
Instruction Set and Simulation Framework for

Transactional Memory

by

Vinson Lee

B.S. Electrical Engineering and Computer Science

University of California at Berkeley, 2000

Submitted to the Department of

Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

@ Massachusetts Institute of Technology 2003. All rights reserved.

A uthor

Department of Electrical Engineering and Computer Science

May 23, 2003

Certified by . -

Accepted by.........

Larry Rudolph

Principal Research Scientist

Thesis Supervisor

Arthur C. Smith

Chairman, Department Committee on Graduate tudents
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 0 7 2003

LIBRARIES

2

Instruction Set and Simulation Framework for Transactional Memory

by

Vinson Lee

Submitted to the Department of Electrical Engineering and Computer Science

on May 23, 2003, in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis presents an instruction set extension to support transactional memory. Program-

mers can use these instructions to write lock-free applications. This thesis also presents a

simulation framework that allows a programmer to write, compile, and simulate programs

using the new transactional instructions. Benchmarks using transactional instructions and

conventional lock schemes are run on the simulation framework, and the resulting perfor-

mance numbers are compared.

Thesis Supervisor: Larry Rudolph

Title: Principal Research Scientist

3

4

Acknowledgments

I would like to acknowledge my advisor Larry Rudolph for giving me the opportunity to be

a graduate student in the Computation Structures Group. I thank him for his support and

advice throughout my graduate career. Larry also provided me the ideas for this thesis.

I am extremely grateful to Derek Chiou for constantly keeping tabs on me. Derek

generously offered me advice and help, and his encouragement was essential to finishing

this thesis. Derek would make a great teacher, mentor, or parole officer anywhere.

Many of my fellow graduate students deserve thanks. I thank Prabhat Jain for his

tons of useful and useless (but mostly useful) advice about research, graduate school, and

life in general. I thank Blaise "Blaaaaaise" Gassend for being my human Google, always

providing instantaneous answers on programming and LATEX. Peter Portante* has been an

excellent source for anything related to operating systems. The insane and stupid antics of

my semi-officemates Byungsub "Crazyman" Kim and Alfred "Coolman" Ng entertained

me for hours on end. I also thank David Chen, Jaewook "Evil Jae" Lee, Daihyun Lim,

Daisy Paul, Enoch Peserico, Daniel "Evil Dan" Rosenband*, Edward "Evil Ed" Suh* for

their help and friendship, as well as for fantasy baseball, indoor wiffleball, and joining me

in my never-ending search for food.

Working with the enthusiastic engineers at MIPS Technologies is what sparked my

interest in computer architecture. I thank Chinh Tran for giving me the opportunity to

work at MIPS. I thank Art Stamness and Kevin Lau for patiently teaching me many useful

computer skills which I still use today.

I thank many people from my undergraduate days at UC Berkeley without whom I

would never have ended up at MIT in the first place. I received a glimpse of research life

from Andy Neureuther, who gave me the opportunity to work in the LAVA group, and Jan

Rabaey, who gave me the opportunity to work with Fred Burghardt at the BWRC. I thank

my diligent lab and project partners from my classes, especially Timothy Chan, for putting

up with me and helping me get all those good grades.

I thank my MIT friends for making my past few years special and memorable. I espe-

cially thank Joe Aung, Li-Wei Chen, Lillian Dai, Irina Medvedev, Tony Ko, Dennis Lee,

5

Quinton Ng, Anne "strwbrry" Pak, Andre Puong, Etty Shin, and Andrew Wang for free

food, being my chauffeur, road trips, birthday parties, lunches and dinners, Celtics games,

and providing me a life outside graduate school.

I t ank all my longtime friends, including Melanie Hsu, Jonathan Ko*, "Master Jedi"

A ivla" Lau, King Bond Lee, Matthew Lee, Melinda Lee, Braden Leung, Andrew

Toy, and Jonathan "Yoda" Woo for staying in touch, making the effort to visit, the care

package, and being loyal and supportive fans.

John Wong was the big brother I never had. I thank him for his advice and daring me

to achieve.

Finally and most importantly, I thank my family, my mother Jenny Lee, my father Sam

Lee, and my sister Winny Lee, for their love, support, and encouragement. This thesis is

dedicated to my parents.

*These wonderful English-speaking people also helped proofread this thesis.

6

Contents

Contents 7

List of Figures 11

List of Tables 15

1 Introduction 17

1.1 Background . 17

1.2 Thesis Contributions . 18

1.3 Thesis Organization . 18

2 Related Work 19

2.1 Transactional Memory . 19

2.2 Existing Instruction Set Architectures . 20

2.3 Other Related Work . 20

3 Transactional Memory 21

3.1 Definitions . 21

3.2 Transactional Memory Instructions . 21

3.2.1 Begin Transaction . 22

3.2.2 Commit Transaction . 22

3.2.3 Load Transactional . 22

3.2.4 Release . 23

3.2.5 Reserve . 23

7

3.2.6 Reserve Conditional

3.2.7 Store Transactional

3.2.8 Validate

3.3 Regular Memory Instructions . .

3.3.1 Load

3.3.2 Store

3.4 Intended Use

3.5 Hardware Implementation Issues

4 Simulations

4.1 Sim ics .

4.2 Benchmarks .

4.2.1 Counter Benchmark

4.2.2 Producer-Consumer Benchmark

4.3 R esults .

4.3.1 Single Processor Machine

4.3.2 Dual Processor Machine

4.3.3 Eight Processor Machine

4.4 Benchmark Overhead

4.5 Comparison of Critical Section and Transaction with

structions .

4.6 Simics Experimental Error

4.6.1 Single Processor Machines Comparison . .

4.6.2 Dual Processor Machine Comparison . . .

4.7 D iscussion .

5 Conclusion

A Source Code

A. 1 Transactional Memory API .

A.1.1 transactional-memory-api.h

Equal

8

Number In-

67

69

69

69

A.2 Simics Transactional-Memory Module

A.2.1 transactional-memory.h

A.2.2 transactional-memory.c

A.2.3 commands.py

A.2.4 Makefile

A.3 Benchmarks .

A .3.1 lock .h

A.3.2 Counter Benchmark (counter. c)

A.3.3 Consumer-Producer Benchmark (queue. c)

B Simics with Transactional-Memory Module Guide

B.1 Simics Installation

B.2 Transactional-Memory Module Installation

B.3 Virtual Machine Configuration

B.4 Programming with Transactional Instructions

B.5 Modeling New Instructions

Bibliography

71

71

71

76

76

77

77

77

81

87

. 87

. 88

. 88

. 89

. 90

93

9

10

List of Figures

4-1 Pseudocode of LT and ST macros. 28

4-2 Pseudocode of spin lock implementation. 29

4-3 Pseudocode of yield lock implementation. 30

4-4 Pseudocode of counting benchmark using lock. 30

4-5 Pseudocode of counting benchmark using transactional memory. 31

4-6 Pseudocode of counting benchmark using transactional memory with ex-

ponential backoff. 31

4-7 Pseudocode of consumer part of producer-consumer benchmark using lock. 32

4-8 Pseudocode of consumer part of producer-consumer benchmark using trans-

actional memory with exponential backoff 33

4-9 Results of counter benchmark from Simics single processor machine. . . . 35

4-10 Results of producer-consumer benchmark from Simics single processor

m achine. 36

4-11 Results of counter benchmark from Simics dual processor machine. 39

4-12 Results of producer-consumer benchmark from Simics dual processor ma-

ch ine. 4 1

4-13 Results of counter benchmark from Simics eight processor machine. 42

4-14 Results of producer-consumer benchmark from Simics eight processor ma-

chine. 44

4-15 Counter benchmark overhead on Simics single processor machine. 45

4-16 Producer-consumer benchmark overhead on Simics single processor ma-

chine. 46

11

4-17 Counter benchmark overhead on Simics dual processor machine. 47

4-18 Producer-consumer benchmark overhead on Simics dual processor machine. 48

4-19 Counter benchmark overhead on Simics eight processor machine. 49

4-20 Producer-consumer benchmark overhead on Simics eight processor machine. 50

4-21 Results of counter benchmark with additional nop instructions using yield

lock and counter benchmark using transactional memory from Simics sin-

gle processor machine. 52

4-22 Results of counter benchmark with additional nop instructions using yield

lock and counter benchmark using transactional memory from Simics dual

processor m achine. 53

4-23 Results of counter benchmark with additional nop instructions using yield

lock and counter benchmark using transactional memory from Simics eight

processor m achine. 54

4-24 Comparison of results of counter benchmark using spin lock from Simics

single processor machine and storm. ics.mit. edu. 56

4-25 Comparison of results of counter benchmark using yield lock from Simics

single processor machine and storm. ics.mit. edu. 57

4-26 Comparison of results of producer-consumer benchmark using spin lock

from Simics single processor machine and s torm. 1 cs . mi t . edu. 58

4-27 Comparison of results of producer-consumer benchmark using yield lock

from Simics single processor machine and s torm. 1c s . mi t .edu. 59

4-28 Comparison of results of counter benchmark using spin lock from Simics

dual processor machine and dosx. ics .mit . edu. 61

4-29 Comparison of results of counter benchmark using yield lock from Simics

dual processor machine and dosx. 1cs . mit . edu. 62

4-30 Comparison of results of producer-consumer benchmark using spin lock

from Simics dual processor machine and dosx. 1 cs .mi t . edu. 63

4-31 Comparison of results of producer-consumer benchmark using yield lock

from Simics dual processor machine and dosx. 1 cs .mi t . edu. 64

12

B-i Simics dual processor machine configuration. 89

B-2 ADD macro. 90

B-3 Code to simulate ADD macro. 91

B-4 Sample program using ADD macro. 92

13

14

List of Tables

3.1 Transactional memory instructions . 22

4.1 Parameters for Simics single processor virtual machine. 37

4.2 Parameters for Simics dual processor virtual machine. 38

4.3 Parameters for Simics eight processor virtual machine. 40

4.4 Configuration comparison between Simics single processor virtual machine

andstorm.lcs.mit.edu. 55

4.5 Configuration comparison between Simics dual processor virtual machine

anddosx.lcs.mit.edu............................... 60

15

16

Chapter 1

Introduction

1.1 Background

When writing parallel applications, programmers need to manage shared data structures

to ensure program correctness. Sections of code that access shared data structures, called

critical sections, must often be made mutually exclusive. When one process is accessing a

shared data structure, no other process is allowed access to it.

Using locks around critical sections is one of the mechanisms used to provide mutual

exclusion. Locks are typically implemented with hardware instructions to guarantee that

only one process can atomically obtain and hold it. Before entering a critical section, a

process acquires the lock. After executing its critical section, the process releases the lock.

All other processes wait for the lock until the process releases it.

Processes that use locks suffer from many ill effects. Deadlock occurs when a process

cannot progress because it is waiting on a lock that will never be released. This may happen

when multiple processes attempt to acquire a set of locks in different orders, a process fails

to release a lock after completing its critical section, or a process dies while holding a lock.

Convoying arises when a process holding a lock is descheduled, preventing other processes

that are capable of running from progressing. Priority inversion arises when a medium-

priority process preempts a low-priority process holding a lock needed by a high-priority

process. The high-priority process is forced to wait indefinitely for the lock to be released

by the low-priority process. In addition, locking is sometimes overly conservative and can

17

reduce parallelism. Multiple processes may read or write different fields of a shared data

structure that can only be determined at runtime.

Herlihy and Moss introduced transactional memory to support lock-free synchroniza-

tion [2, 3]. In transactional memory, programmers can write critical sections as transac-

tions using primitive transactional instructions. Unlike using locks, multiple processes can

be executing their critical sections concurrently. At the end of its critical section, a process

attempts to commit the effects of its transaction. If successful, the results of its transaction

are made visible to other processes. A process that unsuccessfully commits must discard

its changes and retry its transaction.

1.2 Thesis Contributions

This thesis presents an instruction set architecture extension and simulation framework for

transactional memory. The instruction set is similar to the one proposed by Herlihy and

Moss, but we provide two additional features. First, our transactional instructions allow a

process to have more than one active transaction. Secondly, we provide instructions allow-

ing a programmer to explicitly manage a transaction's data set. We also present a simulation

framework for transactional memory. Programmers can write and compile applications us-

ing our transactional instructions and test their functionality using our simulator. Finally,

we use our simulation environment to compare the performance of benchmarks using our

transactional instructions to conventional locking schemes.

1.3 Thesis Organization

Chapter 2 describes related work. In Chapter 3, we present our instruction set architecture

extension. Chapter 4 describes our simulation environment and the results of our experi-

ments. Chapter 5 concludes this thesis.

18

Chapter 2

Related Work

2.1 Transactional Memory

Transactional memory by Herlihy and Moss was the initial proposal to provide hardware

support for lock-free data structures. Programmers are provided with special memory in-

structions to implement transactions. Instead of using locks, critical sections are written

as transactions using these instructions. While multiple processes may execute the same

transaction, only one process is allowed to commit its changes. Other processes that do not

successfully commit must discard its changes and retry its transaction.

Transactional memory can be implemented by adding a separate fully-associative trans-

actional cache and by extending the ownership-based cache coherence protocol of a mul-

tiprocessor system. Data that is read or written using transactional instructions is placed

into the transactional cache. The transactional cache uses the cache coherence protocol

to monitor to reads and writes of other processors. If the transactional cache detects a

conflicting read or write by another processor, the transaction is aborted. The limitations

of this scheme is that a processor may only have one active transaction and the size of a

transaction is limited by the size of the transactional cache.

19

2.2 Existing Instruction Set Architectures

Hardware instructions for transactions is a generalization of the load-linked and store-

conditional instructions in the Alpha [1], MIPS [6, 7], and PowerPC [9] instruction sets.

Load-linked and store-conditional instructions can implement atomic read-modify-write

operations, but only on a single word. The Intel IA-32 instruction set provides exchange,

exchange-and-add, and compare-and-exchange instructions [4]. The SPARC architecture

provides the hardware primitives swap, compare-and-swap, and load-store unsigned byte

for mutual exclusion [12]. The M68000 family instruction set has test-and-set and compare-

and-swap instructions [8]. One of the compare-and-swap instructions performs an atomic

operation involving two sets of independent locations.

2.3 Other Related Work

Rajwar and Goodman have proposed Speculative Lock Elision (SLE) [10] and Transac-

tional Lock Removal (TRL) [11]. SLE is a microarchitectural technique that allows multi-

ple processes to execute critical sections protected by the same lock. The processor specu-

lates on which instructions are synchronization instructions and executes the critical section

without acquiring or releasing the lock. On misspeculations, the process is retried a finite

number of times before actually acquiring the lock. Building on SLE, TRL is a technique

to preserve lock-free execution in the presence of conflicts. TRL uses timestamps to order

conflicting processes and avoid deadlocks.

20

Chapter 3

Transactional Memory

3.1 Definitions

We use the same definition of a transaction as Herlihy and Moss. A transaction is a se-

quence of instructions executed by a single process that satisfies the properties of serial-

izability and atomicity. Serializability requires that the results of concurrent transactions

appear as if the transactions were executed serially. The observed order of committed trans-

actions must be the same for all processes. Atomicity requires that the observability of all

reads and writes of a transactions appear atomically or not at all to other processes. When

a transaction commits, all its changes are made visible atomically. If a transaction aborts,

it appears to not have executed at all.

A transaction's read set is defined to be the set of all memory locations read from by

the transaction. A transaction's write set is defined to be the set of all memory locations

that are written to by the transaction. A transaction's data set is defined to be the union of

the read and write sets.

3.2 Transactional Memory Instructions

This section describes the semantics of the instruction set additions listed in Table 3.1 to

support transactional memory.

All transactional memory instructions take as one of its inputs a tag. The tag is a

21

Instruction Name

BEGINT Begin Transaction

COMMIT Commit Transaction

LT Load Transactional

RELEASE Release

RESERVE Reserve

RESERVEC Reserve Conditional

ST Store Transactional

VALIDATE Validate

Table 3.1: Transactional memory instructions.

memory location that acts as a transaction identifier. Variables in a transaction's data set

are tagged with the tag. The value of the tag holds the status of a transaction and can

have one of four possible values: None, Active, Committed, or Aborted.

3.2.1 Begin Transaction

Format: status = BEGINT (tag)

BEGINT attempts to start a new transactions with identifier tag. If successful, the

value of the tag is set to Active and true is returned. Otherwise, the value of the tag

is not changed and f alse is returned.

3.2.2 Commit Transaction

Format: status = COMMIT (tag)

COMMIT attempts to make the tentative changes of the transaction with identifier tag

permanent. A transaction can commit only if the value of the tag is Active. If COMMIT

succeeds, all of the transaction's changes become globally visible to other processes. The

tag value is set to Committed and true is returned. If COMMIT fails, all of the trans-

action's changes are discarded and f als e is returned.

3.2.3 Load Transactional

Format: r = LT (addr, tag)

22

LT returns the value at memory location addr if addr is in the data set of transac-

tion with identifier tag and the value of tag is Active. Otherwise, the return value is

undefined.

3.2.4 Release

Format: status = RELEASE (addr, tag)

RELEASE removes the memory location addr from the data set of the transaction with

identifier tag. Returns true if successful and f alse otherwise.

3.2.5 Reserve

Format: status = RESERVE (addr, tag)

RESERVE adds the memory location addr to the data set of the transaction with iden-

tifier tag if the value of tag is Active. If addr is in the data set of another transaction

with identifier tag', then the transaction with identifier tag' is aborted and tag' is set

to Aborted. Any uncommitted change to memory location addr by the transaction with

identifier tag' is discarded. RESERVE returns true if successful and f alse otherwise.

3.2.6 Reserve Conditional

Format: status = RESERVEC (addr, tag)

RESERVEC adds the memory location addr to the data set of the transaction with

identifier tag if the value of tag is Active and if addr is not in the data set of another

transaction. RESERVEC returns true if successful and f alse otherwise.

3.2.7 Store Transactional

Format: ST (addr, value, tag)

ST writes value into memory location addr if addr is in the data set of transaction

with identifier tag and the value of tag is Active. Otherwise, ST performs no operation.

23

3.2.8 Validate

Format: status = VALIDATE (tag)

VALIDATE checks to the status of the transaction with identifier tag. VALIDATE

returns true if the transaction is Active and f alse otherwise.

3.3 Regular Memory Instructions

In addition to transactional memory instructions, regular memory instructions are also sup-

ported. However, regular memory instruction must check for conflicts with the data sets

of active transactions. If a conflict arises, a transaction may need to be aborted. We can

view regular memory instructions as transactions that always commit and abort conflicting

transactions.

3.3.1 Load

Format: r = LOAD (addr)

LOAD returns the value at memory location addr. If addr is in the write set of a

transaction, the conflicting transaction is aborted and LOAD returns the value at addr

before any changes were made to it by the transaction.

3.3.2 Store

Format: STORE (addr, value)

STORE writes value into memory location addr. If addr is the data set of a trans-

action, the conflicting transaction is aborted.

3.4 Intended Use

A programmer can implement a transaction by writing code in the following way:

1. Use BEGINT to signify the beginning of a transaction.

24

2. Use RESERVE or RESERVEC to reserve memory locations to be read and written by

the transaction.

3. Use LT and ST to read and modify memory locations.

4. Use COMMIT to make the transaction's changes permanent.

5. Use RELEASE to unreserve memory locations of the transaction.

6. If COMMIT fails, then the process should return to Step 1 to retry the transaction.

A process can detect a transaction's failure earlier than the COMMIT instruction by using

VALIDATE or by checking the return values of BEGINT, RESERVE, and RESERVEC.

3.5 Hardware Implementation Issues

Hardware additions are necessary to support our instruction additions. Since any data may

be involved in a transaction, we propose two additions to each cache line, a transaction

valid bit and transaction tag field. The transaction valid bit indicates whether the cache line

is involved in a transaction. If this bit is set, the transaction tag field contains the physical

address of the transaction tag. A transaction is atomically committed or invalidated by

setting the transaction tag. Any memory references to a cache line with the transaction

valid bit set must also check the value of the transaction tag.

We also must have additional storage for uncommitted values. To support small sized

transactions, we can use a transaction cache similar to Herlihy and Moss. However, some

other schemes are necessary to support scalable hardware transactions.

For the remainder of this thesis, we do not take into account the hardware needed to

support our transactional instructions.

25

26

Chapter 4

Simulations

4.1 Simics

To evaluate our transactional memory instructions we used Simics [5], a full system simu-

lation platform developed by Virtutech. More specifically, we used s imi cs -1 . 6 . 4 with

the Linux/x86 host platform and x86 target architecture.

We created a Simics transactional-memory module to simulate transactional memory

instructions. This module utilizes the Simics magic instruction to interface with a sim-

ulated program. For the x86 target architecture, the Simics magic instruction is xchg

%bx, %bx. This instruction is equivalent to a nop and has no effect on the simulated

program behavior. When this magic instruction is encountered in the simulated program, a

CoreMagic _Ins truc tion event is generated. The transactional-memory module reg-

isters a callback function to-this event, such that whenever a simulated program executes

xchg %bx, %bx, the transactional-memory module is invoked. Within the transactional-

memory module, we can read and modify registers and memory locations of the simulated

program by using the provided Simics API.

By leveraging this magic instruction, we created a simple protocol using the x86 reg-

isters to write programs using transactional memory and have Simics recognize when to

simulate a transactional memory instruction. To indicate a transactional memory instruc-

tion, the simulated program writes values into x86 registers and then calls the magic in-

struction. When the Simics module is invoked, it reads the values from the registers and

27

int LT(addr, tag) {

int result;

movl OPLT, %eax;

movl &result, %ebx;

movl addr, %ecx;

movl tag, %edx;

xchg %bx, %bx;

return result;

}

void ST(addr, value, tag) {

movl OPST, %eax;

movl addr, %ebx;

movl value, %ecx;

movl tag, %edx;

xchg %bx, %bx;

}

Figure 4-1: Pseudocode of LT and ST macros.

uses them to simulate the desired transactional memory instruction. In our protocol, the

simulated program writes the transactional memory operation into %eax, the destination

address into %ebx, the source address into %ecx, and the tag address into %edx. We en-

capsulate assembly instructions using this protocol into transactional memory macros that

can be easily used in a program. Figure 4-1 shows pseudocode for the LT and ST macros.

The full source for the transactional memory macros can be found in Section A.1 of the

Appendix.

In addition to emulating transactional memory instructions, the transactional-memory

module also monitors all regular read and write operations by the simulated program to

check for possible conflicts with active transactions.

Simics is not a cycle-accurate simulator, and we do not model caches or memory la-

tency. According to Simics, each instruction takes exactly one cycle. For multiprocessor

simulations, each processor is simulated for 1000 cycles at a time. The overhead of a trans-

actional memory instruction is three or four x86 integer instructions in addition to memory

spills caused by the clobbering of register values. To measure performance in our simula-

28

void lock(lock-t *1) {

int val = LOCKED;

do {

xchg val, *1;

} while (val UNLOCKED);

}

void unlock(lockt *1) {

*1 = UNLOCKED;

}

Figure 4-2: Pseudocode of spin lock implementation.

tions, we use the Unix time function from within a Simics virtual machine. In Section 4.6,

we show the accuracy of Simics by running our test programs on a real machine and on a

Simics virtual machine with a similar configuration.

4.2 Benchmarks

This section describes the two benchmarks used for simulations, the counter benchmark

and the producer-consumer benchmark. There are four versions of each benchmark, each

with a different synchronization scheme: spin lock, yield lock, transactional memory, and

transactional memory with user-level exponential backoff. In a spin lock, a process repeat-

edly attempts an atomic exchange operation until it successfully acquires the lock. In a

yield lock, a process attempts to acquire the lock through an atomic exchange but yields

the processor if it is unsuccessful.

The benchmarks are written in C and complied to x86 binaries using gcc 2.96 with-

out any optimization. Shared memory regions are implemented using the Unix system

call shmget. Locks are implemented using the x86 atomic exchange instruction xchg

(Figure 4-2 and Figure 4-3). Transaction memory instructions are implemented with x86

assembly macros and simulated with Simics as described in Section 4.1.

The complete source code of the benchmarks is listed in Section A.3 of the Appendix.

29

void lock(lock_t

val = LOCKED;

while (TRUE)

*1) {

{
xchg val, *1;

if (val != UNLOCKED)

yield();

else

break;

}

I

void unlock(lock_t

*lock = UNLOCKED;

}

*1) {

Figure 4-3: Pseudocode of yield lock implementation.

4.2.1 Counter Benchmark

In the counter benchmark, p different processes increment a shared counter a total of n

times. Each process increments the shared counter n/p times. Figure 4-4, Figure 4-5, and

Figure 4-6 show pseudocode for the different versions of the counter benchmark.

shared int *counter;

shared lockt *1;

while (success

lock(l);

counter++;

unlock(l);

}

< work) {

Figure 4-4: Pseudocode of counting benchmark using lock.

30

shared int *counter;

tagt tag;

while (success < work) {

BEGINT(&tag);

RESERVE (counter, &tag)

ST(counter, LT(counter

if (COMMIT(&tag))

success++;

&tag) +1, &tag);

}

RELEASE(counter, &tag);

}

Figure 4-5: Pseudocode of counting benchmark using transactional memory.

shared int *counter;

tagt tag;

while (success < work) {

BEGINT(&tag);

RESERVE(counter, &tag);

ST(counter, LT(counter,&tag)+l, &tag);

status = COMMIT(&tag);

RELEASE(counter, &tag);

if (status) {

success++;

backoff = BACKOFFMIN;

} else {

wait = random() % (Oxl << backoff);

while (wait--)

}

}

31

Figure 4-6: Pseudocode of counting benchmark using transactional memory with exponen-
tial backoff.

typedef struct

int deqs;

int enqs;

int items[QUEUE_SIZE];

queue-t;

shared queuet *q;

shared lockt *1;

int queue-deq(queuet *q)

done = FALSE;

while (TRUE)

lock (1);

if (q->enqs != q->deqs)

result = q->items[q->deqs

q->deqs++;

done = TRUE;

}
unlock(l);

if (done) break;

}

return result;

}

% QUEUESIZE];

Figure 4-7: Pseudocode of consumer part of producer-consumer benchmark using lock.

32

shared queuet *q;

tagt tag;

int queue-deq(queue-t

while (TRUE)

*q) {

{
done = FALSE;

backoff = BACKOFFMIN;

BEGINT(&tag);

RESERVE(&(q->enqs), &tag);

RESERVE(&(q->deqs), &tag);

tail = LT(&(q->enqs), &tag);

head = LT(&(q->deqs), &tag);

if (head != tail) {

result LT(&(q->items[head%QUEUESIZE]),

ST(&(q->deqs), head+1, &tag);

done = TRUE;

}

status =COMMIT (&tag) ;

RELEASE(&(q->enqs),

RELEASE(&(q->deqs),

&tag);

&tag);

if (status && done) break;

wait = random()

while (wait--);

}

return result;

% (Oxi << backoff);

}

33

&tag);

Figure 4-8: Pseudocode of consumer part of producer-consumer benchmark using transac-
tional memory with exponential backoff.

4.2.2 Producer-Consumer Benchmark

In the producer-consumer benchmark, p different processes perform n operations on a

shared bounded FIFO buffer. p/2 processes produce items while p/2 processes consume

the produced items. A total of n/2 items are produced and consumed. Each process pro-

duces or consumes n/p items. Figure 4-7 and Figure 4-8 show pseudocode for different

versions of the producer-consumer benchmark.

4.3 Results

We ran our benchmarks on three different Simics virtual machines, each having a different

number of processors. The first subsection reports the results from a single processor ma-

chine, the second subsection shows benchmarks results from a dual processor machine, and

the third subsection shows results from an eight processor machine. The configurations for

the single processor and dual processor virtual machines were chosen to closely match real

machines in our laboratory.

For the counter benchmark, the number of operations n was set to 220 and the number

of processes p was varied from 1 to 32. For the producer-consumer benchmark, the number

of operations n was set to 214 and the number of processes p was varied from 2 to 32 in

increments of two. QUEUE-SIZE was set to 1024. For the exponential backoff version of

both benchmarks, BACKOFFUv[IN was initialized to 0x2.

Each counter benchmark result is composed of an average of the data from four runs.

Each producer-consumer benchmark result is composed of data from a single run.

4.3.1 Single Processor Machine

Our single processor virtual machine was created using the Enterprise configuration with

the x86-p3 processor model and the hippie3-rh62 . craf f disk dump. Table 4.1

shows the summary of this virtual machine.

Figure 4-9 shows the results of the counter benchmark on the single processor machine.

Each version the benchmark, except for the spin lock version, takes a consistent amount of

34

0.45

0.4 - tm backoff .. -

0.35 -

- 0.3 -

0

0.25
E

0.2

0.15

0.1 -l

0.05 -

0 5 10 15 20 25 30

processes

0.03
spin lock
yield lock

tm backoff

0.025

0.02 - -

a 0.015
E

0.01

0.005

0 0 5 10 15 20 25 30

processes

2.5
spin lock i

eld lock

tm ackoff .--

2- - -
2

1.5

70 1

0.5

0
0 5 10 15 20 25 30

processes

Figure 4-9: Results of counter benchmark from Simics single processor machine.

35

spin lock -+

yield lock --- ---
Im -

140

E

120

100

80

60

40

20

80

70

60

0

E

E

50

40

30

20

10

140

120

100

E

6

80

L -------- 7 ~ -

0 5 10 15 20 25 30

processes

spin lock
yield lock --- x---

tm ---a
-tm backoff .

-y

x'

0 5 10 15 20 25 30

processes

60 F

40

20 F

0

0 5 10 15 20 25 30

processes

Figure 4-10: Results of producer-consumer benchmark from Simics single processor ma-

chine.

36

spin lock
yield lock ---

tm - - -
im backoff..

x

2.
S.

spin lock
yield lock -- x--

tm -------

tm backoff .U

- --

8- - .

Table 4.1: Parameters for Simics single processor virtual machine.

user time for all number of processes. The spin lock version, however, has a big variance

in user time, ranging from 0.08 seconds to 0.4 seconds. These variations in user time of the

spin lock version are a result of convoying. The process is descheduled while holding the

lock and leaves the next active processes to spend their entire time quantum unsuccessfully

attempting to acquire the lock. This behavior directly results in the variance seen in the

total time graph for the spin lock version. In all the other versions, a sleeping process

cannot impede the progress of the active process. Each version of the counter benchmark

has nearly zero system time. On average, both transactional memory versions perform

approximately 0.8% better than the spin lock version and 4.1% worse than the yield lock

verson.

Figure 4-10 shows the results of the producer-consumer benchmark on the single pro-

cessor machine. We see that locks perform much worse than transactional memory. The

majority of the total time for the spin lock is user time while the majority of the total time

for the yield lock is system time. The queue size limits the progress of the benchmark

because the active process does not yield the processor and release the lock if it cannot

produce or consume. For the lock versions, the benchmark can only progress if the active

process is a producer holding the lock with a queue that is not full or a consumer holding

the lock with the queue that is not empty. In the spin lock case, the active process often

wastes its entire time quantum spin-waiting for the lock or, if it does hold the lock, waiting

for space in the queue to produce or an item in the queue to consume. In the yield lock

case, even if the active process can produce or consume, it must yield the processor if it

does not hold the lock. Often, the process holding the yield lock is a producer with a full

queue or a consumer with an empty queue. In a single processor system, the producers and

37

Simics configuration

Number of processors 1

Processor model x86 -p3

Clock speed 600 MHz

Memory 512 MB

Operating system Red Hat Linux 7.3

Linux kernel 2.4.18-3

Simics configuration

Number of processors 2

Processor model x8 6 -p3

Clock speed 500 MHz

Memory 256 MB

Operating system Red Hat Linux 7.3

Linux kernel 2.4.18-3smp

Table 4.2: Parameters for Simics dual processor virtual machine.

consumers cannot run simultaneously, and the queue is often either full or empty. Transac-

tional memory performs better because it does not need to acquire the lock. The benchmark

can proceed if the active process is a producer with a queue that is not empty or a consumer

with an item in the queue. On average, the transactional memory version performs 79%

better than the spin lock version and 52% better than the yield lock version. The transac-

tion memory with backoff version performs 72% better than the spin lock version and 44%

better than the yield lock version.

4.3.2 Dual Processor Machine

We configured a dual processor virtual machine using the Enterprise configuration along

with the x8 6 -p3 processor model and the enterpri se3 -rh7 3 . craf f disk dump.

Table 4.2 summarizes this machine.

Figure 4-11 shows the results of the counter benchmark from the dual processor vir-

tual machine. The results are similar to results from the single process machine with two

exceptions. First, the variance of the user time for the spin lock version is greater, and

secondly, the yield lock version spends more system time than all the other versions. In the

spin lock version, with two processors, the cost of having a lock being held by an inactive

process is greater than in the single processor case since two processors are spin-waiting.

In the yield lock version, one process is always yielding because only one of the two active

processes can obtain the lock, causing system time to be spent for context-switching. On

average, the transactional memory version performs 2.3% better than the spin lock version

and 2.3% worse than the yield lock version. The transactional memory with backoff ver-

38

5 10 15 20 25 30

processes

0.015

0.01 1

0 5 10 15 20 25 30

processes

spin lock
yield lock -x---

tmn ---- --
tmn koff -- E- -

0 5 10 15 20 25 30

processes

Figure 4-11: Results of counter benchmark from Simics dual processor machine.

39

1.4

1.2 -

0.8 -

0.6 -

0.4 -

sp lock
yiel lock --- x---

tm ---
tm ckoff -a

0.2

0
0

0.04

0.035

0.03

0.025

0.02

spin lock
*--x yield lock --- x--

tm ----
tm backoff f -

x-

x X x*

-F

h- -K I

E

E

0.005

0

3

2.5 F

1.5 F

0

E

0.5 F

0

1

E

2

I

Simics configuration

Number of processors 8

Processor model x86 -p3

Clock speed 500 MHz

Memory 2048 MB

Operating system Red Hat Linux 7.3

Linux kernel 2.4.18-3smp

Table 4.3: Parameters for Simics eight processor virtual machine.

sion performs 1.9% better than the spin lock version and 2.7% worse than the yield lock

version.

Figure 4-12 shows the results of the producer-consumer benchmark on the dual proces-

sor virtual machine. Compared to the single processor results, the lock versions perform

much better. With two processors, a producer process and consumer process can be active

simultaneously, and the queue is neither full nor empty most of the time. On the single pro-

cessor machine, an active process often could not proceed because the queue was empty

or full. In the spin lock case, we can see that convoying occasionally happens, resulting in

high user times in a few cases. Transactional memory with backoff performs worse than

without backoff when the number of processes is less than 18. Since the only difference

is exponential backoff, we conclude that conflicts occur when the number of processes is

low, and the overhead of exponential backoff is high. On average, transactional memory

performs performs 25% better than the spin lock and 4.8% worse than the yield lock. Trans-

actional memory with backoff performs 3.7% worse than the spin lock and 47% worse than

the yield lock.

4.3.3 Eight Processor Machine

The eight processor machine has a similar configuration to the dual processor machine in

the previous subsection except for having eight processors, instead of two, and more main

memory (Table 4.3).

Figure 4-13 shows the results of the counter benchmark on the eight processor virtual

machine. The user time for the spin lock version is greater than the single and dual proces-

40

20 -

15 -

w

10

0 5 10 15

processes

20 25 30

0 5 10 15 20 25 30

processes

0 5 10 15

processes

20 25 30

Figure 4-12: Results of producer-consumer benchmark from Simics dual processor ma-
chine.

41

30

25 F

spin lock
yield lock --- x---

Im - --
tm backoff.--.

-* -

5

0

0.045

0.04

0.035

0.03 -

0.025

E

0.02

0.015

0.01

0.005

0

spin lock I
yield lock --- x---

tm
tm backoff -

- x w ----- --- - -- --

18

16

14

-' 12

D 10

E

-8

6

4

spin lock
yield lock --- x---

tm ---- *
tm backoff .a-

E) 0

0.8 -

0.6 -

0.4 -

0.2 -

0
0

0.09

0.06

0.05

0.04

0.03

0.02

0.01

0

2.5

2

1.5

0.5

0

spin lock
yield lock --- x---

tm backoff

x-

5 10 15 20 25 30

processes

0 5 10 15 20 25 30

processes

spin lock -+

yield lock --x---

Ilmnb ckoff-

0 5 10 15 20 25 30

processes

Figure 4-13: Results of counter benchmark from Simics eight processor machine.

42

1.8

1.2
0

0
0

spin lock -
yield lock --- x-

tm ---- -
tm backoff ---

"C

- S

S S

- S

--K --U" -AF

E

E

1.6

1.4

I

0.08 -

0.07
x

Ix

-"

1

sor case. The user time for the spin lock is much greater than the other versions because

at least seven processes are spin-waiting for the lock. The system time for the yield lock

is much greater than all the other versions because at least seven processes are yielding its

processor. On average, transactional memory performs 0.5% better than the spin lock and

3.6% worse than the yield lock. Transactional memory with backoff performs 0.1% better

than the spin lock and 4.4% worse than the yield lock.

Figure 4-14 shows the results of the producer-consumer benchmark on the eight pro-

cessor virtual machine. The high user time for the spin lock shows that the majority of pro-

cesses are spin-waiting. The high user time for transactional memory with backoff shows

that there are a high number of conflicts. On average, transactional memory performs 5.3%

better than the spin lock and 2.0% better than the yield lock. Transactional memory with

backoff performs 33% worse than the spin lock and 36% worse than the yield lock.

4.4 Benchmark Overhead

We removed the main code sections from all versions of both benchmarks. The remaining

code for each benchmark is code common to all versions, such as shared memory ini-

tialization and barrier synchronization ensuring all processes start at the same time. We

ran the resulting code on the different Simics virtual machines to measure the benchmark

overhead.

Figure 4-15, Figure 4-16, Figure 4-17, Figure 4-18, Figure 4-19, and Figure 4-20 show

the results. All the graphs are nearly identical. For one process, there is almost no overhead.

As the number of processes increases, the overhead quickly rises to a steady amount. In

each case, the steady overhead is approximately 2.0 seconds with a small linear growth as

the number of processes increase. User and system time comprise little of the overhead.

The observed overhead is a result of the way the benchmarks are written. The first thing

occurring in both benchmarks is initialization of the shared data structures. Afterward, a

process waits and sleeps until all other processes have finished initialization before begin-

ning the actual benchmarking section. Thus, a benchmark consisting of one process has

almost zero overhead because it does not need to wait for any other processes.

43

12

10

0 5 10 15 20 25 30

processes

Figure 4-14: Results of producer-consumer benchmark from Simics eight processor ma-

chine.

44

W

0
0
(D

E

spin lock
yield lock x

tm backoff E-

L.Jp.

5 10 15 20 25 30

processes

spin lock
yield lock --- x--

tm ---* --
tm backoff --

X,

~

0 5 10 15 20 25 30

processes

spin lock
yield lock --- x---

tm -- ---
tm backoff -

-I

0

0.6

0.5

0.4

o 0.3
E

E

0.2

0.1

6.5

6

5.5

4.5

E

3.5

2.5

0

5

4

3

2

0.016
counter

0.014 -

0.012 -

0.01 -

0.006 -

0.006 -

0.004 -

0.002 -

0 0 5 10 15 20 25 30

processes

0.03

0.025 -

0.02 -

0.015 -

0.01 -

0.005 -

0
0 5 10 15

processes

0 5 10 15

processes

20 25 30

20 25 30

Figure 4-15: Counter benchmark overhead on Simics single processor machine.

45

}.
0

counter -

E

E

2.5

2

1.5

counter

0

0.5

0

I

00

0.01 prod cer- nusmer

0.008 -

0.006 -

0.004 -

0.002 -

0 5 10 15 20 25 30

processes

0.025

0.02 -

015 -

0.01 !-

0.005 F

0 5 10 15

processes

20 25 30

0 5 10 15 20 25 30

processes

Figure 4-16: Producer-consumer benchmark overhead on Simics single processor machine.

46

W

0

0.03

0

E

producer-consu er

/

0

2.2
producer-consumer

0

a)
E

70
z

1.8

1.6

1.4

1.2

I

I

0.01
prod cer-c nsumer

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

10 15

processes

0 5 10 15

processes

20 25 30

20 25 30

Figure 4-17: Counter benchmark overhead on Simics dual processor machine.

47

0 5 10 15 20 25 30

processes

E

0.03
counter

).025 -

0.02 -

).015 -

0.01

).005

0
a

0

counter ---
2.5

2

1.5

1

0.5

0

. I i i i

coun r ---

02producer-consumer

0.02

0.015

0.01

0.005

0
0 5 10 15 20 25 30

processes

0.03
producer- sumer

0.025

0.02

0.015

E

0.01

0.005

0 5 10 15 20 25 30

processes

2.2
producer-consumer

2

1.8

1.6
E

1.4

1.2

0 5 10 15 20 25 30

processes

Figure 4-18: Producer-consumer benchmark overhead on Simics dual processor machine.

48

0.025

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

0.025

0 5 10 15

processes

20 25 30

2.5

2

1.5

0

(D 1

0.5 I

0 5 10 15

processes

20 25 30

Figure 4-19: Counter benchmark overhead on Simics eight processor machine.

49

E

counter

0 5 10 15 20 25 30

processes

0.02 P

counter

0 015 F

E

E
0.01

0 005 F

0

counter

0

0.025

0.02 -

0.015 -

0.01 -

0.005 -

0 5 10 15 20 25 30

processes

producer-consumer

3 5 10 15 20 25 30

processes

producer-consumer --

0 5 10 15 20 25 30

processes

Figure 4-20: Producer-consumer benchmark overhead on Simics eight processor machine.

50

producer-consumer

E

0

0.03

0.025

0.02

0.015

0.01

0.005

0

2.045

2.04

2.035

0 2.03

2.025

2.02

n

4.5 Comparison of Critical Section and Transaction with

Equal Number of Instructions

The simulation of the transactional instructions makes the transaction longer than it will

be on a real machine. Therefore, the total running times of transactional memory would

be lower if there was no overhead in simulating transactional instructions. In this section,

we show the results of an experiment where we compared the results of a benchmark using

different synchronization schemes but having the identical number of instructions in its

critical section or transaction.

Using obj dump, we disassembled the yield lock and transactional memory versions

of the counter benchmarks. We counted the number of x86 instructions required to incre-

ment the counter by one. For the yield lock, successfully acquiring the lock on the first

attempt takes 14 assembly instructions. The critical section of incrementing the lock is 15

instructions and releasing the lock takes 6 instructions. The total number of x86 assembly

instructions is 35. For transactional memory, a transaction that successfully increments

the counter by one takes 62 x86 assembly instructions. A single transaction in the counter

benchmark uses six transactional memory instructions. However, simulating those six in-

structions takes 28 x86 assembly instructions. Extra memory instructions are also added

due to register spills. We added 27 nop instructions to the critical section of the yield

lock version of the benchmark to equalize the number instruction it takes to increment the

counter by one. We simulated this modified version of the benchmark and compared the

results to the transactional memory version from Section 4.3.

Figure 4-21, Figure 4-22, and Figure 4-23 show the results. The only result adding

extra nop instructions had was increasing the total times of the yield lock benchmark. The

shape of the graphs remained the same. The yield lock is no longer better than transactional

memory. In the single processor case, transactional memory performs 0.1% worse than the

yield lock. In the dual processor case, transactional memory performs 1.4% better than the

yield lock, and in the eight processor case, transactional memory performs 2.7% better than

the yield lock. The graphs show that as the number of processors increase, the advantage

of transactional memory over the yield lock also increases.

51

0125

0,12 F-

115 F-

0.11 P

105 k

0 5 10 15 20 25 30

processes

yield lock
tm --- x---

2 - y 5

5 -

55

5

0 5 10 15 20 25 30

processes

yield lock --
tm -x--

- K W

0 5 10 15

processes

20 25 30

Figure 4-21: Results of counter benchmark with additional nop instructions using yield

lock and counter benchmark using transactional memory from Simics single processor ma-

chine.

52

0 135

0.13 -

0

yield lock

-m --- x--

X_-

-_

0

0.

0.02

0.0

0.01

E

E
S0.0

0.00

2.5

2

-o15

E

0.5

0

0.165

0.16

0.155

0,15 / '

0145

0.14

0.135 -

0.13

0.125

0.12
0 5 10 15 20 25 30

processes

0.09
yield lock

tM ---- x---

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01 - X -

-x0'

0 5 10 15 20 25 30

processes

2.5
yield lock -

tM --- x---

2

- 1.5

05

0.5-

0 5 10 15 20 25 30

processes

Figure 4-22: Results of counter benchmark with additional nop instructions using yield

lock and counter benchmark using transactional memory from Simics dual processor ma-

chine.

53

yield lock
tm --- x---

0 5 10 15

processes

0
.
2

i

0

0.18

0.16

0.14

0.12

0.1

0.08

E

2.2

1.8

1.6

1 4

1.2

0.8

0.6

0.4

0.2

0
0 5 10 15

processes

20 25 30

20 25 30

20 25 30

Figure 4-23: Results of counter benchmark with additional nop instructions using yield

lock and counter benchmark using transactional memory from Simics eight processor ma-

chine.

54

0.22

0.2

yield lock
tm --- x---

-
1

-r

- -'

x1-X

0 5 10 15

processes

0

0.18-

0.16-

0.14

0.12

0.1

0.08 -

0.06 -

0,02 -

-M--

X"-

-i l -G~

Simics virtual machine storm. 1os . mit . edu

Number of processors 1 1

Processor model x8 6 -p3 AMD Athlon K7

Clock speed 600 MHz 600 MHz

Memory 512 MB 512 MB

Operating system Red Hat Linux 7.3 Red Hat Linux 7.2
Linux kernel 2.4.18-3 2.4.7-10

Table 4.4: Configuration comparison between Simics single processor virtual machine and
storm.ics.mit.edu.

4.6 Simics Experimental Error

Since Simics is not a cycle-accurate simulator, we ran the spin lock and yield lock versions

of our benchmarks on actual machines to obtain an estimate of experimental error. In this

section, we present the results of our Simics accuracy experiments for the single processor

and dual processor virtual machine.

The graphs of experimental runs from Simics machines are taken from Section 4.3.

For data from runs on actual machines, each counter benchmark graph is created from the

average of 100 runs and each producer-consumer graph is created from the average of 20

runs. In addition, we ran and plotted the results of the benchmarks for up to 64 processes.

We present results in both average difference and average absolute difference, using the

graphs from actual machines as the references.

4.6.1 Single Processor Machines Comparison

We used s torm. 1cs . mit . edu as our reference single processor machine (Table 4.4).

simics -I. 6 . 4 does not have a processor model for the AMD Athlon K7 so we use the

processor model for the Intel Pentium III instead.

Figure 4-24 and Figure 4-25 shows the results for the counter benchmark. In both cases,

the slope of the system time graph is much greater in the results from storm. The total

time given by the Simics machine, however, closely matches the results of storm. For the

spin lock, the average difference is 1.9% and the average absolute difference is 6.0%. For

the yield lock, the average difference is -2.3% and the average absolute difference is also

55

Simics 1p
storm --- x---

0.4

0.35

0.3

0.25

(D x
E 0.2

0.15

0.1 - x. X

0.05 -

0
0 10 20 30 40 50 60

processes

0.12
Simics Ip

storm --- x---

0.6 - ,,x"0.02 o x~ox

0.028

0

0 10 20 30 40 50 60

processes

2.5 2.5 1Simics 1P
storm --- x--

)(,X ~ ~ >((7'*X-.)txA '

2

1.5

0

0.5

0
0 10 20 30 40 50 60

processes

Figure 4-24: Comparison of results of counter benchmark using spin lock from Simics

single processor machine and s t orm. 1 cs .mi t .edu.

56

0.45

0.12

0.11

0.1 -

- x

C 0.09 -

0.08 -

0.07

*xx0.06 x 'k!

0.05
0 10 20 30 40 50 60

processes

0.12
Simics 1p

storm ---x---

0.1

x-xx

0.08 x

0/0 xx

a 0.06 - -
E

0.04

0.02

0
0 10 20 30 40 50 60

processes

2.5
Simics ip

storm ---x---

- --
2

1.5

E

- 1

0.5

0
0 10 20 30 40 50 60

processes

Figure 4-25: Comparison of results of counter benchmark using yield lock from Simics

single processor machine and s torm. 1cs .mit .edu.

57

Simics 1p
5 / storm --- x---

X x'

x

Simics 1p
storm ---

-

?(~ ,s'~

0 10 20 30 40 50 60

processes

Simics 1p 1
storm --- x-

,4,

0 10 20 30 40 50 60

processes

Sirnios 1p
storm --- 0x---

K ,

5 ' 'x r/

0 10 20 30

processes

40 50 60

Figure 4-26: Comparison of results of producer-consumer benchmark using spin lock from

Simics single processor machine and storm. 1cs . mit . edu.

58

140

120

100 [

80

0

E
60 F

40

20 F

0.12

0.1

0.08

-0

ID 0.06
E

6

0.04

0.02

140

120

100

80

60

40

20

0

E

0

25

20

E

10

5

0

80

70

60

-o 50

40

0
E

E

30

20

10

0

0 10 20 30

processes

40 50 60

Figure 4-27: Comparison of results of producer-consumer benchmark using yield lock from
Simics single processor machine and storm. 1os .mit . edu.

59

Simics 1p
storm --- x---

A x

>,

30

0 10 20 30 40 50 60

processes

Simics 1p f
storm --- x---

- -
x_

- X"

x'x

0 10 20 30 40 50 60

processes

Simics ip
storm --- x---

-

100

90

80

70

60

50

40

30

20

E

10

0

Simics virtual machine dosx. ics .mit . edu

Number of processors 2 2

Processor model x8 6 -p3 Pentium III Katmai

Clock speed 500 MHz 500 MHz

Memory 256 MB 256 MB

Operating system Red Hat Linux 7.3 Debian

Linux kernel 2.4.18-3smp 2.4.18 #6 SMP

Table 4.5: Configuration comparison between Simics dual processor virtual machine and

dosx. ics .mit. edu.

2.3%.

Figure 4-24 and Figure 4-25 show the results for the producer-consumer benchmark.

For the spin lock, the average difference is 43% and the average absolute difference is

74%. For the yield lock, the average difference is -25% and the average absolute difference

is 61%.

4.6.2 Dual Processor Machine Comparison

We used do sx. 1 cs .mit . edu as our reference dual processor machine (Table 4.4).

dosx has two identical Pentium III processors, each operating at 500 MHz.

Figure 4-28 shows the results of the counter benchmark using a spin lock. The Sim-

ics machine shows a constant user time and system time across all number of processes.

Results from dosx show that as the number of processes increases, both user time and

system time increase linearly. For the total time, the Simics machine has a constant time

starting from three processes whereas the real machine shows a linear increase in total time

as the number of processes increases. Comparing the two total time graphs, the average

difference is -49% and the average absolute difference is 52%.

Figure 4-29 shows the results of the counter benchmark using a yield lock. For system

time, the results from do sx show a faster increase in comparison to the results from Simics.

The graphs of total time from both machines are similar except that dosx consistently has

a greater total time than Simics. The average difference is -6.3% and the average absolute

difference is also 6.3%.

Figure 4-30 shows the results of the producer-consumer benchmark using a spin lock.

60

12
Simics 2p i

dosx ---x--

10 -

6

7---

2 -

x

0
0 5 10 15 20 25 30

processes

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 10 20 30 40 50 60

processes

0 10 20 30

processes

40 50 60

Figure 4-28: Comparison of results of counter benchmark using spin lock from Simics dual
processor machine and dosx. 1cs .mit . edu.

61

0

E

ID

E

Simics 2p
dosx 7-x

AXX

- 7.0e
xx

x x

12

10

0

Simics2p -+-
dosx --- x---

-

X
-S '

x x

x/

- ..5

0

4

2

10 20 30 40 50 60

processes

0 10 20 30 40 50 60

processes

0 10 20 30 40 50 60

processes

Figure 4-29: Comparison of results of counter benchmark using yield lock from Simics

dual processor machine and dosx 1cs .mit .edu.

62

0.4
Simics 2p

dosx --- x---

4
-- X

-- -
0

0.35

0.3

0.25

0.2

0.15

0.1

0.3

0.25

0.2

0.15

1 29
Simics 2p

psx-

(x -

--c-

"
0

0I

0.1

0.05

2.5

2

1.5 k

Siics p

3C x *Sxxr X

6

0.5

00

0

1

30

25 -

0 10 20

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0

30

processes

40 50 60

Simics 2p
dosx ----

Ix'

, ,

10 20 30 40 50 60

processes

0 10 20 30 40 50 60

processes

Figure 4-30: Comparison of results of producer-consumer benchmark using spin lock from
Simics dual processor machine and dosx. 1cs .mit . edu.

63

Simics 2p
dosx --- x-

x-

20

15

E

10

5

0

0

E

18

16

14

12

0 10

E8
6

4

2

0

Simics 2p i
dosx --- x---

. . -r-

1

0 10 20 30 40 50 60

processes

Simics 2p

0 10 20 30 40 50 60

processes

Simics 2p
dosx --- x---

--

--

-' Y

-K,

x

0 10 20 30

processes

40 50 60

Figure 4-31: Comparison of results of producer-consumer benchmark using yield lock from

Simics dual processor machine and dosx. ics .mit . edu.

64

1.2
Simics 2p

x 5~--dosx --- x---

-- ~~~-,-"~ - ' 5 ,

E

0.8

0.6

0.4

0.2

0

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0

0
6

3

2.8

2.6

2.4

2.2

2

- 1.8

1.6

1.4

1.2

1

1

For some number of cases, the Simics machine gives a much greater user time and total

time than dosx. The average difference is 58% and the average absolute difference is 77%.

Figure 4-31 shows the results of the producer-consumer benchmark using a yield lock.

The two total time graphs are similar. The average difference is 5.0% and the average

absolute difference is 8.0%.

4.7 Discussion

Additional experiments show that the percentage difference of results from our simulation

framework and from real machines is greater that the percentage improvement of transac-

tional memory over yield locks when the size of a transaction and critical section are equal.

Therefore, our simulation framework is not accurate enough to distinguish the performance

of those two synchronization schemes. Our simulation framework is useful to test the func-

tionality of programs written with transactional instructions and to provide a rough estimate

of their performance. However, we cannot reliably conclude that transactional memory is

better than yield locks.

The initial results showed that adding exponential backoff to transactional memory de-

creased performance because the additional overhead was high. To calculate the amount

for backoff, we used the random function, which requires many instructions. Benchmarks

using spin locks showed that convoying is often a problem. A process is often descheduled

while holding the lock, preventing any active process from progressing.

When the size of the critical section and the size of the transaction are equal, our re-

sults show that transactional memory performs better than yield locks. The advantage of

transactional memory over yield locks increases as the number of processors increase. For

a program using yield locks in a multiprocessor system, only the process holding the lock

progress. All other active processes are yielding. In transactional memory, all processes

can progress as long as they do not conflict. In summary, our results show that transactions

never perform worse than yield locks.

65

66

Chapter 5

Conclusion

This thesis proposed an instruction set architecture extension to support hardware transac-

tions. With these instructions, programmers can write critical sections that normally require

locks as transactions. The transactional instructions allow a process to have multiple active

transactions and a transaction to explicitly add variables to or remove variables from its

data set.

There are some trade-offs in using transactions over locks. Transactions avoids the

problems of locks, such as deadlock, convoying, priority inversion, and reduction in paral-

lelism. Transactions are also less prone to programmer errors. A major problem in large

programs which use locks is that programmers make mistakes keeping track of which locks

protect which data structures. The primary problem of transactions is livelock, which can

be handled in software.

We presented a simulation framework built upon Simics that allows programmers to

write, compile, and simulate programs using the transactional instructions. Using our sim-

ulation framework, we compared the performance of benchmarks using transactional in-

structions to conventional locking schemes. The results from our simulations show that

transactional memory and yield locks have comparable performance. Benchmarks using

spin locks suffered from convoying. On a single processor system, results showed that

transactional memory offers no advantage over yield locks. As the number of processors

increased, the advantage of transactional memory over yield locks also improves.

Additional experiments also showed that results from our simulation framework have

67

error rates that are higher that the percentage improvement of transactional memory over

yield locks. Therefore, we cannot reliably conclude programs using our transactional in-

structions perform better than the same programs using yield locks. Nevertheless, our

simulation framework provides a method to test the functionality and obtain an estimate of

the performance of programs written with transactional instructions.

68

Appendix A

Source Code

A.1 Transactional Memory API

A.1.1 transactional-memory-api .h

/*

Transactional Memory interface

protocol

%eax - opcode

%ebx - dest

%ecx - src

%edx - tag

*/

#ifndef _SIMICSTRANSACTIONALMEMORYAPI_H

#define _SIMICSTRANSACTIONALMEMORYAPIH

#include "simics-magic-instruction.h"

#define OPCODERESERVE

#define OPCODERESERVEC

#define OPCODERELEASE

#define OPCODELT

#define OPCODEST

#define OPCODEBEGINT

#define OPCODECOMMIT

#define OPCODEVALIDATE

Ox0DEADO000

OxODEAD001

OxODEAD002

OxODEAD003

OxODEAD004

OxODEAD005

OxO DEADO 06

OxODEAD007

#define RESERVE(addr, tag) \

({ unsigned int _result; \

unsigned int *__addr = (addr); \

unsigned int *_tag = (tag); \

asm volatile ("movl %0,%%eax; movl %1,%%ebx; movl %2,%%ecx; movl %3,%%edx"
"g" (OPCODERESERVE), "g" (&_result), "g" (_addr), "g" (_tag): \
"eax", "ebx", "ecx", "edx");

MAGICBREAKPOINT; \

result; })

#define RESERVEC(addr, tag) \

({ unsigned int __result; \

69

unsigned int *__addr = (addr);

unsigned int *_tag = (tag); \

asm volatile ("movl %0,%%eax; movl %1,%%ebx; movl %2,%%ecx; movl %3,%%edx" ::

"g" (OPCODERESERVEC), "g" (&_.result), "g" (_addr), "g" (_tag): \

"eax", "ebx", "ecx", "edx");

MAGICBREAKPOINT;

_result; })

#define RELEASE(addr, tag) \

({ unsigned int _result; \

unsigned int *_addr = (addr);

unsigned int * tag = (tag); \

asm volatile ("movl %0,%%eax; movl %1,%%ebx; movl %2,%%ecx; movl %3,%%edx" ::

"g" (OPCODERELEASE) , "g" (&_result) , "g" (_addr), "g" (_tag): \

"eax", "ebx", "ecx", "edx");

MAGICBREAKPOINT;

_result; })

#define BEGINT(tag) \

({ unsigned int _result; \

unsigned int *_tag = (tag); \

asm volatile ("movl %0,%%eax; movl %1,%%ebx; movl %2,%%edx" ::

"g" (OPCODEBEGINT), "g" (&_result), "g" (_tag): \

"eax", "ebx", "edx"); \

MAGICBREAKPOINT; \

_result; })

#define COMMIT(tag) \

({ unsigned int __result; \

unsigned int *__tag = (tag); \

asm volatile ("movl %0,%%eax; movl %1,%%ebx; movl %2,%%edx" :: N

"g" (OPCODECOMMIT), "g" (&_result), "g" (_tag): \

"eax", "ebx", "edx"); \

MAGICBREAKPOINT; \

_result; })

#define LT(addr, tag) \

({ unsigned int __result; \

unsigned int *_addr = (addr); N

unsigned int *_tag = (tag); \

asm volatile ("movl %0,%%eax; movl %1,%%ebx; movl %2,%%ecx; movl %3,%%edx" ::

"g" (OPCODE-LT), "g" (&_result), "g" (_addr), "g" (_tag) :

"eax", "ebx", "ecx", "edx");

MAGICBREAKPOINT;

result; })

#define ST(addr, value, tag) \

({ unsigned int *__addr = (addr); \

unsigned int __value = (value);

unsigned int * tag = (tag); \

asm volatile ("movl %0,%%eax; movl %1,%%ebx; movl %2,%%ecx; movl %3,%%edx" ::

"g" (OPCODEST), "g" (_addr), "g" (-value), "g" (_tag) :

"eax", "ebx", "ecx", "edx"); N

MAGICBREAKPOINT; \

#define VALIDATE(tag) \

({ unsigned int _result; \

unsigned int *_tag = (tag); \

asm volatile ("movl %0,%%eax; movl %1,%%ebx; movl %2,%%edx" ::

"g" (OPCODEVALIDATE), "g" (&_result), "g" (_tag): \

"eax", "ebx", "edx"); \

MAGICBREAKPOINT; N

result; })

#endif /* _SIMICSTRANSACTIONALMEMORYAPIH */

70

A.2 Simics Transactional-Memory Module

A.2.1 transactional-memory. h

#define TMLINES 8 // number of entries in transactional memory

// possible values of a transaction tag

#define TAGNONE Ox0

#define TAG-ACTIVE 0xl
#define TAG-COMMITTED Ox2
#define TAGABORTED Ox3

// transactional memory line

typedef struct {
unsigned int valid; // entry in use?

unsigned int modified; // data modified?

physical addresst pa; // physical address

physical addresst tag-pa; // physical address of tag

integer t data;

} tmline t;

A.2.2 transactional-memory. c

#include "first.h"

#include <errno.h>

#include <stdio.h>

#include <string.h>

#include "global.h"

#include "simics-api.h"

#include "simmalloc.h"

#include "c-utils.h"

#include "transactional-memory-api.h"

#include "transactional-memory.h"

/* struct for the transactional-memory-class */
typedef struct {

conf-objectt obj;

timingmodel interface t *timing interface;

int tm-enabled; // enable transactional memory

tmlinet *tm; // transactional memory buffer

int numtrans; // number of transaction slots used

transactional memory object-t;

timing model interface t *transactional memory timinginterface;

static int mm-id = -1;

static void

tm-handler(const conf-object t *obj)

transactional memory object t *tmnobj = (transactional memory-object t *)obj;

if (!tm-obj->tm-enabled) {

return;

processort *cpu = SIM-current-processor();

int eax-no = SIM get register number((conf objectt *)cpu, "eax");
int ebxno = SIM get register number((conf object-t *)cpu, "ebx");
int ecxno = SIM get register number (conf object_t *)cpu, "ecx");
int edx-no = SIM get-register number (conf objectt *)cpu, "edx");

71

uinteger-t opcode = SIM readregister((conf-object-t *)cpu, eax no);

uinteger t dest la = SIM readregister((conf_object-t *)cpu, ebx-no);

uinteger-t tag-la = SIM-readregister((confobject-t *)cpu, edx no);

physicaladdresst dest-pa = SIM-logicaltophysical(cpu, SimDI_Data, destla);

physicaladdresst tagpa = SIM-logicalitophysical(cpu, SimDI_Data, tag-la);

integert tag-value = SIM-read physmemory(cpu, tag-pa, 4);

int i;

int hit;

int hit index;

int result;

int tagmatch;

logical address-t la;

physical address-t pa;

integert value;

switch (opcode)

case OPCODERESERVE:

case OPCODERESERVEC:

result = FALSE;

la = SIM-read register((conf-objectt *)cpu, ecxno);

pa = SIM-logicaltophysical(cpu, SimDIData, la);

if (tag_value == TAGACTIVE) (

// check if already reserved

hit = FALSE;

hitindex = Oxdeadbeef;

tag-match = FALSE;

if (tm-obj->num trans != 0) {
for (i=0; i<TMLINES; i++)

if ((tm obj->tm[i].valid == TRUE) && (tm-obj->tm[i].pa == pa))

hit = TRUE;

hitindex = i;

if (tmobj->tm(i].tagpa == tagpa)

tagmatch = TRUE;

break;

if (hit == FALSE) { // if not reserved, find empty slot and reserve

for (i=0; i<TMLINES; i++)

if (!tmobj->tm[i].valid)

tmobj->tm[i].valid = TRUE;

tm-obj->tm[i.modified = FALSE;

tm_obj->tm[i].pa = pa;

tm-obj->tm[i].data = SIM-read-physmemory(cpu, pa, 4);

tm-obj->tm[i].tag-pa = tagpa;

tm obj->numtrans++;

result TRUE;

break;

if (result FALSE)

// abort transaction

SIMprintf("Warning! Transaction aborted due to lack of space\n");

SIM_printf("Trying to reserve PA:%x tagpa:%x\n", pa, tagpa);

SIM writephys memory(cpu, tagpa, TAG ABORTED, 4);

SIM_printf("valid modified pa tagpa data tag-status\n");
for (i=0; i<TMLINES; i++) (

SIM-printf("%d %d Ox%x Ox%x %d %d\n",

tm-obj->tm[i].valid,

72

tm_obj->tm[i].modified,

tmobj->tm[i].pa,

tmobj->tm[i].tagpa,

tmobj->tm[i].data,

SIM-readphys-memory(cpu, tm-obj->tm[i.tagpa, 4));

else if ((hit) && (!tagmatch) && (opcode == OPCODERESERVE))

// reserved by another transaction so abort the other transaction

SIMwrite-phys memory(cpu, tm obj->tm[hitindex].tagpa, TAGABORTED, 4);

tm obj->tm[hit index].tag pa = tagpa;

if (tmobj->tm[hitindex].modified) [

tm-obj->tm[hit index].data = SIM read-phys memory(cpu, pa, 4);
tmobj->tm[hitindex].modified = FALSE;

result = TRUE;

}

SIM-write-phys-memory(cpu, destpa, result, 4);

break;

case OPCODERELEASE:

result = FALSE;

la = SIMread register((conf object-t *)cpu, ecxno);

pa = SIMNlogical-to-physical(cpu, SimDI_Data, la);

for (i=0; i<TMLINES; i++) {

if ((tm obj->tm[i].valid) && (tm-obj->tm(i].pa == pa)) {

if (tmobj->tm[i].tagpa == tagpa) {

result = TRUE;

tmobj->tm[i].valid = FALSE;

tmobj->num-trans--;

break;

break;

case OPCODEBEGINT:

result = FALSE;

if ((tagvalue == TAG NONE) 11 (tag value == TAGCOMMITTED))

SIMwritephys memory(cpu, tag-pa, TAGACTIVE, 4);

result = TRUE;

else if (tagvalue == TAG-ABORTED)

// clear entries from aborted transaction

for (i=O; i<TM LINES; i++) {

if ((tmobj->tm[i].valid) && (tm_obj->tm[i].tag pa tagpa))

tmobj->tm[i].valid = FALSE;

tmobj->num-trans--;

}

SIMwrite-phys-memory(cpu, tag-pa, TAGACTIVE, 4);

result = TRUE;

else {

SIM_printf("Warning! Cannot begin transaction. Transaction is already ACTIVE.\n");

SIM write-phys memory(cpu, dest pa, result, 4);

break;

case OPCODELT:

la = SIMread register((conf-object t *)cpu, ecxno);

pa = SIM_logical-to-physical(cpu, Sim DIData, la);

73

if (tagvalue == TAGACTIVE)

for (i=O; i<TMLINES; i++)

if ((tm-obj->tm[i].valid) &&

(tm-obj->tm[i].pa == pa) &&

(tm-obj->tm[i].tagpa == tagpa))

SIM-write-physnmemory(cpu, destpa, tmobj->tm[i].data, 4);

break;

break;

case OPCODEST:

value = SIMNread register((confobject-t *)cpu, ecx-no);

if (tag_value == TAGACTIVE)

for (i=0; i<TMLINES; i++)

if ((tm-obj->tm[i].valid) &&

(tmobj->tm[i].pa == dest-pa) &&

(tm-obj->tm[i].tag-pa == tag-pa))

tmobj->tm[i].data = value;

tm-obj->tm[i].modified = TRUE;

break;

break;

case OPCODECOMMIT:

result = FALSE;

if (tagvalue == TAGACTIVE)

for (i=0; i<TM LINES; i++)

if ((tmobj->tm[i].valid) &&

(tm obj->tm[i].modified) &&

(tmobj->tm[i].tag-pa == tag-pa))

SIM-write-phys-memory(cpu, tmobj->tm[i].pa,

tmobj->tm[i] .rnodified = FALSE;

tm obj->tm[i].data, 4);

result = TRUE;

SIM_write-phys-memory(cpu, tagpa, TAGCOMMITTED, 4);

SIMwrite phys-memory(cpu, dest-pa, result, 4);

break;

case OPCODEVALIDATE:

result = (tag-value == TAGACTIVE);

SIMwritephys-memory(cpu, destpa, result, 4);

break;

default:

SIM_printf("Warning! MAGIC INSTRUCTION called with unknown opcode %x\n", opcode);

static confobject-t *

transactional memory-new_instance(parse objectt *pa)

transactional memoryobjectt *obj = MM ZALLOC(1, transactional-memory objectt);

SIMobjectconstructor((confobject-t *)obj, pa);

obj->timinginterface = transactional-memory timinginterface;

obj->tm = MMZALLOC(TM LINES, tm-line-t);

SIM_printf("Initializing transactional memory\n");

74

}

SIMhap-register-callback ("Core MagicInstruction", (strhap-func-t)tm-handler, obj);

return (confobjectt *)obj;

/* This function is called once for every memory operation. */

static cycles_t

transactionalimemory-operate(conf object-t *obj, conf objectt *space, maplist t *map,

memory-transaction t *memop)

transactional memory-object t *tm obj = (transactional memory-object-t *)obj;

generictransactiont *g = (generic-transactiont *)mem op;
int i;

/* We want to see future references, so make sure the STC does

not hide them from us. */

g->blockSTC = 1;

if (!tm-obj->tm enabled (tm-obj->numntrans == 0))

return 0;

// check transactional memory for possible violations

for (i=0; i<TM LINES; i++) {

if ((tmobj->tm[i].valid) &&

(tm-obj->tm[i].pa == g->physical address))

SIM_writephys-memory(SIM_current-processor(), tm-obj->tm[i] .tagpa, TAGABORTED, 4);

break;

return 0;

static set error t

setenabledattribute(void *dontcare, conf-object-t *obj, attr-value-t *val, attrvaluet *idx)

transactionalmemoryobject t *tm-obj = (transactional memory-object-t *)obj;

if (val->kind != SimValInteger)

return SimSetNeedInteger;

tm-obj->tmenabled = val->u.integer;

return SimSetOk;

static attrvalue_t

get enabledattribute(void *dont-care, conf-object-t *obj, attr value t *idx)

transactional memory-object t *tm-obj = (transactional memory objectt *)obj;

attrvaluet ret;

ret.kind = SimValInteger;

ret.u.integer = tm-obj->tmenabled;

return ret;

DLLEXPORT void

init local(void)

class data t class-data;

conf-class t *conf-class;

/* initialize and register the class "transactional-memory-class *
memset(&class data, 0, sizeof(classdata_t));

class data.newinstance = transactionalmemorynewinstance;

classdata.description =

75

"The transactional-memory class emulates the transaction memory

"instruction set extensions.";

confclass = SIM-register-class("transactional-memory", &classdata);

/* initialize and register the timing-model interface */

transactional memorytiming_interface = MM_ZALLOC(1, timing_modelinterfacet);

transactionalmemorytiminginterface->operate = transactional-memory operate;

SIM-register-interf ace (conf _class, "timing-model", transact ionalmemory-t iminginterf ace);

/* initialize attributes */

SIM-registerattribute(conf class, "enabled", get_enabledattribute,

0, set enabledattribute, 0, SimAttrSession,

"<tt>1</tt>I<tt>0</tt> Set to 1 to enable transactional memory, 0 to disable.");

DLLEXPORT void

fini local(void)

A.2.3 commands. py

from cli import *

def tmenable-cmd(obj):

SIM setattribute(obj, "enabled", 1)

print "Transactional Memory enabled"

newcommand("enable", tmenable cmd,

El,
type "transactional-memory-commands",

alias = "tm-enable",

namespace = "transactional-memory",

short = "enable/disable transactional memory",

doc =

The enable command turns on transactional memory support and the

disable command switches off transactional memory support.

def tm-disable-cmd(obj):

SIM setattribute(obj, "enabled", 0)

print "Transactional Memory disabled"

newcommand("disable", tm-disable-cmd,

[],

type = "transactional-memory-commands",

alias = "tm-disable",

namespace = "transactional-memory",

short = "disable transactional memory",

docwith = "<transactional-memory>.enable")

A.2.4 Makefile

MODULEDIR = transactional-memory

MODULENAME = transactional-memory

MODULECFLAGS =

MODULELDFLAGS =

76

MODULECLASSES = transactional-memory

SRCFILES = transactional-memory.c

include $ (SIMICSBASE) /src /extensions/common/extens ion-makef ile

A.3 Benchmarks

A.3.1 lock.h

#include <sched.h>

#define LOCKLOCKED 0

#define LOCKUNLOCKED 1

typedef volatile unsigned int lockt;

static inline void spinlock-lock(lockt *lock)

unsigned int __val = LOCKLOCKED;

do {

asm volatile ("xchg %0,%2" =r(val) : "0"(___val), "m"(*lock));

while (_val != LOCKUNLOCKED);

static inline void spinlockunlock(lock-t *lock)

*lock = LOCKUNLOCKED;

static inline void yieldlock_lock(lockt *lock)

unsigned int _val = LOCKLOCKED;

while (1) {

asm volatile ("xchg %0,%2" "=r" (_val) : "0" (__val) , "m" (*lock));
if (_val != LOCK UNLOCKED)

schedyield();

else {

break;

static inline void yieldlock_unlock(lock-t *lock)

*lock = LOCKUNLOCKED;

}

A.3.2 Counter Benchmark (counter. c)

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/sem.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#ifdef TM

#include "transactional-memory-api.h"

#else

77

#include "lock.h"

#endif

int main(int argc, char *argv[])

keyt key;

int shmid;

int semid;

struct shmidds buf;

struct sembuf op[1];

union semun

int val;

struct semidds *buf;

unsigned short *array;

arg;

int *counter;

int success;

int work;

int processes;

#ifdef TM

int status;

int tag;

int temp;

#ifdef BACKOFF

int wait;

int backoff;

#define BACKOFFMIN Ox2

#endif

#else

key t key2;

int shmid2;

lock t *lock;

#endif

key = 4000;

#ifndef TM

key2 = 4500;

#endif

if (argc == 1) {

int a;

int b;

#ifndef TM

int c;

#endif

printf("No arguments... performing cleanup\n");

shmid = shmget(key, sizeof(int), IPCCREAT 1 0666);

semid = semget(key, 1, IPCCREAT 1 0666);

a = shmctl(shmid, IPCRMID, &buf);

b = semctl(semid, 0, IPCRMID);

#ifndef TM

shmid2 = shmget(key2, sizeof(lockt), IPCCREAT 1 0666);

c = shmctl(shmid2, IPC_RMID, &buf);

printf("shmid:%d semid:%d shmid2:%d\n", shmid, semid, shmid2);

printf("shmctl:%d semctl:%d shmctl:%d\n", a, b, c);

#else

printf("shmid:%d semid:%d\n", shmid, semid);

printf("shmctl:%d semctl:%d\n", a, b);

#endif

exit(1);

else if (argc != 3)

printf("Usage: %s work processes\n", argv[0]);

exit(l);

work = atoi(argv[1]);

processes = atoi(argv[2]);

78

success = 0;

op[0].sem num = 1;

op[0] .semflg = 0;

#ifdef TM

tag = 0;

#endif

shmid = shmget(key, sizeof(int), IPCCREAT I IPCEXCL I 0666);
semid = semget(key, 1, IPC CREAT I IPCEXCL 1 0666);

#ifndef TM

shmid2 = shmget(key2, sizeof(lock-t), IPC_CREAT I IPCEXCL j 0666);
#endif

if (shmid != -1)

if ((int) (counter = (int *)shmat(shmid, NULL, 0)) == -1)

perror("shmat counter failed");

exit(1);

*counter = 0;

else {

if ((shmid = shmget(key, sizeof(int), 0666)) == -1)

perror("shmget failed getting counter shmid");

exit(1);

}

if ((int) (counter = (int *)shmat(shmid, NULL, 0)) == -1)
perror("shmat counter failed");

exit(l);

#ifdef TM

// Simics hack

// reference counter so that we don't get a Simics translation error

temp = *counter;

#endif

if (semid != -1) {
arg.val = processes;

if (semctl(semid, 0, SETVAL, arg) == -1)

perror("semctl cannot set semaphore value. \n")
exit(1);

else f

if ((semid = semget(key, 1, 0666)) == -1)

perror("semget failed trying to get semid");

exit(1);

#ifndef TM

if (shmid2 != -1) {

if ((int) (lock = (lock t *)shmat(shmid2, NULL, 0)) == -1)
perror("shmat lock failed");

exit(1);

#ifndef YIELDLOCK

spinlock-unlock(lock);

#else

yieldlock unlock(lock);

#endif

else

if ((shmid2 = shmget(key2, sizeof(lock t), 0666)) == -1)
perror("shmget failed trying to get lock shmid");

79

exit (1);

if ((int) (lock = (lock-t *)shmat(shmid2, NULL, 0)) == -1)

perror("shmat lock failed");

exit(1);

#endif

// wait for everyone else before starting

while (1) {

shmctl(shmid, IPCSTAT, &buf);

if (buf.shmnattch == processes)

break;

sleep(1);

while (success < work)

#ifdef TM

BEGINT(&tag);

RESERVE(counter, &tag);

ST(counter, LT(counter,&tag)+l, &tag);

status = COMMIT(&tag);

RELEASE(counter, &tag);

if (status)

success++;

#ifdef BACKOFF

backoff = BACKOFFMIN;

#endif

} else

#ifdef BACKOFF

wait = random() % (Oxl << backoff);

while (wait--);

backoff++;

#endif

#else

#ifndef YIELDLOCK

spinlockjlock(lock);

#else

yieldlock_lock(lock);

#endif

*counter = *counter + 1;

#ifndef YIELDLOCK

spinlock-unlock(lock);

#else

yieldlock unlock(lock);

#endif

success++;

#endif

op[] .sem-num = 0;

op[01.semop = -1;

semop(semid, op, 1);

// wait for everyone else to finish

// semctl returns

// 0 - everyone is done

// >0 - still processes working

// -1 - error meaning everyone should be done and someone already

// deleted semaphore and shared memory

while (semctl(semid, 0, GETVAL) > 0)

sleep(l);

80

shmctl(shmid, IPCRMID, &buf);

semctl(semid, 0, IPCRMID);

#ifndef TM

shmctl(shmid2, IPCRMID, &buf);

#endif

return 0;

}

A.3.3 Consumer-Producer Benchmark (queue. c)

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/sem.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#ifdef TM

#include "transactional-memory-api.h"

#else

#include "lock.h"

#endif

#define QUEUESIZE 1024

typedef struct {

int deqs;

int enqs;

int items[QUEUESIZE];

queue-t;

int main(int argc, char *argv[])

keyt key;

int shmid;

int semid;

struct shnidds buf;

struct sembuf op[l];

union semun

int val;

struct semidds *buf;

unsigned short *array;

} arg;

queuet *q;

int result;

int state;

int work;

int processes;

int success;

#ifdef TM

int status;

int tag;

int head;

int tail;

int temp;

void *ptr;

#ifdef BACKOFF

int wait;

int backoff;

#define BACKOFFMIN Ox2
#endif

81

#else

keyt key2;

int shmid2;

lock-t *lock;

#endif

key = 5000;

#ifndef TM

key2 = 5500;

#endif

if (argc == 1) {
int a;

int b;

#ifndef TM

int c;

#endif

printf("No arguments... performing cleanup\n");

shmid = shmget(key, sizeof(queue-t), IPC_CREAT 0666);

semid = semget(key, 1, IPC_CREAT 1 0666);

a = shmctl(shmid, IPCRMID, &buf);

b = semctl(semid, 0, IPC_RMID);

#ifndef TM

shmid2 = shmget(key2, sizeof(lock-t), IPC_CREAT 0666);

c = shmctl(shmid2, IPCRMID, &buf);

printf("shmid:%d semid:%d shmid2:%d\n", shmid, semid, shmid2);

printf("shmctl:%d semctl:%d shmctl:%d\n", a, b, c);

#else

printf("shmid:%d semid:%d\n", shmid, semid);

printf("shmctl:%d semctl:%d\n", a, b);

#endif

exit(1);

else if (argc != 4)

printf("Usage: %s producelconsume work processes \n", argv[0]);

exit(l);

state = atoi(argv[l]);

work = atoi(argv[2]);

processes = atoi(argv[3]);

success = 0;

op[0].semnum = 1;

op[O].sem-flg = 0;

#ifdef TM

tag = 0;
#endif

shmid = shmget(key, sizeof(queue-t), IPC CREAT IPCEXCL I 0666);
semid = semget(key, 1, IPCCREAT I IPCEXCL 1 0666);

#ifndef TM

shmid2 = shmget(key2, sizeof(lock-t), IPCCREAT I IPCEXCL 0666);

#endif

if (shmid != -1) {

if ((int) (q = (queuet *)shiat(shmid, NULL, 0)) == -1)

perror("shmat q failed");

exit(1);

q->enqs = 0;

q->deqs = 0;

} else {

if ((shmid = shmget(key, sizeof(int), 0666)) == -1)

perror("shget failed getting q shmid");

exit(l);

82

if ((int) (q = (queuet *)shmat(shmid, NULL, 0)) == -1)

perror("shmat q failed");

exit(1);

#ifdef TM

// Simics hack

// reference q so that we don't get a Simics translation error
// expects q to be page aligned address with page size of 4kb (2^12)
for (ptr=q; (unsigned int)ptr<(unsigned int)q+sizeof (queuet); ptr+=l<<12)
temp = *((unsigned int*)ptr);

#endif

if (semid != -1)

arg.val = processes;

if (semctl(semid, 0, SETVAL, arg) == -4)

perror("semctl cannot set semaphore value.\n");

exit(1);

else

if ((semid = semget(key, 1, 0666)) == -1) f
perror("semget failed trying to get semid");

exit(1);

#ifndef TM

if (shmid2 != -1)

if ((int) (lock (lock-t *)shmat(shmid2, NULL, 0)) == -1)

perror("shmat lock failed");

exit(1);

#ifndef YIELDLOCK

spinlock unlock(lock);

#else

yieldlock unlock(lock);

#endif

} else

if ((shmid2 = shmget(key2, sizeof(lockt), 0666)) == -1)

perror("shmget failed trying to get lock shmid");
exit(1);

if ((int) (lock = (lockt *)shmat(shmid2, NULL, 0)) == -1)
perror("shmat: shmat failed");

exit(1);

#endif

// wait for everyone else before starting

while (1) f

shmctl(shmid, IPCSTAT, &buf);

if (buf.shmnnattch == processes) t

break;

sleep(1);

if (state == 0) { // producer

while (success < work)

#ifdef TM

BEGINT(&tag);

RESERVE(&(q->enqs), &tag);

83

RESERVE(&(q->deqs), &tag);

tail = LT(&(q->enqs), &tag);

head = LT(&(q->deqs), &tag);

if ((tail+l)%QUEUE_SIZE != head%QUEUESIZE)

RESERVE(&(q->items[tail%QUEUESIZE]), &tag);

ST(&(q->items[tail%QUEUESIZE]), tail, &tag);

ST(&(q->enqs), tail+l, &tag);

status = COMMIT(&tag);

RELEASE(&(q->enqs), &tag);

RELEASE(&(q->deqs), &tag);

RELEASE(&(q->items[tail%QUEUESIZE]), &tag);

if (status && ((tail+l)%QUEUESIZE != head%QUEUE SIZE))

success++;

#ifdef BACKOFF

backoff = BACKOFFMIN;

#endif

#ifdef BACKOFF

else {

wait = random() % (Ox1 << backoff);

while (wait--);

backoff++;

#endif

#else

#ifndef YIELDLOCK

spinlockjlock(lock);

#else

yieldlockjlock(lock);

#endif

if ((q->enqs + 1) % QUEUESIZE q->deqs % QUEUESIZE)

q->items[q->enqs % QUEUESIZE] = q->enqs;

q->enqs++;

success++;

#ifndef YIELDLOCK

spinlock-unlock(lock);

#else

yieldlock-unlock(lock);

#endif

#endif

else if (state == 1) { // consumer

while (success < work) {

#ifdef TM

BEGINT(&tag);

RESERVE(&(q->enqs), &tag);

RESERVE(&(q->deqs), &tag);

tail = LT(&(q->enqs), &tag);

head = LT(&(q->deqs), &tag);

if (head != tail) f

RESERVE(&(q->items[head%QUEUESIZE]), &tag);

result = LT(&(q->items[head%QUEUESIZE]), &tag);

ST(&(q->deqs), head+l, &tag);

status = COMMIT(&tag);

RELEASE(&(q->enqs), &tag);

RELEASE(&(q->deqs), &tag);

RELEASE(&(q->items(head%QUEUESIZE]), &tag);

84

if (status && (head != tail))

success++;

#ifdef BACKOFF

backoff = BACKOFFMIN;

#endif

#ifdef BACKOFF

else {

wait = random) % (Oxl << backoff);

while (wait--);

backoff++;

#endif

#else

#ifndef YIELDLOCK

spinlock-lock(lock);

#else

yieldlocklock(lock);

#endif

if (q->enqs != q->deqs)

result = q->items[q->deqs % QUEUE-SIZE];

q->deqs++;

success++;

#ifndef YIELDLOCK

spinlock unlock(lock);

#else

yieldlock unlock(lock);

#endif

#endif

op[O].sem-num = 0;

op[O].sem op = -1;

semop(semid, op, 1);

// wait for everyone else to finish

if positive, then ppl still in critical section

if 0, then no one

if -1, error someone already deleted the semaphore and shared block

*/

while (semctl(semid, 0, GETVAL) > 0)

sleep(1);

shmctl(shmid, IPCRMID, &buf);

semctl(semid, 0, IPCRMID);

#ifndef TM

shmctl(shmid2, IPCRMID, &buf);

#endif

return 0;

85

86

Appendix B

Simics with Transactional-Memory

Module Guide

This is a guide to using Simics with the transactional-memory module. We briefly describe

how to setup Simics with the transactional-memory module, write programs using transac-

tional memory instructions, and modify the transactional memory module to simulate new

instructions. More details about Simics can be found in the user guide included with the

Simics distribution.

B.1 Simics Installation

An academic user can obtain a free personal license and copy of Virtutech Simics from

http: / /www. simics . net. The academic license allows one user to run Simics on

one machine and is renewable on a yearly basis. The transactional memory module used

in this thesis runs only with the x86 target and was tested only on Linux/x86 hosts. We

recommend the user to obtain a Simics license with host Linux/x86 and target Simics/x86.

For the remainder of this guide, we assume this target-host combination.

Virtutech usually approves and emails the user an academic license in a few business

days. Instructions on downloading, installing, and getting started with Simics are also

included in the email. We use the directory [s imic s] to refer to where Simics is installed.

After installing Simics, the user needs to download disk dumps from the Simics web-

87

site. Experiments in this thesis used the Redhat 7.3 Linux enterprise-rh73 . craf f

and Redhat 6.2 Linux hippie3 -rh62 .craf f disk dumps. Place the disk dumps in the

[simics] /import/x86 directory.

B.2 Transactional-Memory Module Installation

We use [path] to refer to the directory where the required files are residing.

Copy transactional-memory-api .h to the Simics header files directory.

cd [simics]/x86-linux/obj/include

cp [path] /transactional-memory-api .h

Create a subdirectory for the transactional-memory module and place the files there.

cd [simics]/src/extensions

mkdir transactional-memory

cd transactional-memory

cp [path]/transactional-memory.h

cp [path]/transactional-memory.c

cp [path]/commands.py

cp [path]/Makefile .

Add the transactional-memory module to the build list by adding the following line to

the file [simics] /conf ig/modules. list-local:

transactional-memory I BIT2 I x86

Setup the build environment and compile the transactional-memory module.

cd [simics]/x86-linux

../configure -q

cd [simics]/x86-linux/lib

gmake transactional-memory

B.3 Virtual Machine Configuration

The Simics distribution provides machine configurations in the directory [simics] /home.

The virtual machines used in this thesis are based on the supplied Enterprise configurations.

In the configuration file, we must attach the transactional-memory module to the phys-

ical memory of each processor in the system. We can also change machine parameters

88

@num-processors = 2

@clockfreq_mhz = 500

@memorymegs = 256

@def userconfig():

global conflist

conflist += [OBJECT("tm", "transactional-memory")]

set_attribute(conf __list, "phys _memO", "timing_model", "tm")

setattribute(conf list, "phys-meml", "timing_model", "tm")

run-command-file enterprise-common.simics

Figure B-1: Simics dual processor machine configuration.

such as number of processors, processor frequency, and memory in the system. Figure B-I

shows the configuration file dosx. simics that was used to create the Simics dual pro-

cessor machine.

To start Simics with the dual processor machine configuration and the x8 6 -p3 proces-

sor model, type at the command prompt:

cd [simics]/home/enterprise

./simics x86-p3 -x dosx.simics

The default behavior of the transactional-memory module is not to simulate transac-

tional instructions. Simulating transactional instructions reduces the performance of Sim-

ics because the module must check for possible transaction conflicts on every memory

reference. To enable transactional memory simulation, type tm-enable at the Simics

prompt:

simics> tm-enable

B.4 Programming with Transactional Instructions

A C program must include the file transactional-memory-api .h in order to use

the transactional instructions.

#include "transactional-memory-api. h"

89

#define OPADD OxDEADBEEF

#define ADD(a, b) \

({ unsigned int _c; \

unsigned int *__a = (a); \

unsigned int *__b = (b); \

asm volatile ("movl %0,%%eax" "g" (OPADD) : "eax"); \

asm volatile ("movl %0,%%ebx" "g" (&_-c) : "ebx"); \

asm volatile ("movl %0,%%ecx" "g" (_a) : "ecx"); \

asm volatile ("movl %0,%%ebx" "g" (__b) : "edx"); \

MAGICBREAKPOINT; \

_c; })

Figure B-2: ADD macro.

A program with transactional instructions can be compiled with gcc like any other C

program.

B.5 Modeling New Instructions

In this section, we demonstrate how to create and simulate a new instruction.

In this example, we model a new instruction that performs a memory-to-memory add.

The macro ADD (a, b) adds the value at memory location a to the value at memory loca-

tion b and returns the result.

First, we write the ADD macro in transactional-memory-api .h (Figure B-2).

Find an unused opcode. Use assembly code to put the source and destination operands in

the appropriate registers. In this example, we put the opcode in %eax, the address to put

the result c in %ebx, a in %ecx, and b in %edx. Call the magic instruction and return the

result.

The second step is to modify the transactional-memory module to simulate the ADD

macro (Figure B-3). The function tm-handler in transactional-memory. c is

called when Simics encounters the magic instruction. Add a case statement for the ADD

macro. Read the logical addresses of the operands and destination from %ebx, %ecx,

90

case OPADD:

cla = SIMreadregister(cpu, ebx no);

a_la = SIMread-register(cpu, ecxno);

b_la = SIMreadregister(cpu, edx no);

c_pa = SIMlogical-to-physical(cpu, Sim__DI_Data, cla);

a-pa = SIMlogical-to-physical(cpu, SimDIData, ajla);

b-pa = SIMlogical-tophysical(cpu, SimDIData, bja);

a SIM_readphys-memory(cpu, apa, 4);

b = SIMreadphys-memory(cpu, bpa, 4);

SIM_writephys-memory(cpu, cia, a+b, 4);

break;

Figure B-3: Code to simulate ADD macro.

and %edx. Translate the logical addresses to physical addresses. Read the source values,

perform the add operation, and store the result.

Finally, write, compile, and simulate a program that uses the new ADD instruction (Fig-

ure B-4).

91

#include <stdio.h>

#include "transactional-memory-api.h"

void main() {

int a = 2;

int b = 3;

c = ADD(&a, &b);

printf("The result of c is %d.\n", C);

}

Figure B-4: Sample program using ADD macro.

92

Bibliography

[1] Compaq Computer Coporation. Alpha Architecture Handbook, Version 4,

October 1998. http: //www. support. compaq. com/alpha- tools/

documentation/current/alpha-archt/alpha-architecture.pdf.

[2] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-

port for lock-free data structures. Technical Report 92/07, Digital Equipment Corpo-

ration Cambridge Research Lab, December 1992. http: / /www. hpl . hp. com/

techreports/Compaq-DEC/CRL-92-7 .html.

[3] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Archi-

tectural support for lock-free data structures. In Proceedings of the 20th

Annual International Symposium on Computer Architecture, pages 289-301,

May 1993. http://www.cs.brown.edu/people/mph/HerlihyM93/

herlihy93transactional.pdf.

[4] Intel Corporation. IA-32 Intel Architecture Software Developer's Manual, Vol-

ume 2: Instruction Set Reference, 2003. http: / /www. intel .com/design/

pentium4/manuals/245471.htm.

[5] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav

Hillberg, Johan H6gberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner.

Simics: A full system simulation platform. Computer, 35(2):50-58, February 2002.

http://www.virtutech.com/simics/Computer_200202.html.

[6] MIPS Technologies. MIPS32 Architecture for Programmers Volume II: The MIPS32

Instruction Set, 1 September 2002.

93

[7] MIPS Technologies. MIPS64 Architecture for Programmers Volume II: The MIPS64

Instruction Set, 29 August 2002.

[8] Motorola. Motorola M68000 Family Programmer's Reference Manual, 1992. ht tp:

//e-www.motorola.com/collateral/M68000PRM4.pdf.

[9] Motorola. Programming Environments Manual for 32-Bit Implementations of the

PowerPC Architecture, December 2001. http: / /e-www. motorola. com/

brdata/PDFDB/docs/MPCFPE32B.pdf.

[10] Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling highly con-

current multithreaded execution. In Proceedings of the 34th International Symposium

on Microarchitecture, pages 294-305, December 2001. http: / /www. cs . wisc.

edu/~rajwar/papers/micro01.pdf.

[11] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-based

programs. In Proceedings of the Tenth International Conference on Architectural

Support for Programming Languages and Operating Systems, October 2002. ht tp:

//www.cs.wisc.edu/~rajwar/papers/asplos02.pdf.

[12] David L. Weaver and Tom Germond, editors. The SPARC Architecture Manual, Ver-

sion 9. Prentice Hall, Englewood Cliffs, New Jersey, 1994. http: / /www. sparc.

com/standards/SPARCV9.pdf.

94

