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Abstract 
Application Specific Instruction set Processors 

(ASIPs)  are field or mask programmable processors 
of which the architecture and instruction set are opti- 
mised to  a specific application domain. ASIPs  offer a 
high degree of flexibility and are therefore increasingly 
being used in competitive markets like telecommuni- 
cations. However, adequate C A D  techniques for the 
design and programming of ASIPs  are missing hith- 
erto.  In this paper, an interactive approach for the 
definition of optimised microinstruction sets of ASIPs  
is presented. A second issue i s  a meihod for instruc- 
tion selection when generating code for a predefined 
ASIP.  A combined instruction set and data-path model 
is  generated, onto which the application is mapped. 

1 Introduction 
Application Specific Instruction set Processors 

(ASIPs) are in between custom architectures and com- 
mercial programmable DSP processors. They allow 
field and mask programmability but are targeted to 
a certain class of applications as to limit the amount 
of hardware (area and power) needed. Consequently, 
ASIPs are often the best choice for embedded applica- 
tions. To increase performance of such an ASIP, cus- 
tom hardware accelerator data-path(s) can be added, 
which makes the ASIP a heterogeneous IC architec- 
ture [6 ] .  

The small number of algorithms to be mapped on 
an ASIP does not justify the effort of writing a com- 
piler for each target architecture. In practice, assem- 
bly code therefore is often written manually, which is 
too high a cost. The solution is a retargetable com- 
piler, with as additional advantage that it supports 
late changes on the instruction set. 

This paper focusses on the instruction selection task 
in such a retargetable compiler. A second part of the 
paper shows how our instruction selection method can 
be used together with an application analysis tool for 
micro-instruction set definition. The techniques are 
implemented as a part of the synthesis and code gen- 
eration system “CHESS”. 

2 Traditional instruction selection 
An ASIP is usually specified by its instruction set 

and an abstract description of its data-path. The de- 
tailed description of the data-path with all connec- 
tions is normally not available, nor is a description of 
the controller or micro-sequencing logic. 
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Traditional instruction selection techniques use tree 
pattern matching [l, chapter 91. The set of template 
patterns is (manually) extracted from the instruc- 
tion set and the graph representing the intermediate 
code of the application is covered by these patterns. 
For machines with a set of interchangeable general- 
purpose registers, tree pattern matching based on the 
dynamic programming method ensures optimal code. 
Several tools are available to perform this tree pat- 
tern matching, iven an enumeration of the template 
patterns (e.g. [sf). 

In contrast with early processors where each in- 
struction resulted in one template pattern, horizon- 
tally microcoded processors and also recent (RISC) 
processors have more orthogonal instruction sets with 
parallelism in their instructions. In this case, using 
template patterns which each cover a complete in- 
struction, has several drawbacks. The resulting pat- 
terns are rather large, which decreases the proba- 
bility of matching; the number of possible patterns 
also grows too high, which slows the pattern matcher 
down. The traditional approach for microcoded pro- 
cessors therefore is to create a template pattern for 
each processor activity. Tree pattern matching then 
results in vertical microcode (without parallelism) and 
parallelism is introduced in the code by compaction 
(scheduling) a1 orithms, resulting in so-called horizon- 
tal microcode p]. 

There are however some problems in directly ap- 
plying these techniques to ASIPs : 

0 Most ASIPs are microcoded processors with par- 
allelism in their instructions. But how can a 
processor activity, with the right granularity to 
allow efficient pattern matching (not too big pat- 
terns) and efficient compaction (not too small 
patterns), be determined? Deriving good pat- 
terns by hand is too much of an effort for a tar- 
get architecture that will only be used to map a 
few algorithms on. 

0 The dynamic programming method (and some 
other traditional code generation methods) can 
only generate optimal code for an architecture 
which incorporates a general-purpose register- 
set. Moreover patterns used in pattern match- 
ing must be trees. For an ASIP this is often 
not the case, especially if the application do- 
main is real time DSP. These ASIPs have few 
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registers which are distributed over the archi- 
tecture. Re-convergent paths (or even cycles in- 
corporating a pipeline register, e.g. for multiply- 
accumulates) are no exception in ASIPs. This 
means that graph pattern matching is in fact 
needed rather than tree pattern matching. For 
effective code generation, the connectivity be- 
tween registers and functional units has to be 
taken into account. 

Recently, work has been done at, e.g. BNR [ll] to 
extend the pattern matching techniques in order to 
be applicable to ASIPs. We however propose another 
technique. 

3 Instruction selection by bundling 
We will use the following terminology (which is 

more extensively defined in [7]): Directly coupled 
micro-operations are primitive processor activities 
which pass data to each other through a transitory 
data storage resource, e.g. through a wire or a latch. 
A bundle is a maximal sequence of micro-operations in 
which each micro-operation is directly coupled to its 
neighbours. As a consequence (see section 3.1), a bun- 
dle must match a complete group of functional units 
(FUs that is directly connected to addressable regis- 
ters t via direct wires, buses, tristate drivers, or mul- 
tiplexers). Examples illustrating the bundle concept 
will be given in section 3.2. Remark that a bundle can 
contain a pipeline register which is non-addressable 
and thus a transitory data storage resource. 

We believe that a bundle has the right granularity 
to split the problem of instruction selection. 

0 A first subtask, called bundling, consists in 
grouping all data flow operations of a complete 
application in a minimal number of bundles. 
Each of the resulting bundles must be part of 
a processor instructmion later on and thus fit in 
an instruction format. Data routing (register 
allocation) then changes the bundles into reg- 
ister transfers by annotating them with multi- 
plexer settin s ,  bus-driver settings and register 
addresses [IO?. 

0 The second subtask of instruction selection con- 
sists in putting the control flow operations and 
the bundles together into micro-instructions. 
This will be done during scheduling which means 
that the scheduler must know about the instruc- 
tion formats and about some pipeline aspects 
which cause restrictions in the ordering of in- 
structions. 

format 
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3.1 A combined instruction set and data- 
path model 

The approach followed in this paper is to use a com- 
bined instruction set and data-path model of the ASJP 
for instruction selection rather than a set of template 
patterns. This model does not necessarily correspond 
to the real ASIP data-path. 

An example specification of an ASIP data-path is 
shown in figure 1 and its instruction set for arithmetic 

opcode operand addresses 
00: * @mult, + @as 00: MX 0: MY 
01: * @mult, - @as 01: AR 1: “1” 
10: * @mult 10: MR1 

-y hift 

‘1 6 

* ,I 6 
I 

Figure 1: Data-path specification for the example. 

fnrmat 3 - - - ... -. - 
format I opcode I operand addresses 
0 I 0 I 00: + @alu I 00: AX I 0: AY 

I 11: +@as I 11: MRO 1 
format 3 

01: AR 
10: MRl 

Table 1: Instruction set specification for the example. 

operations is given in table 1. A more complete in- 
struction set would also contain (conditional) jump 
operations for implementation of the control flow and 
load/store operations for data storage in memory. 

The data-path allows all combinations of operations 
on the ALU, the shifter, the multiplier and the adder- 
subtractor but the instruction set only encodes very 
few of them, using three instruction formats. The 
remaining combinations are not allowed because of 
encoding restrictions. Encoding restrictions are in- 
troduced to limit the number of bits in the instruc- 
tion word, in this case to 7 bits, register addresses 
included. Allowing parallelism between the ALU and 
the multiply-accumulate structure would cost a lot of 
bits and would only rarely be used because of the in- 
terconnection (bus conflicts!). One or two load/store 
operations can usually occur in parallel with the arith- 
metic operations. 

The instruction set is specified by the user in the 
nML language [4, 21. In nML an instruction set is hi- 
erarchically described as an attributed grammar. The 
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Figure 2: Combined instruction set and data-path model for the example of figure 1. 
terminal symbols are used t o  represent connections : equal symbols are on the same net. 

Inside a rectangle different 

attributes belonging to a part of an instruction de- 
scribe e.g. its associated actions (with in our case also 
the used hardware resources), its binary encoding, its 
assembly mnemonics,. . . 

From the nML description the combined instruction 
set and data-path model is generated. For the example 
it is depicted in figure 2. It is generated as follows : 

A node is generated for each FU in the data- 
path. Two nodes are generated for each register; 
one for a read action and one for a write action. 
These nodes are the solid rectangles in figure 2. 

The direct interconnections between the FUs are 
added. 

The FU nodes are annotated with the operations 
they can perform and the associated instruction 
settings. This information is found in the in- 
struction set description. 

Abstraction is made of the physical implemen- 
tation of the connections between FUs and 
registers. These connections are modelled by 
simple point to point connections which pass 
through "register-select-blocks" (dashed rectan- 
gles). Such a block contains the instruction set- 
tings that enable the connection. A lot of regis- 
ter connections are missing in this example be- 
cause the load/store instructions are left out. 

._ bundle is simply a path between register-select- 
blocks. A register transfer is a p&h from (a) regis- 

ter(s) on the top of the model to a register on the bot- 
tom, thus including register-select-blocks. However, 
while searching a path in the model, the compatibility 
of the instruction settings on the path must be checked 
(see example in section 3.2). 
3.2 The bundling technique 

Our bundling technique is an extension of the map- 
ping technique described in [8, 91. Before bundling the 
application is translated in a control data flow graph 
(CDFG) - see section 4. In the CDFG each opera- 
tion node is annotated with all FUs from the com- 
bined instruction set and data-path model it can be 
executed on. If the model allows two nodes to be di- 
rectly coupled (there is a path between them without 
conflicting instruction settings), the edge connecting 
these nodes is annotated with that combination. This 
is shown in figure 3 for a small data flow graph. The 
first add-operation can be performed on the ALU or 
on the adder-subtractor and for each there are two 
possible instruction settings. The >>l-operation can 
be mapped onto the shifter, also with two possible 
instruction settings. In the combined instruction set 
and data-path model, it can be seen that an add->>l 
bundle can be mapped on the ALU and shift FUs. In- 
deed, there is a connection between the two FUs and 
the intersection of their instruction settings needed for 
both operations of the bundle is not empty. 

In a larger example some edges may have been an- 
notated with several coupling alternatives. In select- 
ing a coupling alternative, other alternatives on neigh- 
bouring edges can be deleted. So clever heuristics 
have then to be applied to select the right alterna- 
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I alu-shift (OlOOxxx) 0 shift (OlxOxxx, 11xxOO1) 

9 sh i f t ( l l xx010)  

Figure 3: DFG annotated with mapping possibilities. 

tive. These heuristics are an extension of the ones 
described in [8, 91. In this way the algorithm incre- 
mentally combines operation nodes into sets of cou- 
pled micro-operations until the eventual bundles are 
obtained. 

In our example the re ister transfers could be : [AR 
= (AX + AY) >>1 : $olOOOOO)], [AR = AR - AY : 
(0001010)] and [AR = AR >2 : (llOlOlO)]. 

3.3 Advantages of our approach 
Using the bundling technique with a combined in- 

struction set and data-path model instead of using the 
more traditional pattern matching techniques has fol- 
lowing advantages : 

0 The patterns must not be enumerated in ad- 
vance] but are generated while performing the 
bundling. 

0 The matched patterns need not to be trees. All 
graph patterns are possible. See [8, 91. 

0 The bundling algorithm allows matched patterns 
to cross basic block boundaries (loop and con- 
dition boundaries) and performs the necessary 
operation duplications [8, 91. 

0 The model reflects both the instruction encod- 
ing and the connectivity between FUs and regis- 
ters. Consequently it can be adopted by all tools 
in the retargetable code generator] not on1 the 
bundling tool but also the data-routing [lOYand 
scheduling tool. 

3.4 Similar approaches 
The idea of creating a data-path model which incor- 

porates all instruction restrictions was found by com- 
bining some ideas of the group working on the CBC 
compiler [4] and the group working on the MSSQ com- 
piler [12, 131. 

In the CBC approach nML is compiled into a com- 
bined instruction set and data-path model similar to 

the one explained above. As they do not use a data- 
path description as input, the compilation is more 
complex [2]. Their approach however differs from ours 
in the fact that they subsequently derive all possible 
patterns from that model and use the tree pattern 
matching tool described in [5]. Some heuristics are 
implemented to be able to handle graphs [3]. 

In the MSSQ compiler the combined instruction set 
and data-path model is derived from a detailed data- 
path description which also contains the controller and 
decoder description of the ASIP. The instruction an- 
notations in the model are called I-nodes. Operations 
on I-nodes and-ing and or-ing) are represented by I- 
trees [12]. a n application is mapped on a statement 
by statement basis onto that model, each time directly 
generating complete transfers. 

4 Instruction set definition 
Because the tools in our retargetable compiler work 

on a combined instruction set and data-path model we 
can perform instruction set definition for a new ASIP 
at  the data-path level. This is done in an interactive 
way, based on statistics obtained from an analysis tool 
and the bundling tool. 

To define the instruction set of an ASIP intended 
for use in a certain application class, representative 
application parts are first selected. Then initial data- 
path parts are selected out of a library, based on the 
statistics obtained from the analysis tool. These parts 
are then iteratively updated - with as most impor- 
tant criteria arealperformance trade-offs - and fi- 
nally instruction encodings are defined. 

This will be explained by a case study. Suppose 
that we want to define the instruction set for an ASIP 
in the application domain of speech recognition. One 
of the algorithms to be performed can then be the 
Pitch Extraction algorithm described in [14]. As ex- 
ample we will take the “sieve detection” function of 
that algorithm. 

4.1 Initial data-path parts 
We have developed a tool called analyse that ex- 

tracts statistical design information from the CDFG 
description. Analyse can be called at  multiple levels 
in the design trajectory. Initially analyse gives us an 
overview of all operations in the application, together 
with some frequently occurring operation sequences] 
which are good candidates to be directly coupled. This 
output is summarised in table 2. Based on this table 
we define the data-path parts of figure 4: The mul- 
tiplication (by a constant) and the division will be 
expanded into addlsublshift operations on a prede- 
fined data-path part. The sequence “add-eq”, which 
is part of the implementation of the loop counters and 
address calculation, has a very high occurrence so we 
decide to define a data-path part for it. Now all oper- 
ations in the input algorithm can be expanded by our 
expansion tool in order to fit on the data-path parts. 
After expansion, analyse is called again to refine the 
statistics. For brevity, we only list the statistics on 
operation sequences in table 3 .  

At this point the bundling tool (see section 3) can 
be called. The data-path parts in figure 4 will not be 
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I operation I word- I occur- I candidate I 

addition 
length rence FUs 

6 2600 full adder 

mult Const 
addershift er 

equality 6 2280 comparator, full adder 
8 40 comparator, full adder 

12 640 
16 320 
16 1920 multiplier 

grt (>> I 16 I 640 J comparator, full adder 
division I 5 1  40 I addershifter 

add - eq 
shift - add 
shift - sub 

sequences 
add - eq 

mult - grtEq 
mult - grt 
add - grtEq 

Table 2: Output  of analyse for input d 

2280 
1280 multiplication 
640 

ription. 

shift - add - sub 
shift - sub - sub 

640 
640 

for expanded for expanded division for loop counters and 
multiplication address calculation 

Figure 4: Initial data-path parts. 

interconnected without an intermediate (addressable) 
register so no bundle will occupy more than one data- 
path part. No encoding restrictions are defined yet. 
The bundling tool gives the following statistics. Every 
pair of adjacent operations that is directly coupled, is 
printed in a list with its number of occurrences. An- 
other list contains pairs of adjacent operations that are 
not (directly) coupled because of the data-path parts. 
The number of directly coupled edges, the number of 
non-coupled edges and their ratios to the total number 

multiplication - grt/grtEq 

sequences I occ. I expansions of :  
seauences of 2 oDerations I 

I add - sub I 960 I mult./add - grt/grtEq I - . -  - 
sub - sub I 640 I mult.iplicat.ion - grt/grtEq 

Table 3: Operation sequences after expansion, for initial 
data-path parts. 

I directly coupled edges I 
sequence occurrence 
add-eq I 2280 I 

1 non-coupled edges 

shift - add 
shift - sub 
add - sub 
sub - sub 

Table 4: Feedback of bundling for initial data-path parts. 

of edges considered during bundling are also printed. 
A part of the statistics is summarised in table 4. 

With these data-path parts 6040 edges (or 50.2 %) 
are directly coupled and 6000 edges (or 49.8 %) are 
not coupled. If a full cross bar interconnection scheme 
with register files of unlimited size is assumed between 
the data-path structures, the CDFG can be scheduled 
in 6241 cycles. 
4.2 

Table 4 shows that the operations resulting from 
the expansion of the multiplications are not coupled. 
If we want to achieve this, the shifter should be placed 
before the adder. With this done, the ratio of coupled 
edges increases to 66 % and the schedule length de- 
creases to 4961 cycles. 

Table 3 also contains some sequences of 3 opera- 
tions. In these sequences the last subtraction comes 
from the relational operations > and >_ (compare with 
table 2). If we incorporate a comparator into the left- 
hand data-path part of figure 4, we obtain the data- 
path part of figure 5.  We now have to perform a new 
expansion of the original application algorithm on the 
new data-path parts. The ratio of coupled edges then 
becomes 91 % and the schedule length 3961 cycles. 
4.3 Combining the data-path parts into 

an instruction set 
When analyse is given a scheduled graph as input, 

it provides occupation ratios and a table with the oc- 
cupation patterns for each FU. Figure 6 shows the 
occupation patterns for the adder-subtractor in each 
of the data-path parts. When examining occupation 
patterns for all FUs we see that there is only a small 
overlap between the occupation patterns of the divi- 
sion data-path part and the other ones. In fact, to save 
area, the division and multiplication data-path parts 
can be combined into the one depicted (on the left) in 
figure 7. The operations from the multiplication and 

Improvement of the data-path parts 

AIS I 
Figure 5: Shift-Add-Comp data-path part. 
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loop/add-subtractor cxxxxxx.x ......... x . . . x . . . . l  
multiplic./add-subtractor C.xx.xx.x ............... x.x] 
divisiodadd-subtractor ~........x.xxxxxxxxxxxx....] 
("X" : resource is occupied ; ".*' : resource is free)  

Figure 6: Occupation patterns for each add-subtractor 
in data-path parts. 

for expanded multiplication &division; 
additions & relational operations 

lor loop counters and 
address calculation 

Figure 7: Final proposal for data-path parts. 

the division expansion will thus be coded in different 
micro-instructions. Performing bundling on the parts 
of figure 7 gives the same results as previously. The 
two remaining data-path parts should not be merged 
any further because they are heavily used in parallel. 

Out of these observations we can derive two in- 
struction formats needed to control the data-path 
parts of figure 7 for this CDFG. The first for- 
mat  contains two orthogonal parts, controlling simple 
shifts/additions/subtractions (e.g. expanded multipli- 
cation) and the address/counter operations respec- 
tively. The second format controls the expansion of 
the division. At this point we have made a specifica- 
tion as in figure 1 and table 1. 

The last additional encoding restrictions did not 
affect the total schedule length, which is still 3961 cy- 
cles. Performing the changes of this section on the 
parts without the comparator (less area) is also possi- 
ble (schedule length : 4921 cycles). 

5 Conclusions and future work 
We have shown how instruction selection for ASIPs 

can be done by generating a combined instruction set 
and data-path model from the instruction set and an 
abstract data-path and performing operation bundling 
on that model. 

We also demonstrated a method to iteratively de- 
fine a data-path and an instruction set for an ASIP. 
Each run of the analysis and bundling tools gives sta- 
tistical information for that  purpose. 

First versions of the analysis, bundling, data  rout- 
ing and scheduling tools are currently available. Some 
future work will consist of further implementing these 
ideas and experimenting with some preprocessing of 
the model. This preprocessing would allow faster path 
searching in the model. The heuristics in the bundling 
algorithm also have to be refined and tested. 
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