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Instructional Control of Cognitive Load in the 

Training of Complex Cognitive Tasks 

Fred G. W. C. Paas 1,2 and Jeroen J. G. Van Merrii~nboer I 

Limited processing capacity constrains learning and performance in complex 
cognitive tasks. In traditional instruction, novices' failure to adequately learn 
cognitive tasks can often be attributed to the inappropriate direction of  
attention and the related high or excessive load that is imposed on a learner's 
cognitive system. An instructional design model for the training of complex 
cognitive tasks should provide instructional strategies that control cognitive 
load. We propose such a model and recommend research in which the 
cognitive load of  instructional manipulations is systematically investigated and 
determined with mental-effort based measures. 
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INTRODUCTION 

Learning and problem solving in complex cognitive domains, such as 

computer programming, mathematics, physics, and science, are typically 

constrained by the limited cognitive processing capacity of human memory. 

For novices, training tasks in these domains typically represent situations 
that are close to the limits of their capabilities, imposing high or excessive 

load on their cognitive system. Traditional instruction, which is based on 

the assumption that solving a wide range of goal-specific problems (i.e., 

conventional problems) is an effective way for novices to build expertise, 

provides no solution to this problem; it even seems to increase it. 
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To solve conventional problems, novices use weak methods such as 
means-ends analysis (Anderson, 1987; Larkin et aL, 1980). In combination 
with the intrinsic complexity of the information in complex cognitive tasks, 
a heavy extraneous cognitive load is imposed in conventional problem solv- 
ing by the search process for differences between problem states and goal 

states and by the operators for reducing these differences (Sweller, 1988). 

Consequently, novices cannot pay attention to relevant problem charac- 
teristics necessary for learning, such as the problem states previously ac- 

quired and the moves associated with those states. The adverse effects of 

high extraneous cognitive load on learning complex cognitive tasks, related 

to traditional instruction, are discussed in several recent articles (e.g., Chan- 

dler and Sweller, 1991, 1992; Paas, 1992; Paas and Van MerriSnboer, 1994; 

Sweller et al., 1990). 
In this article, we argue that one of the primary problems that in- 

structional technologists have to face in the design of training for complex 

cognitive tasks is to help learners cope with the cognitive load imposed by 
such tasks. The main cause of this problem is the incomplete knowledge 

about the quality and quantity of cognitive processes involved in learning 
these tasks. To remedy this problem, and to make instructional techniques 

less variable in their success, we propose that the current knowledge base 

on the interrelationships between instructional variables and cognitive load 

be extended and implemented in instructional design theories. 
Current knowledge of the interrelationships between instructional 

variables and cognitive load is largely based on Sweller's (1988) cognitive 

load theory. In this theory, Sweller attributes the failure of traditional in- 

struction for acquiring problem-solving skills to high cognitive load and in- 

appropriate direction of attention. Across several studies, Sweller and 

colleagues collected data that supported the usefulness of cognitive load 
theory for instructional applications (Chandler and Sweller, 1991, 1992; 

Sweller, 1988, 1989; Sweller et al., 1990; Ward and Sweller, 1990). The body 

of research evidence that resulted from these studies may be useful for 

solving the problem of developing effective instructional strategies for com- 

plex cognitive skills. 

In the studies by Sweller and colleagues, cognitive load was deter- 
mined by interpretations of performance- and task-based measures. In in- 

structional research, it is not common to directly determine cognitive load 

during the process of instruction. We argue for research in which the cog- 

nitive load of instructional manipulations is systematically investigated with 

mental-effort based measures. 

The primary goal of this article is to contribute to the realization of 
instructional control o f  cognitive load in the training of complex cognitive 

tasks. The organization is as follows: In the first section, the concept cog- 
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nitive load and its measurement techniques are described. Furthermore, 
this section provides an overview of the causes and effects of high or ex- 

cessive cognitive load in the training of complex cognitive tasks. In the next 

section, the instructional prescriptions and variables that can be inferred 

from current knowledge on the relation between instruction and cognitive 

load are described, and some training strategies that have incorporated cog- 

nitive load are discussed. Special attention is paid to the implementation 
of the factor cognitive load in the design of practice. Finally, the state of 

affairs with regard to the role of cognitive load in instruction, and possible 

future research on this topic, are discussed. 

THE CONCEPT OF COGNITIVE LOAD 

Cognitive load is generally considered a multidimensional construct 

that represents the load that performing a particular task imposes on the 

cognitive system of a learner (e.g., Meshkati, 1988; Yeh and Wickens, 

1988). Theoretically, the construct consists of causal factors and assessment 

factors, corresponding to factors that affect cognitive load and factors that 

are affected by cognitive load, respectively. With regard to its measurement, 

cognitive load can be conceptualized in the dimensions of mental load, 

mental effort, and performance (Jahns, 1973). Figure 1 shows a schematic 

representation of the construct cognitive load and its causal factors (left 

part of Fig. 1) and assessment factors (right part of Fig. 1). 

Causal Factors 

i T==k t 

Aseessrnenl Factors 

M~tai Load 

Fig. 1. Schematic representation of the construct cogni- 
tive load. 
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C a u s a l  F a c t o r s  

Possible causal factors may refer to characteristics of the task (or to 

the environment in which the task is performed), to characteristics of the 

subject performing the task, or to interactions between both. With regard 

to task characteristics, examples of causal factors include task novelty, time 
pressure, and reward systems. Here, novel tasks, tasks performed under 

high time pressure, or tasks associated with punishment for incorrect per- 

formance are typically associated with high cognitive load. In addition, en- 

vironmental factors such as high levels of noise or extreme temperatures 

may increase cognitive load. 

Subject characteristics typically pertain to relatively stable factors; that 

is, factors that are not likely to experience sudden changes as a result of 

the task (or environment), such as subjects' cognitive capabilities, cognitive 

style, preferences, and prior knowledge. 

Finally, the subject-task/environment interactions can affect cognitive 

load through relatively instable factors such as internal criteria of optimal 

performance, motivation, or state of arousal. For instance, the structuring 

of the task can interact with the cognitive style reflection-impulsivity. Jelsma 

and Pieters (1989) and Jelsma and Van Merri~nboer (1989) compared 

"blocked" task structuring (i.e., grouping similar subtasks) to "randomized" 

structuring (i.e., performing subtasks in a random order) and found that 

reflective learners' cognitive load was relatively unaffected by task structure, 
whereas impulsive learners' cognitive load was relatively high for a random 

task structure. 

A s s e s s m e n t  Factors 

With regard to the assessment factors, mental load is imposed by the 

task or environmental demands. This task-centered dimension, considered 

independent of subject characteristics, is constant for a given task in a given 

environment. For instance, suppose that there are two maze tasks A and 

B, and that maze A is more complex than maze B. Then, for all subjects 

solving the tasks, the mental load related to task A is higher than the men- 

tal load related to task B. 

The human-centered dimension, mental effort refers to the amount 

of capacity or resources that is actually allocated to accommodate the task 

demands. Mental effort is believed to reflect the amount of controlled proc- 

essing the individual is engaged in (Schneider and Shiffrin, 1977; Shiffrin 

and Schneider, 1977). The amount of invested mental effort comprises all 

three causal factors: task or environmental characteristics, subject charac- 
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teristics, and interactions between both. Returning to our two maze tasks, 
this means that task A will often show higher mental effort than task B 

because it is related with a higher mental load. But, on the other hand, 

this need not be true because subjects might brush aside task A and try 

very hard on task B, resulting in higher mental effort for task B than for 

task A. Finally, a group of subjects with no prior knowledge of the two 

mazes will show higher mental effort for task A, whereas a group of subjects 

with ample experience on task A and no experience on task B will show 

higher mental effort on task B. 

The level of performance achieved is an indication of the third meas- 

urement dimension; it also reflects all three causal factors. To elaborate 

on our maze task example, this means that performance will usually be 

better on task B than task A (i.e., less errors, higher speed). But, by in- 

vesting more mental effort (e.g., trying harder) subjects might reach equal 

or even higher performance on task A. In addition, some subjects might 

reach highest performance on task A and others on task B as a result of 

differences in experience or prior knowledge. 

HIGH COGNITIVE LOAD: CAUSES AND EFFECTS 

Several characteristics of complex cognitive tasks that may be respon- 

sible for high mental load will often yield high mental effort. In combina- 

tion, this results in high cognitive load. Two important mental-load 

characteristics of complex cognitive tasks pertain to the number and nature 

of component skills involved (i.e., subskills that form part of the to-be- 

learned skill) and the complexity of the goal hierarchies of the problems 

that must be solved in the task domain (i.e., the progression of goals that 

must be accomplished to reach a solution). Component skills are subskiils 

that form part of the to-be-learned skill; for instance, component skills for 

computer programming are analyzing problems, designing algorithms, com- 

posing solutions, applying the editor, testing implementations, and so forth. 

Goal hierarchies pertain to the progression of goals that must be accom- 

plished to reach a solution; for example, the goal hierarchy for the simple 

programming problem to compute the mean of a series of inputs consists 

of the goals to count the number of inputs, to compute the sum of all 

inputs, and to divide the sum by the number of inputs. Obviously, subgoals 

may be further specified to reach each of those goals. 

Skills containing many component skills will typically show higher 

processing demands than skills with less components. For instance, top- 

down approaches in computer programming are expected to reduce proc- 

essing demands because less component skills have to be simultaneously 
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performed in each of the design phases. Moreover, the variability of the 
component skills involved is important. Complex cognitive tasks consist of 
both component skills that require consistent performance over problem 

situations ("recurrent components") and component skills that require vari- 

able performance over various problem situations ("nonrecurrent compo- 
nents"). Task demands are higher for skills that require relatively many 

nonrecurrent components. 
For instance, in the field of computer programming recurrent skills 

involve the use of the editor and the compiler, the selection of the basic 

language commands, and the application of syntactic rules of the language; 
nonrecurrent skills may involve decomposition of programming problems 

into subproblems that are increasingly easier to solve and the composition 

of a program by putting functional parts of programming codes together. 
In statistical analyses, recurrent skills mainly involve the application of com- 

putational algorithms and the generation of applicable sequences of equa- 
tions; nonrecurrent skills may involve strategic decisions about which 
statistical techniques, concepts, and principles to use and the coupling of 
the information that is present in the problem situations to the proper con- 

stants and variables. 
A second, somewhat related characteristic that may produce high cog- 

nitive load is the complexity of the goal hierarchies of the problem solu- 

tions. In general, problem solutions can be viewed as hierarchies in which 
the top-level goal can only be accomplished by successfully attaining all 

lower-level (sub-)goals. A simple example of a goal-specific problem in the 

domain of computer programming is: Write a program to draw a square 

with side lengths of 50 mm. Writing programming codes to draw a straight 

line and to make a 90-degree turn can be considered as possible subgoals 

that have to be attained in order to accomplish the top-level goal of draw- 
ing the square. 

To solve goal-specific problems, novices typically use cognitive-capac- 

ity demanding strategies, such as means-end analysis and hill climbing, 
when starting problem-solving in a new domain (Chi, Glaser, and Rees, 

1982; Larkin et aL, 1980). Sweller (1988) has provided an elaborate example 

of (the cognitive consequences of) the means-ends analysis in the domain 
of physics. Both the number of subgoals and the number of possibilities to 

reach lower-level goals in alternative ways further increase the amount of 

mental effort that must be invested in the task. Using a computational 
model, Sweller (1988) showed that goal-specific problem-solving in the 

form of means-ends analysis needs more if-then productions than forward- 

working problem-solving strategies. 
High cognitive load typically has negative effects on learning. For in- 

stance, Sweller (1988) showed that a means-ends strategy used by novices 
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to solve conventional trigonometry problems left little processing capacity 
for problem states previously acquired and the moves associated with those 

states. A large amount of the available capacity was required for simulta- 
neously considering and making decisions about the current problem state, 
the goal state, differences between states, and problem-solving operators 

to be used to reduce these differences. He concluded that traditional in- 

structional strategies, which stress the solving of many conventional, goal- 
specific problems, do not provide an effective way to learn. Evidence 
supporting this conclusion has been obtained in a wide variety of domains: 

computer programming (Van Merri6nboer, 1990a, b; Van MerriSnboer and 
De Croock, 1992; Paas and Van Merri6nboer, 1994; Sweller et al., 1990), 

mathematics (Cooper and Sweller, 1987; Paas, 1992; Sweller, 1989; Tarmizi 

and Sweller, 1988), and physics (Sweller, 1988; Ward and Sweller, 1990). 
To conclude, the mediating role of the construct cognitive load in the 

relation between instruction and learning of complex cognitive tasks has 
been acknowledged in instructional research. However, in order to include 

the construct in instructional design models it is necessary to reliably meas- 
ure cognitive load. The next section is concerned with this topic. 

MEASUREMENT OF COGNITIVE LOAD 

The question of how to determine cognitive load is difficult for re- 

searchers because of its multidimensional character. The interrelationships 

between performance, mental load, and mental effort are neither simple 

nor consistent (Tulga and Sheridan, 1980). This may be illustrated by the 

observation that students can compensate for an increase in mental load 

by increasing their mental effort, thereby maintaining performance at a 
constant level (but, at the cost of an increase in cognitive load). Further- 

more, individuals must choose to engage in controlled processing. There- 

fore, instructional manipulations to change cognitive load can only be 
effective if subjects are willing to invest mental effort to accommodate task 

demands and, indeed, actually do so. 
As a consequence, mental-effort measurement can reveal important 

information that is not necessarily reflected in performance and/or men- 

tal-load based measures. In combination with performance, measures of 

mental effort constitute the essence and the best estimator of cognitive 

load (Hamilton, 1979; Sanders, 1979; Paas, Van Merri6nboer, and Adam, 
1994). Two promising classes of techniques for measuring the effort expen- 

diture can be identified; namely, techniques that use subjective indices (rat- 

ing scales) and techniques that use psychophysiological indices (e.g., pupil 

diameter, heart-rate variability, event-related brain potentials). 
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Subjective rating-scale techniques are based on the assumptions that 
subjects are able to introspect on their cognitive processes and can report 

the amount of mental effort expenditure. Among others, Gopher and 
Braune (1984) found that subjects can introspect on their cognitive proc- 
esses and have no difficulty in assigning numerical values to the imposed 

mental load or invested mental effort. 
Psychophysiological techniques are based on the assumption that 

changes in cognitive functioning are reflected in physiological functioning. 

For example, controlled processing (i.e., intensity of mental effort) has been 

found to be related to a specific cardiovascular state that manifests itself 
in the heart-rate variability power-spectrum band from 0.07 to 0.14 Hz (i.e., 

mid-frequency band). The variability in this band is determined by a feed- 

back mechanism connected with blood-pressure regulation. Heart-rate vari- 
ability (i.e., spectral energy in the mid-frequency band) has been found to 
decrease with increasing mental effort (e.g., Aasman, Mulder, and Mulder, 

1987; Mulder, 1988, 1992). 

INSTRUCTIONAL CONTROL OF COGNITIVE LOAD 

Two characteristics of complex cognitive tasks should be taken into 
account in the realization of instructional control of cognitive load. First, 
novices' learning and performance in complex cognitive tasks are severely 

constrained by their limited cognitive processing capacity. Second, as a rule, 

problem-solving in complex cognitive domains requires transfer of acquired 
knowledge and problem-solving skills; that is, the application of these 

knowledge and skills to problems that differ more or less from the ones 
trained in. The starting and ending point on this continuum have been re- 
ferred to as near and far transfer (Mayer and Greeno, 1972). 

Two related instructional goals can be derived from these charac- 

teristics. First, instruction should optimize cognitive load. For the training of 

complex cognitive tasks, this means that cognitive load should be substantially 
decreased. Second, instruction should redirect attention to aspects of learning 

that facilitate the transfer of acquired knowledge and skills. These two goals 

will be discussed in the following sections. Some examples also will be given 

of instructional strategies that may be used to reach these goals. 

DECREASING COGNITIVE LOAD 

Schneider and Shiffrin (1977; Shiffrin and Schneider, 1977.) offer a 

general psychological model that is relevant to the question of how to de- 
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crease cognitive load. They make a distinction between two fundamental 
modes of information processing: automatic processing and controlled 

processing. The most important issue concerning the distinction between 
automatic and controlled processing pertains to the attentional require- 

ments of the two processing modes. 

Controlled processing can be characterized as slow, serial, and effort- 
ful; it typically occurs in novel and inconsistent processing tasks. It is flex- 

ible and available to analytic reflection, but because of capacity limitations 

its efficiency is highly dependent on mental load. Automatic processing, on 

the other hand, occurs without requiring active or conscious control or at- 
tention. It can be characterized as fast, parallel, and effortless; it typically 
occurs in well-practiced consistent tasks. During automatic processing, per- 
formance is believed to be relatively effortless, that is, insensitive to capac- 

ity limits. 
The term rule automation may be used to refer to the transition from 

controlled to automatic processing; it can be seen as a lengthy, phase-wise 
process that evolves from purely controlled to purely automatic. Rule auto- 

mation is mainly a function of practice; that is, less effort is required when 

a task is more extensively practiced. The underlying idea is that consistent 

practice builds "rules" or highly task-specific procedures (also called "pro- 

ductions," e.g., Anderson, 1983, 1987) that may directly control problem- 

solving behavior. However, it should be noted that the processing demands 
of complex cognitive tasks always reflect a combination of automatic and 

controlled processing components, because such tasks typically contain in- 

consistent aspects that cannot easily be automated. 
The recently described four-component instructional design model of 

Van Merri~nboer, Jelsma, and Paas (1992) builds on the controlled-auto- 

matic distinction and offers a general approach that incorporates the factor 
of cognitive load in the design of training for complex cognitive tasks. In 

this model (see Fig. 2 for a schematic representation), the process of build- 

ing a training strategy for complex cognitive skills passes through an analy- 

sis phase and a design phase. The goal of the analysis phase is to be able 

to reduce cognitive load by first breaking down the complex task into com- 

ponent skills and required knowledge. The (most) relevant skills are se- 
lected and divided in recurrent and nonrecurrent component  skills. 

Recurrent components are performed in a similar way over various problem 
situations; for instance, keyboard use and application of syntactical rules 
of a programming language are recurrent skills in computer programming 

because they are not dependent on the type of programming problem one 
is solving. Nonrecurrent components, on the other hand, vary considerably 

over problem situations; examples of such components in computer pro- 
gramming are decomposition of the programming problem or specification 
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of  data structures. In addition to the description of recurrent and nonre- 

current components,  the knowledge that is required to perform those skills 

is determined. 

Represent ing  the complex task in relevant component  skills and 

knowledge is a quantitative approach that is appropriate for reducing cog- 

nitive load. A first aim of the design phase is to devise instruction that 

imposes relatively light cognitive load in such a way that learning and per- 

formance of the task are not influenced by cognitive-capacity limitations. 

To attain this goal, the 4C-model specifies instructional tactics that aim at 

the fast development  of automatic processing for recurrent  component  

skills. The  instructional tactics define one instructional  strategy (see 

Reigeluth, 1983) together with the instructional goals and conditions under 

which this strategy is useful. 

A second aim of the design phase is to facilitate transfer. Therefore,  

a qualitative approach is offered to make controlled processing of nonre- 

current components more efficient, by providing instructional tactics that 

support the development of a rich knowledge base. Here,  it is important 

to note that there is a complementary relation between the two aims of 

the design phase: The recurrent component  skills must be automatized so 

that cognitive capacity can be devoted to more cognitive demanding (in- 

consistent) aspects of the total task (Fabiani et al., 1989; Fisk and Gallini, 

1989; Myers and Fisk, 1987; Schneider, 1985; Van Merri~nboer, .lelsma, 

ANALYSIS 

LEVEL 

DESIGN 

LEVEL 

Identify Component Skills 
and their Relevance 
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Component Skills 

Select Tactics that 
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Cognitive Load 
by 

Rule Automation 

_J 
m J ~,b 

Analyse Non-Recurrent J 
Component Skills ~ 

, . ,  l ,.,l 
Select Tactics that 
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Schema Acquisition 

1 1 
I l Compose Training Strategy 1, 

Fig. 2. The 4C instructional design model adapted to cognitive load theory (It 
should be noted that the dotted blocks represent components of the original 
4C model that are not directly relevant in Ihe cognitive load approach). 
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and Paas, 1992). This process will be described in more detail in the fol- 
lowing section. 

REDIRECTING A'VI'ENTION 

Apart from rule automation, schema acquisition can be identified as 
a process that is important in the acquisition of a complex cognitive skill 

(Van MerriEnboer and Paas, 1990). Acquired schemata provide a rich 
knowledge base that makes controlled processing more efficient; thus; sche- 
mata are particularly important in the performance of nonrecurrent com- 

ponent skills. A schema can be conceptualized as a cognitive structure 

which has developed through experience with one or more problems and 
which enables problem solvers to recognize problems as belonging to a par- 

ticular category requiring particular operations to reach a solution. Thus, 
schemata provide general knowledge that can be applied to particular cases. 
Recent research points out that the acquisition and the application of sche- 

mata is an effort-demanding process subject to strategic control (e.g., An- 
derson, 1987; Proctor and Reeve, 1988). Thus, learners must deliberately 
study problems and their solutions in order to abstract details and develop 
cognitive schemata; and they must also consciously apply those acquired 

schemata in order to solve new problems. 
During practice, one may either create new schemata or adjust exist- 

ing schemata to make them more in tune with experience. A more general 

schema may develop if a set of successful solutions of related problems is 
available, whereas the availability of a set of unsuccessful solutions of re- 

lated problems will lead to a more specific schema. As knowledge is ac- 

quired in a particular domain, problem-solving becomes more schema 
driven as opposed to search driven. Throughout the problem-solving proc- 

ess, schemata may be acquired that offer analogies or abstract categories 

of problems and solutions, and that may guide subsequent problem-solving 
behavior. The completeness of a schema will influence the confidence in 
our own abilities to solve new problems. As our schemata enlarge, so our 

awareness of possibilities is thereby enlarged. So, better schema acquisition 
is self-rewarding. For example, due to the availability of schemata, expert 

programmers not only perform familiar programming tasks by the use of 

highly task-specific procedures, but also interpret unfamiliar situations in 
terms of their generalized knowledge. For instance, they may rely upon 

knowledge of computer technology to make their programs more efficient, 

knowledge of the design process in program development to guide their 
programming behavior, and knowledge of programming plans to improve 

problem decomposition and program composition. 
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To reach transfer of acquired knowledge and skills, both rule auto- 

mation and schema acquisition should be facilitated. Automated proce- 

dures can provide identical elements that may help solve familiar aspects 

of new problems, and they can free up processing resources that may be 

devoted to controlled processes. For instance, operators in process control 

have the availability over a large number of routine procedures to detect 

particular system faults and to compensate for common system faults, ena- 

bling them to direct their attention to nonfamiliar aspects of troubleshoot- 

ing tasks. 
Acquired schemata, on the other hand, can provide analogies which 

may be used in new problem-solving situations by mapping processes to 

reach a solution. For instance, a process operator may be confronted with 

a system fault he has never before encountered; but his generalized knowl- 

edge may indicate a certain analogy with previously encountered faults and 

so guide his trouble shooting behavior. For example, in solving a new prob- 

lem in the domain of programming the situation will be as follows. First, 

familiar aspects of the task (i.e., those aspects that are consistent over prob- 

lem situations), such as proceeding in the programming environment, 

choosing the correct basic commands, and applying syntax can be per- 

formed by task-specific procedures. These procedures can be applied rap- 

idly, withouf errors, and with little or no demands on processing capacity. 

Second, new aspects of the tasks can be solved by analogy. Schemata such 
as programming plans (learned programming language templates) should 

be available to help find a solution. These schemata can be interpreted, 

thanks to processing resources that are freed up by automation of the more 

familiar aspects of the programming task. 

The relative importance of schema acquisition increases as the re- 

quired transfer becomes further; that is, as the procedural overlap between 

transfer task and training task decreases, the availability of relevant sche- 

mata that may offer useful analogies becomes increasingly important (Jel- 

sma, Van Merri6nboer, and Bijlstra, 1990). 

As mentioned in the previous section, the 4C-model offers instruc- 

tional tactics aimed at developing automatic processing for recurrent com- 

ponent skills in order to decrease cognitive load. With regard to the second 

aim, the model describes instructional tactics that redirect attention to as- 

pects of the task that facilitate schema acquisition. This is particularly im- 

portant for novice learners: In contrast to experts and intermediates, they 

cannot distinguish between relevant and irrelevant information. They can- 

not selectively allocate processing capacity by focusing attention to relevant 

aspects while ignoring irrelevant aspects (although intermediates and ex- 
perts also process irrelevant aspects at least up to the level of recognition 

units). In this way, a rich knowledge base consisting of schemata will be 
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developed to support the performance of nonrecurrent components. Both 

aims are complementary to each other: automation of recurrent compo- 
nents frees up processing resources that may be redirected to task aspects 
that facilitate schema acquisition, which in turn favors the performance of 
nonrecurrent components. 

EXEMPLARY TRAINING STRATEGIES 

This section is primarily concerned with the design for training in 

complex cognitive tasks. A number of exemplary training strategies will be 

described that effectively decrease cognitive load and redirect attention to 
those aspects of learning that are expected to facilitate transfer. In order, 

they are the hierarchical approach, the emphasis-manipulation approach, 

goal-free problems, worked-out problems, the completion strategy, and ex- 
pert-like problem analyses. 

Hierarchical Approach 

Frederiksen and White (1989) proposed a hierarchical approach to 

the design of practice. According to this approach, a set of "problem en- 

vironments" must be devised to focus on particular component skills, con- 
cepts, and strategies that are important to the whole skill. Practice in the 

problem environments takes place in an order that follows from the hier- 

archical relations among these components. The hierarchical approach falls 

within the larger class of part-task training strategies. With these strategies 

individuals learn skill and knowledge components separately, and at the 

end of the training apply them to the whole task. 
Frederiksen and White used the Space Fortress game, a complex task 

which involves the concurrent and coordinate use of perceptual and motor 

skills, and conceptual and strategic knowledge, in the service of multiple 
goals. Based upon the analysis of expert performance, Frederiksen and 

White developed a sequence of instructional games in which they imple- 

mented a hierarchy of primary objectives (e.g., detecting and destroying 
mines), optimal strategies for each objective (e.g., letting the mine hit the 

ship), and subskills which enable those strategies (e.g., identifying friend 

and foe mines). Subjects who were exposed to the hierarchical approach 
performed better on transfer tasks than control subjects who had to per- 

form the whole task from the beginning of the learning process (see also 

Fabiani et al., 1989). 
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Under this approach attention can be directed to the separate com- 
ponent skills and knowledge before training in the whole task. In this way, 
the training of task parts becomes an effective approach to reduce cognitive 

load. 

Emphasis-Manipulation Approach 

Gopher, Weil, and Siegel (1989) proposed an emphasis-manipulation 
approach, in which only the relative emphasis of selected subcomponents 
was manipulated, while leaving the whole task intact. The essence of this 

strategy is training under varying conditions of subcomponent priorities. 

The emphasis-manipulation approach falls within the larger class of whole- 
task training strategies. With these strategies learners practice the compo- 
nent skills and knowledge within the whole task context. 

As in the experiment by Frederiksen and White (1989), the domain 
of Gopher and colleagues was the Space Fortress game. Gopher and col- 
leagues conducted experiments with two types of emphasis manipulations: 
one which focused on the control dynamics of the ship, and one which 
concentrated on the handling of mines. From an analysis of goals and sub- 
goals in the game and from an additive factor analysis, these two types of 

emphasis manipulations were identified as the two most important seg- 

ments of the game. 
Although Gopher and colleagues did not use transfer tests, they found 

that low-ability subjects who worked with the emphasis manipulation ap- 

proach came close to the achievements of high-ability subjects in the con- 

trol condition. The manipulation of the relative emphasis of selected 

subcomponents seems to be an effective way to direct attention and to 
reduce cognitive load. Gopher and colleagues suggested that training under 
multiple strategy changes may have given subjects a broader perspective of 

the task, improved their knowledge about the efficiency of their resources, 
and given them greater flexibility in adopting modes of response. 

GOAL-FREE OR NONSPECIFIC GOAL PROBLEMS 

A goal-free problem is one in which the goal is not specified. Whereas 

a specific goal in kinematics would look like, What is the final velocity of 

the carl  a nonspecific goal would look like, Calculate the value of as many 

variables as you can. 

Using kinematics, geometry, and trigonometry problems, Sweller, 

Mawer, and Ward (1983), and Owen and Sweller (1985) demonst'rated that 
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practice on goal-free problems enhances learning more than practice on 

conventional problems. In kinematics and geometry, Sweller (1988) found 

empirical evidence that problems that do not include specific goals reduce 

cognitive load, facilitate schema acquisition more than conventional prob- 

lems, and lead to higher transfer of acquired skills. 

Using verbal protocols and written solutions, these studies showed 

that goal-free problems redirect learners' attention from a means-ends 

strategy to a strategy in which they are forced to work forward from the 

givens. While working forward, subjects calculate values by substituting 

given or previously calculated values into equations that contain only a sin- 

gle unknown. If the goal is not specified, it is not possible to work backward 

from the goal by constructing a chain of subgoals that are connected to 

the givens. Sweller (1988) also constructed a computational model that pro- 

vided evidence that cognitive load is higher under a means-ends strategy 

than under a goal-free strategy. Compared to a goal-free strategy the 

means-ends analysis results in more decisions and more information that 

must be considered when making decisions. 

Worked-Out Problems 

A worked-out problem or worked example is a problem with a writ- 

ten-out, well-structured solution that provides a best example to the stu- 

dents under consideration. Worked examples can be annotated with 

information about what they are supposed to illustrate (Anderson, Boyle, 

Corbett, and Lewis, 1986). A worked-out problem can recapitulate the 

structure of the abstract concept, is an efficient means to make the tacit 

knowledge of experts explicit, and provides the possibility to extract general 

principles from a well-structured problem solution. Therefore, worked-out 

problems can be used as a kind of concrete schemata to map new solutions 

and at the same time foster schema acquisition. 

Practice on worked-out problems is an effective way to optimize train- 

ing for transfer. In the context of algebra-manipulation problems, Sweller 

and Cooper (1985) showed that studying worked examples facilitated prob- 

lem-solving performance more than actually solving the equivalent prob- 

lems. Using algebra transformation problems, Cooper and Sweller (1987) 

showed that subjects whose training emphasized worked examples were bet- 

ter able to solve both similar and transfer problems than subjects whose 

training consisted of conventional examples. Zhu and Simon (1987) showed 

that a 3-year mathematics course could be completed in 2 years by em- 

phasizing worked examples. 
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According to Sweller's (1988) cognitive load theory, a critical feature 

of worked examples is that they appropriately direct attention. In worked- 

out problems, students are prevented from using weak problem-solving 

methods. Therefore, they do not have to perform goal-irrelevant opera- 

tions, which may divert attention from the more relevant aspects of the 

problem solution. Another critical feature of worked examples is that they 

impose relatively light cognitive load. Cognitive load is decreased by the 

redirection of attention to task aspects that facilitate schema acquisition 

(e.g., stereotyped solutions for particular (sub-)goals, relations between task 

components, etc.) and by the amount of guidance that can be offered in 

effectively structured worked-out problems. 

Completion Strategy 

Completion strategy, introduced by Van Merri~nboer (1990b) in the 

domain of elementary computer programming, is the completion of increas- 
ingly larger parts of incomplete solutions. A completion assignment consists 
of a problem with a partly written out well-structured solution that has to 

be completed. It can be considered as an intermediate form between con- 

ventional and worked-out problems. 

In the domain of computer programming, Van Merri~nboer (1990a) 

and Van Merri~nboer and De Croock (1992) found that a strategy empha- 

sizing the completion of existing programs results in superior use of pro- 

gramming templates (i.e., a kind of schemata that describes stereotyped 

solutions in the domain of programming), compared to a strategy that em- 

phasizes the generation of new programs (see Fig. 3 for an example of a 

completion assignment). In the domain of statistics, Paas (1992) found that 

a completion strategy results in better performance on a near- and far- 

transfer test than a conventional strategy. 

Completion problems can be very similar to worked-out problems. 

Therefore, the advantages of worked-out problems also apply to completion 

problems. The completion assignments can be used to direct learners' at- 

tention to aspects of the problem that are important for the acquisition of 

schemata. The extent to which the problem solution is worked out deter- 

mines the amount of cognitive load. 

Expert-like Problem Analyses 

With this technique, students are constrained to carry out qualitatively 

and hierarchically structured problem analyses that consist of answering a 

series of qualitative questions. The analyses are designed to mimic the types 
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Fig. 3. A simplified example of a completion example, using the programming lan- 
guage Comal-80 (Cristensen, 1982). 
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of analyses carried out by experts, prior to problem-solving. Questions be- 

come increasingly problem specific as the analysis proceeds. 

In the domain of elementary classical mechanics, Dufresne et  al. 

(1992) presented questions to novice physics students via a computer-based 

environment called the Hierarchical Analysis Tool (HAT). In this menu- 

driven environment, questions are ordered according to a hierarchy, 

whereby the questions become increasingly problem specific as the analysis 

proceeds. The HAT does not present content matter, tutor, or provide 

feedback to the user; it allows the user to practice a top-down problem- 

solving approach. The HAT can be thought of as an elaborate, hierarchical 

tree-like structure in which the exact path that a user takes to analyze a 

problem depends on the selections made at each node along the way. Du- 

fresne et al. (1992) showed that novices who had performed the expert-like 

analyses were better able to make expert-like judgments of solution simi- 

larity and to solve problems than were novices who involved in conventional 

problem-solving. Dufresne et al. (1992) argued that the analyses could re- 

direct attention from the use of means-ends analysis to higher-order do- 

main knowledge, thereby reducing cognitive load. 

CONCLUSIONS AND DISCUSSION 

One of the main problems in conventional instructional design for 

complex cognitive tasks is the lack of control of cognitive load. Although 

cognitive load has been assigned an important role in the instruction of 

complex cognitive tasks, its measurement during the process of instruction 
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is uncommon. Furthermore, research efforts have been almost exclusively 

concerned with performance- and mental-load based measures. We suggest 

that the combined use of performance and mental-effort based measures 

is a more appropriate way to estimate cognitive load and to extend the 

knowledge base regarding the interrelationships between instruction and 

cognitive load. Moreover, Paas and Van Merri6nboer (1993) have shown 

that a composite measure of performance z-scores and mental-effort z- 

scores can be used in instructional research to reflect the efficiency of in- 

structional conditions. 
This article was concerned with the design of strategies that effectively 

enable control of cognitive load in the training for transfer of complex cog- 

nitive skills. Two related goals were identified for its realization: (a), the 

optimization (decreasing) of cognitive load by the automation of recurrent 

component skills; and (b), the redirection of attention to those task aspects 

that facilitate schema acquisition. The 4C instructional design model of Van 

Merri6nboer et al. (1992), adapted to Sweller's (1988) cognitive load theory, 

offers a useful approach for specifying training strategies for complex cog- 

nitive tasks. We presented examples of such strategies in terms of their 

effects on learning and transfer and their possibilities to redirect attention 

and reduce cognitive load. The presented framework offered the opportu- 

nity to explain research results and to make predictions about the effects 

of training methods on transfer. 
The positive effects of training strategies on transfer can be explained 

by their ability to redirect attention and decrease cognitive load. Although 

these strategies have similar effects, they differ in how their effects come 

about, in their priority for redirecting attention or reducing cognitive load, 

and in their operating level. With respect to, how their effects come about, 

a division can be made between "process approaches" and ''product ap- 

proaches." 
Process approaches, such as the hierarchical approach and expert-like 

problem analyses, try to attain the goal of transfer by analyzing experts' 

performance, and then constraining novices to mimic experts' behavior. 

Product approaches, such as worked examples and the completion 

strategy, focus on attaining the end product of transfer, without considering 

the experts' approach. Part-whole task training strategies redirect attention 

and the remaining strategies reduce cognitive load. 
Another difference between the strategies is their operating level. The 

part-whole training strategies and the expertlike problem analyses are 

global or high-level approaches. Goal-free or worked examples are more 

specific or low-level approaches that may form part of, for example, part- 

whole strategies. 
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We have shown that interrelationships between instruction and cog- 

nitive load can result in innovative practice strategies. In particular, these 

practice strategies facilitate transfer by (a) redirecting attention to task as- 

pects that facilitate schema acquisition, and by (b) reducing cognitive load. 

However, there is often no uniformity in the design of these individual 

strategies. For instance, Sweller et al. (1990) and Ward and Sweller (1990) 

showed that worked examples that required students to mentally integrate 

mutually referring, disparate sources of information, were no better than 

conventional examples. So, cognitive load theory needs further specifica- 

tion. 
Despite the growing body of research evidence for Sweller's cognitive 

load theory, instruction for complex cognitive tasks will remain equivocal 
as long as the cognitive load of instructional manipulations is not system- 

atically determined on the basis of mental-effort and performance meas- 

ures. This conclusion should be a challenge for future instructional 

research. More insight in the cognitive costs of instruction would imply 

more control of cognitive load. Then, training strategies can be adapted to 

the cognitive demands of a task, situations of cognitive overload and mis- 

direction of attention can be prevented, and predictions about the strategies 

can be made that aim at maximizing performance efficiency. Eventually, a 

cognitive-load oriented theory for the instruction of complex cognitive tasks 

may emerge from this research. 
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