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Abstract—We introduce the Execution Migration 

Machine (EM
2
), a novel data-centric multicore 

memory system architecture based on computation 

migration. Unlike traditional distributed memory 

multicores, which rely on complex cache coherence 

protocols to move the data to the core where the 

computation is taking place, our scheme always 

moves the computation to the core where the data 

resides. By doing away with the cache coherence 

protocol, we are able to boost the effectiveness of 

per-core caches while drastically reducing hardware 

complexity. 

To evaluate the potential of EM
2
 architectures, 

we developed a series of PIN/Graphite-based models 

of an EM
2
 multicore with 64 x86 cores and, under 

some simplifying assumptions (a timing model 

restricted to data memory performance, no 

instruction cache modeling, high-bandwidth fixed-

latency interconnect allowing concurrent 

migrations), compared them against corresponding 

directory-based cache-coherent architecture models. 

We justify our assumptions and show that our 

conclusions are valid even if our assumptions are 

removed. Experimental results on a range of 

SPLASH-2 and PARSEC benchmarks indicate that 

EM
2
 can significantly improve per-core cache 

performance, decreasing overall miss rates by as 

much as 84% and reducing average memory latency 

by up to 58%.
1
 

I. INTRODUCTION 

In the last few years, the steady increases in processor 

performance obtainable from higher and higher clock 

frequencies have come to a dramatic halt: there is 

simply no cost-effective way to dissipate so much 

power. Instead, recent development has favored 

multicore parallelism: commodity processors with four 

or even eight cores on a single die have become 

common, and existing technology permits many more; 

indeed, general-purpose single-die multiprocessors with 

as many as 64 cores are already commercially 

available [1]. Even larger multicores have been built [2, 

3], and pundits confidently predict thousands of cores 

per die by the end of the decade [4]. Quite simply, 

multicores scale. 
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 Equal contributors. 

Designing a scalable memory subsystem for a 

multicore, however, remains a major concern. 

Increasing the number of concurrent threads requires a 

large aggregate memory bandwidth, but off-chip 

memory bandwidth is severely constrained by the 

number of pins on the package: a conundrum known as 

the off-chip memory bandwidth wall [4, 5]. To address 

this problem, multicores integrate large private and 

shared caches on chip: the hope is that large caches can 

hold the working sets of the active threads, thereby 

reducing the number of off-chip memory accesses. 

Private caches, however, require cache coherence, and 

shared caches do not scale beyond a few cores: even 

today, the large 32MB last-level cache in recent Intel® 

8-core processors is split physically into tiles distributed 

across the chip [6], and accessing remote cache lines is 

significantly slower than accessing local ones. 

Since shared caches do not scale, many private 

caches are the only practical option in large-scale 

multicores. In practice, this means some form of 

memory coherence, as the success of alternate 

programming paradigms based on exposing core-to-core 

communication to the programmer has been limited to 

scientific computing and other niches where 

performance or power considerations warrant the 

increased programming complexity. The key question, 

then, is: how can we provide the illusion of shared 

memory in a way that scales to thousands of cores? 

Bus-based cache coherence, which provides the 

illusion of a single, consistent memory space, clearly 

does not scale beyond a few cores. Directory-based 

cache coherence is not subject to the electrical 

limitations of buses, but requires complex states and 

protocols for efficiency even in today’s relatively small 

multicores. Worse yet, directory-based protocols can 

contribute significantly to the already costly delays of 

accessing off-chip memory because data replication 

limits the efficient use of cache resources. Finally, the 

area costs of keeping directory entries are a large 

burden: if most of the directory is kept in off-chip 

memory, accesses will be too slow, but if the directory 

is stored in a fast on-chip memory, evictions from the 

necessarily limited directory cause thrashing in the per-

core caches, also decreasing performance. 

Yet on-chip multicores provide a tremendous 

opportunity for optimization in the form of abundant 

interconnect bandwidth. Even existing electrical on-chip 

interconnect networks offer terabits per second of cross-
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section bandwidth [7] with latencies growing with the 

diameter of the network (i.e., as the square root of the 

core count in meshes), and emerging 3D interconnect 

technologies enable high-bandwidth, low-latency on-

chip networks [8]. Optical interconnect technology, 

which offers high point-to-point bandwidth at little 

latency and with low power, is fast approaching 

miniaturization comparable to silicon circuits, with 

complete ring lasers no larger than 20µm
2
 [9]; multicore 

architectures featuring an on-chip optical interconnect 

have been proposed [10, 11], but have so far been based 

on traditional cache-coherent memory architectures. 
In this manuscript, we take the view that future 

multicore architectures will feature thousands of 

computation cores and copious inter-core bandwidth. To 

take advantage of this, we propose to do away 

altogether with the latencies and implementation 

complexities of cache coherence protocols. Instead, we 

argue, each core should be responsible for caching a 

segment of the address space; when the thread running 

on a given core refers to an address resident in some 

other core, the computation itself must move by having 

the two cores swap execution contexts. Supported by 

extensive simulations running the SPLASH-2 and 

PARSEC benchmark suites on both our architecture and 

a traditional cache-coherence architecture with an 

equivalent interconnect network, we make the case that 

the complete absence of data sharing among caches, far 

from limiting performance, actually improves cache 

efficiency by evicting fewer cache lines on average and 

increasing the effective size of the combined on-chip 

cache. 

The novel contributions of this paper are: 

1. We introduce execution migration at the 

instruction level, a simple architecture that 

provides a coherent, sequentially consistent view 

of memory without the need for a cache coherence 

protocol. 

2. We evaluate our scheme on actual applications in 

a current x86-based shared memory system: our 

functional memory subsystem model is built on 

PIN/Graphite [12, 13] and runs a set of SPLASH-2 

[14] and PARSEC [15] benchmarks with the 

correct output. 

3. We show that, assuming a high-bandwidth, low-

latency interconnect, on-chip cache hierarchy miss 

rate under execution migration improves many-

fold (e.g., from 4.4% to 0.5% with 80KB of 

caches per core), and, as a result, average memory 

access latencies significantly improve (e.g., 16.5 

to 6 cycles/access with 80KB of caches per core). 

4. We describe how, provided a scalable 

interconnect network, EM
2
 elegantly scales to 

thousands of cores while significantly reducing 

silicon area compared to a traditional cache-

coherent design. 

The performance of EM
2
 is tightly coupled to 

available network resources and, given sufficiently large 

caches, a directory-based cache-coherent architecture 

outperforms EM
2
 on a low-performance, high-latency 

network even though it suffers more cache hierarchy 

misses. Table 1 shows the minimum cache sizes needed 

by an equivalent directory-based cache-coherent 

architecture to outperform EM
2
 on a few sample 

benchmarks. With a low-performance network (50-

cycle per-message latency), context migrations in EM
2
 

are expensive, and large per-core caches allow the cache 

coherent architecture to reduce main memory accesses 

and perform better; with a high-performance network 

(5-cycle per-message latency), however, the significant 

reduction in cache hierarchy misses in EM
2
 balances out 

the cost of context migrations and EM
2
 outperformed 

cache-coherent architecture with all of the cache sizes 

we tested. For example, the swaptions benchmark 

performed better under EM
2
 when caches were 32KB or 

less per core; on a high-performance network EM
2
 

always performed better. 

The remainder of this paper is organized as follows: 

Section II below reviews related research; in Section III 

we delineate the operation of execution migration, and 

in Section IV describe the effects and architectural 

tradeoffs versus directory-based cache coherence. 

Section V outlines our experimental methodology and 

Section VI compares real-world application 

performance of execution migration against a traditional 

cache-coherence scheme using a detailed architectural 

simulator. Section VII offers concluding remarks and 

outlines future research. 

 
Table 1: Per-core cache sizes at which EM

2
 

outperforms cache coherence for a low-performance 

interconnect network (packet latency of 50 cycles) and 

a high-performance network (packet latency of 5 

cycles). With a slow network, EM
2
 outperforms cache-

coherent designs only when small cache sizes combined 

with data sharing cause high miss rates in the latter, 

but with a fast network, EM
2
 performed better on all of 

the cache sizes we tested. 
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II. RELATED WORK 

A. Computation migration 

Migrating computation to the locus of the data is not 

itself a novel idea. Hector Garcia-Molina in 1984 

introduced the idea of moving processor to data in 

memory bound architectures [16]. In recent years 

migrating execution context has re-emerged in the 

context of single-chip multicores.  Michaud shows the 

benefits of using execution migration to improve the 

overall on-chip cache capacity and utilizes this for 

migrating selective sequential programs to improve 

performance [17]. Computation spreading [18] splits 

thread code into segments and assigns cores responsible 

for different segments, and execution is migrated to 

improve code locality. Kandemir presents a data 

migration algorithm to address the data placement 

problem in the presence of non-uniform memory 

accesses within a traditional cache coherence 

protocol [19]. This work attempts to find an optimal 

data placement for cache lines.  A compile-time 

program transformation based migration scheme is 

proposed in [20] that attempts to improve remote data 

access. Migration is used to move part of the current 

thread to the processor where the data resides, thus 

making the thread portion local. This work shows that 

computation migration puts far less stress on the 

network than shared memory counterpart. Our proposed 

execution migration machine is unique among the 

previous proposed works because we completely 

abandon data sharing (and therefore do away with cache 

coherence protocols). Instead, we propose to rely solely 

on execution migration to provide coherence and 

consistency. 

B. Data placement in distributed memories 

The paradigm for accessing data is critical to shared 

memory parallel systems; Table 2 shows the four 

possible configurations. Two of these (moving data to 

computation) have been explored in great depth with 

many years of research on cache coherence protocols. 

Recently several data-oriented approaches have been 

proposed to address the non-uniform access effects in 

traditional and hybrid cache coherent schemes. An OS-

assisted software approach is proposed in [21] to control 

the data placement on distributed caches by mapping 

virtual addresses to different cores at page granularity. 

When adding affinity bits to TLB, pages can be 

remapped at runtime [5, 21]. The CoG [22] page 

coloring scheme moves pages to the “center of gravity” 

to improve data placement. The O
2
 scheduler [23], an 

OS-level scheme for memory allocation and thread 

scheduling, improves memory performance in 

distributed-memory multicores by keeping threads and 

the data they use on the same core. 

Hardware page migration support was exploited in 

PageNUCA and Micro-Pages cache design to improve 

data placement [24, 25]. All these data placement 

techniques are proposed for traditional cache coherent 

or hybrid schemes. EM
2
 can only benefit from improved 

hardware or OS-assisted data placement schemes. 

Victim Replication [26] creates local replicas of data to 

reduce cache access latency, thereby, adding extra 

overhead to improve drawbacks of traditional cache 

coherence protocol. 

Execution migration not only enables EM
2
, but it has 

been shown to be an effective mechanism for other 

optimizations in multicore processor. [27] migrates the 

execution of critical sections to a powerful core for 

performance improvement. Core Salvaging [28] exploits 

inter-core redundancy to provide fault tolerance via 

execution migration. Thread motion [29] exchanges 

running threads to provide fine-grain power 

management. 

III. EM
2
: THE EXECUTION MIGRATION 

MACHINE 

The essence of traditional cache coherence in 

multicores is bringing data to the locus of the 

computation that is to be performed on it: when a 

memory instruction refers to an address that is not 

locally cached, the instruction stalls while the cache 

coherence protocol brings the data to the local cache 

and ensures that the address can be safely shared (for 

loads) or exclusively owned (for stores). Execution 

migration turns this notion on its head, bringing the 

computation to the locus of the data: when a memory 

instruction requests an address not cached by the current 

core, the execution context (current program counter, 

register values, etc.) moves to the core where the data is 

cached. 

In this scheme, the physical address space in the 

system is divided among the cores, for example by 

striping (see Figure 1), and each core is responsible for 

caching its region of the address space; thus, each 

address in the system is assigned to a unique core where 

it may be cached. (Note that this arrangement is 

independent of how the off-chip memory is accessed, 

 
Table 2: Different paradigms of distributing data and 

computation, and the resulting architectures.  
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and applies equally well to a system with one central 

memory controller and to a hypothetical system where 

each core has its own DRAM). When the processor 

executes a memory access for address A, it must 

1. compute the “home” core for A (e.g., by masking 

the appropriate bits); 

2. if the current core is the home, 

a. forward the request for A to the cache 

hierarchy (possibly resulting in a 

DRAM access); 

3. if the home is elsewhere, 

a. interrupt the execution of the current 

core (as for a precise exception), 

b. migrate the architectural state to the core 

that is home for A, 

c. resume execution on the new core, 

forwarding the request for A to its cache 

hierarchy (and potentially resulting in a 

DRAM access). 

Because each address can be accessed in at most one 

location, many operations that are complex in a 

traditional cache-coherent system become very simple: 

sequential consistency and memory coherence, for 

example, are trivially ensured, and locking reduces to 

preventing other threads from migrating to a specific 

core. 

This basic sketch intentionally leaves a broad range 

of design choices. For example, migration (step 3.b 

above) could preempt the execution on the target core or 

be subject to scheduling; similarly, the context currently 

executing on the target core could be either kept on the 

same core or transferred elsewhere. While we defer the 

question of the best precise migration algorithm to 

future research, we focused our investigation in this 

paper on two simple models: one where the two 

contexts are swapped, and another where the migrated 

thread simply moves to the destination core and shares 

the computational resources with the threads already 

present there (see Section V.D). Similarly, the questions 

of dividing the address space among the cores (step 1 

above) and finding the best assignment of virtual to 

physical addresses also potentially offer interesting 

tradeoffs; in this paper, we evaluated two simple 

striping schemes based on cache-line size and the 

operating system page size (see Section V.B). 

IV. DISCUSSION 

Although at first blush migrating the execution 

context on every memory access to a non-local region 

of memory might seem expensive, a careful analysis of 

a traditional directory-based cache coherence protocol, 

supported by experimental data, reveals that migration 

can in fact outperform cache coherence. 

A. Costs of directory-based cache coherence 

Last-level cache misses in a directory-based cache-

coherence scheme incur three significant costs: the 

latency of potentially retrieving the data from off-chip 

memory, the latencies associated with the directory 

protocol itself, and decreased cache effectiveness due to 

data sharing and directory size limits. For example, in a 

last-level cache miss under a simple MSI directory 

protocol, 

1. the last-level cache must contact the relevant 

directory; 

2. if A is not cached in the directory, the directory 

must (a) potentially evict another directory entry, 

contacting all sharers of that entry and waiting for 

their invalidate responses, and (b) retrieve the data 

for A from off-chip memory; 

3. if A is already in the directory and the request is for 

exclusive access, or if A is exclusively held by 

another core, the directory must contact all sharers 

and wait for their invalidate responses; 

4. finally, the directory must respond to the 

requesting cache with the cache line data for A. 

The communication cost and the latency of the off-

chip memory access, while significant, are dwarfed by 

the potential deleterious effect on private caches. When 

an already full directory services a request for a new 

address (step 2 above), it must replace an existing entry 

and invalidate its address in all processor caches even 

though the caches themselves did not need to evict the 

line. Perversely, growing the per-core caches (or adding 

more processors) without significantly increasing the 

 
Figure 1: Address-based cache distribution in EM². Each 

cache (left) is responsible for caching a specific, unique 

region of main memory (right). In our experiments, main 

memory is divided into 64-byte or 4KB blocks assigned to 

consecutive caches; the assignment wraps around and block 

N+1 is again assigned to the first core. 
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directory size only compounds the problem and 

increases the cache miss rate, as the larger caches hold 

more unique addresses and cause more directory 

evictions. Indeed, 6 of the 16 applications we tested 

suffered worse performance on a realistic cache-

coherent 64-core system when the per-core cache size 

increased. Figure 2 shows two examples of this effect: 

on both benchmarks, the number of cache hierarchy 

misses per memory access in the system increased when 

per-core caches grew beyond 48KB. 

The magnitude of this effect is application-dependent 

and the selection of an appropriate directory 

configuration is not straightforward; at worst, each 

directory may have to grow as much as all processor 

caches combined, clearly an unrealistic scenario. If 

directory limits can impede performance at 64 cores, 

what will we do when we get to 1,000 cores?  

In addition, directory-based cache-coherent 

multicores suffer from other secondary effects. Most 

directly, directory sizes needed to retain good 

performance—especially as core counts and cache 

capacities grow—use significant area and power, which 

could instead be allocated to more cores or larger 

caches. The complex cache and directory controller 

logic requires area and power as well as significant 

verification effort. At an architectural level, an 

implementation of directory-based cache coherence 

forms an intricate system with many complex 

interactions, making it difficult to reason about and 

evaluate design tradeoffs. 

In the end, all of these costs stem from one central 

feature of cache coherence: each cache line may be 

shared among many cores. This presents a significant 

opportunity, as eliminating sharing can result in 

improved performance, complexity, silicon area, and 

power. 

B. Performance of execution migration 

On most workloads, execution migration significantly 

improves memory performance: in our benchmarks 

simulating a realistic 64-core architecture with 5 

memory controllers and various per-core cache sizes on 

a high-performance on-chip interconnect (see Section 

V.B), the number of off-chip memory accesses in EM
2
 

decreased by 75%–89% relative to the cache coherent 

architecture. As shown in Figure 3, the improved 

memory performance is directly attributable to the 

significant reduction in last-level cache misses. In turn, 

this is caused by (a) a significant increase in effective 

cache capacity when compared to the cache-coherent 

architecture because each address is cached in at most 

one location, and (b) the consequent longer lifetime of 

cache lines in the absence of cache evictions caused by 

such external requests as exclusive-access requests from 

other cores or directory evictions. 

Critically, as the number of cores on a die grows, the 

performance advantage of execution migration 

 
Figure 2: Impact of directory size on cache performance 

on two SPLASH-2 benchmarks. When caches grow too 

large in relation to the directory, frequent evictions from 

the directory lead to cache thrashing. The results show 

total cache hierarchy misses per memory access in a 64-

core cache-coherent model with 5 memory controllers 

and a 64KB directory for each controller (see Section V.B 

for configuration details). 

 
Figure 3: Reduction in memory latency in execution 

migration (EM) vs. cache coherence (CC) is due to a 

much lower cache hierarchy miss rate. (The figure shows 

an average over all benchmarks). 
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architecture increases. While the performance of a cache 

coherence scheme is limited on the one hand by the 

number of sharers per cache line (and the consequent 

invalidates caused by exclusive-access requests) and on 

the other hand by directory sizes (and the consequent 

invalidates caused by directory evictions), cache miss 

performance in execution migration depends directly on 

the effective point-to-point bandwidth and latency 

provided by the on-chip interconnect, and is much 

easier to reason about. 

C. Costs of execution migration 

Since in most workloads memory instructions occur 

every few cycles and migrations can be frequent: for 

example, for one of the migration policies we evaluated 

(one-way, see Section V.D), an average of 45% of 

memory hierarchy accesses in the benchmarks triggered 

migrations (Figure 4). This, however, is under an OS 

model that assumes a cache-coherent architecture, and 

does not allocate memory pages appropriately for an 

EM
2
 architecture. Thus, for example, the stack area and 

the working set are likely to be allocated in different 

cores, causing frequent migrations between the two, 

especially with the heavy stack utilization of an x86 

architecture. Efficient page allocation under EM
2
 is, 

however, beyond the scope of this paper a subject of 

further research. 

The main memory access cost incurred by execution 

migration architecture is that of transferring an 

execution context to the home cache for the given 

address. Per-migration bandwidth requirements, 

although larger than the cache line required by cache-

coherent designs, are not prohibitive by on-chip 

standards: in a 32-bit x86 processor, the relevant 

architectural state amounts, including a TLB and an 

instruction cache line, to about 2 Kbits [29]. Although 

on-chip networks today are not generally designed to 

carry that much data, on-chip communication scales 

well; indeed, a migration network is easily scaled by 

simple replication because all transfers have the same 

size. Furthermore, execution migration is uniquely 

poised to take advantage of the high bandwidth, low 

latency, and low power potential of quickly maturing 

on-chip optical interconnect technologies [10, 11]. 

Another potential cost of execution migration is the 

loss of some instruction locality: when an execution 

context is moved, the instruction cache in the 

destination core might not contain the instructions for 

the transferred thread. In our model, we mitigate this 

effect by including one 64-byte instruction cache line in 

the 2Kbit execution context that is migrated between 

cores (discussed in Section V.B below). While further 

discussion of instruction caching in execution migration 

falls outside of the scope of the present paper, we note 

that (a) many numerically intensive applications 

(including most SPLASH-2 and PARSEC benchmarks) 

run the same instructions in each thread, and the 

instructions cached are likely to be similar, and (b) 

instruction caches store read-only data and therefore do 

not require cache coherence logic, and instruction data 

can easily be replicated by, for example, transmitting 

the current cache line along with the execution context 

as we do in our model—over time, instruction caches on 

each core will store the instructions that operate on the 

data cached in the same core. 

V. METHODS 

A. Modeling methodology 

We use Pin [12] and Graphite [13] to model the 

proposed EM
2
 architecture. Pin enables runtime binary 

instrumentation of parallel programs, including the 

SPLASH-2 [14] and PARSEC [15] benchmark sets we 

use for evaluation, while the Graphite program analysis 

pintool provides models for a tile-based core, memory 

subsystem and network. Graphite provides the 

 
Figure 4: Minimum required execution migration rate for various benchmarks. 

Specific implementations (e.g., swap) may have a higher migration rate. 
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infrastructure to intercept and modify the memory 

references and present a uniform, coherent view of the 

application address space to all threads; this allows us to 

maintain functional correctness in our EM
2
 architecture 

models. 

In this paper we do not model non-memory 

instructions or the memory effects of the instruction 

cache; since we do not model instruction delay, we also 

do not model the timing effects of execution other than 

memory latency. This choice allows us to focus on the 

data-centric component impact of our architecture on a 

generic multicore processor. 

For the interconnect, we chose to model a fixed-

latency high-bandwidth network model where all 

messages experience the same latency, which allows us 

to reason cleanly about the role of the interconnect in 

the memory system performance; consequently, we did 

not model congestion in the interconnect network. 

Indeed, this is not an unreasonable assumption. On the 

one hand, maturing optical interconnect technologies 

enable high-bandwidth, low-latency communication, 

and have reached miniaturization levels required for 

CMOS integration [9]. On the other hand, the 

technology for high-bandwidth electrical interconnect is 

already available, and our requirements are not far 

beyond the capabilities of existing NoC interconnects. 

For example, the mesh network of the 1GHz TILE64™ 

multicore processor provides 1.28Tbps of bandwidth to 

each core [7]; this translates to a bandwidth of 

0.32Kbit/cycle one-way in each of the four ports, and 

means that a 2Kbit execution context can leave (and 

another arrive at) the core every 6–7 cycles. With an 

average of 45% of memory accesses causing migrations 

(cf. Section IV.C), a rate of one memory access every 

3–4 processor cycles can be maintained. While this 

back-of-the-envelope calculation is necessarily 

approximate (and does not consider, for example, 

network congestion), it clearly shows that our 

bandwidth requirements are technologically feasible. 

B. System configurations 

We ran our experiments using a set of SPLASH-2 

and PARSEC applications: FFT, Radix, Water, Ocean, 

LU, FMM, Barnes, Volrend, Raytrace, Cholesky, 

Blackscholes, Swaptions and Canneal; the remaining 

benchmarks from the two suites cannot run because of 

the Graphite system limitations in handling certain 

system calls. Each application was run to completion 

and used the recommended input set. 

For each benchmark, we simulated a 64-core 

processor with six different memory subsystem 

configurations and four cache configurations  (Table 

3). While we concentrated on comparing EM
2
 with a 

realistic cache-coherent MSI design with five memory 

controllers and 64KB directories for each controller 

(“CC realistic” in the figures), we reasoned that the 

complex design-specific interactions between 

directories and core caches might obscure the true 

potential of the cache-coherent paradigm, and repeated 

all experiments with an idealized version with a 

memory controller on each of the 64 cores and 512KB 

directories (“CC ideal” in the figures); the total memory 

bandwidth in the system remained she same (64 GB/s). 

The simulated application memory space is striped 

across the memory controller based on either cache line 

granularity (64 bytes) or OS-page granularity (4KB). 

Finally, we assume a fixed-latency network with 5 

cycles for communication between any two cores. EM
2
 

requires more network bandwidth per message than 

cache coherence, since the execution context (such 

architectural state as registers, TLB, and an instruction 

cache line, about 2Kbits in an x86 [29]) is larger than a 

cache line (perhaps 64 bytes). Since we postulate a 

high-bandwidth network, we assumed enough 

bandwidth that the larger context messages will not 

incur extra latency; to characterize the effect of a less 

powerful network, however, we repeated our 

experiments in a model where latencies correspond to 

the message sizes and EM
2
 has latency 4× larger than 

the cache-coherent architecture. 

C. Measurements 

We collected the experimental results using a 

homogeneous cluster of machines. Each machine within 

the cluster has an Intel® Core™ i7-960 Quad-Core (HT 

enabled) running at 3.2GHz with 6GB of PC3-10600 

DDR3 DRAM. These machines run Debian Linux with 

kernel version 2.2.26 and all applications were compiled 

Table 3: Memory system configurations used in experiments. 
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with gcc version 4.3.2. 

For each simulation run, we tracked the cache 

hierarchy miss rates, perceived memory latencies, and, 

for the EM
2
 simulations, migration rates; we averaged 

per-core numbers weighted by the total memory access 

count for each core. In figures where data is aggregated 

over all benchmarks, we averaged per-benchmark data 

with each benchmark given equal weight to reflect a 

varied computation load. 

D. Migration algorithm 

We use two migration algorithms for our 

experiments. In the swap scheme, when the computation 

context migrates from, say, core A to core B, the context 

in B is moved to A concurrently. On the one hand, this 

ensures that multiple threads are not mapped to the 

same core, and requires no extra hardware resources to 

store multiple contexts. On the other hand, the context 

that originated in B may well have to migrate back to A 

at its next memory access, causing a thrashing effect. 

Swap also puts significantly more stress on the network: 

not only are the migrations symmetrical, the thrashing 

effect may well increase the frequency of migrations. 

The one-way scheme assumes that multiple contexts 

can be mapped to any single core and, therefore, would 

only perform the migration from A to B. This reduces 

the strain on the network and the total number of 

migrations, but requires hardware resources at core A to 

store multiple contexts. While it may appear that A 

might now have to alternate among contexts and 

become a computational bottleneck, observe that 

threads executing on A are also accessing the memory 

cached by A, and would be subject to additional 

migrations in the swap scheme. 

In the one-way scheme, the number of threads 

mapped to a single core becomes an important 

consideration, as it affects both the hardware resources 

required to store the contexts and the computational 

power required at each core. In our experiments cores 

mostly did not exceed 8 concurrent threads at any given 

time (see Figure 5). While a more detailed evaluation 

of this design space is beyond the scope of this paper, 

we observe that including multiple computational units 

on each core, as in simultaneous multithreading [30], 

could potentially allow all threads to run in parallel; for 

example, one might imagine a design where one-way 

migrations are the default and swaps are used whenever 

a maximum number of threads mapped to a core 

exceeds its computational resources. 

VI. PERFORMANCE EVALUATION 

A. Memory performance 

This section discusses per benchmark results. 

Comparisons are drawn based on three data points: two 

cache coherence implementations and an EM
2
 

implementation (cf. Section V); unless otherwise noted, 

the results reflect 4KB main memory striping and a 

high-performance interconnect. 

Figure 6 illustrates that in EM
2
 the cache hierarchy 

miss rate generally directly determines memory 

performance. For water-nsquared, which has good 

spatial locality, this is also the case in the ideal cache-

coherent model with enormous directories, but under the 

realistic CC model memory performance suffers from 

the directory size bottleneck; since EM
2
 can cache more 

addresses in total and is not encumbered by a directory, 

it performs better. Volrend suffers in both CC regimes 

because extensive sharing reduces cache utilization; 

since the per-core caches in EM
2
 never share, the total 

number of addresses cached at any given time is much 

larger and leads to better performance. 

 
Figure 5: The maximum number of threads concurrently executing on any core in the one-way migration scheme. Most 

cores never have more than 8 threads executing at the same time. 
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The blackscholes benchmark in Figure 7 is highly 

parallel with a relatively small primary working set 

(64K), and performs well with ideal CC and EM
2
. The 

radix sort kernel showcases how directory sizes can 

significantly limit performance: the realistic CC  model 

performs worse as the per-core caches grow (Figure 7). 

Since the main working set does not fit in the cache, 

increasing local cache sizes allows threads to cache 

more unique addresses; this, in turn, leads to frequent 

capacity-based evictions from the directory (and, 

 
Figure 6: Execution migration significantly reduces the cache hierarchy miss rate, and 

consequently outperforms either cache coherence model. Note that the cache miss rates for both 

EM schemes are the same, and the difference in latency is only due to migration frequency. 

 
Figure 7: Blackscholes (left) relies heavily on local caches, and memory performance is low on 

the five-memory-controller CC model until a large cache can hold the working set. Radix (right) 

under realistic CC performs worse with bigger caches because directory cache evictions cause 

thrashing. (Cache miss rates are the same for both EM schemes). 
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consequently, the local caches). When directory space is 

very large (ideal CC), performance improves steadily 

with cache size, and is even better in EM
2
 as cache lines 

are never shared and a large portion of the working set 

can be cached. 

The SPLASH-2 suite includes two implementations 

of matrix LU decomposition: one written in a more 

straightforward style, and one where blocks accessed by 

the same thread are allocated contiguously to optimize 

parallel cache performance. Again, the underlying 

problem is sharing, and, under a cache-coherent 

architecture, the performance benefits of the 

restructured (contiguous) implementation are 

impressive: cache miss rates drop from 4%–8% to 

nearly zero (Figure 8). Since EM
2
 eliminates the 

sharing of data among different cores, cache miss rates 

are low and overall memory performance is very good. 

It’s worth stressing that EM
2
 allowed good 

performance regardless of how much effort was 

expended in optimizing the benchmark itself for cache 

performance. While program optimization for the 

memory hierarchy will always be important in a small 

number of critical applications, EM
2
 often offers good 

performance without the expense of optimization, and, 

when optimization is necessary, provides an architecture 

where reasoning about cache performance is much 

easier.  

B. Impact of data striping 

To determine how the pattern in which main memory 

is distributed across cores affects the performance of 

EM
2
, we repeated all benchmarks with stripe sizes of 

4,096 bytes (equivalent to a common OS page size), 64 

bytes (a common cache line size), and 16,384 bytes. The 

results for 16,384-byte striping closely matched those 

for 4096-byte striping, and we omit them.  The results 

for 64-byte and 4096-byte striping are summarized in 

Figure 9: the 4,096 stripe size allows one-way EM
2
 to 

take advantage of spatial locality in memory references 

and keep threads mapped to cores for longer; in the 

swap version, threads are evicted by incoming 

migrations and the migration rate remains higher. On 

the other hand, if caches are small (on the order of 

32KB total), any non-trivial shared data structures that 

fit in one 4096-byte page are cached in the same cache 

with 4096-byte striping and are subject to more 

evictions; with 64-byte striping, they are distributed 

among many caches and evictions are less frequent. 

C. Impact of network latency 

While throughout the paper we assume a network 

with bandwidth sufficient to deliver the 2Kbit context 

migrations of EM
2
 as quickly as the 64-byte messages 

of a cache coherence protocol, we also modeled a 

network where bandwidth is low and context migrations 

take 4× more cycles than cache coherence messages, as 

much as the difference in message sizes. Figure 10 

shows that even under low-bandwidth conditions one-

way EM
2
 outperforms the directory-based cache-

coherence version. 

 
Figure 8: EM

2
 reduces the need to optimize code for parallel cache performance: while a cache-

optimal implementation of LU decomposition performs well in both CC and EM
2
, only the 

latter also allows a more straightforward implementation to perform equally well. (Cache miss 

rates are the same for both EM schemes). 
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D. Silicon area advantages of EM
2
 

In general, even compared to “ideal” cache 

coherence, EM
2
 requires significantly smaller cache 

resources to achieve the same memory latencies: for 

example, Figure 11 shows that even an “ideal” cache 

coherence design requires 144KB of caches per core to 

match the performance of EM
2
 with only 80KB of per-

core cache, which translates to significant silicon area 

and power savings. 

VII. CONCLUSIONS 

In this paper, we introduced EM
2
, an instruction-level 

execution migration-based memory scheme for large-

scale multicore processors. EM
2 

provides a coherent, 

sequentially consistent view of a uniform address space 

without the need for complex cache coherence protocols 

and the associated silicon area, while reducing the 

perceived cost of memory accesses: for example, on a 

set of SPLASH-2 and PARSEC benchmarks, EM
2 

reduced cache miss rates by 84% and decreased 

memory latencies by 58% on average. 

While EM
2 

offers significant savings in silicon area 

compared to a directory-based cache-coherent 

architecture and an EM
2
 design can therefore offer more 

computation resources or larger caches in the same area, 

we conservatively assume equivalent cache sizes and 

number of cores for the cache-coherent architectures we 

compare against. Further research will quantify the 

savings and determine how to best allocate them. 

 
Figure 9: Spatial locality allows the one-way EM

2
 model to keep threads mapped to cores they 

need to access for longer periods when the main memory is striped in larger blocks. (The figure 

shows an average over all benchmarks; cache miss rates are the same for both schemes). 

 
Figure 10: Impact of network latency on EM

2
. (The figure shows an average over all benchmarks). 
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Throughout this paper we have assumed a high-

bandwidth, low-latency on-chip interconnect. Although 

currently there is little demand to optimize network-on-

chip designs for such high bandwidths, we argued that 

they are not beyond the capabilities of today’s electrical 

interconnects. At the same time, the advent of practical 

on-chip optical interconnect technology promises to 

make high-bandwidth, low-latency, low-power on-chip 

networks common. Either way, the high-bandwidth 

interconnect we require offers a fertile field for future 

research. 

The performance of EM
2
 is bounded by the number 

of migrations per memory access. While we show that 

even with a relatively high migration rate EM
2 

can 

outperform a directory-based cache-coherent design, 

reducing migrations would improve overall 

performance and lower the interconnect network 

performance demands; this motivates further research 

into better migration algorithms, appropriate main 

memory striping schemes, and OS support for keeping 

all data used by a thread on the same core. Indeed, the 

unique properties of the EM
2 

architecture open up 

abundant opportunities for operating system techniques 

and optimizations. 
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