
Instruction Selection Using Binate Covering for Code Size Optimization

Stan Liao Srinivas Devadas Kurt Keutzer Steve Tjiang
Department of EECS Advanced Technology Group

Massachusetts Institute of Technology Synopsys, Inc.
fsyliao,devadasg@rle-vlsi.mit.edu fkeutzer,tjiangg@synopsys.com

http://rle-vlsi.mit.edu/spam

Abstract—We address the problem of instruction selection
in code generation for embedded DSP microprocessors. Such
processors have highly irregular data-paths, and conventional
code generation methods typically result in inefficient code.

Instruction selection can be formulated as directed acyclic
graph (DAG) covering. Conventional methods for instruction se-
lection use heuristics that break up the DAG into a forest of trees
and then cover them independently. This breakup can result
in suboptimal solutions for the original DAG. Alternatively, the
DAG covering problem can be formulated as a binate covering
problem, and solved exactly or heuristically using branch-and-
bound methods.

We show that optimal instruction selection on a DAG in
the case of accumulator-based architectures requires a partial
scheduling of nodes in the DAG, and we augment the binate cov-
ering formulation to minimize spills and reloads. We show how
the irregular data transfer costs of typical DSP data-paths can
be modeled in the binate covering formulation.

Keywords—code generation, instruction selection, digital sig-
nal processors

I. INTRODUCTION

An increasingly common micro-architecture for embedded sys-
tems is to integrate a microprocessor or microcontroller, a ROM and
an ASIC all on a single IC. Such a micro-architecture can currently
be found in many diverse embedded systems, e.g., FAX modems,
laser printers, and cellular telephones.

The programmable component in embedded systems can be an
application-specific instruction processor (ASIP), a general-purpose
microprocessor such as the SPARC, a microcontroller such as Intel
8051, or a digital signal processor such as TMS320C25. This paper
focuses on the DSP application domain, where embedded systems
are increasingly used. Many of these systems use processors from
the TMS320C2x, DSP5600x or ADSP families, all fixed-point DSP
microprocessors with irregular data-paths.

Code size matters a great deal in embedded systems since program
code resides in on-chip ROM, the size of which directly translates into
silicon area and cost. Designers often devote a significant amount of
time to reduce code size so that the code will fit into available ROM;
exceeding on-chip ROM size could require expensive redesign of the
entire IC [7]. As a result, a compiler that automatically generates
small, dense code will result in a significant productivity gain as
well.

We believe that generating the best code for embedded processors
will require not only traditional optimization techniques, but also
new techniques that take advantage of special architectural features
that decrease code size. This paper presents one of our efforts at
developing such techniques. We address the problem of instruction
selection in code generation for embedded DSP microprocessors.
We emphasize decreasing code size, although our techniques can
also increase execution speed.

Instruction selection can be formulated as directed acyclic graph
(DAG) covering. Conventional methods for instruction selection use
heuristics that break up the DAG into a forest of trees, which are
then covered optimally but independently [1] [3]. Independent cov-
ering of the trees may result in a suboptimal solution for the original
DAG. Trees, as a heuristic formulation, inherently preclude the use
of complex instructions in cases where internal nodes are shared.
Alternatively, the DAG covering problem can be formulated as a bi-
nate covering problem [11], and solved exactly or heuristically using
branch-and-bound methods. We present the basic binate covering
formulation of instruction selection in Section III. Unlike the heuris-
tic formulation of trees, a good heuristic procedure for solving the
covering problem is likely to elude the difficulties faced by trees.

The formulation of Section III ignores data transfer costs between
nodes in the DAG. This formulation is used to obtain a preliminary
instruction selection where pattern DAGs that cover more than two
nodes in the given binary DAG are selected. The binary DAG is
transformed into a general DAG and a second step of instruction
selection taking into account data transfer costs is performed.

In Section IV, we generalize the work of Aho et al. [2] and
give a binate covering formulation for optimal code generation for
a one-register machine, which takes into account spill and reload
costs. Next we provide a formulation in Section V which takes into
account irregular data transfer costs under a more general machine
model.

II. MOTIVATING EXAMPLE

Fig. 1 shows a simplified model of the data-path of Texas In-
struments’ popular TMS320C25 architecture. The TMS320C25 is
an accumulator-based machine. In addition to the usual ALU, there
is a separate multiplier which takes input from the T register and
memory and places the result in the P register. Note that there are no
general-purpose registers other than the accumulator.

An important feature in this architecture and other DSP architec-
tures is that certain instructions assume their operands are in specific
locations (registers or memory) and deposit their results in specific
registers. For example, the MPY instruction assumes that the mul-
tiplier and multiplicand come from memory and the T register and
writes the result into the P register. Another example is the ADDT
instruction, which adds an operand from the memory, shifted by the
amount specified in the T register, to the accumulator.

It is also not unusual to find complex instructions in DSPs. Typ-
ical examples include add-with-shift (e.g., TMS320C25 ADD and
ADDT) and multiply-accumulate (e.g., DSP56000 MAC). Utilizing
these instructions is essential to generating compact and efficient
code. The conventional heuristic of breaking up a DAG into trees
prohibits the use of these complex instructions in the case where
internal nodes are shared. In addition, this heuristic may introduce
unnecessary stores of intermediate values.

Consider the subject DAG and pattern DAGs shown in Fig. 2.
Conventional tree-covering will first break up the DAG at node n3,
thereby prohibiting the use of pattern (d). Fig. 3(a) shows the result-

A−Bus

ARP
AR

AGU

D−Bus

D mem

ALU

acc

T

P

x

x

Fig. 1. TMS320C25 data-path (simplified model)

+
n1

*

+
n2

n3

* cost = 1 cost = 1+

*

+
cost = 1

(a)

(b) (c)

(d)

Fig. 2. (a) Subject DAG and (b)–(d) Pattern DAGs

ing tree-cover, and Fig. 3(b) shows the optimal DAG cover. Even
if the pattern (d) is not used, tree-covering may still result in ineffi-
cient code. For instance, using tree-covering we might first evaluate
node n3, store it into memory, and then evaluate nodes n1 and n2.
However, with the data-path in Fig. 1, it is possible to let the inter-
mediate result remain in the P register and evaluate n1 and n2 using
the instruction APAC, which adds the contents of the P register to the
accumulator without destroying the former.

In the sequel we will show how to solve both the problem of
selecting complex instructions and the problem of data transfers us-
ing a binate-covering formulation of instruction selection. The first
problem is easily taken into account in the basic DAG covering for-
mulation (Section III). The second problem is tackled in Section IV
and Section V.

III. BASIC FORMULATION

The formulation in this section assumes that the target machine
is such that data transfers between registers or between registers and
memory have zero cost.

A subject DAG corresponds to a basic block in the given program
[3]. This subject DAG is covered using pattern DAGs that corre-
spond to individual machine instructions. Each pattern DAG has an
associated cost. The DAG covering problem is to cover the subject
DAG with a set of pattern DAGs with minimum cost.

+ +

m4 m5

+

*

+

m2 m3

m1

(a) (b)

*

Fig. 3. Two coverings of subject DAG

m1 m2 m3 m4 m5

m2 +m4 2 1 2 1 2
m3 +m5 2 2 1 2 1

m2 +m1 1 0 2 2 2
m3 +m1 1 2 0 2 2

Fig. 4. Covering Matrix

There are three steps associated with DAG covering.
1. All matches of the pattern graphs in the subject graph are

generated.
2. A covering matrix is created which expresses the conditions

which lead to a legal cover.
3. A cover with minimum cost is obtained using a branch-and-

bound algorithm. Alternatively, heuristic methods can be used
to find covers with low cost.

Step 1 is a relatively straightforward pattern matching step. A
Boolean variable, call itmi, corresponds to each successful match of
a pattern graph in the subject graph G. Let the nodes in the subject
graph be nj ; 1 � j � N . Each node nj 2 G can be covered by
a set of matches mj1 ; mj2 ; � � � ; mjP . All possible matches m1

through m5 for the example subject DAG are marked in Fig. 3.
Step 2 generates a covering matrix in which each column cor-

responds to a distinct match mi. Let there be M columns,
mi; 1 � i � M . The rows correspond to disjunctive clauses
over the mi’s, and represent covering constraints. In the basic DAG
covering formulation, there are two different sets of rows, i.e., dis-
junctive clauses.

� Rows in the first set represent the different ways that any partic-
ular node nj 2 G can be covered using the different matches.
For the subject graph of Fig. 2(a) the covering matrix is shown
in Fig. 4. The first row in the matrix (m2 +m4) corresponds
to node n1 and indicates that node n1 can be covered either by
match m2 or match m4, as indicated in Fig. 3. Therefore, we
put 1’s in the entry corresponding to column m2 and column
m4 and 2’s in other columns. Similarly, the next row indicates
that either m3 or m5 needs to be selected to cover node n2.
Note that in this first set of rows we only need clauses that cover
the root nodes, because the selection of a particular match will
necessitate the selection of matches that cover nodes connected
to inputs (see below).

� Matches are allowed to have nodes internal to the match feed
nodes not in the match. This results in a second set of rows. For
each match mi, we have to ensure that the non-leaf inputs to
the match are the outputs of other matches. By non-leaf inputs
we mean internal nodes (in contrast to primary inputs) in the
DAG that serve as inputs to other nodes. Let the non-leaf inputs
to match mi be si1 ; si2 ; � � � ; siT . For each ik , let Wik be
the set of matches that have sik as an output node. Wik can be
viewed as a disjunctive expression over the Boolean variables
corresponding to each match.

Selecting match mi implies that we have to satisfy each of the
Wik . We can write the expression

mi) Wik ; 1 � k � T

which translates to the clauses

(mi +Wi1) � (mi +Wi2) � � � (mi +WiT):

Each of these clauses corresponds to a distinct row in the cov-
ering matrix. Each match mi generates T additional rows if it
has T non-leaf inputs.
In the covering matrix of Fig. 4, the second set of rows cor-
respond to these additional clauses. For match m2, we have
to implement the non-leaf node n3 as the output of another
match. This can be done using match m1 alone. Therefore,
we generate the clause (m2 +m1), corresponding to the third
row. Since m2 is complemented in the clause we put a 0 in
the entry corresponding to column m2. We put a 1 in the entry
corresponding to column m1 and 2’s in other columns. The
fourth row is generated for match m3, which if selected would
require the selection of m1.

The cost of a match cost(mi) is simply the cost of its associated
pattern DAG. In Step 3, we select a set of columns from the covering
matrix such that the cumulative cost of the columns is minimum,
and such that every row either has a 1 in the entry corresponding
to a selected column, or has a 0 in the entry corresponding to an
unselected column. In our example, we will end up selectingm4 and
m5 with a minimum total cost of 1 + 1 = 2; this corresponds to the
covering of Fig. 3(b). The reader can verify that selecting m4 and
m5 satisfies all the disjunctive clauses of Fig. 4.

As an aside note that tree covering methods would not be able
to discover the optimal solution of Fig. 3(b) since the subject DAG
would be broken up into three trees, which when covered indepen-
dently would result in the covering of Fig. 3(a) that has a cost of
1 + 1 + 1 = 3.

This problem is called the binate covering problem because the
variables mi are present in their true and complemented forms. This
problem is NP-complete, and has received considerable attention.
Exact solutions are given in [5], [9]. These techniques have been
improved recently in [6] without compromising optimality. Heuristic
methods have been given in [8], [9].

We first solve the binate covering problem with zero data transfer
costs and determine matches that use pattern DAGs with more than
one operator, e.g., the pattern DAG of Fig. 2(b). The original DAG
is modified to reflect the use of complex operators. Thus, the new
DAG can have nodes with more than two inputs. A second step of
binate covering is performed on the new DAG that accurately models
spill and data transfer costs. This step is described in the next two
sections.

IV. DATA TRANSFER COSTS IN ONE-REGISTER MACHINES

We focus on one-register machines, or accumulator-based archi-
tectures. In such architectures, accumulator spills to memory and
reloads from memory can account for a large fraction of the in-
structions. The binate covering formulation must take this cost into
account in order to find an optimal instruction selection.

The major complication in modeling memory spills is that the
spilling of values depends on the chosen instruction schedule [10].
However, since we are performing instruction selection we do not
as yet know the schedule. We therefore have to both choose the
instructions and determine a (partial) schedule of these instructions
in binate covering. The partial schedule is determined by adding
Boolean variables corresponding to adjacency constraints over pairs
of nodes in the DAG that are connected by an edge.

A. Previous Work

In [2] Aho et al. presented optimal code generation algorithms
(on DAGs) for two different models of one-register machines:

� Non-commutative machines, in which available operations are:
1. a a op m
2. a m (load)
3. m a (store)

where a denotes the accumulator andm denotes memory.
� Commutative machines, in which available operations are:

1. a a op m
2. a m op a
3. a m (load)
4. m a (store)

We find the models above inadequate for the following reasons.
First, in our application the given DAG can have ternary or higher-
arity operators depending on the complex patterns chosen in the first
step of binate covering. Second, the non-commutative model of [2]
does not take commutative operators into account. For example,
in evaluating the expression (b + c), the value of b must be first
loaded to the accumulator and then added with c. However, if b and
c are themselves expressions, the accumulator may already contain
c immediately before the evaluation of (b + c). Since addition is
commutative, adding the accumulator with b is perfectly acceptable.
The commutative model, on the other hand, assumes that the first
operand of any operation can be in memory. In general, machines
will have both commutative and non-commutative operators.

We believe the best way to handle commutativity is to treat each
operation independently, using a separate pattern for the commutative
forms of the operations wherever necessary, rather than assuming
commutativity in the machine model.

We present a compact binate-covering formulation for the opti-
mal code generation for the non-commutative one-register machine
taking into account the commutativity of individual operators in the
following sections. The operators can be binary, ternary or higher-
arity operators. For ease of exposition we will concentrate on binary
operators; however, the techniques generalize to higher-arity opera-
tors.

B. Definitions

Let H be a directed graph. A u-cycle in H is a set of edges that
would form a cycle if the edges were considered undirected. If H
contains a u-cycle, it is said to be u-cyclic; otherwise, it is u-acyclic.
We use the terms d-acyclic, d-cyclic, and d-cycle for the case where
the directions of the edges are considered.

A worm is a directed path in a DAG D such the nodes in the path
will appear consecutively in the schedule [2]. A worm-partition ofD
is a set of disjoint worms. An edge is said to be selected with respect
to a worm-partition if it belongs to some worm in the partition.
Associated with a worm-partition is a directed graph G. Each node
ofG corresponds to a worm inD, and there is an edge between nodes
w1 and w2 of G whenever there is an edge inD between some node
of wormw1 and some node of wormw2. We can think of derivingG
from D (given a worm-partition) by successively merging the nodes
that are connected by selected edges (imploding the edge).

A worm-partition is said to be legal if a valid schedule can be
derived from G such that the nodes of each worm appear consecu-
tively in the schedule. Henceforth we shall denote byD the original
expression DAG, and byG the induced graph of a worm-partition of
D. A sufficient condition for a worm-partition to be legal is that G
is d-acyclic [2]. (This condition, however, is not always necessary.
See Theorem 4.)

ADEHI

B
C

FG

No schedule

(c)

A B

C D

E F

GH

I

(a)

Schedule: B ADEH FG CI

A B

C D

F

GH

I

E

B

ADEH FG

CI

(b)

B

C D

E F

GH

I

A

FAC

HI

BDEG

Schedule: AC F BDEG HI

denotes worms

Fig. 5. Worms and schedules. (a) A DAG with its worm-partition and
a derived schedule (b) Another worm-partition and schedule (c)
An illegal worm-partition

Fig. 5 illustrates the concepts of worms and worm-partitions, and
their relation to scheduling. The graph with shaded nodes is that of
G. In (a) and (b), two different worm-partitions of the DAG, along
with their corresponding schedules, are shown. The schedules are
derived by scheduling G and then expanding the nodes of G back
into nodes of D. Note that in each schedule the nodes in a worm
are placed consecutively. In (c), an illegal worm-partition is shown.
This partition gives rise to a cycle in G, and no schedule exists that
places the nodes in each worm consecutively.

C. Fundamental Adjacency Clauses

Because the selection of an edge indicates that its head-node and
tail-node will be placed adjacently in the schedule, the following
fundamental adjacency clauses (or fundamental clauses) must be

(a) (b)

B

D

E ABCDE

C

A

Fig. 6. (a) Reconvergence in a DAG with a worm (b) A cycle in G
due to the worm

satisfied.
If a node has multiple fanouts, then at most one of the
fanout edges may be selected. If a node has multiple
fanins, then at most one the fanin edges may be selected.

Clearly the fundamental clauses are necessary for a worm-partition to
be legal in any DAG. (Simply stated, in any schedule each node may
have at most one immediate predecessor and at most one immediate
successor.) Let ei be a Boolean variable which takes the value of 1
if edge i is selected, and 0 otherwise. The fundamental clauses are,
for each node n,

ei + ej (1)

for every pair of fanout edges i and j of n, and for every pair of fanin
edges i and j of n. We have to satisfy each clause generated above.
The cost of all the ek’s is equal to zero. However, not choosing an ek
will imply spilling and reloading and associated costs, as described
in Section IV-E.

The following theorem shows that these fundamental clauses are
sufficient for u-acyclic DAGs.

Theorem 1: If the subject DAG D is u-acyclic, then the funda-
mental clauses are sufficient. In other words, any worm-partition
that satisfies the fundamental clauses is legal.

Proof: If D is u-acyclic, then selecting an edge and merging
the head- and tail-nodes of the edge results in a DAG that remains
u-acyclic. By repeating this process we cannot possibly create a
u-cycle. Therefore, by merging the nodes according to the selected
edges of the worm-partition, no u-cycle (much less a d-cycle) will
appear in G. This implies that the worm-partition is legal.

If there are u-cycles in D the fundamental clauses become in-
sufficient. A good example is one of reconvergent paths (Fig. 6).
Note, on the other hand, that selecting an edge that is not part of any
u-cycle in D will not create a d-cycle in G. Thus we only need to
focus on writing additional clauses for u-cycles.

D. Clauses for U-Cycles

Since u-cycles in D may lead to d-cycles in G, we need to add
clauses that prevent this from happening. Let C be a u-cycle of D,
and arbitrarily choose a direction of traversal on C as the forward
direction, and label the edges as forward and backward accordingly.

Theorem 2: If all forward edges (or all backward edges) in a u-
cycle are selected, then imploding the selected edges will result in
a d-cycle. Conversely, if at least one forward edge and at least one
backward edge are not selected, then the u-cycle remains d-acyclic
after implosion.

Proof:): If all forward edges in a u-cycle are selected, then
in the imploded u-cycle only the backward edges remain. Since

. . .

w1

w2 w3

w4

wk

1v
v2 v3

v4

vk

1u

u2 u3 u4

uk

1e

e2

e3

ek

GNodes of

Nodes of D

Worms

Fig. 7. From a d-cycle of G we can always find a u-cycle in D that
produced it

all the edges of the imploded u-cycle are in the same direction, the
imploded u-cycle is also a d-cycle.
(: If at least one forward edge and at least one backward edge

are not selected, then the imploded u-cycle have at least two edges
pointing to the opposite directions; hence, the imploded u-cycle
remains d-acyclic.

Therefore, it is necessary that for each cycle we do not select all
edges of the same orientation. Is it possible that, even if the selected
edges satisfy this condition for every cycle (including the composite
cycles), there is still a d-cycle in G? That is, is it possible that
a d-cycle in G arises from another cause than u-cycles in D? The
following theorem shows that this is impossible, thereby establishing
the sufficiency of this condition.

Theorem 3: If G is d-cyclic, then there exists a u-cycle in D of
which all the forward edges (or all backward edges) are selected.
Therefore, if the clauses derived from Theorem 2 are satisfied for
every u-cycle in D, then G is d-acyclic.

Proof: Let w1; w2; : : : ; wk be the nodes of a d-cycle in G,
which also denote the corresponding worms in D. By the definition
of G, there exist nodes v1 2 w1 and u2 2 w2 such that an edge
e1 = (v1; u2) exists between them. Similarly, there exist edges
ei = (vi; ui+1) for i = 2; : : : ; k � 1, and ek = (vk; u1) (Fig. 7).
Since vi and ui are nodes in a worm, there is a path between them (in
one direction or the other). Denote byPi the path between vi and ui.
Now (P1; e1; P2; e2; : : : ; Pk; ek) form a u-cycle in D. Furthermore,
regardless of the orientations of the paths Pi’s, in this u-cycle every
edge in the direction opposite to the ei’s is selected (recall all edges
of Pi are selected edges).

It turns out that we can compactly write clauses to require that
at least one forward edge and one backward edge are selected, as
follows. Let f1; f2; : : : ; fk be the Boolean variables for the forward
edges of a u-cycle in D. The clause

f1 + f2 + � � �+ fk (2)

will ensure that not all of these edges are selected. A similar clause is
written for the backward edges. Hence, two clauses for each u-cycle
suffice. No new variables are introduced into the formulation merely
additional clauses.

One important exception needs to be made regarding self-loops
in G (which was not addressed in [2]). Consider the portion of a
DAG shown in Fig. 8. If we choose the path A!B!C!D (which
are all of the forward edges in this u-cycle), then a d-cycle results in
G (in accordance with Theorem 2). However, this d-cycle is a self-
loop. It can be easily verified that the worm thus chosen is actually

(a) (b)

A

D

ABCD

C

B

Fig. 8. (a) A portion of a DAG D with a selected worm (b) The
induced self-loop in G

legal: the schedule ABCD, in which the nodes of the worm (namely,
A–D) appear consecutively, is admissible. This example shows that
self-loops do not make the worm-partition illegal. The lemma and
the theorem that follow state this formally.

Lemma 1: LetC be a self-loop ofG. The corresponding u-cycle
in D must consist of two reconvergent paths. Furthermore, if u and
v are the end-points of the reconvergent paths, one of these paths
must be an edge from u to v.

Proof: The loop-edge of C corresponds to a single edge from
some node u of the worm to some other node v of the worm. Other
than the edge (u; v), there is another path P from u to v (the worm).
With respect toD, u must be a predecessor of v (otherwise the DAG
would not be d-acyclic). Thus we have the two reconvergent paths:
the edge (u; v) and the path P .

Theorem 4: If all d-cycles of a worm-partition G are self-loops,
thenG is legal. Conversely, if a d-cycle ofG contains more than one
node, then G is illegal.

Proof: Self-loops arise solely from the kind of reconvergent
paths described in Lemma 1, with the long path being part of a worm.
Thus when we schedule these nodes consecutively, the precedence
relation required by the edge (u; v) is not violated. On the other
hand, if there are more than one node in a d-cycle of G, scheduling
the nodes of one worm consecutively will be unsuccessful because
some node of the current worm depends on some node of another
worm, which in turn depend on the current worm.

In light of Theorem 4, Clauses (2) are not required for self-loops.
Instead, a clause consisting of a single variable requiring the edge
(u; v) not to be selected is prescribed—clearly, choosing the edge
(u; v) would lead to a non-trivial d-cycle in G. If, on the other
hand, the reconvergent path is itself a single edge (e.g., when an
operator takes both operands from the same node), then neither the
cycle- nor the reconvergence-clauses is necessary—the fundamental
clauses described in Section IV-C ensure that at most one of these
edges is selected.

E. Clauses for Reloads and Spills

Depending on where an operation takes its operands from and
which edges are selected, spills and reloads may be required between
computations. We now describe precisely how to write clauses to
activate spills and reloads.

Fig. 9(a) shows a fragment of a DAG. Consider the edge (C;B),
whose corresponding Boolean variable is e2. There are four cases to
consider for this edge:

1. Match m1 is used and e2 = 1. Since m1 requires its left-
operand from the accumulator, and B is immediately after C,

B

acc mem

B

C D

e2 B

accmem

1m m2

(a) (b) (c)

e1

Fig. 9. Spilling and reloading according to adjacency of nodes

no spill on C or reload on the edge (C;B) is necessary.
2. Match m1 is used and e2 = 0. In this case, a spill on C is

required, because a node other than B immediately follows C
and destroys the contents of the accumulator, but this value is
needed by B later. Also, a reload is necessary immediately
before B is scheduled, because m1 takes its left-operand from
the accumulator.

3. Match m2 is used and e2 = 1. Even though B immediately
follows C, a spill is still required because m2 takes its left-
operand from the memory. No reload is necessary.

4. Match m2 is used and e2 = 0. As in the previous case, only a
spill is required.

Let spill(C) denote the match that transfers the value of C from the
accumulator to the memory immediately after C is computed, and
reload(C,B) denote the match that loads the value of C from the
memory to the accumulator immediately before B is scheduled. We
can then express the above conditions by the following clauses:

m1 + e2 + spill(C) (3)

m1 + e2 + reload(C,B) (4)

m2 + spill(C) (5)

Similar clauses are prescribed for edge e1, as well as every other
node and all possible matches on it.

Given the DAG with the complex patterns selected, the funda-
mental clauses, u-cycle clauses and the clauses for reloads and spills
are added to the clauses for the node matches. The clauses for the
node matches are very simple for a one-register machine, since the
only choices for a node are where the inputs come from, as shown in
Fig. 9.

V. DATA TRANSFER COSTS IN MULTIPLE-REGISTER MACHINES

A. Target Architecture

We will now assume that the target architecture can be modeled
conveniently with the [1;1] model [4]. In the [1;1] model each
resource class is assumed to have either one element or an infinite
number of elements. For resource classes that have more than one
element, we will perform a separate pass of storage allocation at or
after scheduling, as in [12].

As shown in Section II, the typical fixed point DSP has irregular
data-paths, and certain registers have specialized uses. Consequently,
at completion of an operation its results may not be available for use
by another operation that takes operands from other registers. For
example, the MPY operator requires one of its operands to come from
the treg register and the other from the memory. Thus a data transfer
is necessary to move the operands to the desired register(s). Tree-
covering methodology models the cost of this transfer is modeled
by associating a cost with a unit production, a production with a
non-terminal in each of the left- and right-sides. In this section,
we show how to incorporate data transfers into the binate covering
formulation.

*

*+
m2 m3

1m

1m preg

ADD(acc preg,)m2 acc

MPY(mem, treg)

m3 preg MPY(mem, treg)

Fig. 10. Data Transfers

B. Example

Consider a fragment of an expression DAG in Fig. 10. The
operation covered by match m3 requires that its left operand come
from the memory and its right operand come from the treg register.
However, the match m1 produces its result in the preg register. A
match m4 that transfers the contents of the preg register to memory
is required. Hence, we write:

m3 +m1 +m4 (6)

to require the selection of matchm4 in the event that bothm1 andm3

are selected. Similar clauses are also prescribed for other matches
on node 1.

C. Constructing the Clauses

Based on the example in Section V-B, we now describe a general
procedure for constructing the clauses necessary for data transfers.
We add these clauses to all the clauses summarized at the end of
Section IV. For every pair of nodes n1 and n2 in the given DAG
connected by an edge, for each possible match mi on n1 and each
possible match mj on n2, we will write

mi +mj + qij (7)

where matching qij indicates a transfer of the result of match mi

to the location required by mj . If mi results in writing an operand
into memory, and mj requires reading from register preg, then qij
will correspond to a match that moves data from memory to preg.
Similarly, for other moves across different register classes. If mi

writes into a register acc and mj reads from the same register acc,
qij is the disjunction of an adjacency constraint between the output
node of mi and the input node of mj , and a spill/reload match (cf.
Section IV-E).

We assume that this adjacency constraint has to be satisfied in the
schedule to guarantee a correct data transfer without a spill/reload.
Satisfying the adjacency constraint is not necessary for correct data
transfer in multiple-register machines; in-between instructions can
exist but should write registers other than acc. However, relaxing
this assumption would require a life-time analysis of registers and a
very large number of clauses. After instruction selection and partial
scheduling using binate covering an optimized complete schedule
can be generated which exploits life-time analysis.

In some cases, due to data-path constraints, it is not possible to
move the contents of one location to another location via a single
move. For example, suppose there is no direct path from the preg
register to the memory, and the only way to accomplish the move
from preg to memory is through the accumulator. In this case, two
moves will be required, and qij will represent the conjunction of the
two corresponding matches.

+

*

m1

1e e2

e3
e4

+

Fig. 11. Matches altering fundamental clauses

(a) (b)

A

B

C

D

E

S

AA

B

C

D

E

S

m2

e

Fig. 12. (a) A u-cycle in a DAG (b) Modified u-cycle

VI. DISCUSSION

We presented a two-pass strategy. The first step selects complex
operators, and the second step selects matches that minimize data
transfer costs on a transformed DAG. Can both these steps be per-
formed simultaneously by solving a single binate covering problem?

The answer is yes, but the number of clauses in binate covering
can become very large. The reason is that the selection of complex
operators affects the fundamental adjacency clauses and the clauses
for u-cycles.

The fundamental clauses corresponding to the marked edges of
the DAG of Fig. 11 are e1 + e2, and e3 + e4. However, if match
m1 is selected, then the fundamental clauses should become e1 + e2,
e1+e4, and e2+e4. This can be incorporated by writing the following
clauses: e1 + e2, e3 + e4 +m1, e1 + e4 +m1, and e2 + e4 +m1.
This has to be done for each match which corresponds to a complex
pattern that covers any edge of the DAG, in the manner that m1

covers e3 in our example above.

If the DAG is u-acyclic the fundamental clauses are sufficient, and
the above modification will be enough. However, u-cycle clauses
have be modified in the general case. This modification can result in
a very large number of clauses, since choosing a complex pattern can
change the u-cycles of a DAG. To understand this consider Fig. 12.
If match m2 is selected in Fig. 12(a), then in effect, the DAG is
modified to the one shown in Fig. 12(b). There is a new u-cycle
beginning from the node S! This means that we have to write clauses
corresponding to this new u-cycle when match m2 is selected, and
when it is not. Note that if all u-cycles begin from level 1 nodes in
the DAG, i.e., nodes whose inputs are leaves, then no new u-cycles
will be introduced due to complex operators. Even if a new u-cycle
is not generated, we still have to modify the original u-cycle clauses
since edge e is covered by m2, as in the fundamental clause case.

VII. SUMMARY AND ONGOING WORK

We have presented a formulation of the instruction selection prob-
lem as that of binate covering. This formulation captures data transfer
and memory spill costs commonly associated with DSP processors.

Our preliminary experiments indicate that exact binate cover-
ing can be applied to small-to-moderate sized basic blocks for the
TMS320C25 processor. These optimal solutions are better than those
produced by the tree covering heuristic in many cases. For large ba-
sic blocks or entire procedures, however, computationally efficient
heuristic strategies are required. Two avenues are being explored.
First, large basic blocks will be broken into simpler blocks which
can be covered using the exact binate covering algorithm. Second,
heuristics which restrict the number of matches and therefore clauses
in the covering matrix will be investigated.

VIII. ACKNOWLEDGEMENTS

We thank Richard Rudell and Olivier Coudert for help with the
binate covering formulation. This research was supported in part by
the Advanced Research Projects Agency under contract DABT63-
94-C-0053, and in part by a NSF Young Investigator Award with
matching funds from Mitsubishi Corporation.

REFERENCES

[1] A. Aho and S. Johnson. Optimal code generation for expression
trees. Journal of the ACM, 23:488–501, July 1976.

[2] A. Aho, S. Johnson, and J. Ullman. Code generation for ex-
pressions with common subexpressions. Journal of the ACM,
pages 146–160, January 1977.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[4] G. Araujo and S. Malik. Optimal Code Generation for Embed-
ded Memory Non-Homogeneous Register Architectures. In
Proceedings of 1995 International Symposium on System Syn-
thesis, 1995.

[5] R. K. Brayton and F. Somenzi. Boolean Relations and the
Incomplete Specification of Logic Networks. In Proceedings
of the Int’l Conference on Computer-Aided Design, pages 316–
319, November 1989.

[6] O. Coudert and J-C. Madre. New Ideas for Solving Covering
Problems. In Proceedings of the 32nd Design Automation
Conference, pages 641–646, June 1995.

[7] J. G. Ganssle. The Art of Programming Embedded Systems.
San Diego, CA: Academic Press, Inc., 1992.

[8] J. Gimpel. The Minimization of TANT Networks. IEEE Trans-
actions on Electronic Computers, EC-16(1):18–38, February
1967.

[9] A. Grasselli and F. Luccio. A Method for Minimizing the
Number of Internal States in Incompletely Specified Machines.
IEEE Transactions on Electronic Computers, EC-14(3):350–
359, June 1965.

[10] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. Code
Optimization Techniques in Embedded DSP Microprocessors.
In Proceedings of the 32nd Design Automation Conference,
pages 599–604, June 1995.

[11] R. Rudell. Logic Synthesis for VLSI Design. In U. C. Berkeley,
ERL Memo 89/49, April 1989.

[12] A. Sudarsanam and S. Malik. Memory Bank and Register
Allocation in Software Synthesis for ASIPs. In Proceedings
of the International Conference on Computer-Aided Design,
1995 (this volume).

