ω1(C, ad P). (4.3)

Schematically, the action of the topological gauge theory is of the form

S = {Q,Ψ} +
∫

C

Tr(F ∧ F) +

∫

C

Tr(F ∧ k0), (4.4)
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where Q is the scalar supercharge singled out by the twisting procedure. The gauge fermion
Ψ is a suitable functional of the fields which contains the term

∫

C

√
g Tr

(
χ+
ij

(
H+ij + σij

)
+ χ̃i

(
H̃ i + κi

))
, (4.5)

that makes the gauge theory localize onto the solutions of (4.1).
Geometrically, the partition function can be interpreted as a Mathai-Quillen repre-

sentative of the Thom class of the bundle V = W×GF, where G = Aut(P) is the group of
gauge transformations. Its pullback via the sections in (4.1) gives the Euler class of V. Under
favourable circumstances, appropriate vanishing theorems hold [46] which ensure that each
solution of the system (4.1) hasΦ = B+ = 0 and corresponds to an instanton, that is, a solution
to the self-duality equations F+ = 0. In this case the gauge theory localizes onto the instanton
moduli space MC and the Boltzmann weight gives a representative of the Euler class of the
tangent bundle TMC. Therefore, the partition function computes moduli space integrals of
the form

∫

MC

e(TMC) = χ(MC), (4.6)

which gives the Euler characteristic of the instantonmoduli space. Since the instantonmoduli
space is not generally a smooth variety, most of the quantities introduced above can only be
defined formally. We will discuss how to define these integrations more precisely later on. In
particular, we will allow for nontrivial vacuum expectation values for the Higgs field Φ, in
order to define the partition function in theΩ-background as before. We will assume that the
vanishing theorems can be extended to this case as well, by replacing the instanton moduli
space with its compactification obtained by adding torsion-free sheaves on C as before.

The Euler characteristic of instanton moduli space can be computed through the index
of the deformation complex associated with N = 4 topological Yang-Mills theory via (4.1). It
has the form [47]

Ω0(C, ad P)
D−−−−−−−→

Ω1(C, ad P)

⊕
Ω0(C, ad P)

⊕
Ω2,+(C, ad P)

s−−−−−−→
Ω2,+(C, ad P)

⊕
Ω1(C, ad P)

(4.7)

where the first morphism is an infinitesimal gauge transformation

D
(
φ
)
=

⎛
⎝

dAφ[
Φ, φ
]

[
B+, φ

]

⎞
⎠, (4.8)

while the second morphism corresponds to the linearization of the sections (σij , κi) given by

s
(
ψ, ζ, ψ̃+

)
= p+dAψ −

[
ψ̃+, B+

]
+
[
ψ̃+,Φ

]
+ [B+, ζ] + dAζ +

[
ψ,Φ
]
+ p+d∗

Aψ̃
+ +
[
ψ, B+

]
, (4.9)
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with p+ giving the projection of a two-form onto its self-dual part. Under the assumption that
all solutions of the original system of (4.1) have Φ = B+ = 0, the complex (4.7) splits into the
Atiyah-Hitchin-Singer instanton deformation complex

Ω0(C, ad P)
dA−−−−−−−→ Ω1(C, ad P)

p+◦dA−−−−−−−−−−→ Ω2,+(C, ad P) (4.10)

plus

Ω0(C, ad P) ⊕Ω2,+(C, ad P)
(dA,p

+◦d∗
A)−−−−−−−−−−→ Ω1(C, ad P) (4.11)

which is again the instanton deformation complex. One can compute the index of the original
complex (4.7) (assuming the Vafa-Witten vanishing theorems) by computing the index of
the two complexes above. However, these are equal and contribute with opposite signs. This
means that the Euler characteristic of instantonmoduli space receives contributions only from
isolated points and simply counts the number of such points. On a toric surface C, this is
anticipated from the toric localization formula (3.26) and will be made explicit below.

In the applications to black hole microstate counting, we will consider gauge group
G = U(N). The chemical potential

∫
C

C(2) ∧ Tr(F) for the D2-branes requires taking the
Ramond-Ramond field C(2) proportional to the two-form ki on C which are dual to the basis
two-cycle Si, in order to get the correct charges. In this case the D0-brane charges

Q0 =
1

8π2

∫

C

Tr(F ∧ F) (4.12)

correspond to the instanton numbers of the gauge bundle P, while the D2-brane charges

Qi
2 =

1

2π

∫

Si

Tr(F) (4.13)

correspond to nontrivial magnetic fluxes c1(P)/= 0 through Si. To compute the macroscopic
black hole entropy from the counting of the corresponding BPS states in the gauge theory,
we introduce observables associated to these sources and compute their gauge theory
expectation values using the localization arguments above to get

ZBH

(
N,φ2, φ0

)
=

〈
exp

(
− φ0

8π2

∫

C

Tr(F ∧ F) −
φ2
i

2π

∫

C

ki ∧ Tr(F)

)〉

SYM

=
∑

Q0,Qi
2

Ω(Q0,Q2;N) e−Q0 φ0−Qi
2φ

2
i ,

(4.14)

whereΩ(Q0,Q2;N) is theWitten indexwhich computes the Euler characteristic of themoduli
space MN,Q2,Q0

(C) of U(N) instantons on C with Chern invariants c1(P) = Q2 ∈ H2(X,Z)
and −ch2(P) = Q0ν ∈ H4(X,Z). Here ν is the generator of H4(X,Z) ∼= Z which is Poincaré
dual to a point in X.
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4.2. Toric Localization and the Instanton Moduli Space

Instantons on C = C2 can be described as follows. Consider the quiver

b1

υ

b2

j

i
w

with the single relation r specified by the linear combination of paths

r = [b1, b2] + ij. (4.15)

This is called the ADHM quiver QADHM. The ADHM construction establishes a one-to-one
correspondence between stable framed representations of the quiver QADHM in the category
VectC of finite-dimensional complex vector spaces and framed torsion-free sheaves on the
projective plane P2. In the rank one case, these are equivalent to ideal sheaves on C2, and the
correspondence gives an isomorphism with the Hilbert schemes of points on C2.

Let V and W be inner product spaces of complex dimensions k = Q0 and N,
respectively. The instanton moduli space MN,k(C

2) can be realized as a hyperKähler quotient
by the natural action of U(k) on the variety consisting of linear operators

B1, B2 ∈ HomC(V, V ), I ∈ HomC(W,V ), J ∈ HomC(V,W), (4.16)

constrained by the ADHM equations

μc = [B1, B2] + IJ = 0,

μr =
[
B1, B

†
1

]
+
[
B2, B

†
2

]
+ II† − J†J = 0.

(4.17)

On C2 one can obtain a better compactification of this moduli space by deforming the
gauge theory to a noncommutative field theory, as before [2, 3, 48]. This is equivalent to a
modification of the hyperKähler quotient that defines the instanton moduli space, obtained
by changing the images of the moment maps of (4.17) to

μc = 0, μr = ζ idV , (4.18)

where ζ = θ1 + θ2. This quotient gives a compactification of the instanton moduli space
MN,k(C

2) obtained by blowing up its singularities.
The classification of toric fixed points is given in [49], by identifying the instanton

moduli space M1,k(C
2) with the Hilbert scheme of points (C2)[k]. The fixed points are point-

like instantons which are in one-to-one correspondence with Young tableaux λ having |λ| = k
boxes. In the more general case of a U(N) gauge theory in the Coulomb branch, one takes
N copies of theU(1) theory and the fixed points are classified in terms ofN-tuples of Young

diagrams
−→
λ = (λ1, . . . , λN), called N-coloured Young diagrams. One can show that the fixed

points are isolated.
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One can describe the local structure of the instantonmoduli space by using the ADHM

construction at the fixed points of the T̃ = U(1)N × T2 action. Following [49], one introduces
a two-dimensional T2-module Q to keep track of the toric action. The operators (B1, B2, I, J)

corresponding to a fixed point configuration are elements of the T̃ -modules

(B1, B2) ∈ HomC(V, V ) ⊗ Q, I ∈ HomC(W,V ), J ∈ HomC(V,W) ⊗
2∧
Q. (4.19)

Then the local structure of the instanton moduli space is described by the complex

HomC(V, V )
σ−−−−−−→

HomC(V, V ) ⊗ Q

⊕
HomC(W,V )

⊕
HomC(V,W) ⊗

2∧
Q

τ−−−−−−→ HomC(V, V ) ⊗
2∧
Q (4.20)

which is just a finite-dimensional version of the Atiyah-Hitchin-Singer instanton deformation
complex (4.10). The map σ corresponds to infinitesimal (complex) gauge transformations
while τ is the linearization of the ADHM constraint μc = 0. In general, the complex (4.20)
has three nonvanishing cohomology groups. In our case we can safely assume that H0 and
H2 vanish. The only nonvanishing cohomology H1 describes field configurations that obey
the linearized ADHM constraint μc = 0 but are not gauge variations. It is thus a local model

for the tangent space to the instanton moduli space at each T̃ -fixed point. Later on we will
compute weights of the toric action on the tangent space modelled on (4.20).

The partition function of the U(1) topologically twisted gauge theory on X = C2 is
easily computed. The only nontrivial topological charge is the instanton number k = −

∫
X
F∧F

and therefore the partition function has the form

ZC2

U(1)

(
q
)
=

∞∑

k = 0

qkχ
(
M1,k

(
C2
))

. (4.21)

The expansion parameter can be identified in terms of gauge theory variables q := e2πiτ with

τ =
4πi

g2
YM

+
ϑ

2π
(4.22)

the complexified gauge coupling, which is related to topological string variables gs = g2
YM/2

at the attractor point. At a toric fixed point, k is identified as the number of boxes in a partition
λ. The Euler classes exactly cancel in the localization formula (3.26), and one is left with the
sum over fixed points [50]

χ
(
M1,k

(
C2
))

=
∑

λ:|λ|=k
1. (4.23)
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By Euler’s formula, one has

η̂(q)−1 :=
∞∏

n=1

1

1 − qn
=

∞∑

N=0

p(N) qN , (4.24)

where p(N) is the number of partitions λ = (λ1, λ2, . . .) (ordinary, two-dimensional Young
tableaux) of degree |λ| =∑i λi = N. The function η̂(q) is related to the Dedekind function. It
follows that the U(1) partition function

ZC2

U(1)

(
q
)
= η̂
(
q
)−1

(4.25)

is the generating function for two-dimensional Young diagrams.
This construction can be easily generalized to the nonabelian case. The fixed points

are now N-coloured Young tableaux
−→
λ = (λ1, . . . , λN) corresponding to a partition of

the instanton number k = (k1, . . . , kN). The instanton action is again equal to k, where
the additional factor of N arising from the sum over colours l= 1, . . . ,N cancels with the
normalization of the F ∧ F term which carries a factor 1/N (the inverse of the dual Coxeter
number of the gauge group G = U(N)). The Euler characteristic of instanton moduli space is
now

χ
(
MN,k

(
C2
))

=
∑

−→
λ :|−→λ |= k

1
(4.26)

with |−→λ | := ∑l |λl|. The U(N) partition function reduces to N copies of the U(1) partition
function

ZC2

U(N)

(
q
)
=
(
ZC2

U(1)

(
q
))N

. (4.27)

This factorization follows from the fact that after toric localization, the gauge symmetry
U(N) → U(1)N is broken to the maximal torus. The Coulomb phase corresponds to
well-separated D4-branes, but the topological nature of the gauge theory ensures that the
partition function is independent of theHiggsmoduli representing the lengths of open strings
stretching between D-branes. In the rest of this section, we will extend these constructions to
generic toric surfaces X.

4.3. Hirzebruch-Jung Spaces

Our main example will be the most general toric singularity in four dimensions, which
defines a class of toric Calabi-Yau (hence open) surfaces known as Hirzebruch-Jung spaces
C = C(p, n). They are determined by two relatively prime positive integers p and nwith p > n.
Consider the quotient singularity C2/Γ(p,n), with the generator of the cyclic group Γ(p,n) ∼= Zp

acting on (z,w) ∈ C2 as

(z ,w) 	−→
(
e2πin/pz, e2πi/pw

)
. (4.28)
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This orbifold has an Ap,n singularity at the origin of C2. Then C(p, n) is defined to be the
minimal resolution of the Ap,n singularity by a chain of ℓ exceptional divisors Si

∼= P1 whose
intersection numbers are summarized in the intersection matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

−e1 1 0 . . . 0
1 −e2 1 . . . 0
0 1 −e3 . . . 0
...

...
...

. . .
...

0 0 0 . . . −eℓ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.29)

which is called a generalized Cartan matrix. The divisors thus only intersect transversally with
their nearest neighbours in the chain. The self-intersection numbers ei ≥ 2 of the spheres P1

of the blow-up are determined from the continued fraction expansion

p

n
= e1 −

1

e2 −
1

e3 −
1

. . . eℓ−1 −
1

eℓ

.

(4.30)

Let us consider two particular well-known instances of these spaces.

4.3.1. Local P1

Setting n = 1, the space C(p, 1) can be identified with the total space of the holomorphic
line bundle OP1(−p) over P1 of degree −p, with ℓ = 1 and e1 = p. In this case, S = P1 is the
zero section divisor. In the context of topological string theory, such four cycles appear in the
“local” Calabi-Yau threefolds X which are regarded as neighbourhoods of a holomorphically
embedded rational curve in a compact Calabi-Yau threefold, that is, as the normal bundle
N → P1. Since N is a holomorphic vector bundle of rank two over P1 and the Calabi-Yau
condition implies c1(N) = −χ(P1) = −2, it follows that X is the total space of a bundle of the
form OP1(−p) ⊕ OP1(p − 2) → P1.

4.3.2. Ap−1 ALE Space

The complex surface C = C(p, p − 1) is an example of an asymptotically locally Euclidean
(ALE) space. This means that C carries a scalar flat Kähler metric g such that (C, g) is

complete, and there exists a compact set K such that C \K ∼= (R4 \ BR )/Zp. Here Zp ⊂ O(4)

acts freely on R4 \ BR and the metric g approximates the flat Euclidean metric on R4. Such
a coordinate system is called a coordinate system at infinity. We regard Zp ⊂ U(2) acting on
(z,w) ∈ C2 ∼= R4 as described above (with n = p − 1), and the complex structure I on C
approximates that on C2 = R4. As the resolution of the Klein singularity C2/Zp, C(p, p − 1)
contains a chain of ℓ = p − 1 projective lines P1, each with self-intersection number ei = 2.
In this case, the intersection matrix C coincides with the Cartan matrix of the Ap−1 Dynkin
diagram.
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4.4. Instantons on ALE Spaces

We begin by describing in some detail the instanton moduli space in the case of theAp−1 ALE
spaces, for which a rigorous construction is known.U(N) instantons on ALE spaces are given
by the ADHMconstruction. Since the topological gauge theory is invariant under blow-ups of
the surface (using blow-up formulas), one can do the instanton computation on the orbifold
C2/Γ where Γ = Γ(p,p−1) ∼= Zp. This result is at the heart of the McKay correspondence which
provides a one-to-one correspondence between irreducible representations of the orbifold
group Γ and tautological bundles over the exceptional divisors of the minimal resolution
C = C(p, p − 1).

Since C is noncompact, the instanton moduli space MC must be defined with respect
to connections which have appropriate asymptotic decay at infinity. We will describe this
in more generality later on in terms of framed moduli spaces of torsion-free sheaves. These
connections correspond to instantons of finite energy and are asymptotic to flat connections
with F = 0. In particular, there are solutions which have fractional first Chern class and
are related to instantons that asymptote to flat connections with nontrivial holonomy at the
boundary of C, which is topologically the Lens space L(p, p − 1) = S3/Γ. The flat connections
are classified by homomorphisms ρ : π1(C) → U(N), where π1(C) = Γ ∼= Zp. The asymptotic
connection at infinity is thus labelled by irreducible representations (k0, k1, . . . , kp−1) of the
orbifold group Zp, with

∑
i ki = N, and are given explicitly by

ρk
(
e2πi/p

)
= e2πik/p, (4.31)

where k = 0, 1, . . . , p − 1.
Starting from the ADHM construction on C2 outlined in Section 4.2., one constructs

its Γ-invariant decomposition. Consider the universal scheme Z ⊂ C × C2 given by the
correspondence diagram

Z
q1 q2

C C2

(4.32)

The tautological bundle on C is defined by

R := q1∗OZ. (4.33)

Under the action of Γ on Z,R transforms in the regular representation and can thus be
decomposed into irreducible representations

R =
p−1
⊕
k=0

Rk ⊗ ρk, Rk = HomΓ

(
R, ρk

)
. (4.34)

By the McKay correspondence, the bundles R0 = OC,R1, . . . ,Rp−1 form the canonical integral
basis of the K-theory group K0(C) constructed in [51].
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In this case, we take Q ∼= C2 to be a module on which the regular representation
of Γ acts. We also take Γ ⊂ SU(2) so that the determinant representation is trivial as a Γ-
module, that is, ∧2 Q⊗ΓR ∼= R. The two vector spaces V and W which feature in the ADHM
construction have a natural grading under the action of the orbifold group Γ given by

V =
p−1
⊕
k=0

Vk ⊗ ρk, W =
p−1
⊕
k=0

Wk ⊗ ρk. (4.35)

The modification of (4.20) is given by [52]

HomΓ(R∗, V )
σ−−−−−−→

HomΓ

(
R∗, Q ⊗ΓV

)

⊕
HomΓ(R∗,W)

τ−−−−−−→ HomΓ(R∗, V ), (4.36)

and the condition that the sequence (4.36) is a complex is equivalent to the (generalized)
ADHM equations. After imposing a certain stability condition, this construction realizes the
instanton moduli space as a quiver variety M(V,W).

This construction identifies two distinct types of instanton contributions to the ALE
partition function, which we consider in turn. As before, after toric localization the gauge
symmetry breaks asU(N) → U(1)N and the U(N) partition function factorizes as

ZALE
U(N)

(
q,Q
)
=
(
ZALE

U(1)

(
q,Q
))N

. (4.37)

It therefore suffices to focus on the U(1) case in the following.

4.4.1. Regular Instantons

Regular instantons on Ap−1 live in the regular representation k0 = k1 = · · · = kp−1 = k of the
orbifold group Γ = Zp. They correspond to D0-branes moving freely on C with p orbifold
images away from the orbifold point. For gauge group U(1), the moduli space is given

by specifying K = kp points on C up to permutations. Hence the moduli space M
U(1)
reg (C)

of regular U(1) instantons on C is isomorphic to the Hilbert scheme C[K]. The generating
function for the Euler numbers of the instanton moduli spaces can then be computed
explicitly by applying Göttsche’s formula to get

Z
U(1)
reg

(
q
)
=

∞∑

K = 0

qKχ
(
C[K]

)
= η̂
(
q
)−p

. (4.38)

TheU(N) partition function is theNth power of this quantity. Heuristically, we may think of
this formula as originating by covering C with p = χ(C) open charts to get p copies of U(N)

instantons on C2, each contributing η̂(q)−N . This can be demonstrated rigorously on any toric
surface C by a localization computation [53, 54].
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4.4.2. Fractional Instantons

To each irreducible representation (k0, k1, . . . , kp−1) of the orbifold group Zp, there corre-
sponds a fractional instantonwhich is stuck at the orbifold points. It has nomoduli (or orbifold
images) and can be regarded as a state in which open strings ending on the same D0-brane
are projected out by the action of the orbifold group. They carry magnetic fluxes through
the P1’s of the minimal resolution, and correspond to self-dual U(1) gauge connections with
curvatures

F = −2πiuic1(Ri), (4.39)

where ui ∈ Z and Ri = OP1(ei) are the tautological line bundles. The Chern classes c1(Ri),
i = 1, . . . , p − 1, form a basis ofH2(C,Z). Fractional instantons can thus be thought of as Dirac
monopoles on the two-spheres of the orbifold resolution.

The corresponding intersection numbers are given by

∫

C

c1(Ri) ∧ c1
(
Rj

)
= −
(
C−1
)
ij
,

∫

Si

c1
(
Rj

)
= δij . (4.40)

Since C is noncompact, the intersection matrix C is not necessarily unimodular, and the
corresponding instanton charges can be fractional. The contribution of fractional instantons
to the supersymmetric Yang-Mills action with observables is thus given by

Sfrac = − iτ

4π

∫

C

F ∧ F −
iφ2

j

2π

∫

C

F ∧ c1
(
Rj

)
= −πiτ

(
C−1
)ij

uiuj + ziui (4.41)

with zi = (C−1)ij φ
2
j . Setting u := (u1, . . . , up−1) and identifying Qi = e−zi using the attractor

mechanism, we find that the contribution of U(1) fractional instantons to the full partition
function is given by a theta-function

Z
U(1)

frac

(
q,Q
)
=
∑

u∈Zp−1
q(1/2) u·C

−1uQu
(4.42)

on a Riemann surface of genus g = p − 1 and period matrix τC−1.

4.5. Instantons on Local P1

Let us now discuss what is known beyond the ALE case, in the instance that C is the total
space of the holomorphic line bundle OP1(−p) [55]. In this case an ADHM construction is not
available. Nevertheless, much of the construction in the ALE case carries through, and by
introducing weighted Sobolev norms, one shows that MC is a smooth Kähler manifold with
torsion-free homology groups which vanish in odd degrees. Let us consider some explicit
examples.
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The zero section ofOP1(−p), considered as a divisor S = P1 ofC, produces a line bundle
L → C such that c1(L) is the generator of H2(C,Z) = Z. It has a unique self-dual connection
asymptotic to the trivial connection. Let C = C × C be the trivial line bundle over C. Set E =

C ⊕ L, and let M(E) be the moduli space of self-dual connections on E which are asymptotic
to the trivial connection at infinity. Then dimR(M(E)) = 2p. Since H1(C,R) = 0, using Morse
theory one can show that the only nonvanishing homology groups of the instanton moduli
space are H0(M(E),R) = H2(M(E),R) = R.

Alternatively, set E = L ⊕ L∨, and let M(k)(E), k = 0, 1, . . . , p − 1, be the moduli space
of self-dual connections asymptotic to ρk ⊕ ρ∗

k
. Then for any p > 2,dimR(M(k)(E)) = 2, while

for p = 2 (whereby OP1(−2) coincides with the A1 ALE space), one has dimR(M(k)(E)) = 4.
In particular, for p = 2 there is a diffeomorphism M(k)(E) ∼= T ∗P1 with H0(M(k)(E),R) =

H2(M(k)(E),R) = R, while for p = 4 one has M(k)(E) ∼= B2. Instantons on local P1 will be
studied in more generality later on in terms of moduli spaces of framed torsion-free sheaves.

4.6. Wall-Crossing Formulas

In [56] it was suggested that the structure of the instanton partition function on ALE spaces
can be extrapolated to give a general result valid for all Hirzebruch-Jung surfacesC = C(p, n).
Thus one postulates the form of the U(N) partition function

ZC
U(N)

(
q,Q
)
=
(
Z

U(1)
reg

(
q
)
Z

U(1)

frac

(
q,Q
))N

=
1

η̂(τ)Nχ(C)

∑
−→u∈ZN b2(C)

q(1/2)
−→u ·C−1 −→uQu,

(4.43)

where

u :=
N∑

l=1

ul. (4.44)

In the ALE case, one has χ(Ap−1) = p and b2(Ap−1) = p − 1. The evidence for this formula
is supported by calculations in the reduction to q-deformed two-dimensional Yang-Mills
theory [13, 57], which captures the contributions from fractional instantons on the exceptional
divisors. It was even conjectured to hold in the case when C is a compact toric surface, at least
in the region of moduli space where the instanton charges are large. Though the regular and
fractional instantons are always readily constructed exactly as in the ALE case, the issue is
whether or not this formula takes into account all of the instanton contributions, and in which
regions of moduli space the factorization intoU(1) partition functions holds. Later on wewill
give more precise meanings to these “asymptotic charge regions” in terms of moduli spaces
of torsion-free sheaves.

Curiously, the formula (4.43) coincides with the chiral torus partition function of a
conformal field theory in two dimensions with central charge c = N χ(C), that is, of N χ(C)
free bosons, with N b2(C) of them being compact. The compact degrees of freedom live in
a torus determined by the lattice H2(C,Z) with the bilinear form C. The appearence of this
two-dimensional field theory can be understood in M-theory, wherein the D4-D2-D0 brane
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quantum mechanics lifts to a (4, 0) two-dimensional superconformal field theory on an M5-
brane worldvolume [58]. This is reminscent of the recent conjectural relations between four-
dimensional superconformal gauge theories and two-dimensional Liouville conformal field
theories [59, 60]. When C is an Ap−1 ALE space and the gauge group is SU(N), there is yet
another conformal field theoretic interpretation [46, 55, 61, 62]. In this case, the levelN affine

ŝu(p) Lie algebra acts on the cohomology ring of the instantonmoduli space, and the partition
function (with appropriate local curvature and signature corrections inserted) coincides with
the character of the affine Kac-Moody algebra given by

ZALE
SU(N)

(
q,Q
)
=

∞∑

n=0

∑

u∈Zp−1
Ω(n,u)qn−c/24Qu = TrH

(
qL0−c/24QJ0

)
, (4.45)

where u = c1(P), n = c2(P) = k + (1/2) u · Cu, and Ω(n,u) are the degeneracies of BPS states
with the specified quantum numbers. HereH is the Hilbert space on which the chiral algebra
acts, which can be represented in terms of free fermion or boson conformal field theories
with extended symmetry generators J0 [61]. The U(1) partition function is also expressed as

a û(1)1 character in [61, 62].
Let us now compare the instanton partition function (4.43) with the black hole

partition function. Microscopic black hole entropy formulas for BPS bound states of D0-D2-
D4 branes in Type IIA supergravity are readily available on compact Calabi-Yau threefolds
X [58], in the large volume limit and when contributions from worldsheet instantons are
negligible. In this limit we can expand the cycle [C] as in (2.20). Let αi, i = 1, . . . , b2(X), be
an integral basis of two cocycles forH2(X,Z) dual to the four-cycle [Ci]with the intersection
numbers

Dijk =
1

6

∫

X

αi ∧ αj ∧ αk, c2,i =

∫

X

αi ∧ c2(X), (4.46)

and letDij be the matrix inverse ofDij = DijkQk
4 . The genus zero topological string amplitude

F0 can be expressed as

F0 = Dijk
XiXjXk

X0
. (4.47)

With Q0 = (1/8π2)
∫
C
F ∧ F and Qi = Qi

2 = (C−1)ijuj , the black hole entropy is given by [58]

SBH(Q0,Q,Q4) = 2π

√(
DijkQi

4 Qj

4 Qk
4 +

1

6
c2,iQi

4

)(
Q0 +

1

12
DijQiQj

)
. (4.48)

We would now like to interpret the gauge theory partition function (4.43) as the
corresponding black hole partition function ZBH(Q4,φ

2, φ0). For this, we expand it as

ZC
U(N)

(
q,Q
)
=
∑

Q0,Qi

Ω(Q0,Q,Q4) e
−Q0φ

0−Q·φ2

. (4.49)
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Then Cardy’s formula gives the black hole entropy as

SBH(Q0,Q,Q4) = logΩ(Q0,Q,Q4). (4.50)

This expression agrees [56] with the macroscopic supergravity result (4.48) for the
Bekenstein-Hawking-Wald entropy in the large Q0 limit. Wall-crossing issues in a similar
context are discussed in more detail in [63–67].

In parallel to what we did in Section 3.9., in order to explore the pertinent wall-
crossing formulas in this instance, we will now consider moduli spaces which parametrize
isomorphism classes of the following objects:

(a) surjections (framings) OC → F → 0 of torsion-free sheaves with ch(F) =

(N,d,−k),
(b) stable torsion-free sheaves E on C with ch(E) = (N,d, k),

(c) closed subschemes S ⊂ C of dimension ≤ 1 with dual curve class [S]∨ = d and
holomorphic Euler characteristic χ(OS) = k.

In contrast to the six-dimensional situation, in four dimensions the connections between these
three classes of objects are somewhat more subtle. We will examine each of them in turn and
how they compare with the gauge theory results we have thus far obtained.

4.7. Moduli Spaces of Framed Instantons

We begin with Point (a) at the end of Section 4.6. Let C be a smooth, quasiprojective, open,

toric surface. We will assume that C admits a projective compactification C , that is, C is a

smooth, compact, projective, toric surface with a smooth divisor ℓ∞ ⊂ C (called the “line at

infinity”)which is a T2-invariant P1 in C , and such that C = C\ℓ∞. We will also require that
ℓ∞ · ℓ∞ > 0, in addition to ℓ∞ ∼= P1. The difference between the counting of framed instantons

on the compact toric surface C (with boundary condition at “infinity”) and of unframed
instantons on the open toric surface C is a universal perturbative contribution, which will

be dropped here. Since C is compact, these calculations will only capture the contributions
from instantons with integer charges on C. We will mention later on how to incorporate the
contributions from fractional instantons on C.

Let us fix two numbers N ∈ N and k ∈ Q, and an integer cohomology class d ∈
H2( C ,Z). Let MN,d,k(C) be the framed moduli space consisting of isomorphism classes [E]
of torsion-free sheaves E on C such that

(1) E has the following topological Chern invariants:

N = ch0(E) = rank(E), d = ch1(E) = c1(E), k = −
∫

C

ch2(E); (4.51)

(2) E is locally-free in a neighbourhood of ℓ∞, and there is an isomorphism E|ℓ∞ ∼= O⊕N
ℓ∞

called the “framing at infinity”.

These topological conditions imply that the moduli space MN,d,k(C) is nonempty only when

d|ℓ∞ = Nc1(Oℓ∞) = 0, (4.52)
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so that d defines a class d ∈ H2
cpt(C,Z) in the compactly supported cohomology of C.

Furthermore, from ch2(E) = −c2(E) + (1/2)c1(E) ∧ c1(E), the last relation in (4.51) can be
written as

k =

∫

C

(
c2(E) −

1

2
d ∧ d

)
. (4.53)

Framed sheaves yield stable pairs [68], analogous to those described in Section 3.9., after

suitable choices of polarization on C and stability parameter.
We write E(−ℓ∞) := E ⊗ O C (−ℓ∞). At a given point [E] ∈ MN,d,k(C), the space of

reducible connections is Ext0O C
(E,E(−ℓ∞)) = HomO C

(E,E(−ℓ∞)), the Zariski tangent space

is Ext1O C
(E,E(−ℓ∞)), and the obstruction space is Ext2O C

(E,E(−ℓ∞)). The cohomology of the

instanton deformation complex is greatly simplified by the fact that in this case [69]

Ext0O C
(E,E(−ℓ∞)) = Ext2O C

(E,E(−ℓ∞)) = 0. (4.54)

Using (4.54) and the Riemann-Roch theorem, one shows [69] that themoduli spaceMN,d,k(C)
is a smooth quasiprojective variety of (complex) dimension 2N k + d2, where d2 :=

∫
C

d ∧ d,
whose tangent space at a point [E] is isomorphic to the vector space Ext1O C

(E,E(−ℓ∞)).
Wewill now describe a natural torus invariant subspace of the instantonmoduli space.

The T2-invariance of ℓ∞ implies that the pullback of the T2-action on C defines an action
on MN,d,k(C). There is also an action of the diagonal maximal torus TN of GL(N,C) on the

framing. Altogether we get an action of the complex algebraic torus T̃ = T2×TN on MN,d,k(C)

[69]. We are interested in the fixed point set MN,d,k(C)
T̃ of this torus action.

An isomorphism class [E] ∈ MN,d,k(C) is fixed by the TN-action if and only if it
decomposes as

E = E1 ⊕ · · · ⊕ EN , El ∈ M1,d,k(C) (4.55)

such that El|ℓ∞ is mapped to the lth factor Oℓ∞ of O⊕N
ℓ∞

under the framing isomorphism. Since
the double dual E∨∨

l
is a line bundle which is trivial on ℓ∞, it is equal to O C (Dl) for some

divisor Dl ⊂ C disjoint from ℓ∞. Via the natural injection El ⊂ E∨∨
l

= O C (Dl), the sheaf El is
thus equal to Il(Dl) = Il ⊗ O C (Dl) for some ideal sheaf Il of a zero-dimensional subscheme

Zl ⊂ C, also disjoint from ℓ∞. If E is also fixed by the T2-action, then so are Dl, Il, and Zl.
The supports of the T2-invariant subschemes Zl and Dl can be represented explicitly

in terms of the toric geometry of C. Recall that this is described in terms of an underlying
toric graph Δ(C) whose vertices are in bijective correspondence with the T2-fixed points in
C, and two vertices are joined by an edge e if and only if the corresponding fixed points are
connected by a T2-invariant P1. Let V (C) and E(C), respectively, denote the set of vertices
and edges of Δ(C). Then since Δ(C) is a chain, one has |E(C)| = |V (C)| − 1. The number of
vertices n = |V (C)| is also the number of two-cones in the toric fan of C and it is related to the
Euler characteristic χ(C) of the surface as

n = χ(C) = χ
(
C
)
− 2. (4.56)
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We denote by pf the T2-invariant point in C corresponding to the vertex f ∈ V (C) and by ℓe
the T2-invariant line P1 corresponding to the edge e ∈ E(C).

Since the zero-cycles Zl are not supported on ℓ∞, they must be contained in the fixed

point set V (C) in C. Thus each Zl is a union of subschemes Z
f

l
, f ∈ V (C) supported at the

T2-fixed points pf ∈ C. If we choose a local coordinate system (x, y) ∈ C2 in a patch Uf

around pf , then the T2-invariant ideal of Z
f

l
in the coordinate ring C[x, y] of Uf

∼= C2 is
generated by the T2-eigenfunctions with nontrivial characters, which are monomials xiyj ,

and henceZ
f

l
corresponds to a Young diagram λ

f

l
with |λf

l
| boxes (withmonomial xiyj placed

at (i+1, j+1)). The ideal is spanned bymonomials outside the Young diagram. Likewise, since
the T2-invariant two-cycles Dl are disjoint from the line at infinity, they are supported along
the edges ℓe ∼= P1, e ∈ E(C).

It follows that the fixed point set MN,d,k(C)
T̃ is parameterized by finitely many N-

tuples

(−→
D,

−→
λ
)
= ((D1,λ1), . . . , (DN ,λN)), (4.57)

where

Dl ∈ H2(C,Z) ∼= ⊕
e∈E(C)

Z[ℓe] (4.58)

are T2-invariant divisors in C and

λl =
(
λ
f

l

)
f∈V (C)

(4.59)

is a vector of Young tableaux with |λl| :=
∑

f∈V (C) |λ
f

l
| boxes. The Young tableaux parametrize

the contributions from regular pointlike D0-brane instantons (freely moving inside C).
The divisors parametrize the contributions from D2-brane instantons (wrapping Dl with
appropriate units of magnetic flux). Wewill see that these two types of contributions factorize

completely. We can write the topological invariants of a generic element (4.57) in MN,d,k(C)
T̃

in terms of this combinatorial data. Since c1(Il) = 0, the constraint d = c1(E) can be written as

d =
N∑

l=1

c1(OC(Dl)), (4.60)

whereas (4.53) becomes

k =
N∑

l=1

|λl| +
∫

C

(∑

l<l′
c1(OC(Dl)) ∧ c1(OC(Dl′)) −

1

2
d ∧ d

)
. (4.61)

The Young diagram box sum in (4.61) gives the length of the singularity set of the sheaf (4.55).
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To make contact with our previous formulas, let us rewrite these constraints in a more
explicit parametrization. Define the invertible, symmetric, integer-valued intersection matrix
C = (Ce,e′)e,e′∈E(C) between lines of the toric graph Δ(C) as

Ce,e′ := ℓe · ℓe′ . (4.62)

Each divisor ℓe is canonically associated to a T2-equivariant holomorphic line bundle Le :=
OC(ℓe) whose first Chern class c1(Le) ∈ H2

cpt(C,Z) is Poincaré dual to ℓe with

∫

ℓe

c1(Le′) = Ce,e′ ,

∫

C

c1(Le) ∧ c1(Le′) = Ce,e′ . (4.63)

Note that these intersection numbers differ from (4.40), that is, the basis of line bundles
Le does not coincide with the tautological line bundles Ri. Using (4.58) we can write
c1(OC(Dl)) =

∑
e∈E(C) u

e
l
c1(Le) with ue

l
∈ Z. Then the constraint (4.60) can be expressed as

d =
N∑

l=1

∑

e∈E(C)
ue
l c1(Le). (4.64)

Combined with (4.61) and using (4.63), this gives

k =
N∑

l = 1

|λl| +
∑

l<l′
ue
lCe,e′u

e′

l′ −
1

2

N∑

l,l′ = 1

ue
lCe,e′u

e′

l′ =
N∑

l= 1

|λl| −
1

2

N∑

l = 1

ue
lCe,e′u

e′

l . (4.65)

The Vafa-Witten-Nekrasov partition function on the toric surface C is now defined as

the T̃ -equivariant index

ZC
U(N)

(
q,Q
)fr

=
∑

k∈Q

qk
∑

d∈H2
cpt(C,Z)

Qdχ(MN,d,k(C)), (4.66)

where as before q = e2πiτ with τ the complexified gauge coupling constant and

Qd :=
∏

e∈E(C)
(Qe)

(C−1)
e,e′ ∫

ℓe′
d

(4.67)

for a collection of formal variablesQe, e ∈ E(C) and a given cohomology class d ∈ H2
cpt(C,Z).

From the localization formula (3.25), we see that the T̃ -equivariant Euler class cancels in
(3.26) at the fixed points. This cancellation in the fluctuation determinants is a consequence
of (4.54) which implies that the obstruction bundle is trivial, and there is an isomorphism

between the tangent and normal bundles over the fixed point set MN,d,k(C)
T̃ in the instanton

moduli space. Because of this cancellation, we see that the contribution from each critical
point of the gauge theory is independent of the equivariant parameters ǫi and al. In the
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sum over critical points, we can replace the sum over k ∈ Q using (4.65) by sums over

Young diagrams
−→
λ and over the integers −→u = (u1, . . . ,uN) and ul = (ue

l
)e∈E(C) ∈ Zn−1

representing magnetic fluxes through ℓe on D2-branes wrapping the divisors Dl. The sum
over d ∈ H2

cpt(C,Z) may then be saturated using (4.64).
Putting everything together, and using (4.64) and (4.63) to write

∫

ℓe

d =
N∑

l=1

Ce,e′u
e′

l , (4.68)

the partition function (4.66) thereby becomes

ZC
U(N)

(
q,Q
)fr

=
∑
−→
λ

∑
−→u∈ZN (n−1)

q|
−→
λ |−(1/2) −→u ·C−→uQu, (4.69)

where we have used (4.44). The sums over Young tableaux decouple, and for each vertex
f ∈ V (C) and each l = 1, . . . ,N, they produce a factor of the Euler function η̂(q)−1. Then we
can bring (4.69) into the final form

ZC
U(N)

(
q,Q
)fr

=
1

η̂
(
q
)Nχ(C)

∑
−→u∈ZN b2(C)

q−(1/2)
−→u ·C−→uQu, (4.70)

where we recall that χ(C) = |V (C)| = n and b2(C) = |E(C)| = n − 1.
This formula differs from (4.43) in that only integral values of the first Chern class are

permitted in (4.70). In the case of an Ap−1 singularity, fractional first Chern classes can be
incorporated by constructing instead the moduli space of torsion-free sheaves on the orbifold

compactification C
orb

= C ∪ ℓ̃∞ of the hyper-Kähler ALE space C, where ℓ̃∞ = P1/Γ [52, 55,

70, 71]. In a neighbourhood of infinity, we can approximate C by P2/Γ with the singularity

at the origin resolved. More precisely, we obtain the divisor ℓ̃∞ by gluing together the trivial
bundle OC on C with the line bundle OP2/Γ(1) on P2/Γ. The latter bundle has a Γ-equivariant
structure such that the map OC → OP2/Γ(1) is Γ-equivariant. Let us examine some examples
which are covered by the analysis above.

4.7.1. Affine Plane

Let C = C2. Then C = P2 with ℓ∞ = [0, z1, z2] ∼= P1 and intersection number ℓ∞ · ℓ∞ = 1 > 0.
Since H2(P2,Z) ∼= Z in this case, the constraint (4.52) implies d = 0. The instanton moduli
space MN,k(C2) in this case is a smooth variety of complex dimension 2N k. Furthermore,
n = χ(P2) − 2 = 3 − 2 = 1. The partition function (4.66) computed with fixed d = 0 and n = 1 is
thus given by

ZC2

U(N)

(
q
)fr

= η̂
(
q
)−N

, (4.71)

which coincides with the instanton partition function on C2 described in Section 4.2.
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4.7.2. Local P1

Let C = Cp, p > 0, be the total space of the holomorphic line bundleOP1(−p) of degree −p over

P1. Then C = Fp := P(OP1(−p) ⊕ OP1) is the pth Hirzebruch surface. Let ℓ0 = P(0 ⊕ OP1) ∼= P1

and ℓ∞ = P(OP1(−p)⊕ 0) ∼= P1. Then ℓ0 · ℓ0 = −p < 0, ℓ∞ · ℓ∞ = p > 0, and ℓ0 · ℓ∞ = 0 so that the
line ℓ0 does not pass through the “line at infinity”. From the constraint (4.52) and the second
Betti number b2(Cp) = 1, it follows that d = mc1(OCp

(ℓ0)) for some m ∈ Z. In this case, the
instanton moduli space MN,m,k(Cp) is a smooth variety of complex dimension 2Nk − pm2.
The positivity of this dimension is a constraint on the integral classes which ensures that the
moduli space is non-empty. One has χ(Fp) = 1 + 2 + 1 = 4, and hence n = χ(Fp) − 2 = 2. The
partition function (4.70) in this case becomes

Z
Cp

U(N)

(
q,Q
)fr

=
1

η̂
(
q
)2N

∑
−→u∈ZN

q(p/2)
−→u ·−→uQu

(4.72)

with u = u1 + · · · + uN .

Like the ALE spaces, one can work instead with a stack compactification C
orb

of the

total space of the bundle OP1(−p) obtained by adding a divisor ℓ̃∞ ∼= ℓ∞/Γ. The resulting
variety is a toric Deligne-Mumford stack whose coarse space is the Hirzebruch surface Fp

[72]. With this compactification, one produces framed sheaves with fractional first Chern
classes d = (m/p) c1(OCp

(ℓ0)), m ∈ Z, and in this case the partition function takes the form
[72]

Z
Cp

U(N)

(
q,Q
)orb

=

(
θ3
(
v/p | τ/p

)

η̂(q)2

)N

(4.73)

anticipated by [13, 56], where q = e2πiτ , Q = e2πiv, and θ3(v | τ) =∑n∈Z q(1/2) n
2
Qn is a Jacobi

elliptic function.
On these spaces, one also has a version of the Hitchin-Kobayashi correspondence

which makes contact with the realization of instantons as self-dual connections. Namely,
SU(N)-instantons on Cp are in one-to-one correspondence with holomorphic bundles E of
rank N on Cp with c1(E) = 0 together with a framing at infinity [73]. When p = 2, these
spaces coincide with the A1 ALE space.

4.7.3. Compact Surfaces

We will now examine situations under which the formula (4.70) holds in the case of compact
surfaces, providing rigorous justification for some of the conjectural formulas of [56]. Let
C be a compact, smooth, projective toric surface. Let c∞ be a generic point in C which is
disjoint from the torus invariant lines ℓe, e ∈ E(C) of C. Let MN,d,k(C, c∞) be the moduli
space of isomorphism classes [E] of torsion-free coherent sheaves E on C with topological
Chern invariants as in (4.51), together with a “framing” at the point c∞. When E is locally
free, this framing means a choice of basis for the fibre space Ec∞

∼= CN . When E is not locally
free, the framing is defined with respect to a locally free resolution E• → E → 0.
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Let σ : (Ĉ, ℓ̂∞) → (C, c∞) be the blow-up of C at c∞. Then Ĉ is also a compact, smooth,

projective toric surface. We will suppose that the exceptional divisor ℓ̂∞ = σ−1(c∞) ∼= P1 has

positive self-intersection ℓ̂∞ · ℓ̂∞ > 0. Let Mfr
N,d,k

(Ĉ) be the moduli space of isomorphism

classes [ Ê ] of torsion-free sheaves Ê on Ĉ which are framed on the line ℓ̂∞ as above. The
blow-up map σ determines mutually inverse sheaf morphisms [Ê] 	→ [E] = [σ∗Ê] and [E] 	→
[Ê] = [σ∗E], and hence an explicit isomorphism

MN,d,k(C, c∞) ∼= Mfr
N,d,k

(
Ĉ
)
. (4.74)

It follows from above that the moduli spaceMN,d,k(C, c∞) is thus a smooth variety of complex
dimension 2N k + d2, where d2 :=

∫
C

d ∧ d. Using the isomorphism (4.74), the instanton
partition function on C can be computed from the blow-up formula

ZC
U(N)

(q,Q)fr = Z
Ĉ\ℓ̂∞
U(N)

(q,Q)fr, (4.75)

where the right-hand side is given by the formula (4.70).
As an explicit example, consider the complex projective plane C = P2. Let z∞ be a

generic point on P2 disjoint from the line ℓ∞ = [0, z1, z2]. Then the instanton moduli space
MN,d,k(P

2, z∞) is a smooth variety of complex dimension 2N k + d2, where d ∈ Z. Let σ :

P̂2 → P2 be the blowup of P2 at z∞ with exceptional divisor ℓ̂∞ = σ−1(z∞) ∼= P1. Then there

are n = χ(P̂2 \ ℓ̂∞) = χ(P2) = 3 maximal two cones and b2(P̂
2 \ ℓ̂∞) = b2(P

2) = 1 edge in the

toric graph Δ(P̂2 \ ℓ̂∞) = Δ(P2). Since ℓ∞ · ℓ∞ = 1 in this case, the partition function (4.75)
gives the U(N) formula

ZP2

U(N)

(
q,Q
)fr

=
1

η̂
(
q
)3N

∑
−→u∈ZN

q−(1/2)
−→u ·−→uQu

(4.76)

with u = u1 + · · ·+uN . ForN = 1 this agrees with theU(1) gauge theory partition function on
P2 derived in [54, Section 5.1].

4.8. Stability

Next we address Point (b) at the end of Section 4.6. If one wishes to relax the requirement
of framing, then one must carefully analyse stability issues in order to obtain well-defined
instanton moduli spaces. Let C be a smooth, quasiprojective toric surface. Again we fix
invariants N ∈ N, k ∈ Q, and d ∈ H2

cpt(C,Z). Let MN,d,k(C) be the unframed moduli space
consisting of isomorphism classes [E] of semistable torsion-free coherent sheaves E onC such
that E has topological Chern invariants

N = ch0(E) = rank(E), d = ch1(E) = c1(E), k = −
∫

C

ch2(E). (4.77)
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The notion of “semistability” considers sheaves with fixed Hilbert polynomial. In this
case, a general result of Maruyama [74, 75] constructs the algebraic scheme MN,d,k(C) and

shows that it is projective. In particular, it admits a T̃ -equivariant embedding into a smooth
variety. In the case that C is a polarized surface, that is, it admits a smooth distribution in
its tangent bundle TC which is integrable and Lagrangian (in an appropriate sense), we
can formulate the notion of semistability in terms of the more familiar slope semistability
following [76]. Let L be a fixed ample line bundle on C. For a coherent torsion-free sheaf E
on C, define the polynomial

ρE(n) =
χ(E ⊗ L⊗n)

rank(E) (4.78)

for n ∈ N0. Then E is said to be L-semistable if

ρF(n) ≤ ρE(n) (4.79)

for all n ≫ 0 whenever F is a coherent subsheaf of E. In this case, Gieseker [76] constructs
MN,d,k(C) as a projective Quot scheme. The slope of E is the rational number

μ(E) = deg(E)
rank(E) , (4.80)

where the degree of E is defined using the polarization as

deg(E) =
∫

C

c1(E) ∧ c1(L). (4.81)

An application of the Riemann-Roch theorem shows [76]

ρE(n) =
n

2

∫

C

(
c1(L) ∧ (nc1(L) + c1(C)) +

2 ch2(E) + c1(E) ∧ c1(C)

rank(E)

)
+ μ(E) + χ(OC). (4.82)

It follows that ρE(n) ≥ ρF(n) for n ≫ 0 if and only if μ(E) ≥ μ(F), and hence L-semistability
is equivalent to the usual quasi-BPS instanton equations in this case. In physics applications,
one is interested in instances where C is a Kähler surface. In this case one can use the Kähler
polarization and take c1(L) to be the Kähler two-form k0 in (4.32).

The following result computes the expected dimension of the instanton moduli space
in this case.

Lemma 4.1. The virtual dimension of MN,d,k(C) equals 2N k + d2 − (N2 − 1) χ(OC), where d
2 :=∫

C
d ∧ d and χ(OC) is the holomorphic Euler characteristic of C.

Proof. As discussed in Section 3.5., the dimension of the virtual tangent space Tvir
[E]MN,d,k(C) =

Ext1OC
(E,E) ⊖ Ext2OC

(E,E) to the instanton moduli space at a point [E] ∈ MN,d,k(C) in
obstruction theory is the difference of Euler characteristics χ(OC ⊗O∨

C) − χ(E ⊗ E∨). The latter
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quantity may be computed for E locally free by using the Hirzebruch-Riemann-Roch theorem
to write

χ
(
E ⊗ E∨) =

∫

C

ch
(
E ⊗ E∨) ∧ Td(C). (4.83)

Let ν be the generator of H4(C,Z) ∼= Z which is Poincaré dual to a point in C. Then using
(4.77) one computes the Chern character

ch
(
E ⊗ E∨) = ch(E) ∧ ch

(
E∨) = (N + d − kν) ∧ (N − d − kν) = N2 − d ∧ d − 2Nkν. (4.84)

The Todd characteristic class of the tangent bundle of C is given in terms of Chern classes of
TC as

Td(C) = 1 +
1

2
c1(C) +

1

12
(c1(C) ∧ c1(C) + c2(C)). (4.85)

We may thus write (4.83) as

χ
(
E ⊗ E∨) =

∫

C

(
N2

12
(c1(C) ∧ c1(C) + c2(C)) − d ∧ d − 2Nkν

)

= −2N k − d2 +N2

∫

C

Td(C).

(4.86)

From the Hirzebruch-Riemann-Roch formula and ch(OC) = 1, one has

χ(OC) =

∫

C

Td(C) = χ
(
OC ⊗ O∨

C

)
(4.87)

and the result follows when E is a bundle. When E is not locally free, we use a locally free
resolution E• → E → 0 along with additivity of the Chern character.

This result shows that the expected dimension of the instanton moduli space forN = 1
coincides with the dimension of the framed moduli space M1,d,k(C) of Section 4.7. Indeed,
torsion-free sheaves of rank one are always stable in the sense explained above. Since any
torsion-free sheaf decomposes as the product E = I⊗L of an ideal sheaf of a zero-dimensional
subscheme and a line bundle, the moduli space factorizes into a product

M1,d,k(C) = M1,0,k+d2/2(C) × M1,d,−d2/2(C), (4.88)

where M1,0,K(C) ∼= C[K] is the Hilbert scheme of K points on C which is a smooth
variety of dimension 2K, and the (zero-dimensional) Picard group M1,d,−d2/2(C) ∼= Picd(C)
parameterizes fractional instantons. The factorization of the U(1) gauge theory partition
function into contributions from regular and fractional instantons then follows from the
multiplicativity of the Euler class under tensor product of (tangent) bundles. For compact
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toric surfaces C, it is given by the formula (4.70) with N = 1. In the case of Hirzebruch-Jung
surfaces, the contributions of fractional charges in this case are shown in [54] to arise from
the noncompact prime divisors of C via linear equivalences. It amounts to identifying the
generators c1(Ri) of the Kähler cone in CH1(C)⊗Q with the duals to the exceptional divisors

Di which generate the Mori cone in CH
cpt

1 (C) ⊗ Q. For the ALE spaces, the moduli space
M1,0,k+d2/2(C) coincides with the quiver variety of the ADHM construction (with suitable
stability conditions) [77].

The situation for higher rank N > 1 is much more complicated. In this case, slope-
stability does not seem to properly account for walls of marginal stability extending to infinity
which describe wall-crossing behaviour of the partition functions counting D4-D2-D0 brane
bound states on Calabi-Yau manifolds X with h1,1(X) > 1 [64]. As discussed in Section 3.9.,
the physical theory is described by moduli spaces of stable objects in the derived category
Db(coh(X)), as the observed D-brane decays are impossible in the abelian category coh(X) of
coherent sheaves on X.

4.9. Perpendicular Partition Functions and Universal Sheaves

Finally, we come to the last Point (c) at the end of Section 4.6. For U(1) gauge theory,
this relationship is analysed in detail in [54]. In this case a four-dimensional analog of
the topological vertex formalism can be developed. On the gauge theory side, the vertex
contributions should be computed by a version of the perpendicular partition function of
Section 3.8., that is, the generating function Pm1,m2

U(N)
(q) for instantons on C = C2 with fixed

asymptotics such that ZC2

U(N)
(q) = P 0,0

U(N)
(q), while the edge contributions should be read off

from the character of the corresponding universal sheaf. In the remainder of this section,
we will describe in detail the instanton moduli space with boundary conditions specified

by integers m1, and m2, and show that the fixed point loci of the induced T̃ -action are
enumerated by two-dimensional Young diagrams with asymptotics m1, and m2. This gives
the four-dimensional version of the gauge theory gluing rules of Section 3.8. and also a first
principle derivation of the empirical vertex rules of [54, Section 4.3].

4.9.1. Instanton Moduli Spaces on F0

We will first describe how to generate instantons with nontrivial first Chern class using our

previous formalism. For this, rather than working with the projective plane C = P2, it is more
convenient to work with the “two-point compactification” of C = C2 given by a product of
two projective lines F0 = P1

z × P1
w, where the labels will be used to keep track of each of the

two factors. This variety can be identified as the zeroth Hirzebruch surface F0 = P(OP1 ⊕OP1),
that is, the projective compactification of the trivial line bundle OP1 = C × P1, which is again
a toric surface. For (tz, tw) ∈ T2, the toric action is described by the automorphism Ftz,tw of F0

defined by

Ftz,tw([z0, z1]; [w0, w1]) = ([z0, tzz1]; [w0, tww1]). (4.89)

Let pz :F0 → P1
z and pw :F0 → P1

w be the canonical projections, and iz : P1
z
∼= P1

z×pt →֒ F0 and
iw :P1

w
∼= pt × P1

w →֒ F0 the natural inclusions. There are now two independent distinguished
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lines at infinity fixed by this T2 action, given by the pushforwards ℓz = (iz)∗P
1
z and ℓw =

(iw)∗P
1
w, for which the respective factors of the action of T2 = C∗ × C∗ reduce to the standard

C∗-action on ℓz, ℓw ∼= P1. These two divisors have intersection products ℓz · ℓz = ℓw · ℓw = 0
and ℓz · ℓw = 1, and the canonical divisor isKF0

= −2ℓz − 2ℓw. They generate the Picard group
of F0, and hence induce a bigrading on line bundles over F0. For mz, mw ∈ Z, we write

OF0(mz, mw) := OF0(mzℓz +mwℓw) = p∗zOP1
z
(mz) ⊗ p∗wOP1

w
(mw). (4.90)

By Künneth’s theorem, the nontrivial cohomology groups of F0 are given by

H0(F0,Z) = Z, H2(F0,Z) = Z[ξz] ⊕ Z[ξw], H4(F0,Z) = Z[ξz ∧ ξw], (4.91)

where ξz = c1(OF0
(1, 0)) = p∗zc1(OP1

z
(1)) and ξw = c1(OF0

(0, 1)) = p∗wc1(OP1
w
(1)).

Let MN;(mz,mw);k(F0) be the moduli space of isomorphism classes [E] of torsion-free
sheaves E on F0 with topological Chern invariants as in (4.51), where d = mzξz +mwξw, and
nontrivial framings along the two independent “directions at infinity” are prescribed by two
fixed isomorphisms E|ℓz ∼= W ⊗ OP1

z
(mz) and E|ℓw ∼= W ⊗ OP1

w
(mw), where W is a fixed N-

dimensional complex vector space. We will say that such a sheaf is “trivialized at infinity” if
it is equipped with two isomorphisms E|ℓz ∼= W ⊗ OP1

z
and E|ℓw ∼= W ⊗ OP1

w
. The moduli space

of trivialized sheaves is denoted MN,k(F0) := MN;(0,0);k(F0). These moduli spaces carry an

obvious induced action of the torus T̃ = T2 × TN , and the following formal arguments show
that the instanton counting in these moduli spaces is the same as before.

Proposition 4.2. There is a natural T̃ -equivariant birational equivalence between the moduli spaces

MN,k(F0) ∼= MN,k

(
C2
)
. (4.92)

Proof. Represent F0 as a divisor in P2 × P1 via the embedding P1
z →֒ P2, [z0, z1] 	→ [z0, z1, z1].

Let ̂̂P
2

be the surface obtained as the blowup p of a pair of points on the line at infinity
ℓ∞ ⊂ P2 (see Section 4.7.). Note that ℓ∞ is disjoint from the image of the line ℓz. Then there is
a correspondence diagram

̂̂P
2

p q

P2 F0

(4.93)

where q is the blowup of the intersection point ℓz · ℓw on F0 = P1
z × P1

w. The corresponding
Fourier-Mukai functors q∗p∗ and p∗q∗ determine equivalences on the categories of coherent
sheaves over P2 and F0, and hence induce mutually inverse rational maps between the
corresponding sets of isomorphism classes of trivially framed torsion-free sheaves.
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Proposition 4.3. For each fixed (mz, mw) ∈ Z2, there is a natural T̃ -equivariant bijection between
the moduli spaces

MN,k(F0) ∼= MN;(Nmz,Nmw);k(mz,mw)(F0), (4.94)

where

k(mz, mw) = k −Nmzmw. (4.95)

Proof. Given [E] ∈ MN,k(F0), define

E(mz, mw) = E ⊗ OF0(mz, mw). (4.96)

By (4.51) (with d = 0), one has

ch(E) = N − kξz ∧ ξw, (4.97)

and using multiplicativity of the Chern character we compute

ch(E(mz, mw)) = (N − kξz ∧ ξw) ∧ (1 +mzξz) ∧ (1 +mwξw)

= N +N(mzξz +mwξw) + (Nmzmw − k)ξz ∧ ξw.
(4.98)

This therefore gives a map [E] 	→ [E(mz, mw)] on MN,k(F0) → MN;(N mz,Nmw);k(mz,mw)(F0).
An identical calculation shows that the map E(mz, mw) 	→ E(mz, mw) ⊗ OF0

(−mz,−mw) is its
inverse. These maps clearly induce bijections between (mz, mw)-framings and trivializations
at infinity.

Proposition 4.2 shows that an instanton gauge bundle E with trivial asymptotics
on F0 can again be regarded as an element [E] ∈ MN,k(C

2). For fixed mz, mw ∈ Z,
Proposition 4.3 shows that the counting of torsion-free sheaves in themoduli spacesMN,k(F0)

and MN;(Nmz,Nmw);k(mz,mw)(F0) coincides. In other words, the number of instantons with fixed
nontrivial asymptotics matches the Young tableau count, as the number of sheaves (4.96) is
independent of the integers mz, mw. Proposition 4.3 also reproduces the formula [54, Section
4.2.2] for the renormalized volume of Young tableaux (reproduced above for N = 1) as the
induced shift in instanton charge in (4.95) of the sheaves (4.96).

The bijection of Proposition 4.2 is not necessarily a diffeomorphism. In fact, we have
not yet shown that MN,k(F0) is a smooth variety. Naively, one may try to argue this by using
the formalism of [69], as our sheaves are trivialized on the divisor ℓ∞ = ℓz + ℓw which has
positive self-intersection ℓ∞ ·ℓ∞ = 2, and F0\ℓ∞ ∼= C2. However, this divisor is not irreducible;
in particular, it is not a P1. Note that formally applying the arguments which led to (4.72) in
the limit p = 0 would produce the partition function

ZF0

U(N)

(
q
)
=
(
ZC2

U(N)

(
q
))2

, (4.99)
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as the Hirzebruch surface has n = χ(F0) − 2 = 2. Although the generating function (4.99)
is “doubled”, the instanton counting problems on F0 and on C2 are nevertheless identical.
A rigorous derivation of the formula (4.99) using the techniques of Section 4.7. follows once
we establish that the equivalence of Proposition 4.2 is an isomorphism of underlying smooth
varieties. Recall from Section 4.7. that the complex dimension of the instanton moduli space
MN,k(C

2) is 2N k.

Proposition 4.4. The moduli space MN,k(F0) is a smooth quasiprojective variety of complex
dimension 2N k.

Proof. As usual, the trivialization condition at infinity guarantees Gieseker semistability and
hence quasi-projectivity, as discussed in Section 4.8. Using the divisor ℓ∞ = ℓz + ℓw of F0, one
constructs the framedmoduli spaceMN,k(F0) as in [68]with tangent spaces Ext1OF0

(E,E(−ℓ∞))
and obstruction spaces given by Ext2OF0

(E,E(−ℓ∞)). By reference [78, Section 5], one has

Ext0OF0
(E,E(−1,−1)) = Ext2OF0

(E,E(−1,−1)) = 0 (4.100)

and hence MN,k(F0) is smooth. The dimension of the tangent spaces is thus equal to minus
the Euler characteristic −χ(E,E(−1,−1)), which for E locally free may be calculated by using
the Hirzebruch-Riemann-Roch theorem to write

χ(E,E(−1,−1)) =
∫

F0

ch
(
E∨ ⊗ E(−1,−1)

)
∧ Td(F0). (4.101)

Using (4.97) and (4.98), one computes the Chern character

ch
(
E∨ ⊗ E(−1,−1)

)
= ch

(
E∨) ∧ ch(E(−1,−1))

= (N − kξz ∧ ξw) ∧ (N −N(ξz + ξw) + (N − k)ξz ∧ ξw)

= N2 −N2(ξz + ξw) +
(
N2 − 2Nk

)
ξz ∧ ξw.

(4.102)

The Todd characteristic class and holomorphic Euler characteristic are given by (4.85) and
(4.87)with C = F0, and we may thus write (4.101) as

χ(E,E(−1,−1)) =
∫

F0

(
N2

12
(c1(F0) ∧ c1(F0) + c2(F0)) −

N2

2
(ξz + ξw) ∧ c1(F0)

+
(
N2 − 2N k

)
ξz ∧ ξw

)

= N2 χ(OF0) −
N2

2

∫

F0

c1(F0) ∧ (ξz + ξw) +N2 − 2N k.

(4.103)
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One has χ(OF0
) = 1 since b2(F0) = 2 = h1,1(F0). Since ξz, ξw ∈ H2(F0,Z) are the Poincaré duals

of [ℓz], [ℓw] ∈ H2(F0,Z), with ℓz, ℓw ∼= P1 and ℓz · ℓz = ℓw · ℓw = 0, the remaining integral in
(4.103) may be computed as

∫

F0

c1(F0) ∧ (ξz + ξw) = 2

∫

P1

c1
(
P1
)
= 4, (4.104)

where in the last step we used the fact that the holomorphic tangent bundle of P1 can be
identified with OP1(2). Putting everything together, we find

χ(E,E(−1,−1)) = −2N k (4.105)

and the result follows when E is a bundle. If E is not locally free, then we simply consider a
locally free resolution E• → E → 0 and use additivity of the Chern characteristic class.

In a similar vein, the equivalence established in Proposition 4.3 as it stands is only
a bijective correspondence. The moduli space for nontrivial asymptotics is an example
of the moduli spaces of “decorated sheaves” described in [20, Section 4.B], with the
(mz, mw)-framed sheaves on F0 providing examples of semistable framed modules. The
moduli space MN;(Nmz, Nmw);k(mz,mw)(F0) is thus a projective scheme with a universal
family, that is, it is fine, and so possesses a universal sheaf. We will now argue that the
moduli spaces MN;(Nmz,Nmw);k(mz,mw)(F0) are smooth and diffeomorphic to one another for
all mz, mw ∈ Z. Then the computations of Section 4.7. can be repeated by integrating
over MN;(Nmz,Nmw);k(mz,mw)(F0) using (4.95) and Göttsche’s formula to get the desired
perpendicular partition function

Pmz,mw

U(N)

(
q
)
= q−Nmzmw η̂

(
q
)−2N

. (4.106)

For N = 1, this yields a rigorous derivation of the vertex rules of [54].

Let M̃(F0) be the moduli space of isomorphism classes of pairs Ẽ = (E, α), where E is
an (mz, mw)-framed torsion-free sheaf on F0 and α : OF0

(mz, mw)
⊕N → E is the surjective

morphism induced by the framing. Consider the family of pairs F̃ = (F, β) consisting of
a coherent sheaf F on F0 together with a homomorphism β : OF0

(mz, mw)
⊕r → F for some

r ∈ N. These pairs define objects of an abelian category cohf(F0)with the obvious morphisms
between pairs induced bymorphisms of coherent sheaves. Any (mz, mw)-framed torsion-free
sheaf E on F0 clearly defines an object of cohf(F0), with r = N and ch(F) = ch(E).

Given the abelian category cohf(F0), one can derive functors, and hence compute sheaf

cohomology in cohf(F0). We denote the corresponding Ext-functors by Exti
f
. Then Ext2

f
(Ẽ, Ẽ)

is the obstruction space for M̃(F0) at Ẽ, while Ext1
f
(Ẽ, Ẽ) is the tangent space to M̃(F0) at Ẽ.
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Generally, for any two objects F̃, G̃ of cohf(F0), the group Ext1
f
(F̃, G̃) can be computed in a

purely algebraic way in terms of equivalence classes of extensions

OF0
(mz, mw)

⊕s OF0
(mz, mw)

⊕(s+r) OF0
(mz, mw)

⊕r

G̃ K̃ F̃.

(4.107)

This definition of Ext1
f
(F̃, G̃) is equivalent to the usual definition in terms of a twisted

Dolbeault complex, and in particular it gives the deformation theory of the moduli space
M̃(F0). Furthermore, there is a spectral sequence connecting it to the ordinary Ext-groups
ExtiOF0

(F,G).
The line bundle OF0

(mz, mw) is a projective OF0
-module and is therefore flat, whence

the tensor product map defined by (4.96) preserves exact sequences such as (4.107). It follows

that the tangent spaces Ext1
f
(Ẽ, Ẽ) are the same for allmz, mw ∈ Z. Thus by Proposition 4.4, the

moduli spaces M̃(F0) are all smooth and diffeomorphic to one another. This is consistent with
the fact that stability (either slope stability of torsion-free sheaves [76] or stability of framed
modules [20, Section 4.B]) is preserved by twisting with the line bundles OF0

(mz, mw).

4.9.2. Universal Sheaves

We now construct the universal sheaf for the standard framing on F0, and compute its T̃ -
equivariant character. Since the moduli space MN,k(F0) is fine [68], there exists a universal
sheaf E → F0 × MN,k(F0), that is, a torsion-free sheaf E such that E|F0×[E]

∼= E for every point
[E] ∈ MN,k(F0), unique up to tensor product with a (unique) line bundle. There are two
natural vector bundles over MN,k(F0) associated to a universal sheaf E. Firstly, there is the
framing bundle W = H0(F0,E|ℓ∞) of rank N given by the fibre at infinity. Secondly, there is
the bundle V of “Dirac zero modes”, whose fibre at a given locally free sheaf [E] ∈ MN,k(F0)

restricted to R4 ∼= C2 ∼= F0 \ ℓ∞ is the space of L2-solutions to the Dirac equation on R4 in the
background of the fundamental representation of the instanton gauge field corresponding to
[E]|C2 . It is constructed explicitly as follows. Let π1 and π2 be the canonical projections of
F0 × MN,k(F0) onto the first and second factors, respectively. Then the Dirac bundle is

V = R1π2∗
(
E ⊗ π∗

1OF0(−1,−1)
)
, (4.108)

where R1π2∗ is the first right derived functor of the pushforward functor π2∗. Its fibre over a
point [E] ∈ MN,k(F0) is the vector space H

1(F0,E(−1,−1)).

Proposition 4.5. The Dirac bundle V is a vector bundle of rank k over MN,k(F0).

Proof. By reference [78, Section 5], one has

H0(F0,E(−1,−1)) = H2(F0,E(−1,−1)) = 0 (4.109)
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and hence V is a vector bundle of rank equal to −χ(E(−1,−1)). For E locally free, the
Hirzebruch-Riemann-Roch theorem, together with (4.98), (4.85) with C = F0, (4.104), and
χ(OF0

) = 1, gives

rank(V ) = −
∫

F0

ch(E(−1,−1)) ∧ Td(F0)

= −
∫

F0

(N −N (ξz + ξw) + (N − k)ξz ∧ ξw)

∧
(
1 +

1

2
c1(F0) +

1

12
(c1(F0) ∧ c1(F0) + c2(F0))

)

= −Nχ(OF0) +
N

2

∫

F0

c1(F0) ∧ (ξz + ξw) + k −N = k.

(4.110)

Again, the statement for generic torsion-free sheaves [E] ∈ MN,k(F0) follows by considering
a locally free resolution E• → E → 0.

By definition, (4.89) and the construction of Section 4.7., the T̃ -equivariant characters

of the framing and Dirac bundles regarded as T̃ -modules, at a fixed point in MN,k(F0)
T̃

labelled by an N-coloured Young tableau
−→
λ = (λ1, . . . , λN), are given by

chT̃ (W)
(−→
λ
)
=

N∑

l=1

el, chT̃ (V )
(−→
λ
)
=

N∑

l=1

el
∑

(i,j)∈λl
ti−1z t

j−1
w , (4.111)

where el = eal . Let us now describe how the ADHM construction is modified in this case. This
has been worked out in [78, Section 5]. The linear algebraic data is formally the same as for
the analysis of framed instantons on P2 [49], defined by linear operators

Bz ∈ Hom(V, V ), Bw ∈ Hom(V, V ), I ∈ Hom(W,V ), J ∈ Hom(V,W). (4.112)

Then any framed torsion-free sheaf [E] ∈ MN,k(F0) can be represented as the middle
cohomology group of the complex

0 −→ V ⊗ OF0(−1,−1)
σ−−−−→

V ⊗ OF0(−1, 0)
⊕

V ⊗ OF0(0,−1)
⊕

W ⊗ OF0

τ−−−→ V ⊗ OF0
−→ 0 (4.113)

which is exact at the first and last terms, where

σ =

⎛
⎝

z0Bz − z1
w0Bw −w1

z0w0J

⎞
⎠, τ =

(
−(w0Bw −w1) z0Bz − z1 I

)
. (4.114)
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The virtual T̃ -equivariant bundle defined by the cohomology of the complex (4.113)

gives a representative of the isomorphism class of the universal sheaf E in the T̃ -equivariant
K-theory group K0

T̃
(F0 × MN,k(F0)) as

E = (OF0
⊠ W) ⊕

(
S−

⊖ S+
)

⊠ V, (4.115)

where

S+ = OF0(−1,−1) ⊕ OF0
, S− = OF0(−1, 0) ⊕ OF0(0,−1) (4.116)

are T̃ -equivariant bundles over F0 which, after tensoring with a line bundle of degree one,
restrict to the usual positive/negative chirality spinor bundles over R4 ∼= C2 ∼= F0 \ ℓ∞. In
the topologically twisted gauge theory, fermion fields become differential forms and these
bundles are identified with the bundles of even/odd holomorphic forms over F0 [79]. By

(4.89), the holomorphic line bundles (4.90) have T̃ -equivariant characters

chT̃ (OF0(mz, mw)) = t−mz
z t−mw

w , (4.117)

and consequently,

chT̃ (S
+) = 1 + tz tw, chT̃

(
S−) = tz + tw. (4.118)

Using (4.111) and (4.118), we may thus compute the character of the universal sheaf (4.115)
at a fixed point in the instanton moduli space as

chT̃ (E)
(−→
λ
)
= chT̃ (W)

(−→
λ
)
+
(
chT̃

(
S−) − chT̃ (S

+)
)
chT̃ (V )

(−→
λ
)

=
N∑

l=1

el

⎛
⎝1 − (1 − tz)(1 − tw)

∑

(i,j)∈λl

ti−1z t
j−1
w

⎞
⎠,

(4.119)

which coincides with the standard expression for instantons on R4 [80].

For completeness, let us record here the T̃ -equivariant Chern character of the tangent
bundle TMN,k(F0) over the instanton moduli space at the torus fixed points. As the only
nonvanishing cohomology group of (4.20) is a model of the tangent space, it can be computed
as the equivariant index of this complex. For this, let us recall some combinatorial definitions.
Let λ be a Young diagram. Define the arm and leg lengths of a box (i, j) ∈ λ, respectively, by

Aλ

(
i, j
)
= ̺i − j, Lλ

(
i, j
)
= ̺tj − i, (4.120)
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where ̺i is the length of the ith column of λ and ̺tj is the length of the jth row of λ. At a fixed

point
−→
λ , the character can then be expressed after some algebra in terms of the characters of

the representation as

chT̃ (TMN,k(F0))
(−→
λ
)
=

N∑

l,m= 1

ele
−1
m

⎛
⎝ ∑

(i,j)∈λl

t
−Lλl

(i,j)
z t

Aλm (i,j)+1
w +

∑

(i,j)∈λm

t
Lλl

(i,j)+1
z t

−Aλm (i,j)
w

⎞
⎠. (4.121)

Again this coincides with the standard result [50, 80, 81]. As in [82], after toric localization
one has

chT̃ (TMN,k(F0)) = −
∮

F0×MN,k(F0)

chT̃ (E) ∧ chT̃

(
E∨) ∧ TdT̃ (F0) (4.122)

at the T̃ -fixed points
−→
λ , up to a universal perturbative contribution (the character ofW ⊗W∗).

This expression formally generalizes to generic toric surfaces [83] and is used to construct
vertex gluing rules below. From the top Chern class, one can also straightforwardly extract
the equivariant Euler classes

eT̃ (TMN,k(F0))
(−→
λ
)
=

N∏

l,m= 1

n
−→
λ
l,m

(
ǫz, ǫw,

−→a
)
, (4.123)

where

n
−→
λ
l,m

(
ǫz, ǫw,

−→a
)
=
∏

(i,j)∈λl

(
am − al − Lλm

(
i, j
)
ǫz +

(
Aλl

(
i, j
)
+ 1
)
ǫw
)

×
∏

(i′,j ′)∈λm

(
am − al +

(
Lλl(i′,j ′) + 1

)
ǫz −Aλm

(
i′, j ′
)
ǫw
)
.

(4.124)

4.9.3. Framed Modules on F0 from Dirac Modules on P1

For the case of nontrivial (mz, mw)-framings, let

ι(mz, mw) : MN,k(F0) −→ MN;(Nmz,Nmw); k(mz,mw)(F0) (4.125)

be the isomorphism induced by the map [E] 	→ [E(mz, mw)] = [E ⊗ OF0
(mz, mw)], and let E

be a universal sheaf on F0 × MN,k(F0). Then the torsion-free sheaf

E(mz, mw) =
(
idF0

× ι(mz, mw)
−1
)∗
(E) (4.126)

is a universal sheaf on F0×MN;(Nmz,N mw);k(mz,mw)(F0). The equivariant character of E(mz, mw)

at the fixed points of the toric action modifies the decompositions (4.111) to allow for
“propagators” which appear along the edges P1 of the toric diagram Δ(C) of a generic
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toric surface C. These modifications of the T̃ -equivariant character of the universal sheaf
corresponding to the instanton sheaves (4.96) are determined via shifts by the C∗-equivariant
character of modules of solutions to the Dirac equation on P1. We will now describe these
modules explicitly. As we have seen, the bundle OP1(m) of degree m ∈ Z over the Riemann
sphere P1 is the crucial ingredient in generating instantons with nontrivial framings. After
choosing a hermitean metric on the fibres of OP1(m), it is the holomorphic line bundle
underlying the standard Dirac monopole line bundle of topological charge m. The form of
the Dirac operator��Dm in the background of the corresponding monopole gauge potential is
well known and can be conveniently described in the following way [32].

Given homogeneous coordinates [z0, z1] on P1, let y = z1/z0 denote stereographic
coordinates on the northern hemisphere. Then the twisted Dirac operator in the monopole
background of magnetic charge m ∈ Z is given by

��Dm =

(
0 ��D

−
m

��D
+

m 0

)
, (4.127)

where

��D
+

m =
1

2

[(
1 + yy

) ∂

∂y
− 1

2
(m + 1)y

]
,

��D
−
m = −1

2

[(
1 + yy

) ∂

∂y
+
1

2
(m − 1)y

]
.

(4.128)

These operators act on sections of the chiral/antichiral spinor line bundles associated to the
twisted holomorphic spinor bundles OP1(±1) ⊗ OP1(m). We are interested in the subspaces of
zero modes

S±
m = ker��D

±
m. (4.129)

The action of t ∈ C∗ is implemented by the automorphism Ft of P1 defined by

Ft

(
y, y
)
=
(
ty, t−1y

)
. (4.130)

The irreducible representations T i ∼= C of C∗ are labelled by their weights i ∈ Z and are
defined by z 	→ t · z = ti z for t ∈ C∗ and z ∈ C. The corresponding C∗-eigenspace
decomposition of the modules (4.129) can be described for all m ∈ Z as follows.

Theorem 4.6. The isotopical decompositions of the spinor modules S±
m over P1, as C∗-modules, are

given by

S+
m =

|m|
⊕
i=1

T i−1, S−
m = {0} for m < 0,

S−
m =

m⊕
i=1

T −(i−1), S+
m = {0} for m > 0.

(4.131)
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Proof. The solutions of the Dirac equation are given by L2-solutions of the differential
equations

��D
±
mψ

±
m = 0 (4.132)

for the spinors ψ±
m ∈ ker��D

±
m. The line bundle OP1(m) has holomorphic transition function

ym transforming sections from the northern hemisphere to the southern hemisphere of P1,

which after unitary reduction to a hermitean line bundle becomes (y/y)m/2. By using these
transition functions, it is easy to see that the only solutions of the equations (4.132)which are
regular on both the northern and southern hemispheres are of the form

ψ+
m =

1
(
1 + y y

)(|m|−1)/2

|m|∑

i=1

ξiy
i−1, ψ−

m = 0 for m < 0,

ψ−
m =

1
(
1 + y y

)(m−1)/2

m∑

i=1

ξ̃iy
i−1, ψ+

m = 0 for m > 0,

(4.133)

with constant coefficients ξi, ξ̃i ∈ C. The result now follows from (4.130).

We can use Theorem 4.6 to compute the C∗-equivariant characters of the spinor
modules (4.129). One finds

chC∗
(
S−
m

)
=

m∑

i=1

t−(i−1) =
1 − t−m

1 − t−1
(4.134)

for m > 0, while

chC∗(S+
m) =

|m|∑

i=1

ti−1 =
1 − t|m|

1 − t
(4.135)

for m < 0. In the nonequivariant limit t → 1, the characters (4.134) and (4.135) reproduce
the known index of the Dirac operator, index(��Dm) = −m, in the monopole background. These
characters shift the character (4.119). For example, withmz, mw > 0 and N = 1, one has

chT̃ (E(mz, mw))(λ) = chT̃ (E)(λ) + (1 − tz) chC∗
z

(
S−
mz

)
+ (1 − tw)chC∗

w

(
S−
mw

)
. (4.136)

This completes the derivation of the gluing rules of [54, Section 4.3].

5. D2-Brane Gauge Theory and Gromov-Witten Invariants

In this final section, we study the reduction of the four-dimensional gauge theories
of Section 4 on local curves and examine in detail the example of local P1 which has
been extensively described from the point of view of Vafa-Witten theory. We begin with
a somewhat heuristic description of how these two-dimensional supersymmetric gauge
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theories are induced. Then we proceed to a more formal topological field theory formalism
which systematically computes topological string amplitudes andGromov-Witten invariants.
Finally, we briefly address wall-crossing issues once again from a physical standpoint.

5.1. q-Deformed Two-Dimensional Yang-Mills Theory

One of the simplest classes of examples are the noncompact local Calabi-Yau threefolds which
are fibred over curves. If Σg → X is a holomorphically embedded curve of genus g in a
Calabi-Yau threefold, then the holomorphic tangent bundle restricts toΣg as TΣg⊕NΣg

, where
the normal bundle NΣg

is a holomorphic bundle of rank two over Σg . By the Calabi-Yau
condition c1(X) = 0, one has c1(NΣg

) = −χ(Σg) = 2g − 2. Thus in a neighbourhood of Σg , the
manifold X looks like the total space of a holomorphic bundle N → Σg of rank two with
c1(N) = 2g − 2. Hence we consider the total space of the bundle

X = Xp = OΣg

(
p + 2g − 2

)
⊕ OΣg

(
−p
)

(5.1)

over Σg . Since OΣg
(p) is a holomorphic line bundle over Σg of degree p, one has

c1
(
Xp

)
=
(
p + 2g − 2

)
+
(
−p
)
= 2g − 2 (5.2)

as required. For genus g = 0, this is just the example of local P1 which was introduced in
Section 4.3.

In our applications to black hole microstate counting, we count bound states of D4-
D2-D0 branes in Xp withN D4-branes wrapping the four-cycle Cp which is the total space of
the line bundle OΣg

(−p) → Σg , together with D2-branes wrapping the base Riemann surface
Σg (embedded in C and Xp as the zero section). One can then localize the path integral of the
N = 4 topological gauge theory on Cp to the C∗-invariant modes along the fibre of OΣg

(−p).
The result is an effective U(N) gauge theory on Σg whose action is given by [84]

S =
1

gs

∫

Σg

Tr(ΦF) +
ϑ

gs

∫

Σg

Tr(Φk) − p

2gs

∫

Σg

Tr
(
Φ2k
)
, (5.3)

where ϑ = gs φ2/2π and the last term is a mass deformation which originates in four
dimensions due to the nontriviality of the bundle OΣg

(−p) [85]. The scalar field Φ is given
by the holonomy of the four-dimensional gauge connection at infinity

Φ(z) =

∫

OΣg (−p)z
F(z) =

∮

S1
z,|u|=∞

A, (5.4)

where z ∈ Σg and u ∈ OΣg
(−p).

The action (5.3) is just the BF-theory representation of two-dimensional Yang-Mills
theory, with the usual F2-term coming from performing the gaussian integral over Φ in
the functional integral. If Φ were arbitrary, then we could use diagonalization techniques
to reduce the partition function to the usual heat kernel expansion of two-dimensional
Yang-Mills theory. However, the identification of Φ as a holonomy means that it should be
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treated as a periodic field, and the change from a Lie algebra-valued variable to a group-like
variable affects the Jacobian of the path integral measure that arises from diagonalization.
This modifies the usual Migdal expansion of two-dimensional gauge theory to give the
partition function

Z
Cp

U(N)

(
q,Q
)
=
∑

R

dimq(R)
2−2gq(p/2)C2(R)QC1(R), (5.5)

where q = e−gs as before and Q = eiϑ. The sum runs over unitary irreducible representations
R = (R1, . . . , RN) of the gauge group U(N) with weights Ri, first and second Casimir
invariants C1(R) =

∑
i Ri and C2(R) =

∑
i R

2
i , and quantum dimension

dimq(R) =
∏

1≤i<j≤N

[
Ri − Rj + j − i

]
q[

j − i
]
q

, (5.6)

where the q-number is defined by

[n]q :=
qn/2 − q−n/2

q1/2 − q−1/2
(5.7)

with [n]q = n + O(q − 1) for q → 1. This reduced two-dimensional gauge theory is a q-
deformation of ordinary Yang-Mills theory.

5.2. Topological Field Theory

We will now give a more precise definition of this gauge theory using techniques of two-
dimensional topological field theory. This formalism can then be used to compute topological
string amplitudes. The idea is that the cutting and pasting of base Riemann surfaces is
equivalent to the cutting and pasting of the corresponding local Calabi-Yau threefolds, by
either adding or cancelling off D-branes corresponding to the boundaries in the topological
vertex formalism [84, 86]. The operations of gluing manifolds satisfy all axioms of a two-
dimensional topological field theory. By computing the open string topological A-model
amplitudes on a few Calabi-Yau manifolds, we then get all others by gluing. In the following
we focus on the genus zero case Σ0 = P1 for simplicity and illustrative purposes.

When the base of the fibration is the sphere, we will only need the basic Calabi-Yau cap
amplitude corresponding to a disk D, represented symbolically as

(k1, k2)

U

where the levels k1 = e(L1) and k2 = e(L2) label the degrees in H2(D, ∂D) of a pair of line
bundles L1 ⊕ L2 → D, and the unitary matrix U labels the holonomy of a gauge connection
on ∂D ∼= S1. Under concatenation the levels add. The basic cap amplitude is defined by
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(−1, 0)

UZ

⎛
⎜⎝

⎞
⎟⎠ =

∑

R

dq(R)q
−kR/4 chR(U),

where q = e−gs as before, the sum over R runs through the space of symmetric functions
(Young tableaux), that is, irreducible representations of SU(∞), and chR(U) is the character
of the holonomy U in the representation R. The quantity

dq(R) :=
∏

(i,j)∈R

1[
h
(
i, j
)]

q
(5.8)

is the quantum dimension of the symmetric group representation corresponding to the Young
diagram of R, and

kR = 2
∑

(i,j)∈R

(
i − j
)
.

(5.9)

The quantity

dq(R) q
−kR/4 =: CR,∅,∅

(
q
)
= WR,∅

(
q
)

(5.10)

is the topological vertex amplitude for the A-model topological string theory with a single
stack of D-branes on the noncompact Calabi-Yau threefold X = C3. Similarly, define the cap
amplitude

(0,−1)

UZ

⎛
⎜⎝

⎞
⎟⎠ =

∑

R

dq(R) q
kR/4 chR(U).

For the gluing rules, we sew two open Riemann surfaces ΣL and ΣR together along
their common boundary to get the Riemann surface ΣL∪R. For this, the orientations of the
corresponding boundary circles must be opposite. Reversing the orientation acts on the
boundary holonomy asU → U−1, and hence the gluing rules read

Z(ΣL∪R) =

∫

SU(∞)

dUZ(ΣL)(U)Z(ΣR)
(
U−1
)
, (5.11)

where dU is the bi-invariant Haar measure and the integrals can be evaluated explicitly by
using the orthogonality relations for characters

∫

SU(∞)

dU chR1(U)chR2

(
U−1
)
= δR1,R2

. (5.12)
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We will also need the Calabi-Yau trinion (or “pants”) amplitudes

Z

⎛
⎜⎝

(1, 0)

U1

U2

U3

⎞
⎟⎠ =

∑

R

1

dq(R)
qkR/4

3∏

i=1

chR(Ui),

Z

⎛
⎜⎝

(0, 1)

U1

U2

U3

⎞
⎟⎠ =

∑

R

1

dq(R)
q−kR/4

3∏

i=1

chR(Ui).

Let us point out two particularly noteworthy aspects of this construction thus far.
Firstly, the construction defines a functor of tensor categories

Z : SL1,L2
−→ Rep, (5.13)

where Rep is the representation category of SU(∞) and SL1,L2
is the geometric tensor

category defined as follows. The objects of SL1,L2
are compact oriented one-manifold Y , that

is, disjoint unions of oriented circles. A morphism Y1 → Y2 between two objects of SL1,L2
is a

triple (W,Y1, Y2), where W is an oriented cobordism between Y1 and Y2, that is, a smooth
oriented two-manifold with boundary ∂W = Y1

∐
(−Y2), and the complex line bundles

L1,L2 over W are trivialized on ∂W . This is analogous to the Baum-Douglas description
of D-branes in K-homology [87]. There is a natural notion of equivalence provided by
boundary preserving, oriented diffeomorphisms f :W → W ′ with Li

∼= f∗L′
i, i = 1, 2.

Composition of morphisms is given by concatenation of cobordism and gluing of bundles
along the concatenation using the trivializations. For a connected cobordism W , we can
label the isomorphism classes of a pair of line bundles (L1,L2) by the levels (k1, k2), where
ki = e(Li) ∈ H2(W,∂W). Under concatenation, these levels add.

Secondly, the C∗-action on P1 lifts to an action of the torus T = (C∗)2 on Xp, via
the natural scaling action on the fibres. The Gromov-Witten invariants in this case are
defined via the virtual localization formula as a residue integral over the T -fixed point locus,
along the lines explained in Section 3.5. A stable map to Xp which is T -invariant factors
through the zero section. It follows that there is a natural isomorphism of moduli spaces
Mg(Xp, β)

T = Mg(P
1, β), with β = d ∈ Z, and consequently

[
Mg

(
Xp, d

)T]vir
=
[
Mg

(
P1, d

)]vir
. (5.14)

This equality of virtual fundamental cycles implies that the invariants constructed by
integrating over each moduli space coincide. It means that topological string theory on Xp
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is equivalent to a field theory on P1, which is just the reduction we argued in Section 5.1. In
this case the Gromov-Witten invariants ofXp correspond to degree dHurwitz numbers of P1.

Returning to our computations, we get the annulus (or tube) amplitude by contracting
the cap and trinion amplitudes to get

Z

⎛
⎜⎝

(1,−1)

U1 U2⎞
⎟⎠

(0,−1) (1, 0)

U

U1

U2

⎞
⎟⎠= Z

⎛
⎜⎝

=
∑

R

qkR/2 chR(U1) chR(U2).

Finally, we compute the amplitude of the fibration Xp → P1 by using (5.14) and the gluing
rules. In order to get the appropriate bundle degrees (p− 2,−p), we glue p tubes between two
caps to get

Z(Xp) = Z

⎛
⎜⎝ P1

⎞
⎟⎠

= Z

⎛
⎜⎝

(−1, 0)

U1

(1,−1) (1,−1) (−1, 0)

· · ·
Up

⎞
⎟⎠

=
∑

R

dq(R)
2q(p−1)kR/2.

(5.15)

For p = 1, the threefold X1
∼= K1/2

P1 ⊕ K1/2
P1 is the resolved conifold, and this formula is a

q-deformation of the classical Hurwitz formula counting unramified covers of the Riemann
sphere P1.

In fact, the quantity dq(R) is analogously theN → ∞ limit of the quantum dimension
dimq(R) of the U(N) representation with the same Young tableau. This follows by Schur-
Weyl reciprocity which writes SU(N) representations in terms of representations of the
symmetric group SN . Let R be a representation corresponding to a Young diagram λ with
row lengths λi, i = 1, . . . , d(λ), where λ1 ≥ λ2 ≥ · · · , and d(λ) is the number of rows in λ. Set
μ = qN , and define another q-number by

[n]μ =
μ1/2 qn/2 − μ−1/2 q−n/2

q1/2 − q−1/2
. (5.16)
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Then the quantum dimension of R can be written as

dimq(R) =
∏

1≤i<j≤d(λ)

[
λi − λj + j − i

]
q[

j − i
]
q

d(λ)∏

i=1

∏λi−i
v=1−i[v]μ

∏λi
v=1[v − i + d(λ)]q

. (5.17)

This is a Laurent polynomial in μ±1/2 whose coefficients are rational functions of q±1/2. The
leading power of μ is |λ|/2, and the coefficient of this power is the rational function of q±1/2

given by

q−kR/4
∏

1≤i<j≤d(λ)

[
λi − λj + j − i

]
q[

j − i
]
q

d(λ)∏

i=1

λi∏

v=1

1

[v − i + d(λ)]q
= dq(R)q

−kR/4. (5.18)

As before, this is just the topological vertex amplitude CR,∅,∅(q). The limit q → 1 gives the
ordinary dimension of the representation R.

Generalizing the generating function (5.15) thereby gives

ZqYM

(
P1
)
=
∑

R

dimq(R)
2q(p/2)C2(R), (5.19)

where now the sum runs over irreducible representations R ofU(N) and C2(R) = kR +N(R)
is the second Casimir invariant of R. By the attractor mechanism, the Kähler modulus of P1 is
given by t = (N/2) (p − 2) gs. In the limit q → 1, this two-dimensional field theory coincides
with ordinary Yang-Mills theory on the sphere P1. Note that this is a weak-coupling limit
gs → 0, with pgs = g2

YM A and A the area of P1. Using similar constructions as above, it is
possible to formulate this gauge theory directly as a two-dimensional topological field theory,
without any reference to the extrinsic bundle structure of the local threefold Xp. Explicit
computations of the corresponding Gromov-Witten invariants of Xp can be found in [9–11].

5.3. Wall-Crossing Formulas

Finally, let us briefly comment on the relationship to black hole entropy counting. Reinstating
the ϑ-angle as in (5.5), the attractor mechanism fixes the Kähler modulus of Σ0 = P1 as

t = 2πi
X1

X0
=
(
p − 2

)Ngs

2
− iϑ. (5.20)

The large N limit of the partition function (5.5) should possess this modulus. The modulus
squared structure anticipated by the OSV relation (2.25) is given in this limit by [84]

ZqYM

(
P1
)
=
∑

r∈Z

∑

R1,R2

Z
qYM+

R1,R2

(
t + pgsr

)
Z

qYM−
R1,R2

(
t + pgsr

)
, (5.21)

where the sum over r runs through U(1) charges in the local decomposition U(N) ∼
U(1) × SU(N) of the gauge group, the second sum runs through pairs of irreducible
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SU(N) representations R1, R2, and Z
qYM+

R1,R2
(t) is the perturbative topological string amplitude

on Xp with two stacks of D-branes in the fibre. The conjugate amplitude is Z
qYM−
R1,R2

(t) =

(−1)C1(R1)+C1(R2) Z
qYM+

Rt
1,R

t
2

(t). Thus in this case the OSV relation (2.25) is modified to the symbolic

form

ZBH =
∑

r∈Z

∑

b

∣∣∣Z(b,r)
top

∣∣∣
2
, (5.22)

where the first sum runs over Ramond-Ramond fluxes r through the base Riemann surface
Σg while the second sum is over fibre D-branes which carry additional moduli t̂ measuring
their distances from the base Σg along the noncompact fibre directions.

Further analysis of the relationships with N = 4 Yang-Mills theory on Cp is studied
in [9, 10, 12, 13, 57], where it is observed that the instanton expansions of the two-
dimensional and four-dimensional gauge theory partition functions differ by perturbative
contributions. These extra factors arise from the noncompactness of the surface Cp. When
Cp is the resolution of an Ap,n singularity, its boundary is the three-dimensional Lens space
L(p, n) = S3/Γ(p,n). The perturbative factors can then be identified as the partition function of
Chern-Simons gauge theory on the boundary and arise as a consequence of the fact that the
two-dimensional gauge theory implicitly integrates over all boundary conditions. Once these
boundary contributions are stripped, the enumeration of instantons in the two-dimensional
and four-dimensional gauge theories coincide [13].
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