
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-019 April 17, 2010

Instruction-Level Execution Migration
Omer Khan, Mieszko Lis, and Srinivas Devadas

 1

Omer Khan
1
, Mieszko Lis

1
, and Srinivas Devadas

Massachusetts Institute of Technology, Cambridge, MA

Abstract—We introduce the Execution Migration

Machine (EM
2
), a novel data-centric multicore

memory system architecture based on computation

migration. Unlike traditional distributed memory

multicores, which rely on complex cache coherence

protocols to move the data to the core where the

computation is taking place, our scheme always

moves the computation to the core where the data

resides. By doing away with the cache coherence

protocol, we are able to boost the effectiveness of

per-core caches while drastically reducing hardware

complexity.

To evaluate the potential of EM
2
 architectures,

we developed a series of PIN/Graphite-based models

of an EM
2
 multicore with 64 x86 cores and, under

some simplifying assumptions (a timing model

restricted to data memory performance, no

instruction cache modeling, high-bandwidth fixed-

latency interconnect allowing concurrent

migrations), compared them against corresponding

directory-based cache-coherent architecture models.

We justify our assumptions and show that our

conclusions are valid even if our assumptions are

removed. Experimental results on a range of

SPLASH-2 and PARSEC benchmarks indicate that

EM
2
 can significantly improve per-core cache

performance, decreasing overall miss rates by as

much as 84% and reducing average memory latency

by up to 58%.
1

I. INTRODUCTION

In the last few years, the steady increases in processor

performance obtainable from higher and higher clock

frequencies have come to a dramatic halt: there is

simply no cost-effective way to dissipate so much

power. Instead, recent development has favored

multicore parallelism: commodity processors with four

or even eight cores on a single die have become

common, and existing technology permits many more;

indeed, general-purpose single-die multiprocessors with

as many as 64 cores are already commercially

available [1]. Even larger multicores have been built [2,

3], and pundits confidently predict thousands of cores

per die by the end of the decade [4]. Quite simply,

multicores scale.

1
 Equal contributors.

Designing a scalable memory subsystem for a

multicore, however, remains a major concern.

Increasing the number of concurrent threads requires a

large aggregate memory bandwidth, but off-chip

memory bandwidth is severely constrained by the

number of pins on the package: a conundrum known as

the off-chip memory bandwidth wall [4, 5]. To address

this problem, multicores integrate large private and

shared caches on chip: the hope is that large caches can

hold the working sets of the active threads, thereby

reducing the number of off-chip memory accesses.

Private caches, however, require cache coherence, and

shared caches do not scale beyond a few cores: even

today, the large 32MB last-level cache in recent Intel®

8-core processors is split physically into tiles distributed

across the chip [6], and accessing remote cache lines is

significantly slower than accessing local ones.

Since shared caches do not scale, many private

caches are the only practical option in large-scale

multicores. In practice, this means some form of

memory coherence, as the success of alternate

programming paradigms based on exposing core-to-core

communication to the programmer has been limited to

scientific computing and other niches where

performance or power considerations warrant the

increased programming complexity. The key question,

then, is: how can we provide the illusion of shared

memory in a way that scales to thousands of cores?

Bus-based cache coherence, which provides the

illusion of a single, consistent memory space, clearly

does not scale beyond a few cores. Directory-based

cache coherence is not subject to the electrical

limitations of buses, but requires complex states and

protocols for efficiency even in today’s relatively small

multicores. Worse yet, directory-based protocols can

contribute significantly to the already costly delays of

accessing off-chip memory because data replication

limits the efficient use of cache resources. Finally, the

area costs of keeping directory entries are a large

burden: if most of the directory is kept in off-chip

memory, accesses will be too slow, but if the directory

is stored in a fast on-chip memory, evictions from the

necessarily limited directory cause thrashing in the per-

core caches, also decreasing performance.

Yet on-chip multicores provide a tremendous

opportunity for optimization in the form of abundant

interconnect bandwidth. Even existing electrical on-chip

interconnect networks offer terabits per second of cross-

Instruction-Level Execution Migration

 2

section bandwidth [7] with latencies growing with the

diameter of the network (i.e., as the square root of the

core count in meshes), and emerging 3D interconnect

technologies enable high-bandwidth, low-latency on-

chip networks [8]. Optical interconnect technology,

which offers high point-to-point bandwidth at little

latency and with low power, is fast approaching

miniaturization comparable to silicon circuits, with

complete ring lasers no larger than 20µm
2
 [9]; multicore

architectures featuring an on-chip optical interconnect

have been proposed [10, 11], but have so far been based

on traditional cache-coherent memory architectures.
In this manuscript, we take the view that future

multicore architectures will feature thousands of

computation cores and copious inter-core bandwidth. To

take advantage of this, we propose to do away

altogether with the latencies and implementation

complexities of cache coherence protocols. Instead, we

argue, each core should be responsible for caching a

segment of the address space; when the thread running

on a given core refers to an address resident in some

other core, the computation itself must move by having

the two cores swap execution contexts. Supported by

extensive simulations running the SPLASH-2 and

PARSEC benchmark suites on both our architecture and

a traditional cache-coherence architecture with an

equivalent interconnect network, we make the case that

the complete absence of data sharing among caches, far

from limiting performance, actually improves cache

efficiency by evicting fewer cache lines on average and

increasing the effective size of the combined on-chip

cache.

The novel contributions of this paper are:

1. We introduce execution migration at the

instruction level, a simple architecture that

provides a coherent, sequentially consistent view

of memory without the need for a cache coherence

protocol.

2. We evaluate our scheme on actual applications in

a current x86-based shared memory system: our

functional memory subsystem model is built on

PIN/Graphite [12, 13] and runs a set of SPLASH-2

[14] and PARSEC [15] benchmarks with the

correct output.

3. We show that, assuming a high-bandwidth, low-

latency interconnect, on-chip cache hierarchy miss

rate under execution migration improves many-

fold (e.g., from 4.4% to 0.5% with 80KB of

caches per core), and, as a result, average memory

access latencies significantly improve (e.g., 16.5

to 6 cycles/access with 80KB of caches per core).

4. We describe how, provided a scalable

interconnect network, EM
2
 elegantly scales to

thousands of cores while significantly reducing

silicon area compared to a traditional cache-

coherent design.

The performance of EM
2
 is tightly coupled to

available network resources and, given sufficiently large

caches, a directory-based cache-coherent architecture

outperforms EM
2
 on a low-performance, high-latency

network even though it suffers more cache hierarchy

misses. Table 1 shows the minimum cache sizes needed

by an equivalent directory-based cache-coherent

architecture to outperform EM
2
 on a few sample

benchmarks. With a low-performance network (50-

cycle per-message latency), context migrations in EM
2

are expensive, and large per-core caches allow the cache

coherent architecture to reduce main memory accesses

and perform better; with a high-performance network

(5-cycle per-message latency), however, the significant

reduction in cache hierarchy misses in EM
2
 balances out

the cost of context migrations and EM
2
 outperformed

cache-coherent architecture with all of the cache sizes

we tested. For example, the swaptions benchmark

performed better under EM
2
 when caches were 32KB or

less per core; on a high-performance network EM
2

always performed better.

The remainder of this paper is organized as follows:

Section II below reviews related research; in Section III

we delineate the operation of execution migration, and

in Section IV describe the effects and architectural

tradeoffs versus directory-based cache coherence.

Section V outlines our experimental methodology and

Section VI compares real-world application

performance of execution migration against a traditional

cache-coherence scheme using a detailed architectural

simulator. Section VII offers concluding remarks and

outlines future research.

Table 1: Per-core cache sizes at which EM

2

outperforms cache coherence for a low-performance

interconnect network (packet latency of 50 cycles) and

a high-performance network (packet latency of 5

cycles). With a slow network, EM
2
 outperforms cache-

coherent designs only when small cache sizes combined

with data sharing cause high miss rates in the latter,

but with a fast network, EM
2
 performed better on all of

the cache sizes we tested.

 3

II. RELATED WORK

A. Computation migration

Migrating computation to the locus of the data is not

itself a novel idea. Hector Garcia-Molina in 1984

introduced the idea of moving processor to data in

memory bound architectures [16]. In recent years

migrating execution context has re-emerged in the

context of single-chip multicores. Michaud shows the

benefits of using execution migration to improve the

overall on-chip cache capacity and utilizes this for

migrating selective sequential programs to improve

performance [17]. Computation spreading [18] splits

thread code into segments and assigns cores responsible

for different segments, and execution is migrated to

improve code locality. Kandemir presents a data

migration algorithm to address the data placement

problem in the presence of non-uniform memory

accesses within a traditional cache coherence

protocol [19]. This work attempts to find an optimal

data placement for cache lines. A compile-time

program transformation based migration scheme is

proposed in [20] that attempts to improve remote data

access. Migration is used to move part of the current

thread to the processor where the data resides, thus

making the thread portion local. This work shows that

computation migration puts far less stress on the

network than shared memory counterpart. Our proposed

execution migration machine is unique among the

previous proposed works because we completely

abandon data sharing (and therefore do away with cache

coherence protocols). Instead, we propose to rely solely

on execution migration to provide coherence and

consistency.

B. Data placement in distributed memories

The paradigm for accessing data is critical to shared

memory parallel systems; Table 2 shows the four

possible configurations. Two of these (moving data to

computation) have been explored in great depth with

many years of research on cache coherence protocols.

Recently several data-oriented approaches have been

proposed to address the non-uniform access effects in

traditional and hybrid cache coherent schemes. An OS-

assisted software approach is proposed in [21] to control

the data placement on distributed caches by mapping

virtual addresses to different cores at page granularity.

When adding affinity bits to TLB, pages can be

remapped at runtime [5, 21]. The CoG [22] page

coloring scheme moves pages to the “center of gravity”

to improve data placement. The O
2
 scheduler [23], an

OS-level scheme for memory allocation and thread

scheduling, improves memory performance in

distributed-memory multicores by keeping threads and

the data they use on the same core.

Hardware page migration support was exploited in

PageNUCA and Micro-Pages cache design to improve

data placement [24, 25]. All these data placement

techniques are proposed for traditional cache coherent

or hybrid schemes. EM
2
 can only benefit from improved

hardware or OS-assisted data placement schemes.

Victim Replication [26] creates local replicas of data to

reduce cache access latency, thereby, adding extra

overhead to improve drawbacks of traditional cache

coherence protocol.

Execution migration not only enables EM
2
, but it has

been shown to be an effective mechanism for other

optimizations in multicore processor. [27] migrates the

execution of critical sections to a powerful core for

performance improvement. Core Salvaging [28] exploits

inter-core redundancy to provide fault tolerance via

execution migration. Thread motion [29] exchanges

running threads to provide fine-grain power

management.

III. EM
2
: THE EXECUTION MIGRATION

MACHINE

The essence of traditional cache coherence in

multicores is bringing data to the locus of the

computation that is to be performed on it: when a

memory instruction refers to an address that is not

locally cached, the instruction stalls while the cache

coherence protocol brings the data to the local cache

and ensures that the address can be safely shared (for

loads) or exclusively owned (for stores). Execution

migration turns this notion on its head, bringing the

computation to the locus of the data: when a memory

instruction requests an address not cached by the current

core, the execution context (current program counter,

register values, etc.) moves to the core where the data is

cached.

In this scheme, the physical address space in the

system is divided among the cores, for example by

striping (see Figure 1), and each core is responsible for

caching its region of the address space; thus, each

address in the system is assigned to a unique core where

it may be cached. (Note that this arrangement is

independent of how the off-chip memory is accessed,

Table 2: Different paradigms of distributing data and

computation, and the resulting architectures.

 4

and applies equally well to a system with one central

memory controller and to a hypothetical system where

each core has its own DRAM). When the processor

executes a memory access for address A, it must

1. compute the “home” core for A (e.g., by masking

the appropriate bits);

2. if the current core is the home,

a. forward the request for A to the cache

hierarchy (possibly resulting in a

DRAM access);

3. if the home is elsewhere,

a. interrupt the execution of the current

core (as for a precise exception),

b. migrate the architectural state to the core

that is home for A,

c. resume execution on the new core,

forwarding the request for A to its cache

hierarchy (and potentially resulting in a

DRAM access).

Because each address can be accessed in at most one

location, many operations that are complex in a

traditional cache-coherent system become very simple:

sequential consistency and memory coherence, for

example, are trivially ensured, and locking reduces to

preventing other threads from migrating to a specific

core.

This basic sketch intentionally leaves a broad range

of design choices. For example, migration (step 3.b

above) could preempt the execution on the target core or

be subject to scheduling; similarly, the context currently

executing on the target core could be either kept on the

same core or transferred elsewhere. While we defer the

question of the best precise migration algorithm to

future research, we focused our investigation in this

paper on two simple models: one where the two

contexts are swapped, and another where the migrated

thread simply moves to the destination core and shares

the computational resources with the threads already

present there (see Section V.D). Similarly, the questions

of dividing the address space among the cores (step 1

above) and finding the best assignment of virtual to

physical addresses also potentially offer interesting

tradeoffs; in this paper, we evaluated two simple

striping schemes based on cache-line size and the

operating system page size (see Section V.B).

IV. DISCUSSION

Although at first blush migrating the execution

context on every memory access to a non-local region

of memory might seem expensive, a careful analysis of

a traditional directory-based cache coherence protocol,

supported by experimental data, reveals that migration

can in fact outperform cache coherence.

A. Costs of directory-based cache coherence

Last-level cache misses in a directory-based cache-

coherence scheme incur three significant costs: the

latency of potentially retrieving the data from off-chip

memory, the latencies associated with the directory

protocol itself, and decreased cache effectiveness due to

data sharing and directory size limits. For example, in a

last-level cache miss under a simple MSI directory

protocol,

1. the last-level cache must contact the relevant

directory;

2. if A is not cached in the directory, the directory

must (a) potentially evict another directory entry,

contacting all sharers of that entry and waiting for

their invalidate responses, and (b) retrieve the data

for A from off-chip memory;

3. if A is already in the directory and the request is for

exclusive access, or if A is exclusively held by

another core, the directory must contact all sharers

and wait for their invalidate responses;

4. finally, the directory must respond to the

requesting cache with the cache line data for A.

The communication cost and the latency of the off-

chip memory access, while significant, are dwarfed by

the potential deleterious effect on private caches. When

an already full directory services a request for a new

address (step 2 above), it must replace an existing entry

and invalidate its address in all processor caches even

though the caches themselves did not need to evict the

line. Perversely, growing the per-core caches (or adding

more processors) without significantly increasing the

Figure 1: Address-based cache distribution in EM². Each

cache (left) is responsible for caching a specific, unique

region of main memory (right). In our experiments, main

memory is divided into 64-byte or 4KB blocks assigned to

consecutive caches; the assignment wraps around and block

N+1 is again assigned to the first core.

 5

directory size only compounds the problem and

increases the cache miss rate, as the larger caches hold

more unique addresses and cause more directory

evictions. Indeed, 6 of the 16 applications we tested

suffered worse performance on a realistic cache-

coherent 64-core system when the per-core cache size

increased. Figure 2 shows two examples of this effect:

on both benchmarks, the number of cache hierarchy

misses per memory access in the system increased when

per-core caches grew beyond 48KB.

The magnitude of this effect is application-dependent

and the selection of an appropriate directory

configuration is not straightforward; at worst, each

directory may have to grow as much as all processor

caches combined, clearly an unrealistic scenario. If

directory limits can impede performance at 64 cores,

what will we do when we get to 1,000 cores?

In addition, directory-based cache-coherent

multicores suffer from other secondary effects. Most

directly, directory sizes needed to retain good

performance—especially as core counts and cache

capacities grow—use significant area and power, which

could instead be allocated to more cores or larger

caches. The complex cache and directory controller

logic requires area and power as well as significant

verification effort. At an architectural level, an

implementation of directory-based cache coherence

forms an intricate system with many complex

interactions, making it difficult to reason about and

evaluate design tradeoffs.

In the end, all of these costs stem from one central

feature of cache coherence: each cache line may be

shared among many cores. This presents a significant

opportunity, as eliminating sharing can result in

improved performance, complexity, silicon area, and

power.

B. Performance of execution migration

On most workloads, execution migration significantly

improves memory performance: in our benchmarks

simulating a realistic 64-core architecture with 5

memory controllers and various per-core cache sizes on

a high-performance on-chip interconnect (see Section

V.B), the number of off-chip memory accesses in EM
2

decreased by 75%–89% relative to the cache coherent

architecture. As shown in Figure 3, the improved

memory performance is directly attributable to the

significant reduction in last-level cache misses. In turn,

this is caused by (a) a significant increase in effective

cache capacity when compared to the cache-coherent

architecture because each address is cached in at most

one location, and (b) the consequent longer lifetime of

cache lines in the absence of cache evictions caused by

such external requests as exclusive-access requests from

other cores or directory evictions.

Critically, as the number of cores on a die grows, the

performance advantage of execution migration

Figure 2: Impact of directory size on cache performance

on two SPLASH-2 benchmarks. When caches grow too

large in relation to the directory, frequent evictions from

the directory lead to cache thrashing. The results show

total cache hierarchy misses per memory access in a 64-

core cache-coherent model with 5 memory controllers

and a 64KB directory for each controller (see Section V.B

for configuration details).

Figure 3: Reduction in memory latency in execution

migration (EM) vs. cache coherence (CC) is due to a

much lower cache hierarchy miss rate. (The figure shows

an average over all benchmarks).

 6

architecture increases. While the performance of a cache

coherence scheme is limited on the one hand by the

number of sharers per cache line (and the consequent

invalidates caused by exclusive-access requests) and on

the other hand by directory sizes (and the consequent

invalidates caused by directory evictions), cache miss

performance in execution migration depends directly on

the effective point-to-point bandwidth and latency

provided by the on-chip interconnect, and is much

easier to reason about.

C. Costs of execution migration

Since in most workloads memory instructions occur

every few cycles and migrations can be frequent: for

example, for one of the migration policies we evaluated

(one-way, see Section V.D), an average of 45% of

memory hierarchy accesses in the benchmarks triggered

migrations (Figure 4). This, however, is under an OS

model that assumes a cache-coherent architecture, and

does not allocate memory pages appropriately for an

EM
2
 architecture. Thus, for example, the stack area and

the working set are likely to be allocated in different

cores, causing frequent migrations between the two,

especially with the heavy stack utilization of an x86

architecture. Efficient page allocation under EM
2
 is,

however, beyond the scope of this paper a subject of

further research.

The main memory access cost incurred by execution

migration architecture is that of transferring an

execution context to the home cache for the given

address. Per-migration bandwidth requirements,

although larger than the cache line required by cache-

coherent designs, are not prohibitive by on-chip

standards: in a 32-bit x86 processor, the relevant

architectural state amounts, including a TLB and an

instruction cache line, to about 2 Kbits [29]. Although

on-chip networks today are not generally designed to

carry that much data, on-chip communication scales

well; indeed, a migration network is easily scaled by

simple replication because all transfers have the same

size. Furthermore, execution migration is uniquely

poised to take advantage of the high bandwidth, low

latency, and low power potential of quickly maturing

on-chip optical interconnect technologies [10, 11].

Another potential cost of execution migration is the

loss of some instruction locality: when an execution

context is moved, the instruction cache in the

destination core might not contain the instructions for

the transferred thread. In our model, we mitigate this

effect by including one 64-byte instruction cache line in

the 2Kbit execution context that is migrated between

cores (discussed in Section V.B below). While further

discussion of instruction caching in execution migration

falls outside of the scope of the present paper, we note

that (a) many numerically intensive applications

(including most SPLASH-2 and PARSEC benchmarks)

run the same instructions in each thread, and the

instructions cached are likely to be similar, and (b)

instruction caches store read-only data and therefore do

not require cache coherence logic, and instruction data

can easily be replicated by, for example, transmitting

the current cache line along with the execution context

as we do in our model—over time, instruction caches on

each core will store the instructions that operate on the

data cached in the same core.

V. METHODS

A. Modeling methodology

We use Pin [12] and Graphite [13] to model the

proposed EM
2
 architecture. Pin enables runtime binary

instrumentation of parallel programs, including the

SPLASH-2 [14] and PARSEC [15] benchmark sets we

use for evaluation, while the Graphite program analysis

pintool provides models for a tile-based core, memory

subsystem and network. Graphite provides the

Figure 4: Minimum required execution migration rate for various benchmarks.

Specific implementations (e.g., swap) may have a higher migration rate.

 7

infrastructure to intercept and modify the memory

references and present a uniform, coherent view of the

application address space to all threads; this allows us to

maintain functional correctness in our EM
2
 architecture

models.

In this paper we do not model non-memory

instructions or the memory effects of the instruction

cache; since we do not model instruction delay, we also

do not model the timing effects of execution other than

memory latency. This choice allows us to focus on the

data-centric component impact of our architecture on a

generic multicore processor.

For the interconnect, we chose to model a fixed-

latency high-bandwidth network model where all

messages experience the same latency, which allows us

to reason cleanly about the role of the interconnect in

the memory system performance; consequently, we did

not model congestion in the interconnect network.

Indeed, this is not an unreasonable assumption. On the

one hand, maturing optical interconnect technologies

enable high-bandwidth, low-latency communication,

and have reached miniaturization levels required for

CMOS integration [9]. On the other hand, the

technology for high-bandwidth electrical interconnect is

already available, and our requirements are not far

beyond the capabilities of existing NoC interconnects.

For example, the mesh network of the 1GHz TILE64™

multicore processor provides 1.28Tbps of bandwidth to

each core [7]; this translates to a bandwidth of

0.32Kbit/cycle one-way in each of the four ports, and

means that a 2Kbit execution context can leave (and

another arrive at) the core every 6–7 cycles. With an

average of 45% of memory accesses causing migrations

(cf. Section IV.C), a rate of one memory access every

3–4 processor cycles can be maintained. While this

back-of-the-envelope calculation is necessarily

approximate (and does not consider, for example,

network congestion), it clearly shows that our

bandwidth requirements are technologically feasible.

B. System configurations

We ran our experiments using a set of SPLASH-2

and PARSEC applications: FFT, Radix, Water, Ocean,

LU, FMM, Barnes, Volrend, Raytrace, Cholesky,

Blackscholes, Swaptions and Canneal; the remaining

benchmarks from the two suites cannot run because of

the Graphite system limitations in handling certain

system calls. Each application was run to completion

and used the recommended input set.

For each benchmark, we simulated a 64-core

processor with six different memory subsystem

configurations and four cache configurations (Table

3). While we concentrated on comparing EM
2
 with a

realistic cache-coherent MSI design with five memory

controllers and 64KB directories for each controller

(“CC realistic” in the figures), we reasoned that the

complex design-specific interactions between

directories and core caches might obscure the true

potential of the cache-coherent paradigm, and repeated

all experiments with an idealized version with a

memory controller on each of the 64 cores and 512KB

directories (“CC ideal” in the figures); the total memory

bandwidth in the system remained she same (64 GB/s).

The simulated application memory space is striped

across the memory controller based on either cache line

granularity (64 bytes) or OS-page granularity (4KB).

Finally, we assume a fixed-latency network with 5

cycles for communication between any two cores. EM
2

requires more network bandwidth per message than

cache coherence, since the execution context (such

architectural state as registers, TLB, and an instruction

cache line, about 2Kbits in an x86 [29]) is larger than a

cache line (perhaps 64 bytes). Since we postulate a

high-bandwidth network, we assumed enough

bandwidth that the larger context messages will not

incur extra latency; to characterize the effect of a less

powerful network, however, we repeated our

experiments in a model where latencies correspond to

the message sizes and EM
2
 has latency 4× larger than

the cache-coherent architecture.

C. Measurements

We collected the experimental results using a

homogeneous cluster of machines. Each machine within

the cluster has an Intel® Core™ i7-960 Quad-Core (HT

enabled) running at 3.2GHz with 6GB of PC3-10600

DDR3 DRAM. These machines run Debian Linux with

kernel version 2.2.26 and all applications were compiled

Table 3: Memory system configurations used in experiments.

 8

with gcc version 4.3.2.

For each simulation run, we tracked the cache

hierarchy miss rates, perceived memory latencies, and,

for the EM
2
 simulations, migration rates; we averaged

per-core numbers weighted by the total memory access

count for each core. In figures where data is aggregated

over all benchmarks, we averaged per-benchmark data

with each benchmark given equal weight to reflect a

varied computation load.

D. Migration algorithm

We use two migration algorithms for our

experiments. In the swap scheme, when the computation

context migrates from, say, core A to core B, the context

in B is moved to A concurrently. On the one hand, this

ensures that multiple threads are not mapped to the

same core, and requires no extra hardware resources to

store multiple contexts. On the other hand, the context

that originated in B may well have to migrate back to A

at its next memory access, causing a thrashing effect.

Swap also puts significantly more stress on the network:

not only are the migrations symmetrical, the thrashing

effect may well increase the frequency of migrations.

The one-way scheme assumes that multiple contexts

can be mapped to any single core and, therefore, would

only perform the migration from A to B. This reduces

the strain on the network and the total number of

migrations, but requires hardware resources at core A to

store multiple contexts. While it may appear that A

might now have to alternate among contexts and

become a computational bottleneck, observe that

threads executing on A are also accessing the memory

cached by A, and would be subject to additional

migrations in the swap scheme.

In the one-way scheme, the number of threads

mapped to a single core becomes an important

consideration, as it affects both the hardware resources

required to store the contexts and the computational

power required at each core. In our experiments cores

mostly did not exceed 8 concurrent threads at any given

time (see Figure 5). While a more detailed evaluation

of this design space is beyond the scope of this paper,

we observe that including multiple computational units

on each core, as in simultaneous multithreading [30],

could potentially allow all threads to run in parallel; for

example, one might imagine a design where one-way

migrations are the default and swaps are used whenever

a maximum number of threads mapped to a core

exceeds its computational resources.

VI. PERFORMANCE EVALUATION

A. Memory performance

This section discusses per benchmark results.

Comparisons are drawn based on three data points: two

cache coherence implementations and an EM
2

implementation (cf. Section V); unless otherwise noted,

the results reflect 4KB main memory striping and a

high-performance interconnect.

Figure 6 illustrates that in EM
2
 the cache hierarchy

miss rate generally directly determines memory

performance. For water-nsquared, which has good

spatial locality, this is also the case in the ideal cache-

coherent model with enormous directories, but under the

realistic CC model memory performance suffers from

the directory size bottleneck; since EM
2
 can cache more

addresses in total and is not encumbered by a directory,

it performs better. Volrend suffers in both CC regimes

because extensive sharing reduces cache utilization;

since the per-core caches in EM
2
 never share, the total

number of addresses cached at any given time is much

larger and leads to better performance.

Figure 5: The maximum number of threads concurrently executing on any core in the one-way migration scheme. Most

cores never have more than 8 threads executing at the same time.

 9

The blackscholes benchmark in Figure 7 is highly

parallel with a relatively small primary working set

(64K), and performs well with ideal CC and EM
2
. The

radix sort kernel showcases how directory sizes can

significantly limit performance: the realistic CC model

performs worse as the per-core caches grow (Figure 7).

Since the main working set does not fit in the cache,

increasing local cache sizes allows threads to cache

more unique addresses; this, in turn, leads to frequent

capacity-based evictions from the directory (and,

Figure 6: Execution migration significantly reduces the cache hierarchy miss rate, and

consequently outperforms either cache coherence model. Note that the cache miss rates for both

EM schemes are the same, and the difference in latency is only due to migration frequency.

Figure 7: Blackscholes (left) relies heavily on local caches, and memory performance is low on

the five-memory-controller CC model until a large cache can hold the working set. Radix (right)

under realistic CC performs worse with bigger caches because directory cache evictions cause

thrashing. (Cache miss rates are the same for both EM schemes).

 10

consequently, the local caches). When directory space is

very large (ideal CC), performance improves steadily

with cache size, and is even better in EM
2
 as cache lines

are never shared and a large portion of the working set

can be cached.

The SPLASH-2 suite includes two implementations

of matrix LU decomposition: one written in a more

straightforward style, and one where blocks accessed by

the same thread are allocated contiguously to optimize

parallel cache performance. Again, the underlying

problem is sharing, and, under a cache-coherent

architecture, the performance benefits of the

restructured (contiguous) implementation are

impressive: cache miss rates drop from 4%–8% to

nearly zero (Figure 8). Since EM
2
 eliminates the

sharing of data among different cores, cache miss rates

are low and overall memory performance is very good.

It’s worth stressing that EM
2
 allowed good

performance regardless of how much effort was

expended in optimizing the benchmark itself for cache

performance. While program optimization for the

memory hierarchy will always be important in a small

number of critical applications, EM
2
 often offers good

performance without the expense of optimization, and,

when optimization is necessary, provides an architecture

where reasoning about cache performance is much

easier.

B. Impact of data striping

To determine how the pattern in which main memory

is distributed across cores affects the performance of

EM
2
, we repeated all benchmarks with stripe sizes of

4,096 bytes (equivalent to a common OS page size), 64

bytes (a common cache line size), and 16,384 bytes. The

results for 16,384-byte striping closely matched those

for 4096-byte striping, and we omit them. The results

for 64-byte and 4096-byte striping are summarized in

Figure 9: the 4,096 stripe size allows one-way EM
2
 to

take advantage of spatial locality in memory references

and keep threads mapped to cores for longer; in the

swap version, threads are evicted by incoming

migrations and the migration rate remains higher. On

the other hand, if caches are small (on the order of

32KB total), any non-trivial shared data structures that

fit in one 4096-byte page are cached in the same cache

with 4096-byte striping and are subject to more

evictions; with 64-byte striping, they are distributed

among many caches and evictions are less frequent.

C. Impact of network latency

While throughout the paper we assume a network

with bandwidth sufficient to deliver the 2Kbit context

migrations of EM
2
 as quickly as the 64-byte messages

of a cache coherence protocol, we also modeled a

network where bandwidth is low and context migrations

take 4× more cycles than cache coherence messages, as

much as the difference in message sizes. Figure 10

shows that even under low-bandwidth conditions one-

way EM
2
 outperforms the directory-based cache-

coherence version.

Figure 8: EM

2
 reduces the need to optimize code for parallel cache performance: while a cache-

optimal implementation of LU decomposition performs well in both CC and EM
2
, only the

latter also allows a more straightforward implementation to perform equally well. (Cache miss

rates are the same for both EM schemes).

 11

D. Silicon area advantages of EM
2

In general, even compared to “ideal” cache

coherence, EM
2
 requires significantly smaller cache

resources to achieve the same memory latencies: for

example, Figure 11 shows that even an “ideal” cache

coherence design requires 144KB of caches per core to

match the performance of EM
2
 with only 80KB of per-

core cache, which translates to significant silicon area

and power savings.

VII. CONCLUSIONS

In this paper, we introduced EM
2
, an instruction-level

execution migration-based memory scheme for large-

scale multicore processors. EM
2

provides a coherent,

sequentially consistent view of a uniform address space

without the need for complex cache coherence protocols

and the associated silicon area, while reducing the

perceived cost of memory accesses: for example, on a

set of SPLASH-2 and PARSEC benchmarks, EM
2

reduced cache miss rates by 84% and decreased

memory latencies by 58% on average.

While EM
2

offers significant savings in silicon area

compared to a directory-based cache-coherent

architecture and an EM
2
 design can therefore offer more

computation resources or larger caches in the same area,

we conservatively assume equivalent cache sizes and

number of cores for the cache-coherent architectures we

compare against. Further research will quantify the

savings and determine how to best allocate them.

Figure 9: Spatial locality allows the one-way EM

2
 model to keep threads mapped to cores they

need to access for longer periods when the main memory is striped in larger blocks. (The figure

shows an average over all benchmarks; cache miss rates are the same for both schemes).

Figure 10: Impact of network latency on EM

2
. (The figure shows an average over all benchmarks).

 12

Throughout this paper we have assumed a high-

bandwidth, low-latency on-chip interconnect. Although

currently there is little demand to optimize network-on-

chip designs for such high bandwidths, we argued that

they are not beyond the capabilities of today’s electrical

interconnects. At the same time, the advent of practical

on-chip optical interconnect technology promises to

make high-bandwidth, low-latency, low-power on-chip

networks common. Either way, the high-bandwidth

interconnect we require offers a fertile field for future

research.

The performance of EM
2
 is bounded by the number

of migrations per memory access. While we show that

even with a relatively high migration rate EM
2

can

outperform a directory-based cache-coherent design,

reducing migrations would improve overall

performance and lower the interconnect network

performance demands; this motivates further research

into better migration algorithms, appropriate main

memory striping schemes, and OS support for keeping

all data used by a thread on the same core. Indeed, the

unique properties of the EM
2

architecture open up

abundant opportunities for operating system techniques

and optimizations.

REFERENCES

[1] S. Bell et al., "TILE64 - Processor: A 64-Core

SoC with Mesh Interconnect," in Solid-State

Circuits Conference, 2008. ISSCC 2008. Digest of

Technical Papers. IEEE International, 2008, p.

88.

[2] S. R. Vangal et al., "An 80-Tile Sub-100-W

TeraFLOPS Processor in 65-nm CMOS," Solid-

State Circuits, IEEE Journal of, vol. 43, p. 29,

2008.

[3] T. R. Halfhill, "Looking Beyond Graphics," In-

Stat Whitepaper2009.

[4] S. Borkar, "Thousand core chips: a technology

perspective," in Proceedings of the 44th annual

Design Automation Conference, San Diego,

California, 2007, p. 746.

[5] N. Hardavellas et al., "Reactive NUCA: near-

optimal block placement and replication in

distributed caches," in Proceedings of the 36th

annual international symposium on Computer

architecture, Austin, TX, USA, 2009, p. 184.

[6] S. Rusu et al., "A 45nm 8-core enterprise Xeon®

processor," in Solid-State Circuits Conference,

2009. A-SSCC 2009. IEEE Asian, 2009, p. 9.

[7] D. Wentzlaff et al., "On-Chip Interconnection

Architecture of the Tile Processor," Micro, IEEE,

vol. 27, p. 15, 2007.

[8] D. Park et al., "MIRA: A Multi-layered On-Chip

Interconnect Router Architecture," in Proceedings

of the 35th International Symposium on Computer

Architecture, 2008, p. 251.

[9] M. T. Hill et al., "A fast low-power optical

memory based on coupled micro-ring lasers,"

Nature, vol. 432, p. 206, 2004.

[10] J. Miller et al., "ATAC: A Manycore Processor

with On-Chip Optical Network," MIT CSAIL

Technical Report MIT-CSAIL-TR-2009-018,

2009.

[11] N. Kırman et al., "A Power-efficient All-optical

On-chip Interconnect Using Wavelength-based

Oblivious Routing," in Proceedings of the 15th

international conference on Architectural support

for programming languages and operating

systems, Pittsburgh, Pennsylvania, USA, 2006.

[12] M. Bach et al., "Analyzing Parallel Programs with

Pin," Computer, vol. 43, p. 34, 2010.

[13] J. Miller et al., "Graphite: A Distributed Parallel

Simulator for Multicores," in High Performance

Computer Architecture, 2010. HPCA-16.

Proceedings. 16th International Symposium on,

2010, p. 186.

[14] S. C. Woo et al., "The SPLASH-2 programs:

characterization and methodological

considerations," in Computer Architecture, 1995.

Proceedings. 22nd Annual International

Symposium on, 1995, p. 24.

[15] C. Bienia et al., "The PARSEC benchmark suite:

characterization and architectural implications,"

in Proceedings of the 17th international

conference on Parallel architectures and

compilation techniques, Toronto, Ontario,

Canada, 2008, p. 72.

[16] H. Garcia-Molina et al., "A Massive Memory

Machine," Computers, IEEE Transactions on,

vol. C-33, p. 391, 1984.

[17] P. Michaud, "Exploiting the cache capacity of a

single-chip multi-core processor with execution

migration," in High Performance Computer

Figure 11: EM

2
 requires smaller caches to guarantee the

same memory latency on many benchmarks.

 13

Architecture, 2004. HPCA-10. Proceedings. 10th

International Symposium on, 2004, p. 186.

[18] K. Chakraborty et al., "Computation spreading:

employing hardware migration to specialize CMP

cores on-the-fly," in Proceedings of the 12th

international conference on Architectural support

for programming languages and operating

systems, San Jose, California, USA, 2006, p. 283.

[19] M. Kandemir et al., "A novel migration-based

NUCA design for Chip Multiprocessors," in High

Performance Computing, Networking, Storage

and Analysis, 2008. SC 2008. International

Conference for, 2008, p. 1.

[20] W. C. Hsieh et al., "Computation migration:

enhancing locality for distributed-memory

parallel systems," in Proceedings of the fourth

ACM SIGPLAN symposium on Principles and

practice of parallel programming, San Diego,

California, United States, 1993, p. 239.

[21] C. Sangyeun et al., "Managing Distributed,

Shared L2 Caches through OS-Level Page

Allocation," in Microarchitecture, 2006. MICRO-

39. 39th Annual IEEE/ACM International

Symposium on, 2006, p. 455.

[22] M. Awasthi et al., "Dynamic hardware-assisted

software-controlled page placement to manage

capacity allocation and sharing within large

caches," in High Performance Computer

Architecture, 2009. HPCA 2009. IEEE 15th

International Symposium on, 2009, p. 250.

[23] S. Boyd-Wickizer et al., "Reinventing Scheduling

for Multicore Systems," in The 12th Workshop on

Hot Topics in Operating Systems (HotOS-XII)

Monte Verità, Switzerland, 2009.

[24] M. Chaudhuri, "PageNUCA: Selected policies for

page-grain locality management in large shared

chip-multiprocessor caches," in High

Performance Computer Architecture, 2009.

HPCA 2009. IEEE 15th International Symposium

on, 2009, p. 227.

[25] K. Sudan et al., "Micro-pages: increasing DRAM

efficiency with locality-aware data placement," in

Architectural Support for Programming

Languages and Operating Systems, 2010.

ASPLOS-10. Proceedings. 15th International

Conference on, 2010.

[26] M. Zhang et al., "Victim replication: maximizing

capacity while hiding wire delay in tiled chip

multiprocessors," in Computer Architecture,

2005. ISCA '05. Proceedings. 32nd International

Symposium on, 2005, p. 336.

[27] M. A. Suleman et al., "Accelerating critical

section execution with asymmetric multi-core

architectures," in Proceeding of the 14th

international conference on Architectural support

for programming languages and operating

systems, Washington, DC, USA, 2009, p. 253.

[28] M. D. Powell et al., "Architectural core salvaging

in a multi-core processor for hard-error

tolerance," in Proceedings of the 36th annual

international symposium on Computer

architecture, Austin, TX, USA, 2009, p. 93.

[29] K. K. Rangan et al., "Thread motion: fine-grained

power management for multi-core systems," in

Proceedings of the 36th annual international

symposium on Computer architecture, Austin,

TX, USA, 2009, p. 302.

[30] S. J. Eggers et al., "Simultaneous multithreading:

a platform for next-generation processors," Micro,

IEEE, vol. 17, p. 12, 1997.

