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Abstract

We present a theory of excess stock market volatility, in which market movements are due to

trades by very large institutional investors in relatively illiquid markets. Such trades generate

significant spikes in returns and volume, even in the absence of important news about funda-

mentals. We derive the optimal trading behavior of these investors, which allows us to provide a

unified explanation for apparently disconnected empirical regularities in returns, trading volume

and investor size.

I. Introduction

Ever since Shiller [1981], economists have sought to understand the origins of volatility in stock

market prices, which appears to exceed the predictions of simple models with rational expectations
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University, Harvard University, John Hopkins University, Kellogg School of Management, Massachusetts In-
stitute of Technology, National Bureau of Economic Research, New York University, Princeton University,
Stanford University, Wharton School of Business, the Econophysics conferences in Indonesia and Japan, the
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and constant discounting.1 Even after the fact, it is hard to explain changes in the stock market

using only observable news [Cutler, Poterba and Summers 1989; Fair 2002; Roll 1988].

We present a model in which volatility is caused by the trades of large institutions. Institutional

investors appear to be important for the low-frequency movements of equity prices, as shown by

Gompers and Metrick [2001]. Understanding better the behavior of institutional investors also

sheds light on many issues, such as momentum and positive feedback trading [Chae and Lewellen

2004; Cohen, Gompers and Vuolteenaho 2002; Choe, Kho and Stulz 1999; Hvidkjaer 2005], bubbles

[Brunnermeier and Nagel 2004], liquidity provision [Campbell, Ramadorai and Vuolteenaho 2005],

and the importance of indexing [Goetzman and Massa 2003]. We further this research by analyzing

how trading by individual large investors may create price movements that are hard to explain by

fundamental news.

In our theory, spikes in trading volume and returns are created by a combination of news and

the trades by large investors. Suppose news or proprietary analysis induces a large investor to

trade a particular stock. Since his desired trading volume is then a significant proportion of daily

turnover, he will moderate his actual trading volume to avoid paying too much in price impact.2

The optimal volume will nonetheless remain large enough to induce a significant price change.

Traditional measures, such as variances and correlations, are of limited use in analyzing spikes

in market activity. Many empirical moments are infinite; moreover, their theoretical analysis is

typically untractable.3 Instead, a natural object of analysis turns out to be the tail exponent of the

distribution, for which some convenient analytical techniques apply. Furthermore, there is much

empirical evidence on the tails of the distributions, which appear to be well approximated by power

laws. For example, the distribution of returns r over daily or weekly horizons decays according to

P (|r| > x) ∼ x−ζr where ζr is the tail or Pareto exponent.4 This accumulated evidence on tail

behavior is useful to guide and constrain any theory of the impact of large investors. Specifically,

our theory unifies the following stylized facts.

(i) the power law distribution of returns, with exponent ζr ' 3;

(ii) the power law distribution of trading volume, with exponent ζq ' 1.5;

(iii) the power law distribution of price impact;

(iv) the power law distribution of the size of large investors, with exponent ζS ' 1.

1See also Campbell and Shiller [1988], French and Roll [1986], LeRoy and Porter [1981].
2See Section II.C.
3The variance of volume and the kurtosis of returns are infinite. Section II provides more details.
4Appendix 1 reviews the relevant techniques.
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Existing models have difficulty in explaining facts (i)-(iv) together, not only the power law

behavior in general, but also the specific exponents. For example, efficient markets theories rely

on news to move stock prices and thus can explain the empirical finding only if news is power law

distributed with an exponent ζr ' 3. However, there is nothing a priori in the efficient markets

hypothesis that justifies this assumption. Similarly, GARCH models generate power laws, but need

to be fine-tuned to replicate the exponent of 3.5

We rely on previous research to explain (iv), and develop a trading model to explain (iii). We

use these facts together to derive the optimal trading behavior of large institutions in relatively

illiquid markets. The fat-tailed distribution of investor sizes generates a fat-tailed distribution of

volumes and returns. Whe we derive the optimal trading behavior of large institutions, we are able

to replicate the specific values for the power law exponents found in stylized facts (i) and (ii).6

In addition to explaining the above facts, an analysis of tail behavior may have a number of

wider applications in option pricing,7 risk management, and the debate on the importance of large

returns for the equity premium [Barro 2005; Rietz 1988; Routledge and Zin 2004; Weitzman 2005].

Our paper draws on several literatures. The behavioral finance literature [Barberis and Thaler

2003; Hirshleifer 2001; Shleifer 2000] describes mechanisms by which large returns obtain without

significant changes in fundamentals. We propose that these extreme returns often result from large

idiosyncratic trades of institutions. The microstructure literature [Biais, Glosten and Spatt 2005;

O’Hara 1995] shows that order flow can explain a large fraction of exchange rate movements [Evans

and Lyons 2002] and stock price movements, including the covariance between stocks [Hasbrouck

and Seppi 2001]. Previous papers combine these behavioral, microstructure and asset pricing el-

ements to explain the impact of limited liquidity and demand pressures on asset prices [Acharya

and Pedersen 2005; Gompers and Metrick 2001; Pritsker 2005; Shleifer 1986; Wurgler and Zhu-

ravskaya 2002]. We complement this research by focusing on tail behavior, partially in the hope

that understanding extreme events allows us to understand standard market behavior better.

This article is also part of a broader movement utilizing concepts and methods from physics

to study economic issues, a literature sometimes referred to as “econophysics”.8 Econophysics

5Also, GARCH models are silent about the economic origins of the tails, and about trading volume.
6This includes the relative fatness documented by facts (i), (ii) and (iv) (note that a higher exponent means a

thinner tail). Since large traders moderate their trading volumes, the distribution of volumes is less fat-tailed than
that of investor sizes. In turn, a concave price impact function leads to return distributions being less fat-tailed than
volume distributions.

7Our theory indicates that trading volume should help forecast the probability of large returns. Marsh and Wagner
[2004] provides evidence consistent with that view.

8Antecedents are Simon [1955] and Mandelbrot [1963]. More recent research includes Bak, Chen, Scheinkman,
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is similar in spirit to behavioral economics in that it postulates simple plausible rules of agent

behavior, and explores their implications. However, it differs by putting less emphasis on the

psychological microfoundations, and more on the results of the interactions among agents.

Section II presents stylized facts on the tail behavior of financial variables. Section III then con-

tains our baseline model that connects together power laws. Section IV discusses various extensions.

Section V concludes. Appendix 1 is a primer on power law mathematics.

II. The Empirical Findings That Motivate Our Theory

This section presents the empirical facts that motivate our theory, and provides a self-contained

tour of the empirical literature on power laws.

II.A. The Power Law Distribution of Price Fluctuations: ζr ' 3

The tail distribution of returns has been analyzed in a series of studies that uses an ever increasing

number of data points [Jansen and de Vries 1991; Lux 1996; Gopikrishnan, Plerou, Amaral, Meyer,

and Stanley 1999; Plerou, Gopikrishnan, Amaral, Meyer, and Stanley 1999]. Let rt denote the

logarithmic return over a time interval ∆t. The distribution function of returns for the 1,000

largest U.S. stocks and several major international indices has been found to be:9

(1) P (|r| > x) ∼ 1

xζr
with ζr ' 3.

Here, ∼ denotes asymptotic equality up to numerical constants.10 This relationship holds for

positive and negative returns separately and is best illustrated in Figure I. It plots the cumulative

probability distribution of the population of normalized absolute returns, with lnx on the horizontal

axis and lnP (|r| > x) on the vertical axis. It shows that

(2) lnP (|r| > x) = −ζr lnx+ constant

and Woodford [1993], Bouchaud and Potters [2003], Gabaix [1999, 2005], Plerou, Gopikrishnan, Amaral, Meyer, and
Stanley 1999], Levy, Levy, and Solomon [2000], Lux and Sornette [2002], Mantegna and Stanley [1995, 2000]. See
also Arthur, LeBaron, Holland, Palmer, and Tayler [1997], Blume and Durlauf [2005], Brock and Hommes [1998],
Durlauf [1993], Jackson and Rogers [2005] for work in a related vein.

9To compare quantities across different stocks, we normalize variables such as r and q by the second moments if
they exist, otherwise by the first moments. For instance, for a stock i, we consider the returns r0it = (rit − ri) /σr,i,
where ri is the mean of the rit and σr,i is their standard deviation. For volume, which has an infinite standard
deviation, we use the normalization q0it = qit/qi, where qit is the raw volume, and qi is the absolute deviation:
qi = |qit − qit|.
10Formally, f(x) ∼ g (x) means f (x) /g (x) tends toward a positive constant (not necessarily 1) as x→∞.
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yields a good fit for |r| between 2 and 80 standard deviations. OLS estimation yields −ζr =

−3.1± 0.1, i.e., (1). It is not automatic that this graph should be a straight line, or that the slope

should be -3: in a Gaussian world it would be a concave parabola. In the following, we shall refer

to Equation 1 as “the cubic law of returns”.11

Insert Figure I here

Insert Figure II here

Furthermore, the 1929 and 1987 “crashes” do not appear to be outliers to the power law

distribution of daily returns [Gabaix, Gopikrishnan, Plerou, and Stanley 2005]. Thus there may

not be a need for a special theory of “crashes”: extreme realizations are fully consistent with a

fat-tailed distribution.12

Equation 1 appears to hold internationally [Gopikrishnan, Plerou, Amaral, Meyer, and Stanley

1999]. For example, Figure III, shows that the distribution of returns for three different country

indices are very similar.13

Insert Figure III here

Having checked the robustness of the ζr ' 3 finding across different stock markets, Plerou,

Gopikrishnan, Amaral, Meyer, and Stanley [1999] examine firms of different sizes.14 Small firms

have higher volatility than large firms, as is verified in Figure IVa. Moreover, the same diagram

also shows similar slopes for the graphs of all four distributions.15 Figure IVb normalizes the

distribution of each size quantile by its standard deviation, so that the normalized distributions all

11The particular value ζr ' 3 is consistent with a finite variance, but moments higher than 3 are unbounded. ζr ' 3
contradicts the “stable Paretian hypothesis” of Mandelbrot [1963], which proposes that financial returns follow a Lévy
stable distribution. A Lévy distribution has an exponent ζr ≤ 2, which is inconsistent with the empirical evidence
[Fama 1963; McCulloch 1996; Rachev and Mittnick 2000].
12Section IV.D reports quotes from the Brady report, which repeatedly marvels at how concentrated trading was

on Monday, October 19, 1987.
13The empirical literature has proposed other distributions. We are more confident about our findings as they rely

on a much larger number of data points, and hence quantify the tails more reliably. We can also explain previous
findings in light of ours. Andersen, Bollerslev, Diebold, and Ebens [2001] show that the bulk of the distribution of
realized volatility is lognormal. In independent work, Liu, Gopikrishnan, Cizeau, Meyer, Peng, and Stanley [1999]
show that while this is true, the tails seem to be power law.
14Some studies quantify the power law exponent of foreign exchange fluctuations. The most comprehensive is

probably Guillaume, Dacorogna, Davé, Müller, Olsen, and Pictet [1997], who calculate the exponent ζr of the price
movements between the major currencies. At the shortest frequency ∆t = 10 minutes, they find exponents with
average ζr = 3.44, and a standard deviation 0.30. This is tantalizingly close to the stock market findings, though the
standard error is too high to draw sharp conclusions.
15There is some dispersion in the measured exponent across individual stocks [Plerou, Gopikrishnan, Amaral,

Meyer, and Stanley 1999]. This is expected, as least because measured exponents are noisy. Proposition 5 makes
predictions about the determinants of a possible heterogeneity in the exponents.
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have a standard deviation of 1. The plots collapse on the same curve, and all have exponents close

to ζr ' 3.

Insert Figure IV here

The above results hold for relatively short time horizons — a day or less.16 Longer-horizon return

distributions are shaped by two opposite forces. One force is that a finite sum of independent power

law distributed variables with exponent ζ is also power law distributed, with the same exponent ζ.17

Thus one expects the tails of monthly and even quarterly returns to remain power law distributed.

The second force is the central limit theorem, which says that if T returns are aggregated, the bulk

of the distribution converges to Gaussian. In sum, as we aggregate over T returns, the central part

becomes more Gaussian, while the tails remain a power law with exponent ζ, but have an ever

smaller probability, so that they may not even be detectable in practice. See Bouchaud and Potters

[2003, p. 33-35] for an example. In practice, the convergence to the Gaussian is slower than if

returns were independently and identically distributed (i.i.d.), and one still sees fat tails at yearly

horizons [Plerou, Gopikrishnan, Amaral, Meyer, and Stanley 1999, Figure 9]. A likely explanation

is the autocorrelation of volatility and trading activity [Plerou, Gopikrishnan, Amaral, Gabaix, and

Stanley 2000].18 A useful extension of the present model would allow the desire to trade (or signal

occurrences) to be autocorrelated, and might generate the right calibration of autocorrelation of

volatility and slow convergence to a Gaussian.

In conclusion, the existing literature shows that while high frequencies offer the best statistical

resolution to investigate the tails, power laws still appear relevant for the tails of returns at longer

horizons, such as a month or even a year.19

II.B. The Power Law Distribution of Trading Volume: ζq ' 3/2

To better constrain a theory of large returns, it is helpful to understand the structure of large

trading volumes. Gopikrishnan, Plerou, Gabaix, and Stanley [2000] find that trading volumes for

16Our analysis does not require exact power laws. It is enough that an important part of the tail distribution is well
approximated by a power law. For instance, lognormal distributions with high variance are often well approximated
by Pareto distributions. The exponent is then interpreted as a local exponent, i.e. ζ (x) = −xp0 (x) /p (x)− 1, rather
than a global exponent.
17This is one of the aggregation properties of power laws reviewed in Appendix 1.
18Aggregation issues may also be important to understand the dispersion of exponents [Plerou, Gopikrishnan,

Amaral, and Stanley 1999].
19Dembo, Deuschel and Duffie [2004], Ibragimov [2005] and Kou and Kou [2004] develop further the importance of

fat tails in finance.
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the 1,000 largest U.S. stocks are also power law distributed:20

(3) P (q > x) ∼ 1

xζq
with ζq ' 3/2.

The precise value estimated is ζq = 1.53 ± .07. Figure V illustrates: the density satisfies

p (q) ∼ q−2.5, i.e., (3). The exponent of the distribution of individual trades is close to 1.5. Maslov

and Mills [2001] likewise find ζq = 1.4± 0.1 for the volume of market orders.

Insert Figure V here

To test the robustness of this result, we examine 30 large stocks of the Paris Bourse from

1995—1999, which contain approximately 35 million records, and 250 stocks of the London Stock

Exchange in 2001. As shown in Figure V, we find ζq = 1.5 ± 0.1 for each of the three stock

markets. The exponent appears essentially identical in the three stock markets, which is suggestive

of universality.

The low exponent ζq ' 3/2 indicates that the distribution of volumes is very fat failed, and

trading is very concentrated. Indeed, the 1 percent largest trades represent 28.5 percent (±0.6

percent) of the total volume traded.21

The power law of individual trades continues to hold for volumes that are aggregated (for a

given stock) at the horizon ∆t = 15 minutes [Gopikrishnan, Plerou, Gabaix, and Stanley 2000]:

(4) P (Q > x) ∼ 1

xζQ
with ζQ ' 3/2.

We refer to Equation 3-4 as the “half-cubic law of trading volume”.

It is intriguing that the exponent of returns should be 3 and the exponent of volumes should

be 1.5. To see if there is an economic connection between those values, we turn to the relation

between return and volume.

II.C. The Power Law of Price Impact: r ∼ V γ

The microstructure literature generally confirms that substantial trades can have a large impact.

Chan and Lakonishok [1993, 1995] estimate a range of 0.3 to 1 percent; Keim and Madhavan [1996]

20We define volume as the number of shares traded. The dollar value traded yields very similar results, since, for
a given security, it is essentially proportional to the number of shares traded.
21The 0.1 percent largest trades represent 9.6± 0.3 percent of the total volume traded. We computed the statistics

on the 100 largest stocks of the Trades and Quotes database in the period 1994-5.
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find 4 percent for smaller stocks. There are also many anecdotal examples of large investors affecting

prices: see Brady [1988], Corsetti, Pesenti, and Roubini [2002], Coyne and Witter [2002].22

A simple calculation illustrates why one can expect that a large fund can move the market

significantly. The typical yearly turnover of a stock is 50 percent of the shares outstanding [Lo and

Wang 2001]: hence daily turnover is 0.5/250 = 0.2 percent based on 250 trading days per year.

Consider a moderately large fund, e.g., the 30th largest fund. At the end of 2000, such a fund held

0.1 percent of the market and hence, on average, 0.1 percent of the capitalization of a given stock.23

To sell its entire holding, the fund will have to absorb 0.1/0.2 or half of the daily turnover. This

supports the idea that large funds are indeed large compared to the liquidity of the market, and

that price impact will therefore be an important consideration.

We next present evidence that the price impact r of a trade of size V scales as:

(5) r ∼ kV γ,

with k > 0, 0 ≤ γ ≤ 1, which yields a concave price impact function [Hasbrouck 1991, Hasbrouck

and Seppi 2001; Plerou, Gopikrishnan, Gabaix, and Stanley 2002]. The parameterization γ = 1/2

is often used, e.g., by Barra [1997], Gabaix, Gopikrishnan, Plerou, and Stanley [2003], Grinold and

Kahn [1999], Hasbrouck and Seppi [2001].

Equation 5 implies ζr = ζV /γ by rule (42) in Appendix 1. Hence, given ζr = 3 and ζV = 3/2,

the value γ = 1/2 is a particularly plausible null hypothesis. From this relationship, we see a

natural connection between the power laws of returns and volumes.

The exact value of γ is a topic of active research. We report here evidence on the null hypothesis

γ = 1/2. We start from the benchmark where, in a given time interval, n blocks are traded, with

volumes V1, ..., Vn, of independent signs εi = ±1 with equal probability. Aggregate volume is

Q =
Pn

i=1 Vi, and aggregate return is:

(6) r = u+ k
nX
i=1

εiV
1/2
i

22See also Chiyachantana, Jain, Jiang, and Wood [2004] for international evidence, and Jones and Lipson [2001]
and Werner [2003] for recent U.S. evidence.
23 It had $19 billion in assets under management. The total market capitalization of The New York Stock Exchange,

the Nasdaq and the American Stock Exchange was $18 trillion.
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where u is some other orthogonal source of price movement.24 Then,

E
£
r2 | Q

¤
= σ2u + k2E

⎡⎣X
i

Vi +
X
i6=j

εiεiV
1/2
i V

1/2
j |Q =

X
i

Vi

⎤⎦ = σ2u + k2Q+ 0.

(7) E
£
r2 | Q

¤
= σ2u + k2Q.

Insert Figure VI here

Our results of Figure VI reveals an affine relation predicted by Equation 7 for large volumes Q,

rather than any clear sign of concavity or convexity. A formal test that we detail in Appendix 3

confirms this relation.

Measuring price impact and its dependence on order size is a complex problem due to the

following reasons. First, order flow and returns are jointly endogenous. To our knowledge, virtually

all empirical studies including ours, suffer from this lack of exogeneity in order flow.25

Second, the unsplit size of orders is unobservable in most liquid markets. One observes the

size of individual trades q, not the size of the desired block V . If one does not pay attention

to aggregation, different exponents of price impact are measured, depending on the time horizon

chosen [Plerou, Gopikrishnan, Gabaix, and Stanley 2002, 2004; Farmer and Lillo 2004].26

Third, order flow is autocorrelated [Froot, O’Connell and Seasholes, 2001; Bouchaud, Gefen,

Potters, and Wyart 2004; Lillo and Farmer 2004]. This autocorrelation could come from the actions

of different traders. It is also predicted by models of optimal execution of trades [Almgren and

Chriss 2000; Berstimas and Lo 1998; Gabaix, Gopikrishnan, Plerou, and Stanley 2003], as large

transactions are split into smaller pieces.27

Although the empirical evidence we gathered is suggestive, measuring the curvature γ of price

impact more accurately will require better data and a technique to address the endogeneity of order

flow. In particular, it would require knowing desired trading volumes, magnitude of price impact

and split of trades for a set of large market participants. In the meantime, we consider evidence such

24Via Equation 6, a model such as ours provides a foundation for stochastic clock representations of the type
proposed by Clark [1973].
25An exception is Loeb [1983], who collected bids on different size blocks of stock. Barra [1997] and Grinold and

Kahn [1999, p. 453] report that the best fit of the Loeb data is a square root price impact.
26 In a related way, part of the linearity of Equation 7 can arise because in some simple models total volume and

squared returns depend linearly on the number of trades [Plerou, Gopikrishnan, Amaral, Gabaix, and Stanley 2000].
27 If the trades are executed in the same time window, Equation 7 still holds. If they do not, the estimate of γ is

typically biased downward [Plerou, Gopikrishnan, Gabaix, and Stanley 2004].
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as Figure VI as supportive of a linear relationship between volume and squared return. However,

it is possible that the true relationship is different, or may vary from market to market. This is

why we present a theory with a general curvature γ.

II.D. The Power Law Distribution of the Size of Large Investors: ζS ' 1

It is highly probable that substantial trades are generated by very large investors. This motivates

us to investigate the size distribution of market participants. A power law formulation:

(8) P (S > x) ∼ 1

xζS

often yields a good fit.

The exponent ζS ' 1, often called Zipf’s law, is particularly common. This relation is true for

both cities [Zipf 1949; Gabaix and Ioannides 2004] and firms [Axtell 2001; Okuyama, Takayasu,

and Takayasu 1999; Fujiwara, Di Guilmi, Aoyama, Gallegati, and Souma 2004]. If the distribution

of firms in general follows Zipf’s law, it is plausible to hypothesize that the distribution of money

management firms in particular follows Zipf’s law. Indeed, Pushkin and Aref [2004] find this is the

case for U.S. bank sizes, measured by assets under management.

We investigate firms for which money management is the core business: mutual funds.28 We

use CRSP to obtain the size (dollar value of assets under management) of all mutual funds 29

from 1961-1999. For each year t, we estimate the power law exponent ζ of the tail distribution

(20 percent cutoff) via OLS. We find an average coefficient ζt = 1.10, with a standard deviation

across years of 0.08.30 The Hill estimator technique gives a mean estimate ζt = 0.93 and a standard

deviation of 0.07. Hence we conclude that, to a good approximation, mutual fund sizes follow a

power law distribution with exponent:

(9) ζS ' 1.

For this paper, we can take this distribution of the sizes of mutual funds as a given. It is, in

fact, not difficult to explain. One can apply the explanations given for cities [Simon 1955; Gabaix

28Here we sketch the main findings. Gabaix, Ramalho, and Reuter [2005] present much more detail.
29The x funds of Fidelity, for instance, count as x different funds, not as one big “Fidelity” fund.
30We cannot conclude that the standard deviation on our mean estimate is 0.08 (1999− 1961 + 1)−.5. The estimates

are not independent across years, because of the persistence in mutual fund sizes.
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1999; Gabaix and Ioannides 2004] to mutual funds. Suppose that the relative size Sit of a mutual

fund i follows a random growth process Sit = Si,t−1 (1 + εit), with εit i.i.d. and mean 0. Add a

minor element of friction to small funds to ensure a steady state distribution; for instance, very

small funds are terminated and are replaced by new funds. Then, this steady state distribution

follows Zipf’s law with ζS = 1.31

Gabaix, Ramalho and Reuter [2005] develop this idea and show that these assumptions are

verified empirically. This means that the random growth of mutual funds generically lead their size

distribution to satisfy Zipf’s law, ζS = 1.

Insert Figure VII here

It is only in the past 30 years that mutual funds have come to represent a large part of the mar-

ketplace. It would be interesting to have evidence on the size distribution of financial institutions

before mutual funds became important. For instance, pension funds of corporations are likely to

follow Zipf’s law, as the number of employees in firms follow Zipf’s law.

The evidence we present here is necessarily tentative. Estimating a power law with a relatively

small number of points is very difficult, and all estimators require somewhat arbitrary parameters

[Embrechts, Kluppelberg, and Mikosch 1997]. Furthermore, we had access to only a subset of the

participants in the U.S. market. Other important participants are hedge funds, pension funds,

and proprietary trading desks, and foreign institutions. It would be useful to weight the funds by

their leverage and their annual turnover. Nevertheless, given that Zipf’s law (Equation 9) has been

found to describe the size of many other entities, such as banks and firms in general, and appears

to describe well the upper tail of the empirical distribution of mutual funds, we view Equation 9

as a good benchmark.

II.E. Summary and Paradoxes

The facts summarized in this section present important challenges. First, economic theories have

difficulties in explaining the power law distribution of returns, as the efficient market theory, and

GARCH models, need to be fine tuned to explain why the distribution of returns would have an

exponent of 3.

31 It may be useful to give a short proof. Suppose the process is: dSt = StσdBt. The steady state density p (S)

satisfies the forward Kolmogorov equation 0 = ∂tp =
1
2

d2

dS2

¡
σ2S2p (S)

¢
. This implies p (S) = k/S2 for a constant k,

and a cumulative distribution P (S > x) = k/x, i.e., Zipf’s law.
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Second, it is surprising that the Pareto exponent of trading volume is ζq ' 1.5, while that of

institution size is ζS ' 1. In models with frictionless trading, all agents have identical portfolios

and trading policies, except that they are scaled by the size S of the agents (which corresponds to

wealth). Hence frictionless trading predicts that the distribution of trading volume of a given stock

should reflect the distribution of the size of its investors, i.e. ζq = ζS ' 1.32 However, we find that

ζq > ζS .33 A likely cause is the cost of trading; large institutions trade more prudently than small

institutions, because price impact is monotonically increasing in trade size.

Finally, the basic price impact model [Kyle 1985] predicts a linear relation between returns and

volume, which would imply ζr = ζq. To explain why ζq/ζr is close to 1/2, we require a model with

curvature of price impact γ = 1/2.

We now present a model that attempts to resolve the above paradoxes.34

III. The Model

We consider a large fund in a relatively illiquid market. We first describe a rudimentary model

for the price impact of its trades. Next, we link the various power law exponents; this represents

the core contribution of this paper. One could employ different microfoundations for price impact

without changing our conclusions.

III.A. A Simple Model to Generate a Power Law Price Impact

Before presenting, in Section III.B, the core of the model, we first present a simple microfoundation

for the square root price impact. The basic model of Kyle [1985] predicts a linear price impact.

Subsequent models, such as Seppi [1990], Barclay and Warner [1993], and Keim and Madhavan

[1996], generate a concave impact in general. Zhang [1999] and Gabaix, Gopikrishnan, Plerou, and

Stanley [2003] produce a square root function in particular.35 The model used in this section is

32Solomon and Richmond [2001] have proposed a model that relies on a scaling exponent of wealth ζS = 3/2. We
are sympathetic to this approach that links wealth to volumes. In the present study we use the size distribution
of institutions, rather than individual wealth, because most very large trades are likely to be done by institutions
rather than by private individuals. Also, the Pareto exponent of wealth and income is quite variable [e.g., Davies and
Shorrocks 2000; Piketty and Saez 2003].
33The lower the power law exponent, the fatter the tails of the variable. See Appendix 1.
34Gabaix, Gopikrishnan, Plerou, and Stanley [2003] presents a reduced form of some elements of the present article.
35Gabaix, Gopikrishnan, Plerou, and Stanley [2003] predicts that a trade of size V will be traded into N = V 1/2

smaller chunks. This has the advantage of generating a power law distributions of the number of trade with exponent
ζN = 2ζV = 3, which is close to the empirical value [Plerou, Gopikrishnan, Amaral, Gabaix, and Stanley 2000]. We
did not keep it in the current model, because we wanted to streamline the microfoundation of price impact.
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a formalized version of a useful heuristic argument, sometimes called the “Barra model” of Torre

and Ferrari [Barra 1997].

We consider a single risky security in fixed supply, with a price p (t) at time t. The large fund

(“he”) buys or sell the security from a liquidity supplier (“she”). The timing of the model is as

follows:

At time t = 0, the fund receives a signal M about mispricing. M < 0 is a sell signal, M > 0

is a buy signal. Without loss of generality, we study a buy signal. The analysis is symmetric for a

sell signal.

At t = 1 − 2ε (ε is a small positive number), the fund negotiates a price with the liquidity

supplier. For simplicity, we assume liquidity provision is competitive so that the fund has full

bargaining power. The liquidity supplier sells to the fund the quantity V of shares, at a price p+R,

where p = p (1− 2ε) is the price before impact and R is the price concession, or full price impact.36

At t = 1− ε, the transaction is announced to the public.

At t = 1, the price jumps to p (1) = p+π (V ), where π (V ) is the permanent price impact. The

difference between π and R is the temporary price impact τ = R− π. Equilibrium will determine

the value of the permanent price impact π (V ) and the price concession R (V ).

From t = 1 onwards, the price follows a random walk with volatility σ:

(10) p (t) = p+ π (V ) + σB (t) ,

where B is a standard Brownian motion with B (1) = 0. Also, at t = 1, the liquidity supplier starts

replenishing her inventory. She continuously meets sellers who are willing to sell her a quantity V dt

of the stock at price p(t): she is a price taker as she can credibly assure that she is not informed. The

liquidity supplier continues to buy shares until her inventory is fully replenished, which happens

after a time T = V/V . The price continues to evolve according to (10).37

The liquidity provider benefits from the temporary price impact τ , but then faces price uncer-

tainty as she replenishes her inventory [Grossman and Miller 1988]. To evaluate these effects, we

36To keep the mathematics simple, the impact is additive, and the price otherwise follows a random walk. It is easy,
though cumbersome, to make the price impact proportional and the log price follow a random walk. Our conclusions
about the power law exponents would not change.
37We wish to add two comments about the timing of the model. In our model, the large fund trades in one block

(at time t = 1), and the liquidity provider trades in many smaller chunks (at time t ∈ (1, 1+ T ]). Alternative timing
assumptions would leave the scaling relations unchanged (12), with the same γ. Also, the exchange between the large
fund and the liquidity supplier is an “upstairs” block trade. In an upstairs trade, the initiator typically commits not
to repeat the trade too soon in the future. This prevents many market manipulation strategies that might otherwise
be possible with a non-linear price impact, such as those analyzed by Huberman and Stanlz [2004].
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assume that the liquidity provider has the following mean variance utility function on the total

amount W of money earned during the trade

(11) U = E [W ]− λ [var (W )]δ/2 ,

with λ > 0 and δ > 0. The liquidity supplier requires compensation equal to λσδ to bear a

risk of standard deviation σ, i.e. has “δ-th order risk aversion.”38 With standard mean-variance

preferences, δ = 2. In many cases, a better description of what behavior is first-order risk aversion,

which corresponds to δ = 1.39

One justification for first-order risk aversion comes from psychology. Prospect theory [Kah-

neman and Tversky 1979] presents psychological evidence for this behavior, which has also been

formalized in disappointment aversion [Gul 1991; Backus, Routledge, and Zin 2005]. Second, first-

order risk aversion is frequently needed to calibrate quantitative models, such as Epstein and Zin

[1990] and Barberis, Huang, and Santos [2001]. A third justification is institutional, as (11) can

reflect a value at risk penalty, where λ is the size of the penalty, and var (W )1/2 is proportional

to the value at risk. Another institutional justification is via the Sharpe ratio. If a trader uses a

rule to accept trades if and only if their Sharpe ratio is greater than λ, then he will behave as if he

exhibits first-order risk aversion.

Proposition 1 The setup of this section generates the temporary price impact function:

(12) τ (V ) = HV γ

with H = λσδ/
¡
3V
¢δ/2

and

γ =
3δ

2
− 1.

For future reference, it is useful to state separately our central case.

Proposition 2 If the liquidity provider is first order risk averse, then the price impact increases

with the square root of traded volume:

γ = 1/2

38Essentially all non-expected utility theories need a postulate on how different gambles are intergrated. Here, we
assume that the liquidity provider evaluates individually the amount W earned in the trade.
39The model also generates a square root price impact with a different specification that generates first order risk

aversion, for instance the loss averse utility function: U = E [max (W, 0)] + ΛE [min (W, 0)] with Λ > 1.
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and

(13) τ (V ) = λσ

µ
V

3V

¶1/2
σ is the daily volatility of the stock, and λ the risk aversion of the liquidity provider.

In practice, V is likely to be proportional to the daily trading volume. Hence the scaling

predictions of Equation 13 can be almost directly examined.

The proof is in Appendix 2. The intuition is that the liquidity provider needs a time T = V/V

to buy back the V shares. During that time, the price diffuses at a rate σ. Hence the liquidity

provider faces a price uncertainty with standard deviation σ
√
T ∼ σ

√
V . If the liquidity provider

is first order risk averse, the price concession τ is proportional to the standard deviation, hence

τ ∼ σ
√
V , i.e., Equation 13.

To close the model, we need to determine both the permanent and the full price impact. The de-

termination of these two variables typically depends on the fine details of the information structure

processed by the other market participants. We use a somewhat indirect route, which drastically

simplifies the analysis.

Assumption 1 We assume that the market uses a linear rule to determine the full price impact,

(14) R (V ) = Bτ (V )

for some B > 0. Section IV.A presents conditions under which the linear rule (14) is actually

optimal.

Assumption 1 closes the price impact part of the model.

Proposition 3 The above setup generates the price concession function

(15) R (V ) = hV γ

where h = BH, and H and γ are determined in Propositions 1 and 2.

15



III.B. The Core Model: Behavior of a Large Fund

We now lay out the core of our model. The fund periodically receives signals about trading oppor-

tunities, which indicate that the excess risk-adjusted return on the asset is stMt
eC. st,Mt and eC

are independent. st = ±1 is the sign of the mispricing. Mt is the expected absolute value of the

mispricing. Mt is drawn from a distribution f (M), which we assume to be not too fat-tailed.

Assumption 2 We assume that M is not too fat-tailed: E
£
M1+1/γ

¤
<∞.

The model misspecification risk eC captures uncertainty over whether the perceived mispricing

is in fact real. For example, the fund’s predictive regressions may result from data mining, or the

mispricing may have since been arbitraged away. eC can take two values, 0 and C∗. If eC = 0, the

signals the fund perceives are pure noise, and the true average return on the perceived mispricings

is 0. If eC = C∗, the mispricings are real. We specify E
h eCi = 1, so that M represents the expected

value of the mispricing.

The fund has S dollars in assets. If it buys a volume Vt of the asset, and pays a price concession

R (Vt), the total return of its portfolio is:

(16) rt = Vt

³ eCMt −R (Vt) + ut

´
/S

where ut is mean zero noise.

If the model is wrong, expected returns are:

(17) E
h
rt | eC = 0i = −VtR (Vt) /S.

We assume that the manager has a concern for robustness. He does not want his expected return

to be below some value −Λ percent if his trading model is wrong. Formally, this means:

(18) E
h
rt | eC = 0i ≥ −Λ.

Equation 18 can be justified in several ways. One is a psychological attitude towards model

uncertainty, developed in depth by Gilboa and Schmeidler [1989] and Hansen and Sargent [2005].

Second, Equation 18 is a useful rule of thumb, that can be applied without requiring detailed infor-

mation about the fine details of model uncertainty. A third explanation is delegated management

[Shleifer and Vishny 1997]. If trader ability is uncertain, investors may wish to impose a constraint
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such as Equation 18 to prevent excessive trading.

To simplify the algebra, we assume that, subject to the robustness constraint, the manager

wants to maximize the expected value of his excess returns E [r].40 We now summarize this.

Definition 1 Suppose that the fund has S dollars under management. The fund’s optimal policy

is a function V (M,S) that specifies the quantity of shares V traded when the fund perceives a

mispricing of size M . It maximizes the expected returns E [rt] subject to the robustness constraint

(18):

(19) max
V (M,S)

E [rt] subject to E
h
rt | eC = 0i ≥ −Λ.

III.C. Optimal Strategy and Resulting Power Law Exponents

We can now derive the large fund’s strategy. Given Equation 16, Definition 1 is equivalent to:

max
V (M,S)

1

S

Z ∞

0
V (M,S) (M −R (V (M,S))) f (M) dM

s.t.
−1
S

Z ∞

0
V (M,S)R (V (M,S)) f (M) dM ≥ −Λ.

Appendix 2 establishes the following Proposition.

Proposition 4 If constraint (18) binds, the optimal policy is to trade a volume:

(20) V (M,S) = vM1/γS1/(1+γ).

The price change after the trade is:

(21) R (M,S) = hvγMSγ/(1+γ)

for a positive constant v, defined in Equation 48, which is increasing in Λ and decreasing in h.

Equation 21 means that price movements reflect both the intensity of the perceived mispricing

M , and the size of the fund S. Concretely, a large price movement can come from an extreme

40One might prefer the formulation maxV (M,S)E [u (r)] subject to E [u (r) | C = 0] ≥ u (−R), with a concave utility
u. Fortunately, this does not change the conclusions in many instances, such as u (r) = −e−αr, α > 0. On the other
hand, with a non-linear function u the derivations are more complex, as they rely on asymptotic equalities, rather
than exact equalities. To keep things simple, we use the linear representation (19).
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signal or the trade of a large fund [Easley and O’Hara 1987].

In the remaining analysis, we assume that (18) holds over the support of S.

Assumption 3 The robustness constraint (18) binds for all funds in the market above a certain

size.

A simple calibration presented in Appendix 2 shows that Assumption 3 holds for funds that

manage less than S∗ = $21 trillion dollars. Assumption 3 is not very stringent. Alternatively,

Section IV.C shows a way to ensure Assumption 3 without any finite size effects.41

We next derive the distribution of volume and price changes.

Proposition 5 The traded volume and the price changes follow power law distributions with

respective exponents:

(22) ζV = min [(1 + γ) ζS, γζM ]

(23) ζR = min

∙µ
1 +

1

γ

¶
ζS , ζM

¸
.

Equation 21 implies that the distribution of price movements reflects both the “news” (perhaps

coming from proprietary analysis), as reflected in M , as well as the size S of the agents that act

on the news. Equation 23 illustrates the resulting exponent. In equilibrium, it is the fatter of the

two tails of signals and sizes that matters. Mathematically, this comes from the properties (38)

of power laws: the tail exponent of the product of two independent random variables X1 and X2

is equal to the tail exponent of the more fat-tailed variable, i.e., is the lower of the exponents of

X1 and X2. Economically, this means that the polar case, where large investors affect the tail of

trading volume, is captured when ζM >
³
1 + 1

γ

´
ζS . Then, we get:

ζV = (1 + γ) ζS(24)

ζR =

µ
1 +

1

γ

¶
ζS(25)

41Such cutoffs are generally present when handling power laws, and are sometimes called “border” or “finite size”
effects. The cutoff affects only very little predictions. For instance, it affects the power law exponent of returns only
by a factor 10−3 if a large fund has a size S = 10−3S∗, which is a plausible empirical order of magnitude.
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Equation 23 then means that, when there is a very large movement, it is more likely to come from

the actions of a very large institution (the S term), rather than an objectively important piece

of news (the M term). This potential importance of a large institution may explain why, during

the Long Term Capital Management crisis, the October 1987 crash, and the events studied by

Cutler, Poterba, and Summers [1989], prices moved in the absence of significant news items. In

the context of our theory, the extreme returns occurred because some large institutions wished to

make substantial trades in a short time period.

Proposition 5 says that when the distribution of the size of institutions is more fat-tailed, volume

and returns are also more fat-tailed. However, when the curvature γ of price impact is smaller,

returns are less fat-tailed, but volumes are more fat-tailed. The reason is that large institutions

trade more moderately when the price impact is steeper. We now apply Proposition 5 to our

baseline values.

Proposition 6 With a square root price impact (γ = 1/2) and Zipf’s law for financial institutions

(ζS = 1), volumes and returns follow power law distributions, with respective exponents of 3/2 and

3.

ζV = 3/2(26)

ζR = 3.(27)

These exponents are the empirical values of the distribution of volume and returns.

Proposition 6 captures our explanation of the origins of the cubic law of returns, and the half-

cubic law of volumes. Random growth of mutual funds leads to Zipf’s law of financial institutions,

ζS = 1. The model of Section III.A leads to a power law price impact with curvature γ = 1/2. As

large funds wish to lessen their price impacts, their trading volumes are less than proportional to

their size. This generates a power law distribution of the size of trades that is less fat-tailed than

the size distribution of mutual funds. The resulting exponent is ζV = 3/2, which is the empirical

value. Trades of large funds create large returns, and indeed the power law distribution of returns

with exponent ζr = 3.

19



IV. Robustness and Extensions

IV.A. Permanent versus Transitory Price Impact

So far we have analyzed the full price impact R, which is the sum of a permanent component π and

transitory component τ : R = π + τ . We provide a sufficient condition that will ensure that the

permanent and the full price impact are proportional. In a Bayesian framework, the price impact

must come from an inference, which from Proposition 4 is:

(28) π (V ) = E
h
M | hV γ = hvγMγSγ/(1+γ)

i
.

The conditional expectation (28) is complicated and can be non-linear. It is difficult to see how

agents would apply Bayes’ rule to compute (28), which requires knowing the distribution ofM , and

M is not a directly observable quantity. However, these difficulties vanish in a class of cases — when

agents use (28) with the belief that ζM ≤ ζR. The case where they believe ζM = ζR is particularly

plausible. If one does not know the distribution of mispricings perceived by other agents, one might

hypothesize that it is close to the distribution of returns. This motivates the following Proposition.

Proposition 7 Suppose that updaters performing (28) believe ζM < ζR. Then, the exponent ζπ

of the permanent price impact is equal to the exponent ζR of the full price impact, and is given by

Proposition 5,

(29) ζπ = ζR = min

∙µ
1 +

1

γ

¶
ζS , ζM

¸
.

If the updaters believe ζM < ζR, there is a constant b > 0 s.t., for large volumes, the permanent

price impact is a fraction b is:

(30) π (V ) = E [M | V ] ∼ bV γ

If updaters performing (28) believe ζM = ζR, then π (V ) = V γL (V ), where L is a “slowly varying”

function that varies more slowly than any polynomial (see Appendix 1).

Proposition 7 presents sufficient conditions for π (V ) to preserve the power law price impact

under Bayesian updating, and thus to justify Assumption 1.
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IV.B. Multiple Stocks

The model can easily be extended to multiple stocks. Suppose stock i has a power law impact

Ri (V ) = hiV
γ , that the signal M ’s are independent across stocks, and the model misspecification

risk eC is common across stocks.42 The trader’s program is to maximize the expected profit from

trading over all stocks,

max
Vi(Mi,S),i=1...n

1

S

X
i

Z ∞

0
Vi (Mi, S) (Mi −Ri (Vi (M,S))) fi (Mi) dMi

subject to the robustness constraint that he does not lose more than Λ percent in price impact

costs:
1

S

X
i

Z ∞

0
Vi (Mi)Ri (V (M)) fi (Mi) dMi ≤ Λ

Following the proof of the main Proposition, one can show that the solution is hiVi (Mi, S)
γ =

KMiS
γ/(1+γ), where K does not depend on i and S. Hence, the power law exponents derived in

Propositions 5-6 follow.

IV.C. Different Quality of Signals Across Firms

We now allow the quality of signal M to differ across funds, and show that this does not affect

our results. We assume that fund f receives signals distributed according to M = χfm, where χf

is the quality of the fund’s signals, and the distribution of m is the same across funds. Following

the proof of Proposition 4, the optimal trading quantity of a fund of size S is still, for a constant

K = (Λ/h)1/(1+γ):

V (m,S) = K
M

1
γ S

1
1+γ

E
h
M

1+γ
γ

i 1
1+γ

= K
m

1
γ S

1
1+γ

E
h
m

1+γ
γ

i 1
1+γ

,

as M = χfm. The average quality χf of the signals disappears. Hence, one still obtains ζV =

min [(1 + γ) ζS , γζm] and ζR = ζV /γ.

In general, one expects larger firms to have a higher χ. For instance, if signals are generated

according to a production function χ (F ) = Fκ where F denotes investment in research, then the

optimal investment for a fund satisfies maxF CFκSγ/(1+γ) − F , for a constant C. Hence F ∼

S
γ

(1−κ)(1+γ) and the quality of signals is χ ∼ Sθ for θ = γκ/ [(1− κ) (1 + γ)].

42 It is easy to verify that eC could be also specific to each stock, or to each one of different classes of stocks.
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This framework allows us to provide a microfoundation for Assumption 3 without any upper

cutoff. The proof of Proposition 4 shows that Assumption 3 holds if:

S <
E
£
M1+1/γ

¤
[(1 + γ)]−(1+1/γ)

h
1
γΛ

=
E
£
m1+1/γ

¤
[(1 + γ)]−(1+1/γ)

h
1
γΛ

Sθ 1+γ
γ ∼ S

κ
1−κ

which holds if κ > 1/2 and S is large enough. Thus Assumption 3 is automatically verified if the

production function of market research rises faster than χ = F 1/2.

IV.D. Discussion and Questions for Future Research

Is it reasonable to believe that there are institutions large enough to cause the power law distribution

of returns? In view of the empirical facts, we believe so. The large volumes in Figure V, which

can be 1,000 times bigger than the median trades, must come from very large traders. They are

also associated with extreme price movements (Figure VI). However, a natural analysis would be

to investigate directly whether extreme movements without news [Cutler, Poterba, and Summers

1989] are caused by a small number of large institutional investors. The growing availability of

databases that track individual trades may allow such a study to be conducted in the near future.

Note that the existence of prime movers does not preclude that, subsequently, many traders will

move in the same way. Quantifying the importance of idiosyncratic movements of large trades

versus correlated movements of beliefs of most traders would be interesting.43

One prominent example of a large fund disrupting the market is Long Term Capital Man-

agement. Its collapse created a volatility spike that did not subside for several months. Our

contribution is a model of the initial impulse — the form and the power law distribution of the

initial disruption by a large trade. We leave to future research the important task of modeling the

specifics of the cascade that followed the initial impulse.44 We speculate that the empirical facts

we present, and our baseline model of initial impulses, will be useful for this future research.

A second example is the Brady [1988] report on the 1987 crash. On the crash day of Monday,

October 19, 1987, “this trading activity was concentrated in the hands of surprisingly few institu-

tions. ... Sell programs by three portfolio insurers accounted for just under $2 billion in the stock

market. ... Block sales by a few mutual funds accounted for about $900 million of stock sales,” on

43Gabaix [2005] finds that the idiosyncratic movements of large firms explain a substantial fraction of macroeco-
nomic activity, and Canals, Gabaix, Vilarrubia, and Weinstein [2005] find that idiosyncratic shocks explain a large
fraction of international trade.
44 [Abreu and Brunnermeier 2003; Bernardo and Welch 2004; Gennotte and Leland 1900; Romer 1993; Greenwald

and Stein 1991] also present elements for a theory of crashes.
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a total of $21 billion traded (p. v) and “One portfolio insurer alone sold $1.3 billion” (p. III-22).

In the first half hour of trading, “roughly 25 percent of the volume ... came from one mutual fund

group” (p. 30). The report concludes that “much of the selling pressure was concentrated in the

hands of surprisingly few institutions. A handful of large investors provided the impetus for the

sharpness of the decline” (p.41). Of course, some of the investors in the Brady report are program

traders, which amplify existing movements, rather than cause them. Also, our model is still too

limited to allow the rich dynamic analysis suggested by the Brady report. Nonetheless, the evidence

from the report is strongly suggestive of the hypothesis that a few traders move a relatively illiquid

market.

Our theory suggests a number of research angles. First, it would be desirable to study fully

dynamic extensions of the model. The analysis becomes much more difficult [see e.g., Vayanos 2001,

Gabaix, Gopikrishnan, Plerou, and Stanley 2003], but the simplicity of the empirical distributions

suggests that a simple dynamic theory of large events may be within reach.45

Second, it would be interesting to study the distribution of fund “effective” size (assets multiplied

by leverage) across classes of stocks. Proposition 5 predicts that the more fat-tailed the size

distribution of traders, the more fat-tailed the distributions of volume and returns. Investigating

this prediction directly might explain a cross sectional dispersion of power law exponents.

Third, our model predicts that the total price impact cost paid by a fund of size S will be

proportional to S, and that the total volume traded with sizable price impact will be proportional

to S1/(1+γ). Testing this proposition directly would be useful.

Fourth, the model suggests a particularly useful functional form for “illiquidity”, which corre-

sponds more closely to the prefactor of Proposition 3:46

bH = E

∙
|rt|
V γ
t

¸
(31)

bH 0 =
cov (|rt| , V γ

t )

varV γ
t

.(32)

Again, the evidence, and some models, suggests γ = 1/2, but other values may prove better suited.

Expressions 31 and 32 are likely to be more stable than other measures. Indeed, volume is a fat-

tailed variable (it has infinite variance), so using a square root of volume is likely to yield a more

45Engle and Russell [1998] and Liesenfeld [2001] present interesting empirical investigations of the dynamic relations
between trading and returns.
46One could even calculate the two expressions only for volumes above a certain threshold, e.g., the mean volume.
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stable measure than volume itself. Furthermore, the model also suggests that bH and bH 0 will be

proportional to σ/M1/2, where σ is the volatility of the stock and M is its market capitalization.

Fifth, our approach suggests a way to estimate the power law exponent of price impact, γ, and

the power law exponent of the distribution of financial institutions, ζS , for instance across markets.

One first estimates separately the power law exponents of volumes and returns, ζq and ζr. Then

one defines the estimators bγ and bζS by:
bγ = ζq

ζr
(33)

1bζS = 1

ζr
+
1

ζq
.(34)

Proposition 5 indicates that these are consistent estimates of γ and ζS in the polar case where

ζM > ζS (1 + γ) /γ.47

Finally, the theory makes predictions about the comovements in returns, volume, and signed

volume [the sum of volumes traded on a price increase minus volume traded on a price decrease).

Its variant in Gabaix, Gopikrishnan, Plerou, and Stanley [2003] adds predictions in the number of

trades and signed number of trades. The results show non-linear patterns, and the results, reported

in Figure 3 of Gabaix, Gopikrishnan, Plerou, and Stanley [2003], show a quite encouraging fit

between theory and data.

V. Conclusion

This paper proposes a theory in which large investors generate significant spikes in returns and

volume. We posit that the specific structure of large movements is due to the desire to trade of

sizable institutional investors, stimulated by news. The distribution of fund sizes, coupled with

large traders’ moderation of their trading volumes and a concave price impact function, generates

the Pareto exponents 3 and 3/2 for the distribution of returns and volumes.

We introduce some new questions that finance theories should answer. Matching, as we do,

the quantitative empirical regularities established here (in particular explaining the exponents of

3 and 3/2 from first principles rather than by assumption) should be a sine qua non criterion for

the admissibility of a model of volume and volatility. We hope that the regularities we establish

will constrain and guide future theories. Given its simple structure, the present model might be a

47 It is tempting to call Equation 34 a “reciprocity law” that holds irrespective of γ.
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useful point of departure for thinking about these issues.

Appendix 1: Some Power Law Mathematics

A. Definitions

We present here some basic facts about power law mathematics, and show how their aggregation

properties make them especially interesting for both theoretical and empirical work. They also show

how our predictions are robust to other sources of noise.

A random variable X has power law behavior if there is a ζX > 0 such that the probability

density p (x) follows:

(35) p (x) ∼ ζXC

xζX+1

for x→∞, and a constant C. This implies [e.g. Resnick, 1987, p.17] that the “counter-cumulative”

distribution function follows:

(36) P (X > x) ∼ C

xζX
.

A more general definition is that there is a “slowly varying”48 function L (x) and a ζX s.t.

p (x) ∼ L (x) /xζX+1, so that the tail follows a power law up to slowly varying corrections.

ζX is the (cumulative) power law exponent of X. A lower exponent means fatter tails: ζX <

ζY implies that X has fatter tails than Y , hence the large X’s are (infinitely, at the limit) more

frequent than large Y ’s.

If α is a constant, E [|X|α] =∞ for α > ζX , and E [|X|α] <∞ for 0 ≤ α < ζX . For instance, if

returns have power law exponents ζr = 3, their kurtosis is infinite, and their skewness borderline

infinite.49 If all moments are finite (e.g., for a Gaussian distribution), the formal power law exponent

is ζX =∞.

48L (x) is said to be slowly varying [e.g., Embrechts, Kluppelberg, and Mikosch 1997, p.564] if for all t >
0, limx→∞ L (tx) /L (x) = 1. Prototypical examples are L = a and L (x) = a lnx for a non-zero constant a.
49This makes the use of the kurtosis invalid. As the theoretical kurtosis is infinite, empirical measures of it are

essentially meaningless. As a symptom, according Lévy’s theorem, the median sample kurtosis of T i.i.d. demeaned

variables r1, ..., rT , with κT =
³PT

i=1 r
4
i /T

´
/
³PT

i=1 r
2
i /T

´2
, increases to +∞ like T 1/3 if ζr = 3. The use of kurtosis

should be banished from use with fat-tailed distributions. As a simple diagnostic for having “fatter tail than from
normality”, we would recommend, rather than the kurtosis, quantile measures such as P (|(r − r) /σr| > 1.96) /.05−1,
which is positive if tails are fatter than predicted by a Gaussian.
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B. Transformation Rules

Power laws have excellent aggregation properties. The property of being distributed according

to a power law is conserved under addition, multiplication, polynomial transformation, min, and

max. The general rule is that, when we combine two power law variables, “the fattest (i.e., the

one with the smallest exponent) power law dominates.” Indeed, for X1, ...,Xn independent random

variables, and α a positive constant, we have the following formulas:

ζX1+...+Xn = min (ζX1 , ..., ζXn)(37)

ζX1·...·Xn = min (ζX1 , ..., ζXn)(38)

ζmax(X1,...,Xn) = min (ζX1 , ..., ζXn)(39)

ζmin(X1,...,Xn) = ζX1 + ...+ ζXn(40)

ζαX = ζX(41)

ζXα =
ζX
α
.(42)

For instance, if X is a power law variable for ζX < ∞, and Y is power law variable with an

exponent ζY ≥ ζX , or even normal, lognormal or exponential variable (so that ζY = ∞), then

X + Y,X · Y , max (X,Y ) are still power laws with the same exponent ζX . Hence multiplying by

normal variables, adding non-fat tail noise, or summing over i.i.d. variables preserves the exponent.

This makes theorizing with power law very streamlined. Also, this gives the empiricist hope that

those power laws can be measured, even if the data is noisy: although noise will affect statistics

such as variances, it will not affect the power law exponent. Power law exponents carry over the

“essence” of the phenomenon: smaller order effects do not affect the power law exponent.

For example, our theory gives a mechanism by which ζr = 3. In reality, we observe: er0 = eaer+eb,
where ea and eb are other random factors not modeled in the theory. We will still have ζr0 = ζr = 3 if ea
and eb have thinner tails than er (ζa, ζb ≥ 3). If the theory of er captures the first order effects (those
with dominating power law), its predictions for the power law exponents of the noisy empirical

counterpart er0 will hold.
Proof. See Breiman [1965] and Gnedenko and Kolmogorov [1968] for rigorous proofs, and

Sornette [2000] for heuristic derivations. Here we just indicate the proofs for the simplest cases.
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By induction it is enough to prove the properties for n = 2 variables.

P (max (X,Y ) > x) = 1− P (max (X,Y ) < x) = 1− P (X < x and Y < x)

= 1− P (X < x )P (Y < x) = 1−
µ
1− C

xζX

¶µ
1− C 0

xζy

¶
∼ C 00

xmin(ζX ,ζY )
,

where C 00 = C if ζX < ζY , C
00 = C 0 if ζX > ζY , and C = C +C 0 if ζX = ζY .

P (min (X,Y ) > x) = P (X > x and Y > x) = P (X > x )P (Y > x) =
CC 0

xζX+ζY
.

Finally, if P (X > x) ∼ Cx−ζX , then

P (Xα > x) = P
³
X > x1/α

´
∼ C

³
x1/α

´−ζX
∼ Cx−ζX/α.

C. Estimating Power Law Exponents

There are two basic methodologies for estimating power law exponents. We illustrate them

with the example of absolute returns. In both methods, one first selects a cutoff of returns, and

orders the observations above this cutoff as r(1) ≥ . . . ≥ r(n). There is yet no consensus on how

to pick the optimal cutoff, as systematic procedures require the econometrician to estimate further

parameters [Embrechts, Kluppelberg, and Mikosch 1997]. Often, the most reliable procedure is to

use a simple rule, such as choosing all the observations in the top 5 percent.

The first method is a “log rank log size regression”, where ζ is estimated as the the OLS

coefficient on r(i) in the regression of log of the rank i on the log size:

(43) ln i = A− bζOLS ln r(i) + noise
with standard error bζOLS · (n/2)−1/2 [Gabaix and Ioannides 2004]. This method is the simplest,
and yields a visual goodness of fit for the power law. This is the approach used, for instance, in

Figure 1. The second method is Hill’s estimator

(44) bζHill = (n− 1) /
n−1X
i=1

¡
ln r(i) − ln r(n)

¢

which has a standard error bζHilln−1/2.
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Both methods have pitfalls, discussed in Embrechts, Kluppelberg, and Mikosch [1997, pp.330—

345] and Gabaix and Ioannides [2004]. One large pitfall is the assumption of independent obser-

vations. In reality, trading activity is autocorrelated which causes standard errors to be underesti-

mated; however, point estimates remain unbiased. In a future paper we plan to propose a method

of estimating the standard errors. In any case, the stability of the estimates across different periods,

countries and classes of assets gives us confidence that the empirical estimates we report here are

robust.

With the samples of millions of points available in finance, standard errors are so small that

one can reject essentially any null hypothesis. Hence, researchers estimating power laws typically

do not use tests to see if a distribution with more parameters would offer a better fit. With so

many data points, statistical tests would always justify a higher-dimensional parameterization, even

though economically, the improvement in fit would be minimal. Rather bζ is best interpreted as the
optimal one-parameter approximation of the tail by a Pareto family. Explaining the value of this

one-parameter approximation is already a difficult challenge. Explaining the higher order terms

may be best left for future decades of research.

Appendix 2: Proofs

Proof of Proposition 2. We use T = V/V and B (1) = 0 to calculate:

var

∙Z 1+T

1
B (t) dt

¸
= var

∙Z T

0

µZ s

0
dB (1 + u)

¶
ds

¸
= var

∙Z T

0

µZ T

u
ds

¶
dB (u+ 1)

¸
= var

∙Z T

0
(T − u) dB (u+ 1)

¸
=

Z T

0
(T − u)2 du =

T 3

3
=

V 3

3V
3 .

The liquidity provider sells V shares to the fund at a price p + π + τ , and replenishes her

inventory during [1, 1 + T ] at a total cost K =
R 1+T
1 p (t)V dt. Her net income from the transaction

is:

W = (p+ π + τ)V −
Z 1+T

1
p (t)V dt = (p+ π + τ)V −

Z 1+T

1
(p+ π + σB (t))V dt

= τV − σV

Z 1+T

1
B (t) dt.
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Her utility is:

U = E [W ]− λ (varW )δ/2 = τV − λ

µ
σ2V

2
var

∙Z 1+T

1
B (t) dt

¸¶δ/2

= τV − λ

µ
σ2V 3

3V

¶δ/2

.

The fund has full bargaining power, and so leaves the liquidity supplier with a reservation utility

U = 0. This implies:

τ = λ

µ
σ2

3V

¶δ/2

V 3δ/2−1.

Economically, the liquidity provider purchases the stock back at an average price p = T−1
R 1+T
1 p (t) dt,

which has expected value p+ π and standard deviation σ
³

V
3V

´1/2
. The temporary impact τ is the

compensation for this price risk of σ
³

V
3V

´1/2
.

Proof of Proposition 4. In this proof we use the notation V (M) rather than V (M,S). The

Lagrangian is:

L =
Z

V (M) (M −R (V (M))) f (M) dM − µ

Z
V (M)R (V (M)) f (M) dM

=

Z
V (M) (M − (1 + µ)hV (M)γ) f (M) dM.

It is sufficient to optimize on V (M) separately for each M :

0 =
∂L

∂V (M)
=

∂

∂V (M)

h
V (M)M − (1 + µ)hV (M)1+γ

i
f (M)

→ 0 =M − (1 + µ) (1 + γ)hV (M)γ

→ V (M) = [(1 + µ) (1 + γ)h]−1/γ M1/γ .(45)

Thus, using Equation 17,

−E
h
rt | eC = 0i = E

h
hV (M)1+γ /S

i
= hE

h
M1+1/γ

i
[(1 + µ) (1 + γ)h]−(1+1/γ) /S.

Constraint (18) binds iff µ > 0, i.e.

(46) S < S∗
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with:

(47) S∗ =
E
£
M1+1/γ

¤
[(1 + γ)]−(1+1/γ)

h
1
γΛ

If the constraint binds, −E
h
rt | eC = 0i = Λ. This implies:
[(1 + µ) (1 + γ)h]−(1+1/γ) =

ΛS

hE
£
M1+1/γ

¤
and going back to Equation 45, we get V (M) = vM1/γS1/(1+γ) with:

(48) v =

Ã
Λ

hE
£
M1+1/γ

¤!1/(1+γ) .
The expression for R comes from R = hV γ .

To calibrate S∗, we use the following parameters, which we view as simply indicative: γ = 1/2,

E
£
M3

¤1/3
= 10 percent (which is less than the annual standard deviation of the market, hence likely

to be conservative), Λ = 2 percent of price impact costs paid annually.50 We take a price impact,

motivated by Sections II.C and III.A: R (V ) = Aσ
¡
V
D

¢1/2
, where σ = daily market volatility

= 0.01, A = 1/2, which means that up to A2 = 25 percent of the market fluctuations are due to our

effects, D = daily market turnover. Using the 1999 number of a total equity market capitalization

of $18 trillion, and a 50 percent annual turnover, D = 1/2× $18 trillion/250 = $36 billion. So

S∗ =
D

A2 (3/2)3
E
£
M3

¤
σ2Λ

= $21trillion.

Proof of Proposition 5. We start from Equation 21. We apply the rules in Appendix 1 to derive:

ζR = ζhvγMSγ/(1+γ) = ζMSγ/(1+γ) by applying (41)

= min [ζM , ζSγ/(1+γ) ] by applying (38)

= min

∙
ζM ,

1 + γ

γ
ζS

¸
by applying (42)

which proves the Proposition. One derives ζV in the same way.

Proof of Proposition 6. Assumption 2 implies ζM ≥ 1 + 1/γ = 3. Then, Proposition 5 gives

50 If the fund gets F signals per year, S∗ is divided by F 1/2, as M is divided by F 1/2 and Λ by F .
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ζR = min (3, ζM) = 3 and ζV = γζR = 3/2.

Proof of Proposition 7. We will start with the following Lemma, which means that if X has

fatter tails than Y , then E [X | XY = z] is proportional to z for large z. The reason is that an

extreme value of XY probably comes from an extreme value of X.

Lemma 8 Suppose that X and Y are independent random variables, with exact power distribu-

tions: P (X > x) = (x/x∗)−ζx , P (Y > y) = (y/y∗)−ζY for x ≥ x∗ and y ≥ y∗. Define z∗ = x∗y∗.

Assume ζX ≤ ζY . Then:

E [X | XY = z] = L (z) z(49)

L (z) =
E
£
Y ζX−11Y <z/x∗

¤
E
£
Y ζX1Y <z/x∗

¤(50)

L (z) is a slowly varying function. If ζX < ζY ,

(51) lim
z→∞

L (z) =
E
£
Y ζX−1

¤
E [Y ζX ]

If ζX = ζY ,

(52) L (z) =
1

y∗
1− z∗/z

ln (z/z∗)
∼ 1

y∗
1

ln z
for z →∞.

Proof of Lemma 8. By normalization, it is enough to study the case x∗ = y∗ = 1. Calling f and

g the densities of X and Y . By Bayes’ rule, p (X = x | XY = z) = kf (x) g (z/x) /x for a constant

k. So:

E [X | XY = z] =

R
f (x) g (z/x) /x dxR
f (x) g (z/x) /x dx

= z

R
f (z/y) g (y) /y2 dyR
f (z/y) g (y) /y1 dy

by the change of variable x = z/y

= z

R z
1 (z/y)

−ζX−1 g (y) /y2 dyR z
1 (z/y)

−ζX−1 g (y) /ydy
= z

R z
1 y

ζX−1g (y) dyR z
1 y

ζXg (y) dy
= z

E
£
Y ζX−11Y <z

¤
E [Y ζX1Y <z]

= zL (z) .

When ζX < ζY , E
£
Y ζX1Y <z

¤
→ E

£
Y ζX

¤
<∞

When ζX = ζY ,

L (z) =

R z
1 y

ζX−1g (y) dyR z
1 y

ζXg (y) dy
=

R z
1 y

ζX−1y−ζY −1 dyR z
1 y

ζXy−ζY −1 dy
=

R z
1 y

−2dyR z
1 y

−1 dy
=
1− z−1

ln z
.

¤
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For the proof of Proposition 7, we use Lemma 8 with X = M and Y = hvγSγ/(1+γ). We call

ζsubjM the exponent of the distribution agents use when they calculate the conditional expectation

(28). Given the hypothesis ζsubjM ≤ ζR, Equation 23 gives ζ
subj
M ≤ ζR ≤

³
1 + 1

γ

´
ζS = ζY . So using

Lemma 8,

E
h
M | R = hvγMSγ/(1+γ) = XY

i
= RL (R)

for a slowly varying function L (R) of R. In the case ζsubjM <
³
1 + 1

γ

´
ζS, we get: limR→∞ L (R) =

b0 = E
h
Y ζsubjM −1

i
/E
h
Y ζsubjM

i
, a constant. Finally, given π = RL (R), and L is slowly varying,

ζπ = ζR.

Appendix 3: Confidence Intervals and Tests When a Variable Has

Infinite Variance

A. Construction of the Confidence Intervals for Figure VI

In a given bin conditioned byQ = Qi, with k elements r21,...,r
2
k, the point estimate ofE

£
r2 | Q = Qi

¤
is the sample mean of the r2j , which we call m. Getting a confidence interval for m is delicate, as r2

has infinite variance, so the standard approach relying on asymptotic normality is invalid. But the

theory of self-normalizing sums of Logan, Mallows, Rice, and Shepp [1973] shows that if µ is the

true mean and σ is empirical standard deviation of the r2j in the bin with k observations, then the

ratio t = k1/2 (m− µ) /σ follows a non-degenerate distribution for large k. By Monte Carlo analysis

we simulate draws following a power law with exponent 1.5, which is the exponent of r2, and we

tabulate 2.5 percent and 97.5 percent quantiles of −t, which we call −χ− = −1.1 and χ+ = 5.5.

They differ from their finite variance value, which would be χ− = χ+ = 1.95.51

To construct 95 percent confidence intervals, we can first calculate the empirical standard error

∆r2i = σr2i,jk
−1/2, the sample standard deviation of the observations divided by the square root of

the number of observations. A 95 percent confidence interval is
£
mi − χ−∆r2i ,mi + χ+∆r2i

¤
. We

should stress that we make the simplifying assumption of idenpendent and identically distributed

draws. Given that the data are likely to be autocorrelated, our confidence intervals are likely to be

too narrow.

B. Test of Relation (7): E
£
r2 | Q

¤
= α+ βQ

51When k is finite, there is some sensitivity of χ− and χ+ to the underlying distribution. We take a pure power
law P

¡
r2 > x

¢
= x−3/2 for x ≥ 1, and k = 200, to reflect our typical sample size in bins of extreme values.
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For each bin Qi of Q, we set r2i = E
£
r2 | Q = Qi

¤
, and ∆r2i sample standard error in interval

i. By least squares we fit an affine relationship E
£
r2 | Q

¤
= g (Q), with

g (Q) = 0.07 + 0.60Q

(0.59) (0.013) .

The standard errors are in parentheses and the R2 = 0.90. We find that for all values Qi ≥ 3, the

predicted value g (Qi) belongs to the 95 percent confidence interval: g (Qi) ∈
£
r2i − χ−∆r2i , r

2
i + χ+∆r2i

¤
.

We conclude that, at the 95 percent confidence level, we cannot reject the linear form E
£
r2 | Q

¤
=

g (Q) for Q ≥ 3.

Massachusetts Institute of Technology, Economics Department, and National

Bureau of Economic Research

Boston University, Physics Department, Center for Polymer Studies

Boston University, Physics Department, Center for Polymer Studies

Boston University, Physics Department, Center for Polymer Studies

References

Abreu, Dilip, and Markus Brunnermeier, “Bubbles and Crashes,” Econometrica, VXXI, (2003),

173-204.

Acharya, Viral, and Lasse Pedersen, “Asset Pricing with Liquidity Risk,” Journal of Financial

Economics, LXV (2005), 375-410.

Almgren, Robert, and Neil Chriss, “Optimal Execution of Portfolio Transactions,” Journal of

Risk, III (2000), 5-39.

Andersen, Torben G., Tim Bollerslev, Francis Diebold, and Heiko Ebens, “The Distribution of

Realized Stock Return Volatility,” Journal of Financial Economics, LXI (2001), 43-76.

Arthur, W. Brian, Blake LeBaron, John. H. Holland, Richard Palmer, and Paul Tayler, “Asset

Pricing Under Endogenous Expectations in an Artificial Stock Market,” in W. Brian Arthur,

Steven Durlauf, and David Lane, eds., The Economy as an Evolving Complex System II

(Reading, MA: Addison-Wesley, 1997).

33



Axtell, Robert, “Zipf Distribution of U.S. Firm Sizes,” Science, CCXCIII (2001), 1818-20.

Backus, David, Bryan R. Routledge, and Stanley E. Zin, “Exotic Preferences for Macroecono-

mists,” NBER Macroeconomics Annual (Cambridge, MA: MIT Press, 2005).

Bak, Per, Ken Chen, José Scheinkman, and Michael Woodford, “Aggregate Fluctuations from In-

dependent Sectoral Shocks: Self-Organized Criticality in a Model of Production and Inventory

Dynamics,” Ricerche Economiche, XLVII (1993), 3-30.

Barberis, Nicholas, Ming Huang, and Tano Santos, “Prospect Theory and Asset Prices,” Quarterly

Journal of Economics, CXVI (2001), 1-53.

Barberis, Nicholas, and Richard Thaler, “A Survey of Behavioral Finance,” in George Constanti-

nides and René Stulz, eds., Handbook of the Economics of Finance (North-Holland: Amster-

dam, 2003).

Barclay, Michael, and Jerold Warner, “Stealth Trading and Volatility Which Trades Move Prices?”

Journal of Financial Economics, XXXIV (1993), 281-305.

Barra, Market Impact Model Handbook (Berkeley, CA: Barra, 1997).

Barro, Robert, “Rare Events and the Equity-Premium Puzzle,” Working Paper, Harvard Univer-

sity, 2005.

Bernardo, Antonio, and Ivo Welch, “Liquidity and Financial Market Runs,” Quarterly Journal of

Economics, CXIX (2004), 135-158.

Bertsimas, Dimitris, and Andrew Lo, “Optimal Control of Execution Costs,” Journal of Financial

Markets, I (1998), 1-50.

Biais, Bruno, Lawrence Glosten, and Chester Spatt, “Market Microstructure: A Survey of Micro-

foundations, Empirical Results, and Policy Implications,” Journal of Financial Markets, VIII

(2005), 217-264.

Blume, Lawrence, and Stephen Durlauf, eds., The Economy as an Evolving Complex System III

(New York: Oxford University Press, 2005).

Bouchaud, Jean-Philippe, and Marc Potters, Theory of Financial Risks and Derivative Pricing:

From Statistical Physics to Risk Management, Second Edition (New York: Cambridge Uni-

versity Press, 2003).

34



Bouchaud, Jean-Philippe, Yuval Gefen, Marc Potters, and Matthieu Wyart, “Fluctuations and

Response in Financial Markets: The Subtle Nature of ‘Random’ Price Changes,” Quantitative

Finance, IV (2004), 176-190.

Brady, Nicholas, and United States’ Presidential Task Force on Market Mechanisms, Report of

the Presidential Task Force on Market Mechanisms Submitted to the President of the United

States (Washington, D.C.: Docs., U.S. G.P.O., 1988).

Breiman, Leonard, “On Some Limit Theorems Similar to the Arc-Sin Law,” Theory of Probability

and its Applications, X (1965), 323-330.

Brock, William, and Cars Hommes, “Rational Routes to Randomness,” Econometrica VXV

(1998), 1059—1096.

Brunnermeier, Markus, and Stefan Nagel, “Hedge Funds and the Technology Bubble,” Journal of

Finance, LIX (2004), 2013-2040.

Brunnermeier, Markus, and Lasse Pedersen,“Predatory Trading,” Journal of Finance, LX (2005),

1825-1863.

Campbell, John, Tarun Ramadorai, and Tuomo Vuolteenaho, “Caught On Tape: Institutional

Order Flow and Stock Returns,” National Bureau of Economic Research Working Paper No.

11439, 2005.

Campbell, John, and Robert Shiller, “The Dividend—Price Ratio and Expectations of Future

Dividends and Discount Factors,” Review of Financial Studies, I (1988), 195—228.

Canals, Claudia, Xavier Gabaix, Josep Vilarrubia, and David Weinstein, “Trade Patterns, Trade

Balances, and Idiosyncratic Shocks,” Working Paper, Columbia University and Massachusetts

Institute of Technology, 2005.

Chae, Joon, and Jonathan Lewellen, “Herding, Feedback Trading, and Stock Returns: Evidence

from Korea,” Working Paper, Dartmouth College, 2005.

Chan, Louis, and Josef Lakonishok, “Institutional Trades and Intraday Stock Price Behavior,”

Journal of Financial Economics, XXXIII (1993), 173-189.

Chan, Louis, and Josef Lakonishok, “The Behavior of Stock Prices Around Institutional Trades,”

The Journal of Finance, L (1995), 1147- 1174.

35



Chiyachantana, Chiraphol, Pankaj Jain, Christine Jiang, and Robert Wood, “International Evi-

dence on Institutional Trading Behavior and Price Impact,” Journal of Finance, LIX (2004),

869-898.

Choe, Hyuk, Bong-Chan Kho, and René Stulz, “Do Foreign Investors Destabilize Stock Markets?

The Korean Experience in 1997,” Journal of Financial Economics, LIV (1999), 227-264.

Clark, Peter, “A Subordinated Stochastic Process Model with Finite Variance for Speculative

Prices,” Econometrica, XLI (1973), 135-155.

Cohen, Randolph, Paul Gompers, and Tuomo Vuolteenaho, “Who Underreacts to Cash-Flow

News? Evidence from Trading between Individuals and Institutions,” Journal of Financial

Economics, LXVI (2002), 409-462.

Corsetti, Giancarlo, Paolo Pesenti, and Nouriel Roubini, “The Role of Large Players in Cur-

rency Crises,” in Sebastian Edwards and Jeffrey Frankel, eds., Preventing Currency Crises

in Emerging Markets (Chicago, IL: Chicago University Press and NBER, 2002).

Coyne, Kevin, and Jonathan Witter, “Taking the Mystery Out of Investor Behavior,” Harvard

Business Review, LXXX (2002), 68-79.

Cutler, David, James Poterba, and Lawrence Summers, “What Moves Stock Prices?” Journal of

Portfolio Management, XV (1989), 4—12.

Davies, James, and Anthony Shorrocks, “The Distribution of Wealth,” in Anthony Atkinson and

Francois Bourguignon, eds., Handbook of Income Distribution, Volume I (Amsterdam; New

York and Oxford: Elsevier Science, North-Holland, 2000).

Dembo, Amir, Jean-Dominique Deuschel, Darrell Duffie, “Large Portfolio Losses,” Finance and

Stochastics, VIII (2004), 3-16.

Durlauf, Steven, “Non Ergodic Economic Growth,” Review of Economic Studies, VX (1993), 349—

66.

Easley, David, Soeren Hvidjkaer, and Maureen O’Hara, “Is Information Risk a Determinant of

Asset Prices?” Journal of Finance, LVII (2002), 2185—2221.

Embrechts, Paul, Claudia Kluppelberg, and Thomas Mikosch, Modelling Extremal Events (New

York: Springer Verlag, 1997).

36



Engle, Robert, and Jeffrey Russell, “Autoregressive Conditional Duration: A New Model for

Irregularly Spaced Transaction Data,” Econometrica, LXVI (1998), 1127-1162.

Epstein, Lawrence, and Stanley Zin, “‘First-Order’ Risk Aversion and the Equity Premium Puz-

zle,” Journal of Monetary Economics, XXVI (1990), 387-407.

Evans, Martin, and Richard Lyons, “Order Flow and Exchange Rate Dynamics,” Journal of

Political Economy, CX (2002), 170-180.

Fair, Ray, “Events that Shook the Market,” Journal of Business, LXXV (2002), 713—731.

Fama, Eugene, “Mandelbrot and the Stable Paretian Hypothesis,” Journal of Business, XXXVI

(1963), 420-429.

Farmer, Doyne, and Fabrizio Lillo, “On the Origin of Power-Law Tails in Price Fluctuations,”

Quantitative Finance, IV (2004), C7—11.

French, Kenneth, and Richard Roll, “Stock Return Variance: The Arrival of Information and the

Reaction of Traders,” Journal of Financial Economics, XVII (1986), 99-117.

Froot, Kenneth A., Paul O.Connell, and Mark Seasholes, “The Portfolio Flows of International

Investors,” Journal of Financial Economics, LIX (2001), 151-193.

Fujiwara, Yoshi, Corrado Di Guilmi, Hideaki Aoyama, Mauro Gallegati, and Wataru Souma, “Do

Pareto—Zipf and Gibrat Laws Hold True? An Analysis with European firms,” Physica A,

CCCXXXV (2004), 197-216.

Gabaix, Xavier, “Zipf’s Law for Cities: An Explanation,” Quarterly Journal of Economics, CXIV

(1999), 739-67.

Gabaix, Xavier, “The Granular Origins of Aggregate Fluctuations,” Working Paper, Massa-

chusetts Institute of Technology, 2005.

Gabaix, Xavier, Parameswaran Gopikrishnan, Vasiliki Plerou, and H. Eugene Stanley, “A Theory

of Power Law Distributions in Financial Market Fluctuations,” Nature, CDXXIII (2003),

267—230.

Gabaix, Xavier, Parameswaran Gopikrishnan, Vasiliki Plerou, and H. Eugene Stanley, “Are Stock

Market Crashes Outliers?” Working Paper, Massachusetts Institute of Technology, 2005.

37



Gabaix, Xavier, and Yannis Ioannides, “The Evolution of the City Size Distributions,” in J. Vernon

Henderson and Jacques-François Thisse, eds., Handbook of Urban and Regional Economics,

Volume IV (Amsterdam: Elsevier North Holland, 2004).

Gabaix, Xavier, Rita Ramalho, and Jonathan Reuter, “Investor Behavior and Mutual Fund Dy-

namics,” Working Paper, Massachusetts Institute of Technology, 2005.

Gennotte, Gerard, and Hayne Leland, “Market Liquidity, Hedging, and Crashes,” American Eco-

nomic Review, LXXX (1990), 999-1021.

Gilboa, Itzhak, and David Schmeidler, “Maxmin Expected Utility with Non-Unique Prior,” Jour-

nal of Mathematical Economics, XVIII (1989), 141-153.

Gnedenko, Boris V., and Andrej N. Kolmogorov, Limit Distributions for Sums of Independent

Random Variables (Reading, MA: Addison-Wesley, 1968).

Goetzmann, William, and Massimo Massa, “Index Funds and Stock Market Growth,” Journal of

Business, LXXVI (2003), 1-28.

Gompers, Paul, and Andrew Metrick, “Institutional Investors and Equity Prices,” Quarterly Jour-

nal of Economics, CXVI (2001), 229-259.

Gopikrishnan, Parameswaran, Vasiliki Plerou, Luis Amaral, Martin Meyer, and H. Eugene Stanley,

“Scaling of the Distribution of Fluctuations of Financial Market Indices,” Physical Review E,

LX (1999), 5305-5316.

Gopikrishnan, Parameswaran, Vasiliki Plerou, Xavier Gabaix, and H. Eugene Stanley, “Statistical

Properties of Share Volume Traded in Financial Markets,” Physical Review E, LXII (2000),

R4493-R4496.

Griffin, John, Jeffrey Harris, and Selim Topaloglu, “The Dynamics of Institutional and Individual

Trading,” Journal of Finance, LVIII (2003), 2285 - 2320.

Grinold, Richard C., and Ronald N. Kahn, Active Portfolio Management (Boston, MA; London:

Irwin/McGraw-Hill, 1999).

Grossman, Sanford, and Merton Miller, “Liquidity and Market Structure,” Journal of Finance,

XLIII (1988), 617-33.

38



Guillaume, Dominique M., Michel M. Dacorogna, Rakhal R. Davé, Ulrich A. Müller, Richard

B. Olsen, and Olivier V. Pictet, “From the Bird’s Eye to the Microscope: a Survey of New

Stylized Facts of the Intra-Daily Foreign Exchange Markets,” Finance and Stochastics, I

(1997), 95-129.

Gul, Faruk, “A Theory of Disappointment Aversion,” Econometrica, LIX (1991), 667-686.

Hansen, Lars, and Thomas Sargent, Robustness, manuscript, University of Chicago and New York

University, 2005.

Hasbrouck, Joel, “Measuring the Information-Content of Stock Trades,” Journal of Finance, XLVI

(1991), 179-207.

Hasbrouck, Joel, and Duane Seppi, “Common Factors in Prices, Order Flows and Liquidity,”

Journal of Financial Economics, LIX (2001), 388-411.

Hirshleifer, David, “Investor Psychology and Asset Pricing,” Journal of Finance, LVI (2001),

1533-1598.

Huberman, Gur, and Werner Stanzl, “Price Manipulation and Quasi-Arbitrage,” Econometrica,

LXXIV (2004), 1247-1276.

Hvidkjaer, Soeren, “A Trade-based Analysis of Momentum,” Review of Financial Studies, XVIII

(2005).

Ibragimov, Rustam, “Portfolio Diversification and Value at Risk Under Thick-Tailedness,” Work-

ing Paper, Harvard University, 2005.

Jackson, Matthew, and Brian Rogers, “Search in the Formation of Large Networks: How Random

are Socially Generated Networks?,” Working Paper, California Institute of Technology, 2005.

Jansen, Dennis, and Casper de Vries, “On the Frequency of Large Stock Returns: Putting Booms

and Busts into Perspective,” The Review of Economics and Statistics, LXXIII (1991), 18-24.

Jones, Charles M., and Marc Lipson, “Sixteenths: Direct Evidence on Institutional Execution

Costs,” Journal of Financial Economics, LIX (2001), 253-278.

Kahneman, Daniel, and Amos Tversky, “Prospect Theory: An Analysis of Decision under Risk,”

Econometrica, XLVII (1979), 263-91.

39



Keim, Donald, and Ananth Madhavan, “The Upstairs Market for Large-Block Trades: Analysis

and Measurement of Price Effects,” Review of Financial Studies, IX (1996), 1-36.

Kou, Samuel, and Steven Kou, “A Diffusion Model for Growth Stocks,”Mathematics of Operations

Research. IXXX (2004), 191-212.

Kyle, Albert, “Continuous Auctions and Insider Trading,” Econometrica, LIII (1985), 1315-1335.

LeRoy, Stephen, and Richard Porter, “The Present-Value Relation: Tests Based on Implied Vari-

ance Bounds,” Econometrica, XLIX (1981), 555-574.

Levy, Moshe, Heim Levy, and Sorin Solomon, Microscopic Simulation of Financial Markets: From

Investor Behavior to Market Phenomena (San Diego, CA: Academic Press, 2000).

Liesenfeld, Roman, “A Generalized Bivariate Mixture Model for Stock Price Volatility and Trading

Volume,” Journal of Econometrics, CIV (2001) 141-178.

Lillo, Fabrizio, and Doyne Farmer, “The Long Memory of the Efficient Market,” Studies in Non-

linear Dynamics & Econometrics, VIII (2004), Article 1.

Liu, Yanhui, Parameswaran Gopikrishnan, Pierre Cizeau, Martin Meyer, Chung-Kang Peng, and

H. Eugene Stanley, “Statistical Properties of the Volatility of Price Fluctuations,” Physical

Review E, LX (1999), 1390—1400.

Lo, Andrew, and Jiang Wang, “Trading Volume: Definitions, Data Analysis, and Implications of

Portfolio Theory,” Review of Financial Studies, XIII (2001), 257-300.

Loeb, Thomas, “Trading Cost: The Critical Link between Investment Information and Results,”

Financial Analysts Journal, XXXIX (1983), 39—44.

Logan, Benjamin F., Colin Mallows, Stephen Rice, and Larry Shepp, “Limit Distributions of

Self-Normalized Sums,” Annals of Probability, I (1973), 788-809.

Lux, Thomas, “The Stable Paretian Hypothesis and the Frequency of Large Returns: An Exami-

nation of Major German Stocks,” Applied Financial Economics, VI (1996), 463 - 475.

Lux, Thomas, and Didier Sornette, “On Rational Bubbles and Fat Tails,” Journal of Money Credit

and Banking, XXXIV (2002), 589-610.

40



Mandelbrot, Benoit, “The Variation of Certain Speculative Prices,” Journal of Business, XXXVI

(1963), 394-419.

Mantegna, Rosario, and H. Eugene Stanley, “Scaling Behavior in the Dynamics of an Economic

Index,” Nature, CCCVXXVI (1995), 46-49.

Mantegna, Rosario, and H. Eugene Stanley, An Introduction to Econophysics: Correlations and

Complexity in Finance (Cambridge, UK: Cambridge University Press, 2000).

Marsh, Terrance, and Niklas Wagner, “Return-Volume Dependence and Extremes in International

Equity Markets,” Working Paper, Berkeley, 2004.

Maslov, Sergei, and Mark Mills, “Price Fluctuations from the Order Book Perspective: Empirical

Facts and a Simple Model,” Physica A, CCXCIX (2001), 234-246.

McCulloch, J. Huston, “Financial Applications of Stable Distributions.” In G.S. Maddala and

C.R. Rao, eds., Statistical Methods in Finance, (Amsterdam: Elsevier North Holland, 1996).

O’Hara, Maureen, Market Microstructure Theory (Cambridge, MA: Blackwell, 1995).

Okuyama, Kazumi, Misako Takayasu, and Hideki Takayasu, “Zipf’s Law in Income Distribution

of Companies,” Physica A, CCLXIX (1999), 125-131

Piketty, Thomas, and Emmanuel Saez, “Income Inequality in the United States, 1913-1998,”

Quarterly Journal of Economics, CXVIII (2003), 1-39.

Plerou, Vasiliki, Parameswaran Gopikrishnan, Luis Amaral, Martin Meyer, and H. Eugene Stanley,

“Scaling of the Distribution of Fluctuations of Financial Market Indices,” Physical Review E,

LX (1999), 6519-6529.

Plerou, Vasiliki, Parameswaran Gopikrishnan, Luis Amaral, Xavier Gabaix, and H. Eugene Stan-

ley, “Economic Fluctuations and Anomalous Diffusion,” Physical Review E, LXII (2000),

R3023-R3026.

Plerou, Vasiliki, Parameswaran Gopikrishnan, Xavier Gabaix, and H. Eugene Stanley, “Quan-

tifying Stock Price Response to Demand Fluctuations,” Physical Review E, LXVI (2002),

027104.

41



Plerou, Vasiliki, Parameswaran Gopikrishnan, Xavier Gabaix, and H. Eugene Stanley, “On the

Origins of Power-Law Fluctuations in Stock Prices,” Quantitative Finance, IV (2004), C11—

C15.

Pritsker, Matthew, “Large Investors: Implications for Equilibrium Asset Returns, Shock Absorp-

tion and Liquidity,” Working Paper, Federal Reserve Board, 2005.

Pushkin, Dmitri, and Hassan Aref, “Bank Mergers as Scale-Free Coagulation,” Physica A, CC-

CXXXVI (2004), 571-584.

Rachev, Svetlozar, and Stefan Mittnik, Stable Paretian Models in Finance (New York: Wiley,

2000).

Resnick, Sidney, Extreme Values, Regular Variation, and Point Processes (New York: Springer

Verlag, 1987).

Rietz, Thomas, “The Equity Risk Premium: A Solution,” Journal of Monetary Economics, XXII

(1988), 117-131.

Roll, Richard, “R2,” Journal of Finance, XLIII (1988), 541-566.

Romer, David, “Rational Asset-Price Movements without News,” American Economic Review,

LXXXIII (1993), 1112-1130.

Routledge, Bryan, and Stanley Zin, “Generalized Disappointment Aversion and Asset Prices,”

Working Paper, Carnegie Mellon University, 2004.

Schwert, William, “Indexes of United States Stock Prices from 1802 to 1987,” Journal of Business,

LXIII (1990), 399-426.

Seppi, Duane, “Equilibrium Block Trading and Asymmetric Information,” Journal of Finance,

XLV (1990), 73-94.

Shiller, Robert, “Do Stock Prices Move Too Much to Be Justified by Subsequent Changes in

Dividends?,” American Economic Review, LXXI (1981), 421-436.

Shiller, Robert, Market Volatility (Cambridge, MA: MIT, 1989).

Shleifer, Andrei, “Do Demand Curves for Stocks Slope Down?” Journal of Finance, XLI (1986),

579-90.

42



Shleifer, Andrei, Inefficient Markets: an Introduction to Behavioral Finance (Oxford; New York:

Oxford University Press, 2000).

Shleifer, Andrei, and Robert Vishny, “The Limits of Arbitrage,” Journal of Finance, LII (1997),

35-55.

Simon, Herbert, “On a Class of Skew Distribution Functions,” Biometrika, XLIV (1955), 425-440.

Solomon, Solomon, and Peter Richmond, “Power Laws of Wealth, Market Order Volumes and

Market Returns,” Physica A, CCXCIX (2001), 188-197.

Sornette, Didier, Critical Phenomena in Natural Sciences (Heidelberg and New York: Springer,

2000).

Stein, Jeremy, and Bruce Greenwald, “Transactional Risk, Market Crashes, and the Role of Circuit

Breakers,” Journal of Business, LXIV (1991), 443-462.

Vayanos, Dimitri, “Strategic Trading in a Dynamic Noisy Market,” Journal of Finance, LV (2001),

131-171.

Weitzman, Martin, “A Unified Bayesian Theory of Equity ‘Puzzles’,” Working Paper, Harvard

University, 2005.

Werner, Ingrid, “NYSE Order Flow, Spreads, and Information,” Journal of Financial Markets,

VI (2003), 309-335.

Wurgler, Jeffrey, and Ekaterina Zhuravskaya, “Does Arbitrage Flatten Demand Curves for Stocks?”

Journal of Business, LXXV (2002), 583—608.

Zhang, Yi-Cheng, “Toward a Theory of Marginally Efficient Markets,” Physica A, CCLXIX (1999),

30—44.

Zipf, George, Human Behavior and the Principle of Least Effort (Cambridge, MA: Addison-

Wesley, 1949).

43



Figure I: Empirical cumulative distribution of the absolute values of the normalized 15 minute
returns of the 1,000 largest companies in the Trades And Quotes database for the 2-year period
1994—1995 (12 million observations). We normalize the returns of each stock so that the normalized
returns have a mean of 0 and a standard deviation of 1. For instance, for a stock i, we consider the
returns r0it = (rit − ri) /σr,i, where ri is the mean of the rit’s and σr,i is their standard deviation.
In the region 2 ≤ x ≤ 80 we find an ordinary least squares fit lnP (|r| > x) = −ζr lnx + b, with
ζr = 3.1 ± 0.1. This means that returns are distributed with a power law P (|r| > x) ∼ x−ζr for
large x between 2 and 80 standard deviations of returns. Source: Gabaix et al. [2003].
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Figure II: Probability density function of the returns normalized 5 minute returns of the 1,000
largest companies in the Trades And Quotes database for the 2-yr period 1994—1995. The values
in the center of the distribution arise from the discreteness in stock prices, which are set in units of
fractions of U.S. dollars, usually 1/8, 1/16, or 1/32. The solid curve is a power-law fit in the region
2 ≤ x ≤ 80. We find ζ = 3.1± 0.03 for the positive tail, and ζ = 2.84± 0.12 for the negative tail.
The dotted line represents a Gaussian density. Source: Plerou et al. [1999].
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Figure III: Empirical cumulative distribution function of the absolute value of the daily return of the
Nikkei (1984-97), the Hang Seng (1980-97), and the S&P 500 (1962-96). The apparent power-law
behavior in the tails is characterized by the exponents ζr = 3.05± 0.16 (Nikkei), ζr = 3.03± 0.16
(Hang-Seng), and ζr = 3.34± 0.12 (S&P 500). The fits are performed in the region |r| between 1
and 10 standard deviations of returns. Source: Gopikrishnan et al. [1999].
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Figure IV: Cumulative distribution of the conditional probability P (|r| > x) of the daily returns
of companies in the CRSP database, 1962-1998. We consider the starting values of market cap-
italization K, define uniformly spaced bins on a logarithmic scale, and show the distribution of
returns for in each bin: K ∈ [105, 106] (◦), K ∈ [106, 107] (¨), K ∈ [107, 108](¤), K ∈ [108, 109] (N).
K is measured in 1962 constant dollars. (a) Unnormalized returns. Each cumulative distribution
corresponds to a bin of sizes. Small stocks are to the right, because they are more volatile. (b)
Returns normalized by the average volatility σK of each bin. The plots collapsed to an identical
distribution, with ζr = 2.70± .10 for the negative tail, and ζr = 2.96± .09 for the positive tail. The
horizontal axis displays returns that are as high as 100 standard deviations. Source: Plerou et al.
[1999].
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Figure V: Probability density of normalized individual transaction sizes q for three stock markets (i)
NYSE for 1994-5 (ii) the London Stock Exchange for 2001 and (iii) the Paris Bourse for 1995-1999.
OLS fit yields ln p (x) = −(1+ζq) lnx+constant for ζq = 1.5±0.1. This means a probability density
function p (x) ∼ x−(1+ζq), and a countercumulative distribution function P (q > x) ∼ x−ζq . The
three stock markets appear to have a common distribution of volume, with a power law exponent
of 1.5± 0.1. The horizontal axis shows invidividual volumes that are up to 104 times larger than
the absolute deviation, |q − q|.
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Figure VI: Conditional expectation E
£
r2 | Q

¤
of the squared return r2 in ∆t = 15 minutes, given

the aggregate volume Q in ∆t. r is in units of standard deviation, and Q in units of absolute
deviation,

¯̄
Q−Q

¯̄
. The results are averaged over the largest 100 stocks in the New York Stock

Exchange market capitalization on January 1, 1994. The data spans the 2-year period 1994-95
and is obtained from the Trades and Quotes database, which records all transactions for all listed
securities in the NYSE, AMEX and NASDAQ. Formal tests reported in Appendix 3 show that one
cannot reject E[r2|Q] = α+ βQ large enough (Q ≥ 3). This is consistent with a square root price
impact of large trades. Appendix 3 reports the procedure used to compute the 95% confidence
intervals.
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Figure VII: Cumulative distribution of the size (assets under managements) of the top mutual funds
in 1999. Source: Center for Research on Security Prices.
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