
Instruction Selection, Resource Allocation, and Scheduling
in the AVIV Retargetable Code Generator

Silvina Hanono Srinivas Devadas
Department of EECS, MIT Department of EECS, MIT

silvina@lcs.mit.edu devadas@mit.edu

Abstract—
The AVIV retargetable code generator produces optimized machine

code for target processors with different instruction set architectures.
AVIV optimizes for minimum code size.

Retargetable code generation requires the development of heuristic
algorithms for instruction selection, resource allocation, and schedul-
ing. AVIV addresses these code generation subproblems concurrently,
whereas most current code generation systems address them sequen-
tially. It accomplishes this by converting the input application to a
graphical (Split-Node DAG) representation that specifies all possible
ways of implementing the application on the targetprocessor. The infor-
mation embedded in this representation is then used to set up a heuristic
branch-and-bound step that performs functional unit assignment, oper-
ation grouping, register bank allocation, and scheduling concurrently.
While detailed register allocation is carried out as a second step, es-
timates of register requirements are generated during the first step to
ensure high quality of the final assembly code.

We show that near-optimal code can be generated for basic blocks for
different architectures within reasonable amounts of CPU time. Our
framework thus allows us to accurately evaluate the performance of
different architectures on application code.

I. INTRODUCTION
A. Hardware–Software Co-Design for Embedded Systems

For a variety of reasons, manufacturers profit from integrating
an entire system on a single integrated circuit. However, design-
ing an entire complex system as an Application Specific Integrated
Circuit (ASIC) is neither economical nor practical. Furthermore, as
time-to-market requirements place greater burdens on designers for
fast design cycles, an increasing amount of system functionality is
implemented in software relative to hardware.

In a hardware–software co-design [1] methodology, designers
first partition the system functionality into hardware and software.
A target processor, called an embedded processor, is then selected
from existing processor designs, or an ASIP (Application Specific
Instruction-Set Processor) is designed to execute the software. The
hardware, software, and ASIP are designed and the resulting system
is evaluated using a hardware–software co-simulator. The partition-
ing and processor design are repeated until an acceptable system is
developed.

As the complexity of embedded systems grows, programming in
assembly languageand optimization by hand are no longer practical.
Further, hand coding virtually eliminates the possibility of changing
the processor architecture. We argue that in order to be able to
explore the processor design space, an automatically retargetable
compilation strategy is required.

B. Overview of the AVIV Retargetable Code Generator

We are developing a retargetable code generator, AVIV, whose
inputs are the application program and a machine description of the
target processor. The machine description, written in ISDL (In-
struction Set Description Language) [2], includes an instruction set
specification and some architectural information. AVIV produces
code, optimized for minimal size, that can run on the target pro-
cessor. Code size is our optimization cost function because we
are focusing on embedded processors where the size of the on-chip
ROM is a critical issue.

By varying the machine description and evaluating the resulting
object code, the design space of both hardware and software com-
ponents can be effectively explored. AVIV focuses on architectures
exhibiting instruction-level parallelism (ILP), including Very Long
Instruction Word (VLIW) architectures.

Retargetable code optimization requires the development of
heuristic algorithms for instruction selection, resource allocation,
and scheduling. AVIV addresses these code generation subproblems
concurrently, whereas most current code generation systems address
them sequentially. The main reason why current code generators
address these problems sequentially is to simplify decision-making
in code generation. However, decisions made in one phase have a
profound effect on the other phases.

AVIV converts the application code to a graphical (Split-Node
DAG) representation that specifies all possible ways of implement-
ing the application’s basic blocks on the target processor. The
information embedded in this representation is then used to set up
a heuristic branch-and-bound step that performs functional unit as-
signment, operation grouping, register bank allocation, and schedul-
ing concurrently. While detailed register allocation is carried out as
a second step, required loads and spills due to limits on available
registers are generated and scheduled during the first step. This
ensures that a valid detailed register allocation can always be found
without undoing the chosen operation groupings or functional unit
assignments.

C. Organization of this paper

Section II describes the compiler framework of the AVIV code
generator. Section III presents the Split-Node DAG formulation
for retargetable code generation. Section IV formulates the code
generation problem as a covering problem on the Split-Node DAG.
Section V presents previous work on retargetability and code gen-
eration, as well as comparisons to our own work. Results using
our code generator and ongoing work on our compiler project are
presented in Section VI.

II. COMPILER FRAMEWORK

Figure 1 illustrates the compiler framework used by the AVIV
code generator. The compiler front end receives a source program
written in C or C++. It performs machine independentoptimizations
and generates an intermediate format description in SUIF1 [3]. The
ISDL [2] machine description of the target processor is generated
either by hand or by a high-level CAD tool. The compiler back end
takes the SUIF codeand the ISDL description as inputs and produces
assembly code specific to, and optimized for, the target processor.
The ISDL description is also used to create an assembler. The
automatically generated assembler transforms the code produced by
the compiler to a binary file that is used as input to an instruction-
level simulator. This paper focuses on the back-end of the AVIV
code generator.

AVIV uses the SUIF compiler [3] in conjunction with the
SPAM2 [4] compiler as its front-end. The front-end converts the
source program to an intermediate form consisting of expression
DAGs and control flow information. It also performs machine in-
dependent optimizations such as loop unrolling and other trans-
formations that extract machine independent parallelism. Thus, the
starting point of the AVIV compiler is a number of basic block DAGs
connected through control flow information. A sample basic block
DAG is shown in Figure 2. AVIV then focuses on extracting machine

1Stanford University Intermediate Format
2Synopsys, Princeton, Aachen, MIT

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

C/C++

Assembly

ISDL

ISDL

Binary

Source
Code Assembler

Generator

Compiler
Front End

Compiler
Back End Assembler Simulation

Environment
SUIF

AVIV

Architecture
Design

Fig. 1. Retargetable Code Generation Framework using Aviv

Basic Block:
a = b + 3
c = 2 * d
e = c - a

=

-e

*

2 d

+

b 3

Fig. 2. Basic Block DAG

dependent parallelism using the ISDL description of the target pro-
cessor. This is accomplished by converting the basic block DAGs,
or expression trees, into Split-Node DAGs.

The instruction set information contained in the ISDL machine
description is used to create several databases which are later used
to create the Split-Node DAG, as described in Section III. One
of these databases stores a correlation between the target processor
operations and the SUIF basic operations suchasADD andSUB. This
information comes from the RTL description of each instruction. A
second database stores all possible data transfers explicitly stated
in the target machine description, and is subsequently expanded to
include multiple-step data transfers as well.

The machine description also describes constraints on the in-
structions that exist in the target processor. This information is used
to remove the constrained operations from the databases ensuring
that when creating the Split-Node DAG, it will only contain legal
mappings from SUIF operations to target machine operations.

III. THE SPLIT-NODE DAG

A. The Split-Node DAG Definition

The Split-Node DAG representation contains all the necessary
information to generate code that will perform the operations of the
original basic block DAG on the target processor. In addition, it
allows for the exploration of parallelism, that is achievable on the
target architecture, within the basic block. The Split-Node DAG
provides information about the multiple ways that any operation
can be performed on the target processor. For example, an ADD
SUIF node will be split into several nodes representing the different
functional units that can perform an ADD operation. The Split-Node
DAG also includes data transfer information. It is important to
include data transfer nodes because the cost of covering the Split-
Node DAG should include the cost of transferring data between
the units. Also, by including the transfer nodes, the transfers are
automatically scheduled along with the operations.

Syntactically, a Split-Node DAG is similar to a DAG representing
the operations performed in a block of code. A Split-Node DAG has
two additional types of nodes: split nodes and data transfer nodes.
A split node corresponds to an operation node in the original DAG.
The immediate (non data transfer node) descendants of a split node
correspond to all possible ways the operation may be performed on
the target processor. The data transfer nodes are inserted on the
path between a split node and its immediate operation descendants
and correspond to data transfers required along that path.

The Split-Node DAG explicitly represents all possible imple-
mentations for a block of code on the target processor. Operation

U1 U2 U3
IM

DM

Instr Mem

Data Mem
ADD (+)
SUB (-)

ADD (+)
MUL (*)
SUB (-)

ADD (+)
MUL (*)

Databus

D

A

D

A

Fig. 3. Example Target Architecture

=

- -

e

* + + +

U1 U2

* U2 U3 U1 U2 U3

2 IM d DM b DM 3 IM

Transfer Nodes

 Split-Nodes

N1 N2

N3

N10 N11 N12 N13 N14

N9

N8

N7N6N5

N4

Fig. 4. Split-Node DAG

grouping, functional unit assignment3, register bank allocation, and
scheduling are performed simultaneously from the Split-Node DAG.
An implementation of a block of code corresponds to a set of in-
structions in which all operations have been assigned an execution
unit, and all data transfers4 between these units are accounted for.
At this stage, detailed register allocation has not been performed,
however, we estimate the number of registers required from each
register bank, and insert loads and spills if the available resources
are exceeded. This guarantees that we do not have to modify the
instruction selection during detailed register allocation.

B. Creating the Split-Node DAG

To clarify the structure of the Split-Node DAG, let us create one
for the basic block DAG shown in Figure 2. We will use the example
VLIW processorpresented in Figure 3 as the target processor. In this
processor, Unit U1 can perform addition (ADD), and subtraction
(SUB). Unit U2 can perform addition (ADD), subtraction (SUB),
and multiplication (MUL). Unit U3 can perform addition (ADD),
and multiplication (MUL). Each unit contains its own register file
and can perform only one operation at a time. The architecture also
includes an instruction memory (IM), a data memory (DM), and a
databus that connects all units and memories.

All of the information required to generate the Split-Node DAG
is extracted from the ISDL target machine description, as described
in Section II. Figure 4 illustrates the result of converting the basic
block DAG into a Split-Node DAG. Each Split-Node has children
corresponding to the multiple units that can perform the ADD, MUL,
or SUB operations on the target architecture. Note that paths from
several split nodes can reconverge to one set of operation nodes. Any
edge connecting two operations, A and B, in the original basic block
DAG, is now split into multiple edges representing all possible paths
from operation A to operation B. If these edges result in a transfer
from one unit to another, then a data transfer node is added along
that edge. This includes multi-level paths if a direct transfer path is
not available on the target architecture.

The Split-Node DAG structure can easily incorporate complex
instructions, as well as basic operations by utilizing an initial pattern
matching phase that detects which nodes in the original expression

3Operation grouping and functional unit assignment are the main tasks in instruction
selection for VLIW processors.

4These data transfers are inserted between pairs of operations executed on different
functional units.

Explore possible split-node functional unit assignments
- Estimate cost of assignment
- Select several lowest cost assignments to explore in further detail

Foreach selected assignment
- Insert required data transfers
- Generate all maximal groupings of nodes that could be executed in

parallel
- Select a minimal-cost set of maximal groupings that covers all nodes

Final solution is the lowest-cost solution found above

Fig. 5. Overall Algorithm for Covering the Split-Node DAG

DAG can be covered by a complex instruction supported by the
target processor. When generating the Split-Node DAG, additional
nodes and edges corresponding to the matched complex instructions
are added in addition to the basic operation matches.

C. Control Flow

AVIV receives a collection of basic blocks connected by control
flow information as an input. Code is generated for the basic blocks
using the methods presented in Section IV. Code corresponding to
control-flow instructions (e.g., jumps) needs to be generated. Con-
ventional tree-covering algorithms are used for this step. Since
AVIV currently targets minimum code size, control flow optimiza-
tions such as speculative execution which improve performance at
the expense of code size are not incorporated.

IV. CODE GENERATION USING THE SPLIT-NODE DAG

The goal of the code generator is to cover the Split-Node DAG
with a minimal-cost set of target processor instructions. Our
methodology addresses the instruction selection, resource alloca-
tion, and schedulingphases of code generation concurrently because
these phases are mutually dependent, thus performing them sequen-
tially generally results in non-optimal code. Covering the Split-
Node DAG, using the AVIV code generator, performs functional
unit assignment, operation and data transfer grouping into instruc-
tions, register bank allocation, and scheduling. Detailed register
allocation and peephole optimizations are performed as a second
step.

Figure 5 describes our overall algorithm for covering the Split-
Node DAG using a minimal-cost set of instructions. We introduce
multiple heuristics in order to reduce the runtime of our algorithm
without sacrificing the quality of the results. The algorithm begins
by exploring the possible split-node functional unit assignments and
selecting several of the lowest cost assignments to explore in further
detail. The selection is made based on a heuristic cost function
described in Section IV-A. Each of the selected assignments is
then explored in detail. First, the data transfers required for the
given functional unit assignment are added (Section IV-B). Next,
the nodes in the current assignment, including the transfer nodes,
are merged into maximal groupings of nodes that can be executed
in parallel (Section IV-C). The maximal groupings correspond to
VLIW instructions. A heuristic selection process (Section IV-D)
then covers the nodes in the current assignment with a minimal-cost
set of maximal groupings. An accurate cost reflecting the number
of instructions required to cover all the nodes is maintained. Finally,
the assignment resulting in the lowest cost is selected as the final
solution.

A. Exploring the Split-Node Functional Unit Assignments

The first step in covering the Split-Node DAG is to select the
target processor operation (i.e., functional unit) that should cover
each split-node. For the Split-Node DAG of Figure 4, node N1 or
N2 would be selected to cover the subtract split-node, node N10
or N11 would be selected to cover the multiply split-node, and
so on. The number of possible split-node covering assignments
can be quickly calculated by multiplying the number of possible
target processor operations covering each split-node (i.e., for this
example 2 � 2 � 3). This is a very small basic block that results
in few possible assignments. However, for typical basic blocks, the
multiplicative growth in the number of possible split-node functional

COMPL (U1)

SUB (U1)

MUL (U3)

MUL (U2)
ADD (U1)

ADD (U2)

ADD (U3)

ADD (U1)

ADD (U2)

ADD (U3)

0

0

3

3

2

2

1

3

4

3

4

SUB (U2)

Fig. 6. Pruning the Search Space of Split-Node Assignments

unit assignments quickly makes it prohibitively CPU-intensive to
explore all possible cases.

Thus, the first step of our algorithm is to prune the search space
by selecting only a few of the split-node functional unit assignments
to explore in depth. This selection is made based on a cost function
that takes into account the two main factors contributing to higher
cost (measured in number of instructions) of covering the Split-
Node DAG. These two factors are the amount of parallelism that is
foregone due to the split-node covering assignments,and the number
of data transfers required for the given assignment. It is important
to include both factors in the cost function because this allows us
to optimize the instruction selection and scheduling phases of code
generation concurrently.

Calculating this cost function for all possible functional unit
assignments can in itself take too long. Thus, we prune the search
space of possible assignments by calculating an incremental cost
for each split-node encountered and continue the search only for
split-node assignments with minimum incremental cost. The split-
nodes are tested in order of increasing level from the top of the
Split-Node DAG. For the purpose of illustrating this cost function,
let us assume that the SUB nodes in the Split-Node DAG of Figure 4
feed into a sink node that is a complement (COMPL) function that
can only be executed on unit U1. Also let us assign a cost of 1 for
each required transfer and for each node that cannot be executed
in parallel due to the current functional unit assignment. Figure 6
shows the incremental cost at each node as well as the locations
where the search space was pruned (marked by an X).

The incremental cost of the SUB node executed on unit U1 is 0
because it does not require a transfer to the COMPL node which is
also executed on U1, and it does not preclude any possible parallel
execution. The SUB on U2, however, has a cost of 1 because it
requires a data transfer to unit U1 for the COMPL function. Thus,
the search space is pruned at the SUB on U2 node. The incremental
cost of implementing the MUL operation on unit U2 or U3 are the
same, thus both paths are explored. Let us now examine the paths
that include the MUL operation on unit U2. Performing the ADD on
unit U1 introduces an incremental cost of 2 due to the two transfers
required to load its operands. It does not require a transfer to the
SUB operation because both are executed on unit U1. Also, it does
not preclude the possible merging of the ADD with the MUL because
the MUL operation is executed on unit U2. The ADD on unit U2,
on the other hand, incurs an incremental cost of 4 (2 for its two
operands, 1 because a transfer to the SUB operation is required, and
an additional 1 because it precludes the merging of the ADD and
MUL operations since both are executed on the same unit). Thus,
the result, for this example, would be to select the two assignments
where both the SUB and ADD operations are performed on unit U1.

B. Adding Required Transfers

For each selected split-node covering assignment, the required
data transfer nodes are then added. In the case of a single data trans-
fer path, this step is straightforward because for each pair of nodes
that requires a data transfer between them, there is only one possible
selection of data transfer node. However, in architectures contain-
ing multiple transfer paths, there may be more than one possibility

N2 N9 N10 N14

N2 0 1 1 1
N9 1 0 0 1
N10 1 0 0 0
N14 1 1 0 0

Fig. 7. Matrix for Finding Maximal Cliques

gen max clique(clique, index) f
for (i= 0; i < number of nodes; i++) f

if (i can be executed in parallel with all the nodes in the
current clique)
if (adding i will not preclude adding any other node)

if (i< index) // Pruning condition
return;

else
add i to clique;

g

for (i= 0; i < number of nodes; i++) f
if (i can be executed in parallel with all the nodes in the

current clique)
gen max clique(clique with i added, MAX(i, index));

g
g

Fig. 8. Pseudo-Code for Generating Maximal Cliques

for any given data transfer. Thus, the problem resembles our initial
problem of selecting the best split-node covering assignments where
the number of options grows multiplicatively. Once again we apply
our heuristic in order to select among the possible transfer paths,
except that now the cost function is based solely on parallelism.

C. Maximal Groupings

Once we have selected a set of possible split-node covering
assignments and their corresponding data transfer nodes, we want
to explore these assignments in depth to find the one that will result
in the minimum-cost set of target processor instructions to cover the
nodes in the assignment.

The rest of this section will use the term assignment to refer to
the collection of functional unit assignments made to cover all the
split-nodes, along with their associated transfer nodes.

The goal is to examine the nodes in a given assignmentand merge
them into groups of nodes that can be executed in parallel on the
target processor. Each grouping corresponds to a VLIW instruction.
We then want to select the minimal-cost set of VLIW instructions
that can cover all the nodes in the assignment.

In order to reduce the total cost of the VLIW instructions required
to cover the Split-Node DAG, it is preferable to select instructions
that make good use of the parallelism provided in the target pro-
cessor. Thus, the groupings of nodes that we examine are all the
maximal groupings, or maximal cliques of parallel nodes. In other
words, subsets of a larger clique are not considered as a possible
grouping. Note that every node in the assignment being explored is
covered by at least one clique. It is possible for a clique to contain
only one node. Also, the maximal cliques group operation nodes
together with data transfer nodes.

C.1 Generating the Maximal Cliques

We create an N �N matrix representing pairwise parallelism,
where N is the number of nodes in the current assignment of the
Split-Node DAG. This matrix contains a 0 for element [i, j] if Ni

can be executed in parallel with Nj , and 1’s elsewhere. Any two
operations using different functional units and having no directed
path between them can be performed in parallel. Figure 7 shows the
matrix for a proposed assignment to the Split-Node DAG of Figure 4
consisting of nodes N2, N9, N10, and N14. Row N14, for example,
specifies that an ADD on unit U3 (N14) can be performed in parallel
with a MUL on unit U2 (N10).

The maximal cliques generated for this example would be:
(C1 : N2), (C2 : N10, N9), (C3 : N10, N14).

The pseudo-code shown in Figure 8 describes our algorithm for
generating all the maximal cliques using the pairwise parallelism
matrix. The routine gen max clique is called from a parent routine
within a for-loop which iterates through all the nodes as the starting

clique node. The value of the argument index is set to the starting
clique node number.

Within the gen max clique routine, the first loop adds all the
nodes that do not preclude the addition of any other nodes to the
current clique. When no more nodes can be added that meet this
criterion, the second loop spawns off several recursive calls to
gen max clique where each call has one new node added to the
clique. The new node can be executed in parallel with all the nodes
in the current clique; however, it does preclude the addition of some
other nodes. This process is repeated with the new clique until no
new nodes can be added, at which point a maximal clique has been
found.

The pruning condition follows from the fact that if i< index, then
we will have already generated all the cliques that will be generated
in this (recursive) call. Thus, we can terminate this branch. For
example, suppose that we have a clique c = fjg and we are adding
a node i to the clique that does not preclude the selection of any
other node. If i < j, then we would have already generatedmaximal
cliques from clique fi; jg, when we started with clique fig as the
seed.

C.2 Reducing the Number of Maximal Cliques Generated

Generating all of the maximal cliques is the most time consuming
portion of our algorithm. In order to improve runtime, we have
implemented a heuristic that only allows the merging of nodes whose
level from the bottom and level from the top of the solution DAG
are close to each other. It is generally not a good idea to merge
nodes whose levels from top or bottom are very different because
chances are that such a merging would preclude the merging of
other nodes that would allow greater use of parallelism. We found
that incorporating this heuristic improves runtime because fewer
maximal cliques are generated, and maintains the quality of our
results.

C.3 Eliminating Illegal Instructions

The maximal clique generation phase merges all nodes that have
no data dependence between them and are executed on different
functional units into single instructions (i.e., cliques). Merging
based solely on this criterion is insufficient to guarantee legality
of the instructions on the target processor. Illegal groupings are
described in the Constraints section of the ISDL description. Thus,
each proposed instruction must be compared with the constraints of
the target processor. If the constraints are not met, then the illegal
instruction, or maximal clique, is split into instructions with smaller
cliques until all the constraints are met.

D. Selecting a Minimum-Cost Set of Maximal Cliques

Once the maximal cliques have been generated, the next step is
to find the minimum-cost set of cliques that cover all the nodes in
the assignment.

Our covering algorithm begins with an empty solution set. It
then selects a maximal clique that covers the largest number of
remaining uncovered nodes whose children have all been covered
(i.e., nodes at the bottom of the Split-Node DAG will be scheduled
before nodes that depend on them, thus creating a schedule as the
cliques are selected) and whose register requirements do not exceed
the available resources. The available resources are determined by
performing a liveness analysis on the selected nodes and maintaining
a running upper bound on the number of required registers for each
register bank. After selecting the clique, the remaining cliques are
shrunk so that they no longer include any of the covered nodes. This
process is repeated until all the nodes have been covered.

In the case of a tie, where several cliques cover an equal number
of nodes, the algorithm differentiates among them by using a looka-
head cost function that estimates the number of cliques required to
cover the rest of the nodes, if that particular clique was added to the
solution set.

In the event that all the remaining cliques contain nodes that
would require a spill to memory in order to satisfy the register
resource constraints, the algorithm determines which covered node
should be spilled. The decision is made based on the most needed
resource, and the number of parent nodes that would later require
the spilled value to be reloaded from memory. Once the node to
be spilled is selected, the required load and spill nodes are added

transfer
node ��

��
��

��
��
��

(b)(a)

*

L L

S

++

*

-

-

Fig. 9. Inserting Loads and Spills into the Split-Node DAG (a) the
original Split-Node DAG, (b) the Split-Node DAG augmented with load
(L) and spill (S) nodes

to the Split-Node DAG, and any transfer nodes that are no longer
required are removed, as shown in Figure 9. Here the + node was
selected as the node to spill, and the transfer node between the +
and- nodes was removed. New maximal cliques are then generated
for all the remaining uncovered nodes including the new load and
spill nodes. The covering algorithm then continues with the new
maximal cliques and the remaining uncovered nodes.

E. The Covering Solution

The assignment that required the minimum-cost set of cliques
to cover all its nodes is selected as the final assignment. The order
in which cliques were selected determines a schedule of the cliques
(i.e., instructions). The final covering solution is thus a minimal-
cost set of shrunk maximal cliques that cover the Split-Node DAG.
It implies that unit assignment has been made, operation and data
transfer nodes have been merged into VLIW instructions, register
bank allocation has been performed including the addition of load
and spill nodes when necessary,and a schedulehas been determined.
The remaining task is that of detailed register allocation.

F. Detailed Register Allocation

We perform detailed register allocation using conventionalgraph
coloring algorithms [5]. We are guaranteed to be able to color each
register bank graph using the given number of registers because we
have analyzed the variable lifetimes in the instruction selection and
scheduling step. However, it is possible that not all the inserted load
and spill operations are required because the lifetime analysis used
for inserting these operations is pessimistic.

G. Peephole Optimization

If, after performing detailed register allocation, it is determined
that a particular load or spill is not needed, peephole optimization
will be performed in an attempt to improve the schedule. It will
remove the unnecessary loads and spills and try to compact the
schedule by moving other operations into the empty slots if the
dependency constraints allow it. This may, or may not, reduce the
final number of required instructions.

V. RELATED WORK

This section presents a brief survey of compiler literature that
pertains to retargetable compilers for embeddedsystems, along with
a comparison to our own work. We briefly review several represen-
tative research projects in this area: MIMOLA [6], FLEXWARE [7],
CHESS [8], and the ILP-Based approach of Wilson et al. [9].

A. Mimola

MIMOLA’s distinguishing feature is a microcode compiler that
infers rules for code generation directly from a structuraldescription
(e.g., a net-list) of the target architecture instead of a behavioral
description (e.g., the instruction set). The advantage of this approach
is that the same machine description is used for both the synthesis of
the target architecture and the generation of machine code. However,
it is more difficult for the compiler to find code optimizations without
having explicit behavioral information.

B. FlexWare

FLEXWARE includes a retargetable code generator, CODESYN,
that takes an algorithm expressed in a high-level language and maps

it onto a user defined instruction set to produce optimized machine
code for a target ASIP or a commercial processor core. It uses a
mixed structural and behavioral level model. This mixed model
includes an enumeration of all possible partial instructions (i.e., mi-
croinstructions), an abstract netlist describing the data path topology,
and a definition of the register classes.

CODESYN first converts the high-level source program into a hi-
erarchy of Control-Data Flow Graphs (CDFGs). A distinguishing
feature of CODESYN’s pattern matching phase is its use of pre-sorted
tree-like patterns that allow for pruning of the search tree of pos-
sible target processor instruction matches [10]. It determines the
best implementation of the CDFG on the target processor, includ-
ing the support of complex instruction recognition and utilization.
Global scheduling and register allocation are performed. Finally,
the compaction, assembly, and linkage phases produce the machine
code.

The general framework of CodeSyn is similar to our own. How-
ever, AVIV is more focused on determining a globally optimum solu-
tion which considers instruction selection, resource allocation, and
scheduling concurrently, rather than performing the various code
generation steps sequentially.

C. Chess

CHESS is a retargetable code generation system targeting fixed-
point digital signal processors and ASIPs. It generates machine
code for the target processor, described in the nML language, and
provides feedback as to how well suited the target processor is for
the given application.

The nML target processor description is translated into an
Instruction-Set Graph (ISG), a mixed structural and behavioral rep-
resentation of the processor. The ISG models connectivity and
encoding restrictions, as well as structural hazards.

The code generation process first translates the input algorithm
into a CDFG. Code selection covers the CDFG with patterns that
correspond to partial instructions supported by the instruction set,
called bundles. Rather than making an exhaustive list of all possible
bundles, they bundle instructions on the fly by searching for valid
paths in the ISG. In CHESS each phase of code generation is per-
formed separately; however, in order to ensure phase coupling, an
intermediate scheduling view is constructed after each phase which
takes into account constraints imposed by any previous phase.

CHESS is driven by nML which differs from ISDL, particularly in
the way constraints are handled. Constraints in ISDL allow the code
generator to treat all operations as completely orthogonal. Illegal
operation combinations are then removed by comparing the maximal
cliques to the constraints. nML, on the other hand, is an attributed
grammar where production rules define the instruction set [11].
Therefore, all legal groupings of operations must be explicitly listed.
Thus, ISDL descriptions can be more concise, and, as a result,
easier for the code generator to handle. Further, as stated above,
each phase of code generation is performed separately, though not
independently. Again, AVIV is focused on solving the various code
generation problems concurrently.

D. Wilson et al.

Wilson et al.’s Integer Linear Programming (ILP) based approach
to code generation is based on a behavioral model of the target pro-
cessor. Similar to FLEXWARE and CHESS, code generation begins
by translating a high-level source language into a Data-Flow Graph
(DFG). The designer can supply optimization hints. Pattern match-
ing is used to recognize complex instructions. Next, a possible
schedule that attempts to minimize overhead costs such as spills to
memory and address calculations is identified. Register assignment,
including necessary spills to memory, is then performed.

The cornerstone of all the optimizations is an ILP solver that can
simultaneously do scheduling, instruction selection, register assign-
ment, and compaction, as well as select from alternative spill and
addressing candidates. Since all the constraints are considered si-
multaneously in the ILP formulation, trade offs can be made between
the various optimizations leading to a globally optimal solution.

The problem with using ILP solvers for code generation is that
finding the optimal solution is far too CPU intensive. The ILP
solver does not have sufficient information about the structure of the
problem in order to make intelligent decisions about how to prune

Basic Block Original DAG Split-Node DAG #Registers #Spills #Instr In Solution CPU Time
#Nodes #Nodes per RegFile Inserted By Hand Aviv (secs)

Ex1 8 30 4 0 7 7 (7) 0.1 (0.2)
Ex2 13 56 4 0 10 10 (10) 0.4 (37.2)
Ex3 11 55 4 0 13 13 (13) 0.9 (122.3)
Ex4 15 81 4 0 16 16 (16) 8.2 (41,466)
Ex5 16 106 4 0 14 16 (14) 10.7 (89,337)
Ex6 15 81 2 2 18 22 (18) 6.9 (29,072)
Ex7 16 106 2 1 15 18 (15) 9.9 (64,748)

TABLE I
Code Generation Experiments for the Example Target Architecture

Basic Block Original DAG Split-Node DAG #Registers #Spills #Instr In Solution CPU Time
#Nodes #Nodes per RegFile Inserted By Hand Aviv (secs)

Ex1 8 17 4 0 8 8 0.1
Ex2 13 28 4 0 11 12 0.2
Ex3 11 23 4 0 13 13 0.7
Ex4 15 29 4 0 16 17 3.0
Ex5 16 51 4 0 15 15 11.4

TABLE II
Code Generation Experiments for the Target Architecture II

the search space. Thus, in general, user supplied hints are required
to produce good code within a reasonable amount of CPU time.

VI. EXPERIMENTS AND ONGOING WORK

We have implemented a preliminary version of the retargetable
code generator and run some experiments on several basic blocks.
These examples are generic basic blocks that occur in DSP appli-
cation code. Examples 1-2 are simple basic blocks that are found
as part of a conditional statement or loop. Examples 3-5 are simple
basic blocks of loops that have been unrolled twice.

AVIV generated code for these basic blocks targeting minimum
code size. The results for the example target architecture of Figure 3
are summarized in Table I. The table summarizes the number of
nodes in the original DAGs of the basic blocks examined, as well
as, the number of nodes in the equivalent Split-Node DAGs for
the example architecture. It compares the number of instructions
found by hand-coding, to the solution found by AVIV. The hand-
coded results are all optimal. The number of instructions equals the
number of clock cycles required to execute the basic block on our
target architecture. Examples 1-5 were run with four registers per
register file. These examples did not require any spills to memory.
Examples 4 and 5 were then rerun with two registers per register
file to show what happens when the required number of registers
exceeds the available resources. Both of these examples resulted
in spills to memory, and their results are presented in examples 6
and 7 respectively. Note, however, that the optimal solutions for
examples 6 and 7 did not require spills. These solutions were not
found by AVIV because the initial functional unit assignment cost
function did not detect that the functional unit assignments it made
would result in spills to memory.

We see that AVIV’s results are quite close to optimal. The CPU
times shown for finding the solutions were measured on a Sun
Microsystems Ultra-30/300. AVIV incorporates multiple heuristics
that can be turned off if desired. For example, rather than selecting
only a few of the possible split-node assignments, it can generate all
possible assignments. Also, heuristics such as using the level from
top and bottom to reduce the number of maximal cliques generated,
can be turned off. In parentheses, we present the results of running
these examples with the heuristics turned off. Note that turning
off the heuristics does not result in an exact algorithm for code
generation since we do not explore all possible schedules. It is clear
that our pruning heuristics work very well, and generate the same
quality results within a fraction of the CPU time required to find the
optimum solution.

Our purpose in developing the Split-Node DAG structure, and
heuristic algorithms for covering it, was to enable retargetable code
generation. With this in mind, we changed the target architecture of
Figure 3 by removing the SUB operation from functional unit U1,
and completely removing functional unit U3. The results using this

architecture are summarized in Table II. As can be seen, for several
of these basic blocks, removing a functional unit does not degrade
performance. The flexibility of the AVIV retargetable code genera-
tion system allows for the exploration of different architectures until
the best one is found.

We are currently working on modifying the initial functional
unit assignment cost function to incorporate register resource limits
so that it can detect assignments that are likely to require spills to
memory. In addition, we are working on peephole optimization
methods that will be applied after detailed register allocation.

ACKNOWLEDGMENTS

This research is supported by NSF Contract MIP-9612632.

REFERENCES

[1] R. K. Gupta and G. De Micheli. Hardware–Software Cosyn-
thesis for Digital Systems. IEEE Design & Test of Computers,
pages 29–41, September 1993.

[2] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An In-
struction Set Description Language for Retargetability. In
Proceedingsof the 34th Design Automation Conference,pages
299–302, June 1997.

[3] Stanford Compiler Group. The SUIF Library, 1.0 edition,
1994.

[4] SPAM Research Group. SPAM Compiler User’s Manual, 1.0
edition, 1997.

[5] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins,
and P. Markstein. Register Allocation via Coloring. Computer
Languages, 6:47–57, 1981.

[6] P. Marwedel. The MIMOLA Design System: Tools for the De-
sign of Digital Processors. In Proceedings of the 21th Design
Automation Conference, pages 587–593, 1984.

[7] P. Paulin et al. FlexWare: A Flexible Firmware Development
Environment for Embedded Systems. In Code Generation
for Embedded Processors, pages 67–84. Kluwer Academic
Publishers, 1995.

[8] D. Lanneer et al. CHESS: Retargetable Code Generation for
Embedded DSP Processors. In Code Generation for Embed-
ded Processors, pages 85–102. Kluwer Academic Publishers,
1995.

[9] T. Wilson et al. An ILP-Based Approach to Code Generation.
In Code Generation for Embedded Processors, pages 103–
118. Kluwer Academic Publishers, 1995.

[10] C. Liem, T. May, and P. Paulin. Instruction-Set Matching and
Selection for DSP and ASIP Code Generation. In Proceedings
of the European Design and Test Conference, pages 31–37,
Feb 1994.

[11] M. Freericks. The nML Machine Description Formalism.
Technical report, TU Berlin, 1993.

