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Instruction Issue Logic for High-Performance, 
Interruptible, Multiple Functional Unit, 

Pip elined Computers 

Abstmct-The performance of pipelined processors is lim- 
ited by data dependencies and branch instructions. In order to 
achieve high performance, mechanisms must exist to alleviate the 
effects of data dependencies and branch instructions. Further- 
more, in many cases, for example the support of virtual memory, 
it is essential interrupts be precise. In multiple functional unit 
pipelined processors where the instructions can complete and 
update the state of the machine out of program order, hard- 
ware support must be provided to implement precise interrupts. 
In this paper, we combine the problems of data dependency 
resolution and precise interrupt implementation. We present a 
design for a hardware mechanism that resolves dependencies 
dynamically and, at the same time, guarantees precise inter- 
rupts. Simulation studies show that, by resolving dependencies, 
the proposed mechanism is able to obtain a significant speedup 
over a simple instruction issue mechanism as well as implement 
precise interrupts. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index Terms- Dependency resolution, multiple functional 
units, out-of-order execution, pipelined computers, precise in- 
terrupts, register update unit, Tomasulo’s algorithm. 

I. INTRODUCTION 

HE CPU’s of most supercomputers consist of several T pipelined functional units connected together in some 
fashion. Such multiple functional unit, pipelined machines are 

able to achieve a considerable overlap in the execution of in- 
structions. Unfortunately, pipelined CPU’s have two major 

impediments to their performance: 1) data dependencies and 
2) branch instructions. An instruction cannot begin execution 

until its operands are available. If an instruction is dependent 

upon a previous instruction, the instruction must wait until 

the previous instruction has completed execution. This wait- 
ing can degrade performance. The performance degradation 

due to branch instructions can be even more severe. Not only 
must a conditional branch instruction wait for the branch con- 

dition to be known, an additional penalty may be incurred 

when fetching an instruction from the taken branch path to 

the stage where the instruction is decoded and issued. 

Pipelined CPU’s suffer from another major problem- an 
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interrupt can be imprecise [3], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 121, [24]. This problem is es- 

pecially severe in multiple functional unit computers in which 

instructions can complete execution out of program order even 

though they are issued in program order [l], [3], [21]. For a 
high-performance, pipelined CPU, an adequate solution must 

be found for the imprecise interrupt problem and means must 
be provided for overcoming the performance degradation due 

to data dependencies and branch instructions. 
The detrimental effects of branch instructions can be allevi- 

ated by using delayed branch instructions. However, the utility 

of delayed branch instructions is limited for long pipelines. In 
such cases, other means must exist to alleviate the detrimen- 

tal effects. A common approach is to use branch prediction 
1131, [22]. Using prediction techniques, the probable execu- 
tion path of a branch instruction is determined. Instructions 

from the predicted path can then be fetched into instruction 
buffers or even executed in a conditional mode [3], [4], [7], 

[ 141, [ 191. While the conditional mode of execution will gen- 
erally result in a higher pipeline throughput, a mechanism to 
allow the machine to recover from an incorrect sequence of 

conditionally executed instructions must be provided. 

Both hardware and software solutions exist to the data de- 

pendency problem. Software solutions use code scheduling 

techniques (combined with a large set of registers) to increase 

the distance between dependent instructions and to provide in- 

terlocks [6]. Most hardware solutions employ some form of 
waiting stations where an instruction can wait for its operands 
and allow subsequent instructions to proceed, thereby allow- 
ing instructions to issue out of program order. Examples of 

waiting stations include the reservation stations of the IBM 

360/91 floating point unit [26] and the node tables of the HPS 

microarchitecture [ 171. The waiting stations form the core of a 

dependency-resolution mechanism that must exist in order to 

preserve program dependencies. In this paper, a dependency- 

resolution mechanism is synonymous with an out-of-order in- 
struction issue mechanism. Note the difference between out- 

of-order instruction issue (also called out-of-order instruction 
execution) and out-of-order instruction completion. Instruc- 

tions can complete out of program order even though they 
were issued in program order. 

In a pipelined machine, imprecise interrupts can be caused 

by instruction-generated traps such as arithmetic exceptions 

and page faults. An imprecise interrupt can leave the machine 

in an irrecoverable state. While the occurrence of arithmetic 

exceptions is rare, the occurrence of page faults in a ma- 
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chine that supports virtual memory is not. Therefore, if vir- 

tual memory is to be used with a pipelined CPU, it is crucial 

that interrupts be precise. Several hardware solutions to the 

problem are described in [24] and in [8]. We are unaware 

of any software solutions to the imprecise interrupt problem 

for multiple functional unit computers. A software solution 

will be extremely difficult, if not impossible. Not only must 
the software allow for the worst case execution time for any 

instruction, it must also keep track of instructions that have 

completed out of program order and generate an appropriate 

code sequence to undo the effects of those instructions. In 
any case, some hardware support must be provided to main- 

tain run-time information. 

The problems of out-of-order instruction issue and impre- 

cise interrupts have been considered independent of one an- 

other by many researchers [2], [8], [24], [26], [27]. The solu- 
tions provided thus far attack each problem individually. For 

example, a recent microarchitecture, HPS, uses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAregister alias 
tables and node alias tables to permit out-of-order instruction 

issue [8], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 171, [ 181. To provide precise interrupts, HPS uses a 

checkpoint repair mechanism [9], [lo]. In this paper, we treat 
the problems of out-of-order instruction issue and imprecise 

interrupts simultaneously. If interrupts are to be precise, some 

hardware support is needed. In its simplest form, a precise- 

interrupt mechanism will aggravate dependencies [24]. Why 

not combine a simple mechanism that implements precise in- 

terrupts with an out-of-order instruction issue mechanism so 
that the aggravated dependencies (as well as other dependen- 
cies) can be tolerated? 

The remainder of this paper is as follows. In Section 11, 

we describe the model architecture that we use throughout 

this paper. In Section 111, we discuss Tomasulo’s out-of-order 
instruction issue algorithm and extend it, giving several vari- 
ations, so that the cost of implementing it using discrete com- 

ponents is not very high even for a large number of registers. 

In Section IV, we discuss the problem of imprecise interrupts 

and review known solutions. Section V describes a unit, the 

register update unit (RUU), that resolves dependencies as well 

as implements precise interrupts. The precise interrupt and 

out-of-order instruction issue mechanisms mutually aid and 

simplify each other. An evaluation of the RUU is carried out 

in Section VI. Finally, we discuss how our mechanism can be 
used to alleviate the degradation due to branch instructions. 

11. MODEL ARCHITECTURE 

The model architecture that we use for our studies is pre- 

sented in Fig. 1. It has the same capabilities and executes the 
same instruction set as the scalar unit of the CRAY- 1 [5], [2 13. 

The CRAY-1 was chosen because it represents a state-of-the- 

art scalar unit and its execution can be modeled precisely. 

The author also had easy access to tools that could be used to 
generate instruction traces for the CRAY-1 scalar unit [16]. 
There are a few differences between the CRAY-1 scalar unit 

and our model architecture. First, in our model architecture, 

all instructions, whether they are composed of 1 parcel (16 
bits) or 2 parcels (32 bits) can issue in a single cycle if issue 

conditions are favorable. Next, only one function can output 

data onto the result bus in any clock cycle. In contrast, the 

CRAY-1 scalar unit has separate result buses for the address 

and scalar functional units. Instructions are fetched by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin- 
struction fetch unit and decoded and issued by the decode 
and issue unit. Once dependencies have been resolved in the 

decode and issue unit, instructions are forwarded to the func- 

tional units for execution. The results of the functional units 

are written directly into the register file. The register file con- 

sists of 8 A ,  8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, 64 B,  and 64 T registers. In this paper, we 
shall focus on an issue unit that is capable of issuing only one 

instruction per clock cycle. Extensions to this work to allow 

the issue of multiple instructions per clock cycle can be found 
in [20]. 

A .  Benchmark Programs 

The benchmark programs used throughout this paper were 

the first 14 Lawrence Livermore loops [15]. The first 14 loops 
were chosen because they were readily available and also al- 

low us to compare our results to previous studies that tackle 

similar problems [24], [27]. Henceforth, we shall refer to 

them as LLLl , LLL2, . . . , LLL14. The simulations were car- 
ried out as follows. The benchmark programs, as compiled by 

the CFT compiler for the scalar unit, were fed into a CRAY-1 

simulator [ 161. The CRAY- 1 simulator generates an instruc- 

tion trace for each program. Vector instructions are not used. 
Each instruction trace was then fed into the appropriate sim- 

ulator. 

B .  Simulation of the Model Architecture 

We simulated the execution of the benchmark programs on 

the model architecture of Fig. 1. The number of instructions 
executed, the number of clock cycles taken for the execution 
of each benchmark program, and the number of instructions 

executed per cycle is given in Table I. In generating the re- 
sults of Table I, we assumed that: 1) no memory bank con- 

flicts occur, 2) all instruction references are serviced by the 
instruction buffers, and 3) the instructions are already present 

in the instruction buffers when the program is started. These 

assumptions do not affect the execution time considerably for 

the benchmark programs. These assumptions and a difference 

in the bus structure account for the difference between the 

data presented in Table I and in [27]. The instruction issue 
rate is the average number of instructions that are executed in 
a cycle, i.e., the total number of instructions executed in the 

benchmark divided by the total number of cycles to execute 
the benchmark. The instruction issue rate for the total of all 

14 loops is calculated as the harmonic mean of the individual 
issue rates [23]. For reasons of brevity, we shall present all 

subsequent simulation results as a harmonic mean of all 14 

loops rather than report the results for each individual loop. 

As we can see from Table I, the performance of the model 

machine is far from the issue limit of 1 instruction per cycle. 

From our simulations, we determined that the main reason for 
this suboptimal performance is data dependencies. Therefore, 

we must find some way of alleviating the affects of data depen- 

dencies. We have two choices: 1) eliminating the dependencies 
or 2) tolerating the dependencies. Data dependencies can be 
eliminated by software code scheduling techniques. Hardware 

dependency resolution techniques allow the machine to tol- 
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0.446 

- 

Result Bus 

The model architecture. 

erate dependencies. Since we are mainly concerned with a 
hardware mechanism that allows the architecture to tolerate 

dependencies as well as implement precise interrupts, we can 

restrict our attention to hardware mechanisms for tolerating 

dependencies. 

III. HARDWARE DEPENDENCY RESOLUTION 

When an instruction reaches the decode and issue stage in 

the pipeline, checks must be made to determine if the operands 

for the instruction are available, i.e., if all dependencies for 

this instruction have been resolved. If an operand is not avail- 
able, the instruction must wait in the decode and issue stage. 

Because the decode and issue stage of the pipeline i s  busy, 

subsequent instructions cannot proceed even though they may 

be ready to execute. Subsequent instructions can proceed if the 
waiting instruction “steps aside, ” thereby freeing the decode 

and issue stage and allowing other instructions to bypass the 
waiting instruction. In order to do so, some form of waiting 

stations or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreservation stations must be provided [26]. Other 

mechanisms also exist in the literature [2]. Since our work is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
Memory 

I 

based on the concept of reservation stations, we shall focus 

our attention on mechanisms that employ reservation stations 
in some form. 

A .  Tomasulo’s Algorithm 

Tomasulo’s hardware dependency-resolution (or out-of- 

order instruction issue) algorithm was first presented for the 
floating point unit of the IBM 360/91 [26]. Extensions of this 

algorithm for the CRAY-1 scalar unit are presented in [27] and 

for the HPS microarchitecture in [8]. The algorithm operates 

as follows. An instruction whose operands are not available 
when it enters the decode and issue stage is forwarded to a 

reservation station (RS) associated with the functional unit 

that it will be using. It waits in the RS until its data dependen- 

cies have been resolved and its operands are available. Once 
at a reservation station, an instruction can resolve its depen- 
dencies by monitoring the common data bus (the result bus 

in our model architecture). When all the operands for an in- 
struction are available, it is dispatched to the functional unit 

for execution. The result bus can be reserved either when the 

instruction is dispatched to the functional unit [27] or before 

it is about the leave the functional unit [26]. 

Each source register is assigned a busy bit. A register is 

busy if it is the destination of an instruction that is still in ex- 
ecution. Each destination register (also called a sink register) 
is assigned a tag which identifies the result that will be written 

into the register. Since any register in the register file can be 

a destination register, each register must be assigned a tag. 

The fields in each reservation station are shown in Fig. 2. 

If a source register is busy when the instruction reaches 
the issue stage, the tag for the source register is obtained and 

the instruction is forwarded to a reservation station. The ap- 

propriate ready bit in the reservation station is set to indicate 

that the source operand is unavailable. If the source regis- 

ter is not busy, the contents of the register are read into the 

reservation station and the ready bit is reset to indicate that 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. The model architecture with a tag unit and distributed reservation 

stations. 

be forwarded to the appropriate slot in the TU. The fields in 
the modified reservation stations are shown in Fig. 4. 

As before, the instruction along with its associated 

tagdoperands is forwarded to a reservation station where it 

waits for its operands to become ready. The result from a 

functional unit (along with its tag) is broadcast to all reser- 

vation stations and is also forwarded to the TU. Reservation 

stations monitor the result bus and gate in the result if the 

tag of the data on the result bus matches the tag stored in the 
reservation station. The TU forwards the result to the regis- 

ter specified in the appropriate slot of the TU. All registers 
are, therefore, updated only by the TU when their data are 

available and no direct connection is needed between the func- 

tional units and the register file. When the register has been 

updated by the TU, the corresponding tag is released and is 

marked free in the TU. The modified architecture that incor- 

porates a tag unit and reservation stations associated with each 

functional unit is shown in Fig. 5. 
a) Example: The operation of the tag unit is best illus- 

trated by an example. Consider a TU that has six entries as 

shown in Fig. 6. Each entry in the TU has a bit indicating if 

the tag is free (tag free), i.e., available for use by the issue 
logic, a bit indicating if the tag is the latest tag for the regis- 

ter (latest copy), and a field for the number of the destination 
register (register number) as in Fig. 3. The TU is indexed by 

the tag number. 
Consider the execution of an instruction ZI that adds the 

contents of registers SO and S7 and puts the result in S4. 
Assume that the state of the TU is as shown in Fig. 6 and that 
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S7 is free (indeed a register must be free if it does not have 
an entry in the TU). When the issue logic decodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ I  , it at- 

tempts to get a new tag for the destination register S4 from 
the TU and obtains tag 3. Since the TU already has a tag for 

S4, the old tag (4) is updated to indicate that it no longer rep- 
resents the latest copy of the register. Since S7’s contents are 

valid, they can be read from the register file and forwarded 

to the reservation stations directly. However, since the con- 

tents of SO are not valid, the latest tag for SO (tag 2) must 
be obtained from the TU. The issue unit forwards a packet 

to the reservation station associated with the add functional 

unit. The packet contains the contents of 5’7, a tag (2) for SO 
and a tag (3) for the destination register S4. Zl waits in the 

reservation station until that tag 2 appears on the result bus. 

At this point, the reservation station reads the value for SO 

and Z I  is ready to execute. When Z I  completes execution and 
leaves the add functional unit, the result is forwarded to all 
reservation stations that have a matching tag (3) and also to 

the TU. The TU forwards the result to the register file to be 
written into S4. Since tag 3 is the latest tag for S4, S4’s busy 

bit can be reset when the data have been written into S4. Tag 

3 is then marked free and is available for reuse by the issue 

logic. 

b) Interactions with Memory: Loadlstore operations 

that interact with memory pose a challenge to architectures 
that allow out-of-order instruction issue (the reader is referred 
to [ 181 for a discussion of and some solutions to the problem). 

In our model, we handle memory dependencies in a fashion 

similar to the way register dependencies are handled in the 
TU. A set of load registers contains the addresses of “cur- 

rently active” memory locations. Each load register has tags 

to allow for multiple instances of a memory address just as 
the TU allows multiple instances of registers. 

The reservation stations associated with the memory func- 

tional unit are managed in a pseudoqueue fashion to satisfy 

dependencies. A load operation needs a memory address be- 

fore it can be issued to the memory whereas a store operation 

needs both a memory address and a data value. If the address 
of a loadlstore operation is unavailable, subsequent loadlstore 

instructions are not allowed to proceed. This prevents a pos- 
sible violation of dependencies. 

When the memory address required by the operation is 

known, checks are made to see if the address matches an 

address in the load registers. A match indicates that there is a 
pending operation to the same memory address. If no match 

results, a free load register is obtained. Instruction issue is 

blocked if no free load register is available. 

If the current operation is a load operation and a match 

results, the load operation need not be submitted to memory. 

This is because the pending operation to the same address 
can also satisfy the load operation. In this case, the tag of the 

appropriate load register is returned to the reservation station. 
If there is no pending request to the same address, the tag is 

returned to the reservation station and the load operation is 
submitted to the memory. In either case, the load operation 

completes when a matching tag appears on the result bus. 
If the current operation is a store operation and a match 

results, the tag of the load register is updated and the tag 

returned to the reservation station. By doing so, a new instance 

of the memory location is provided. If no match results, a free 
load register is obtained and the tag returned to the reservation 
station. When the data for the store operation are available, 
they are forwarded (along with the tag) via the load registers 

to the memory and the store operation is complete. 
When the loadktore operation is complete, the reservation 

station is freed. The corresponding load register is also freed 

if the tags match, i.e., there is no pending operation to the 

same memory address. Note that the above scheme allows 

load operations to bypass store operations as long as the ad- 

dresses of all the operations are known. Also note that the 
load registers need to be searched associatively. However, for 

a small number of load registers, this associative search is not 

very wide. 

2) Merging the Reservation Stations: If each functional 
unit has a separate set of reservation stations, it is likely that 
some functional unit will run out of reservation stations while 
the reservation stations associated with another functional unit 

are idle. As suggested in [27], we can combine all he reser- 
vation stations into a common RS pool rather than hasl.:ig dis- 

joint pools of reservation stations associated with each func- 
tional unit. All instructions that were previously issued to 

distributed reservation stations associated with the functional 

units now go to the common RS pool. Instruction issue is 
blocked if the RS pool is full. As instructions become ready 

in the RS pool, they are issued to the functional units. All the 

other functions are as before. 

3) Merging the RS Pool and the Tag Unit: In the tag unit, 

there is one entry for every instruction that is present in either 

the RS pool or in the functional units. Therefore, at any time, 
there is a one-to-one correspondence between the entries in 

the TU and the instructions in the reservation stations or the 
functional units. This suggests that we can combine the RS 

pool and the tag unit into a single RS tag unit (RSTU). Of 

course, a reservation station is wasted if it is associated with 

an instruction that is in a functional unit. However, as we shall 
see in Section V, this organization can easily be extended to 

allow for the implementation of precise interrupts. 

In the RSTU, a reservation station is reserved at the same 

time that a tag is reserved. When an instruction issues, it ob- 
tains a tag from the RSTU and in doing so automatically re- 

serves a reservation station. All the other functions, including 
interactions with the memory, are as before. The architecture 

with an RSTU is shown in Fig. 7 and an entry in the RSTU is 
shown in Fig. 8. Since the reservations stations are merged, 

a functional unit field is needed to identify the functional unit 

to which the instruction occupying the RSTU entry will be 

issued. 
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a) Simulation Analysis of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARSTU: In order to eval- 

uate the effectiveness of the RSTU, we carried out a simulation 
analysis of the RSTU using the first 14 Lawrence Livermore 
loops as a benchmark. The results obtained for the execution 

of all 14 loops are presented in Table 11. The relative speedup 

is the speedup compared to the simple instruction issue mech- 

anism of Table I and the instruction issue rate is the harmonic 

mean of the individual issue rates. The number of load reg- 

isters in these simulations was six. This guarantees that, for 

our benchmark programs, instruction issue is never blocked 

because of an unavailable load register. 

From Table 11, it is quite clear that the RSTU is able to 

achieve a significant speedup over a simple instruction issue 
mechanism with a reasonable amount of hardware. The RSTU 

is also quite close to achieving the issue limit of 1 instruction 
per clock cycle for our model architecture. Indeed, all non- 

branch instructions are able to achieve the limit of 1 instruction 

per cycle. The only cycles in which no useful instruction is 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI11 
RELATIVE SPEEDUP AND ISSUE RATE WITH AN RSTU AND Two DATA PATHS 

Number of 
Entries in RSTU 

3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 

executed are the dead cycles following each branch instruc- 

tion. The degradation due to such cycles could be reduced 

by using delayed branch instructions or by conditionally exe- 

cuting instructions. The results presented in Table I1 compare 

favorably to the results presented in [27]. Because the RSTU 
can implement the dependency-resolution mechanism for the 
B and T register files, it can achieve a better speedup than a 

mechanism that is somewhat restricted as in [27]. 
At first glance, it may seem that an organization with 

merged reservation stations (such as the RSTU of Fig. 8) is 

at a disadvantage when compared to an organization with dis- 

tributed reservation stations (such as Fig. 5) since only one 

instruction can issue from the reservation stations to the func- 

tional units in a clock cycle unless multiple paths are provided 

between the RSTU and the functional units. On the other hand, 
a better use of the reservations stations results since the reser- 
vation stations can be shared among several functional units. 

In order to evaluate the effectiveness of multiple data paths 
between the RSTU and the functional units, we simulated an 

architecture with two paths from the RSTU to the functional 

units, but only a single issue unit, a single result bus, and 
single path from the RSTU to the register file. The results are 

presented in Table 111. 

As is evident from Table 111, the presence of a duplicate path 

from the RSTU to the functional units makes little difference. 
This result is not counterintuitive. We use an argument based 

on instruction flow to convince the reader. The RSTU is es- 
sentially a reservoir of instructions that is filled by the decode 

and issue logic and drained by the functional units. Since the 
decode and issue logic can fill this reservoir at a maximum 

rate of 1 instruction per cycle, having a drain that is capable 
of draining more than 1 instruction per cycle will not be very 

useful in a steady state. Of course, if the decode and issue unit 
itself could submit more than 1 instruction per clock cycle to 

the RSTU, additional paths from the RSTU to the functional 

units would be needed [20]. 

IV . IMPLEMENTATION OF PRECISE INTERRUPTS 

We now address the issue of precise interrupts. A complete 
description of several schemes that implement precise inter- 

rupts is given in [24]. An alternate scheme that uses checkpoint 

repair is presented in [lo]. 

The mechanisms described in [24] include a simple reorder 
buffer, a more complex reorder buffer with bypass logic, a 

history buffer, and a future file. The simple reorder buffer 
allows instructions to finish execution out of order but up- 
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dates the state of the machine, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcommits the instructions, 
in the order that the instructions arrived at the decode and 

issue stage. This ensures that a precise state of the machine 
is recoverable at any time. However, by forcing an order- 

ing of commitment among the instructions, the reorder buffer 

aggravates data dependencies. This is because the value of a 

register cannot be read until it has been updated by the reorder 
buffer, even though the instruction that computed a value for 

the register may have already completed and the new value 

is in the reorder buffer. If bypass logic is associated with the 

reorder buffer, an instruction does not have to wait for the 

reorder buffer to update a source register; it can fetch the 

value from the reorder buffer (if it is available) and can issue. 
With a bypass mechanism, the issue rate of the machine is 

not degraded considerably if the size of the buffer is reason- 
ably large [24]. However, a bypass mechanism is expensive 

to implement since it requires a search capability and addi- 

tional data paths for each buffer entry. A history buffer has 

the same performance as a reorder buffer with bypass logic. It 

does not need bypass logic but the register file needs another 

read port. A future file achieves the same performance as a 
reorder buffer with bypass logic at the expense of duplicating 

the entire register file. The checkpoint repair mechanism de- 

scribed in [ lo] maintains three copies of the register file. We 

shall not discuss these mechanisms in more detail in this paper. 

The interested reader is referred to the original papers. 

V. MERGING DEPENDENCY RESOLUTION AND PRECISE INTERRUPTS 

We note that the RSTU of Section 111-B3 can be modified to 

behave like a reorder buffer if it is forced to update the state of 
the machine in the order that the instructions are encountered 

by the decode and issue unit. This is easily accomplished by 

managing the RSTU as a queue. Therefore, all that we have 

to do to implement precise interrupts in an architecture with 

an RSTU is to manage the RSTU like a queue. We call the 

modified logic the register update unit (RUU). The RUU is 

essentially the RSTU constrained to commit instructions in the 

order that the instructions were received by the decode and 

issue logic (and consequently by the RUU). The functional 

units remain unchanged. The modified architecture that uses 
an RUU to execute instructions out of program order and to 

ensure a precise state of the machine is given in Fig. 9. Let 

us consider the operation of the RUU in some more detail. 

A .  The Register Update Unit (RUU) 

The RUU performs four major functions in each clock cy- 

cle. First, it accepts new instructions from the decode and 

issue logic. Second, it monitors the result bus to resolve de- 

pendencies. Third, it determines which instruction should be 
issued to the functional units for execution, reserves the result 

bus, and dispatches the instruction to the selected functional 

unit for execution. Fourth, it determines if an instruction can 

commit, i.e., update the registers, and commits the instruc- 

tion if it can. Below, we see how the RUU accomplishes these 

tasks. 

First, the RUU must accept an instruction from the de- 

code and issue logic. The RUU is managed like a queue 

using RUU-Head and RUU-Tail pointers. If RUU-Head zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

lnsmcuons from Memory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I Register 

File zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 9. The model architecture with an RUU. 

RUU-Tail, the RUU is full. RUU-Tail points to the slot that 
will be used by the decode and issue logic and RUU-Head 

points to the next instruction that must commit to ensure a 

precise state. When an instruction is decoded, the issue logic 

requests an entry in the RUU. If the RUU is full, instruction 
issue is blocked. If an entry is available, the issue logic obtains 

the position of the entry (using the RUU-Tail pointer) and up- 
dates the RUU-Tail pointer. Simultaneously, it forwards the 

contents of the source registers (if they are availaule) or a 
register tag to the selected reservation station in the RIJU. 

Managing the RSTU like a queue has a very important side 

effect- the logic for obtaining tags for source operands and 

generating tags for destination operands, i.e., for dependency 
resolution, is greatly simplified. Recall that in the RSTU, the 

issue logic had to search the RSTU associatively to obtain the 

correct tag for the source operand and to update the latest 

copy field for the destination register. If multiple instances of 

the same destination register are disallowed, i.e., instruction 
issue is blocked if the destination register is busy, no associa- 

tive logic is necessary since the register number itself serves 

as the tag. An instance of a register is a new copy of the 

register. By providing multiple instances of a destination reg- 

ister, the architecture can process several instructions with the 

same destination register simultaneously, i.e., resolve write- 
after-write hazards [ 111. Disallowing multiple instances of a 

destination register can degrade performance [27]. As noted 

in [26], it is possible to eliminate the associative search and 
use a counter to provide multiple instances and source operand 

tags for each register if we can guarantee that results return 
to the registers in order. This is precisely the situation in the 

RUU. The implementation of precise interrupts, therefore, 
simplifies the out-of-order instruction issue mechanism. 

The scheme we use to provide multiple instances of a desti- 

nation register and to provide source operand tags associates 
two n-bit counters with each register in the register file (this 

includes the B and T register files). There is no busy bit. The 

counters, the number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof instances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(NO and the latest in- 
stance (Lo, represent the number of instances of a register in 



356 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOperand 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASource Operand 2 Desunation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ready Tag Content Ready Tag Content RegisterS Content 

YeslNo 

the RUU and the number of the latest instance, respectively. 

When an instruction with a destination register Ri is issued 

to the RUU, both NI and LI associated with Ri are incre- 
mented. LI is incremented modulo n. Up to 2" - 1 instances 

of a register can be present in the RUU at any time; issue is 

blocked if NI for a destination register is 2" - 1. When an 
instruction leaves the RUU and updates the value of Ri, the 

associated NI is decremented (since n is small, the increment- 

ing/decrementing process is fast). A register is free if NI = 0, 

i.e., there is no instruction in the RUU that is going to write 
into the register. 

The register tag sent to the RUU consists of the register 

number Ri appended with the LI counter. This guarantees 

that future instructions access the latest instance, i.e., obtain 

the latest copy of the register contents and that instructions 
already present in the RUU get the correct version of the data. 

In our experiments, each of these counters was 3 bits wide. 
This allowed up to seven instances of a destination register. 

A 3-bit counter ensured that, for our benchmark programs, 

an instruction never blocked in the decode and issue stage 

because an instance of a register was unavailable. Since we 

had a totA of 144 registers, the tag field was 11 (8 + 3) bits 

wide. 

To accomplish its second task of resolving dependencies, 

the RUU must monitor the result bus. To do so, each source 
operand field in the RUU has a ready bit, a tag subfield, 

and a content subfield. If the operand is not ready, the tag 
subfield monitors the result bus for a matching tag. If a match 

is detected, the data on the bus are gated into the content field. 

This task of the RUU corresponds to the task carried out by 

the reservation stations in Tomasulo's algorithm. Note that 

there is no need for a latest copy field in the RUU and no 

associative search logic is needed in the RUU to generate and 
maintain the tags. However, associative comparison logic is 

still needed for all the reservation stations in the RUU so that 
they can gate in the value of source operands when available. 

An entry in the RUU is shown in Fig. 10. The dispatched 

field indicates if the instruction has been dispatched for ex- 

ecution to the functional unit specified in the functional unit 

field. The executed field indicates if the instruction has fin- 

ished execution and is ready to update the register file. The 
program counter field is needed for the implementation of 

precise interrupts [24]. We have omitted the details of extra 

information that must be carried around with each instruction 

since the details of such information are straightforward. 

The RUU accomplishes its third task by monitoring the 

ready bits of the source operands. When the operands of an 
instruction in the RUU are ready, the instruction can issue 

to the functional units. The RUU issues the highest priority 

instruction and sets the dispatched bit to indicate that the in- 

struction has been dispatched for execution and should not 

Unit Number YesINo Content 
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be selected again by the dispatching algorithm. Priority is 

first given to loadhtore instructions and then to an instruc- 

tion which entered the RUU earlier. The RUU reserves the 

result bus when it issues an instruction to the functional units. 
The final RUU task of committing an instruction is accom- 

plished by monitoring the executed bit of the RUU entry at the 

head of the RUU. If the executed bit of the instruction at the 
head of the RUU is set, the results of its destination register 

are forwarded to the register file. The associated NI counter 

in the register file is decremented and RUU-Head updated. 
As is obvious from the above discussion, each of the tasks 

of the RUU can be carried out in parallel in each clock cycle 
and each task is simple enough that it is not likely to penalize 

the clock cycle. Instructions that interact with the memory are 

handled as in Section 111-Blb. The reservation stations for the 

memory are provided by the RUU. Note that the load registers 
still need to be searched associatively for memory addresses. 

However, the hardware needed for this comparison is not very 
great for a small number of load registers. In our simulations, 

we used six load registers, although four were sufficient for 
most cases. 

VI. EVALUATION OF THE RUU 

In order to evaluate the effectiveness of the RUU, we simu- 

lated three RUU organizations, 1) an RUU with bypass logic 

for source operand values, 2) an RUU without bypass logic, 
and 3) an RUU with a limited bypass logic. The results pre- 

sented in this section differ from results presented previously 
[25]. The main reason for the difference is a different pipeline 
structure and a different issue mechanism for load and store 

instructions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  The RUU with Bypass Logic 

Recall that the RUU forces the results to return to the reg- 

isters in program order. In doing so, it aggravates data de- 

pendencies. Such a degradation could be eliminated if bypass 

logic for source operands was provided in some form. The 

simplest form could be associative comparison hardware with 

the destination field of each RUU entry. If a source operand 

for instruction I ,  is provided by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIi and the destination operand 

of Ii is ready in the RUU, the operand can be read from 

the RUU and I j  is allowed to proceed with execution. Note 

that the history buffer and the future file [24] are alternate 
forms for bypass logic. The relative speedups (compared to 

the simple instruction issue mechanism of Table I) and the 
corresponding instruction issue rate for different sizes of an 

RUU with bypass logic are presented in Table IV. 

The results of Table IV are quite promising. An RUU with 

a reasonable number of entries (10-12) not only speeds up 

execution but also provides precise interrupts. Moreover, for 

somewhat larger RUU sizes, the RUU is able to achieve a 

speedup that is quite similar to the RSTU. Note that the RSTU 
was not constrained to implement precise interrupts and it also 
requires additional associative logic. 

B.  The RUU without Bypass Logic 

Since bypass logic is expensive to implement, we decided to 

evaluate an RUU without any bypass logic. Before we present 
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Entries in RUU 

TABLE IV 
RELATIVE SPEEDUP AND ISSUE RATE WITH AN RUU WITH BYPASS LOGIC 

Relative Insuuction 
Specdup Issue Rate 

RELATIVE SPEEDUP 
TABLE V 
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0.853 I 0.940 
1.079 
1.248 
1.383 
1.508 
1.584 
1.619 
1.682 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.700 
1.735 
1.737 

0.380 
0.419 
0.481 
0.557 
0.61 7 
0.673 
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0.735 
0.750 
0.758 
0.774 
0.775 

the results, let us see the situations where bypass logic is 
helpful. 

Consider an instruction Ij that uses the result of a previous 
instruction I;. Recall that the reservation stations associated 

with the RUU already have the capability to monitor the result 

bus. Therefore, if I; completes execution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafter I, is issued to 

the RUU, Ij can gate in the result from I; when it appears 

on the result bus. In this case, bypass logic is not needed. 

Bypass logic is helpful only in the cases where Ii has com- 
pleted execution when I, is issued. Rather that providing by- 

pass logic for this case, we wait for the result of I; to come 

out on the bus between the RUU and the register file in order 

to resolve Ij's dependency on I;. If Ij is issued to the RUU 
before I; completes, Ij's dependency on I; can be resolved 
when I;'s result appears on the result bus if we extend the ca- 

pabilities of the reservation stations to monitor both the result 

bus and the RUU to register file bus. 

Table V presents the relative speedups and instruction is- 

sue rates for a RUU without bypass logic. From Table V we 

see that a RUU without any bypass logic at all is still able to 

achieve a substantial increase in speed over a simple instruc- 

tion issue mechanism and implement precise interrupts at the 
same time. The speedup, however, is not as impressive as the 

speedup obtained if bypass logic were used. The difference 

arises mainly because of the ordering of code in the loops. 
Let us illustrate the problem with an example. 

Consider the following section of code: 

I; A 2 + A l + A 3  

Ij A O c A 2 f l  

Ik JAM loopstart. 

Conventional compilation techniques try and increase the dis- 
tance between instructions Ii and Ij and instructions Ij and Ik 
so that when instructions Ij and I k  reach the issue stage, their 

respective operands are ready. Such an increase in dependency 
distance is in fact harmful to an RUU without bypass logic. If 

I, was issued sufficiently before Ik and completed execution 

before Ik reached the decode and issue stage, I k  would be 

forced to wait until I, left the RUU. If, on the other hand, I, 
was issued soon before Ik, Ik could resolve its dependency 

on Ij when the result of Ij was available on the functional 

Number of 1 Entries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin RUU 

3 
4 
6 
8 
IO 
12 
15 
20 I !! 

unit result bus. In our simulations, no attempt was made to 

improve the performance of the RUU without bypass logic by 
reordering the code for such cases. 

C .  The RUU with Limited Bypass Logic 

Because of the problem illustrated above, we found that 

branch instructions were blocked for a long period of time in 

the decode and issue stage since the contents of the A0 register 

could not be read from the RUU (or were unavailable because 

of a dependency chain aggravated as above). The branch in- 

struction has to wait in the decode and issue unit until the value 

of A0 appears on a bus. In order to eliminate this problem, 
we duplicated the A register file, effectively creating a limited 

bypass path for the A registers. The duplicate A register file 

acts as a future file for the A registers. The entire A register 

file (eight registers) was duplicated to prevent the unnecessary 

increase in the length of the dependency chain that affects the 

conditional branch instruction. All other functions are as be- 
fore. Specifically, there is only l copy of the B, S, and T 
register files and there is no bypass logic in the RUU. As 
functions that affect the A registers are completed and appear 
on the result bus, the result is forwarded to the RUU and also 

to the A future file. The architectural register file contains 
a valid copy of registers at all time for recovering a precise 
state. Instructions that use A registers as source operands, 
fetch the data from the A future file, if it is available, and 

proceed. The results for an RUU with limited bypass logic 
is presented in Table VI. An RUU with limited bypass logic 

is able to overcome a significant portion of the performance 

penalty paid for eliminating bypass logic especially for small 
RUU sizes. For larger RUU sizes, however, the performance 

is not as good. This is because instructions that transfer data 

from a B register to an A register are still held up in the RUU 
(no bypass logic for the B register file). Since the destination 

A register of such transfer instructions eventually affects the 
branch condition (most branch instructions in the benchmark 

programs tested the value of the A0 register), instruction issue 
is blocked for longer periods of time. We are confident that 

the performance of an RUU without bypass logic and an RUU 
with limited bypass logic could be improved considerably and 

would come close to the speedups with bypass logic if the 

code was modified accordingly. 

VII. BRANCH PENALTY AND CONDITIONAL INSTRUCTIONS 

As mentioned earlier, the performance degradation due to 

branches can be reduced by conditionally executing instruc- 
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TABLE VI 
RELATIVE SPEEDUP AND ISSUE RATE WITH AN RUU WITH LIMITED BYPASS LOGIC 

Number of 
Enmes in RUU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 
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50 

tions from a predicted branch path. Several architectures em- 

ploy this approach [3], [4], [8], [19]. To allow conditional 

execution of instructions, a hardware mechanism is needed 

that would allow the machine to recover from an incorrect 

branch prediction. 

The RUU provides a very powerful mechanism for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnul- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lifying instructions, be the instructions valid instructions or 

instructions that executed in a conditional mode. Valid instruc- 

tions may be nullified because of a trap caused by a previous 

instruction; conditionally executed instructions may be nulli- 

fied if they are from an incorrect execution path. Therefore, 

the conditional execution of instructions with an RUU is very 

easy. If the decode and issue unit predicts the outcome of 

branches and actually executes instructions from a predicted 
path in a conditional mode, recovery from incorrect branch 

predictions can be achieved very easily without duplicating 

the register file. We can identify such instructions through the 

use of an additional field in the RUU and prevent them from 

being committed until they are proven to be from a correct 
path. Furthermore, there is no hard limit to the number of 

branches that can be predicted; the RUU can provide multi- 

ple instances of a register for the different paths. Extending 

the RUU to accommodate branch prediction and conditional 

execution is an ongoing research topic. 

VIII. SUMMARY 

In this paper, we have combined the issues of hardware 

dependency-resolution and implementation of precise inter- 

rupts. We devised a scheme that can resolve dependencies 

and thereby allows out-of-order instruction execution without 
associating tag-matching hardware with each register. Such a 

scheme can, therefore, be used even in the presence of a large 

number of registers without a substantial hardware cost. Then 

we extended the scheme to incorporate precise interrupts. The 

precise interrupt and the dependency-resolution mechanisms 

mutually aid and simplify each other. We evaluated the perfor- 

mance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe resulting hardware using 14 Livermore loops as 

the benchmark. The results are quite encouraging. The com- 
bined mechanism, called the RUU, is able to implement pre- 

cise interrupts and is able to achieve a significant performance 
improvement over a simple instruction issue mechanism with- 

out a substantial cost in hardware. 
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