
 Instructional Design and Assessment Strategies for
Teaching Global Software Development: A Framework

Daniela Damian Allyson Hadwin Ban Al-Ani
Dept of Computer Science

University of Victoria, Canada
1 250 721 7225

danielad@cs.uvic.ca

Dept of Educational. Psychology. &LS
University of Victoria, Canada

1 250 721 6347
hadwin@uvic.ca

Dept of Software Engineering
University of Technology, Sydney, Australia

 61 2 9514 1848
alani@it.uts.edu.au

ABSTRACT
In the context of increasing pressure to adopt global approaches
to software development, the importance of teaching skills for
geographically distributed software development (GSD) becomes
essential. This paper reports the experience of teaching a course
to prepare graduates for software engineering (SE) in global cus-
tomer-developer teams, and which was taught in three-University
collaboration (Canada, Australia and Italy). The course empha-
sized the learning of requirements management activities in fre-
quent synchronous computer-mediated client-developer relation-
ships and created a GSD environment with significant time zone
and language differences. We describe our instructional approach
and assessment strategies within a GSD instructional design
framework which integrates (a) required GSD skills and strategies
for aligning classroom projects with contemporary and authentic
GSD conditions, (b) strategies for assessment of learning of GSD
skills and (c) examples from our GSD course.

Categories and Subject Descriptors
H.5.3

General Terms
Design, Human Factors

1 INTRODUCTION
Software engineering education must adapt to meet the changing
demands of the software engineering industry. As companies turn
to outsourcing as a business model, there is a dramatically in-
creasing trend towards distributed software development. High
travel costs, the local availability of skilled technical staff as well
as possibilities for around the clock development increase the
demand for distributed software engineering efforts.
Processes that appear to be significantly hampered by geographi-
cal separation of team members include requirements manage-
ment and design [9]. It is their communication-intensive and it-
erative nature that causes problems in the larger organizational
and project management global contexts. The growing complex-
ity of projects and inter-organizational relationships make the
complete-spec approach in global projects infeasible. Failure to
achieve a common understanding of features, combined with
reduced trust and the inability to resolve conflicts results in
budget and schedule overruns and in damaged client-supplier

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE'06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

relationships [9]. Consequently, it is imperative that university
curricula emphasize activities of requirements engineering for
better management of distributed stakeholders’ expectations, as
well as project management activities such as planning and esti-
mation in very dynamic development environments [12].

Other courses in the area of Distributed Software Engineering
have given variable attention to the activities of requirements
management as central to teaching students skills of expectation
management in distributed stakeholder groups. Course ap-
proaches are primarily in the direction of one-time complete-spec
process models, without a particular emphasis on learning to de-
velop requirements iteratively and handle changes throughout the
development lifecycle (e.g. [18,10]). Students have either per-
formed requirements elicitations at one site by studying existing
software packages, or through face to face visits made at one of
the project sites. The most related experience in enabling distrib-
uted requirements elicitation and negotiation in distributed set-
tings is reported in [2], where students playing the roles of ana-
lysts in Brazil determined the requirements for an information
system with users at a US university during a 30 day online dis-
cussion. From an educational perspective, key questions are (1)
How to create the appropriate GSD learning environments and (2)
How to asses that learning of GSD skills so that continuous im-
provement of our teaching effectiveness is possible. While reports
of lessons learned in creating GSD learning environments exist
(e.g. [10]), methods for GSD learning assessment are still an area
for research.

This paper reports experiences in the design, teaching and evalua-
tion of a course intended to prepare our graduates for geographi-
cally distributed software engineering. The course was delivered
between Jan-May 2005 in the collaboration of three geographi-
cally distributed universities. The course was innovative in (a)
emphasizing the learning of communication-intensive require-
ments management activities in frequent synchronous computer-
mediated client-developer relationships and (b) creating a GSD
environment with significant time zone and language differences.
We describe the course design and lessons learned in a wider
context of teaching and assessing learning of GSD skills. Based
on research in the education, SE and GSD domains, we describe a
GSD instructional design framework that captures (a) emergent
GSD skills that our graduates need to acquire (Section 2) and of
which teaching presents significant challenges in our traditional
curricula, (b) our instructional strategies intended to promote the
development of these skills (Section 3) and (c) strategies for as-
sessment of GSD learning and examples from our GSD course.
We discuss findings from our assessment of learning (Section 4)
and conclude in Section 5 by drawing some recommendations for
researchers and course designers with similar educational goals.

685

2 A GSD INSTRUCTIONAL DESIGN
FRAMEWORK

Training students for GSD inherits the challenges of teaching SE.
For example, expectations management and project risk are in-
herently difficult skills to teach as they require years to acquire
[5]. The challenge in teaching GSD is enabling students to recog-
nize how the problems of remote collaboration and cultural dif-
ferences make the performance of these activities even more dif-
ficult. Here we outline a set of emerging areas of competencies
that our curricula needs to emphasize when training students for
GSD, in addition to the fundamental skills of a SE ([11]).

International teamwork. The nature of distributed projects en-
tails that SE expertise in architecture, design and process engi-
neering needs to be leveraged in the extended software engineer-
ing organization comprised of business units from different loca-
tions [12]. Teamwork approaches to reaching an understanding of
project goals, expectations and constraints are difficult to teach
because (a) collaboration, negotiation skills or contract writing
across diverse language and cultural groups are not part of the
conventional curriculum, (b) replaying the complexity of real
stakeholder teams is hard to achieve in educational environments
[11] and (c) the majority of our comp. science students are typi-
cally introverts as much as our faculty are generally not prepared
to teach collaboration skills [8].

Iterative development in remote client-developer relation-
ships. Given the heightened risk of misunderstandings in distrib-
uted communication, students need to learn leadership skills in
RE activities including communication with remote customers
[12]. The teaching of these skills is difficult as working with real
customers is challenging when industrial customers are not often
willing to sacrifice software quality in student projects [1]. The
need to involve remote industrial customers requires additional
effort in managing these expectations.

Living with ambiguity/uncertainty in remote teams. Industrial
software projects deal with ill-defined problems and a complex
set of technical, organizational and economic constraints. Remov-
ing inherent ambiguities and uncertainties by applying require-
ments engineering and risk management techniques becomes
challenging when the communication with remote problem own-
ers relies on computer-mediated means that introduce delays and
misunderstandings [9]. Teaching students these skills is difficult
as most often our SE curricula includes toy- or well-defined prob-
lems [11], and studies show that students find it difficult to rec-
ognize ambiguity in software specifications [4].

Distributed project management. Additional resource estima-
tion as well as technical and project planning is required for suc-
cessful coordination of work in distributed heterogenous envi-
ronments [12]. Teaching planning skills is not easy however
given the current methods’ reliance on experience from previous
similar projects and application of methods of estimation. The
absence of real life economic and organizational constraints in
educational projects makes it difficult for students to engage in
realistic cost-benefit analysis situations [11].

Computer mediated project communication. While computer-
mediated communication (CMC) tools have been far from rec-
ommended for rich interaction a decade ago, their use in distrib-
uted groups is becoming widespread both in organizational as
well as educational settings [3,12]. As travel to distributed loca-

tions is often not possible, computer-mediated communication
remains one of the best tools for remote teams to meet efficiently
and frequently. Students’ learning of strengths and weaknesses of
computer mediated tools for various collaborative purposes is
critical [12,15]. It is also desired that students try out these tools
in educational environment, where we can exploit opportunities
often unavailable in real settings, e.g. remote synchronous shared
design and prototyping sessions, as students are carriers of inno-
vation into the business world [11]. The difficulty is in setting up
appropriate communication infrastructures at remote locations
and to maintain technical support throughout the GSD projects.

Given these challenges, the teaching of software development in
distributed environments raises important research questions:

• Is it possible to create a GSD educational environment that
overcomes some of these challenges?

• How do we assess the learning of GSD competencies?
These GSD competencies (learning outcomes) are outlined in
Table 2. The set of instructional strategies we adopted to enable
the teaching of these competencies are described next.

3 OUR INSTRUCTIONAL STRATEGIES
Our overarching instructional approach was to create a GSD envi-
ronment that involves students in an authentic GSD task. This
entailed a constructivist problem-based learning (PBL) approach
wherein course curriculum involved authentic problems, working
in groups to solve problems, problems that initiate free inquiry by
students [22]. In our course (full course material at [25]), students
worked in an international software team with the inherent GSD
characteristics of geographical distance, different cultures and
(possibly) languages. In addition to participating in the distributed
projects, students at each university were supported with regular
face to face instruction.
Developing International Teamwork skills
The course was offered in collaboration between three Universi-
ties: University of Victoria (Canada), University of Technology,
Sydney (Australia) and University of Bari, (Italy), in Spring
2005. Given the difference in academic calendars at the three
universities, a period of seven overlapping school weeks (Mar.7-
Apr. 22), was dedicated to cross-University student project work.
The projects were structured as outsourcing projects in which
work was allocated to a distributed software group in a different
organization. The project outcome was a software requirements
specification (SRS) as a negotiated software contract between the
software group and outsourcing company. Teamwork was critical
in completing the software project as the software group had to
frequently interact with the clients to understand the required
software features.
There was a total of 32 students at all three sites: 12 graduate
Canadian students worked with 10 graduate Italian students, and
2 grad and 8 undergrad Australian students. The students were
assigned to 6 international project teams, each involving two
countries. There were three distinct projects, each with two in-
stances. Project A (A1 and A2 in Table 1) was to design a Global
software development system to facilitate GSD collaboration. In
project B (B1 and B2) the students designed the interface for a
“iMedia” software to allow users to purchase movies online, or-
ganize and play their movies. Finally, project C (C1 and C2) in-
volved the design of a real estate system.

686

Developing computer mediated communication skills
A wide range of tools for collaboration were made available in
the global teams, both for synchronous and asynchronous interac-
tion. The client-developer interaction was supported by (1)
weekly one-hour long scheduled videoconference project meet-
ings, which utilized tools such as videoconferencing (Access Grid
[24] and Polycom) and shared application via VNC [14]. The
main objective if this activity was to minimize the misunder-
standings that typically occur between clients and software
engineers. A unique characteristic of this course, students ex-
perienced frequent synchronous meetings with the remote clients
for building the shared understanding of features through syn-
chronous requirements elicitation, negotiation and prototype
demo sessions. The requirements inspection as performed to clar-
ify ambiguous and incomplete requirements in the specification
was carried entirely online using IBIS, an Internet based inspec-
tion tool [19]. Outside class interaction was supported by Skype
for audio conferencing, MSN IM for text chats, and email. Each
project created a website, while document management was done
in CVS repositories.

Developing Iterative development and Remote client-
developer communication skills. Each group of developers
worked with a group of clients from another country. Each stu-
dent was assigned to a single group for the entire duration of the
course. Note the distinction between group and team is made, to
refer to the members of a group belong to the same country and
the international team respectively. The group allocation to pro-
ject teams was such that each group belonged to two projects and

two different global teams, playing the role of a client for one
project and the role of a developer for the other project (with the
partner group always located in a different country).

To enable an iterative cycle in the short 7-week timeframe, the
emphasis was placed on the upstream activities of requirements
and design. The shared understanding of required software fea-
tures was developed through a series of scheduled activities of
requirements elicitation, analysis, inspection, negotiation, proto-
type design and evaluation. The success of each software project
relied on frequent client-developer communication.
At each step in the frequent client-developer interaction neither
the developers nor the clients had full understanding of the prob-
lem to be addressed or the ability to fully remove the uncertain-
ties around the possible technical solutions or resources needed
for their accomplishment.

Developing skills in Distributed Project Management
Table 2. A framework for teaching and assessing learning of GSD skills

GSD skills
(learning outcomes)

Our approach
(instructional strategies)

Strategies for assessment of learning
(and evidence discussed in this paper: first 2 rows)

International teamwork i.e. work in
distributed teams to solve large prob-
lems and collaborative development
of shared understanding of project
goals and constraints

Cross-university project teams

No single group from one country could solve
the problem alone

Degree of projects completion & characteristics of
project outcome (s/w spec.); see Table 3
Students’ evaluation of shared understanding: was it
achieved, how they conceptualized it, challenges in
achieving it; see Table 4
Degree of learning community in local and distributed
teams; see Section 4

Computer mediated communica-
tion i.e. use of available tools for
remote collaboration and evaluation
with respect to their strengths and
weaknesses

The remote groups use a wide range of tools both for
synchronous and asynchronous project interaction

Students’ perceived effectiveness of tools for project
collaborative tasks and in particular achieving shared
understanding in the remote client-developer relation-
ship; see Tables 5 and 6

Iterative development in remote
client-developer relationships i.e.
management of client expectations,
developers working closely with
market researchers and other project
stakeholders throughout the project
lifecycle

Student plays dual role, client and developer for two
different projects. Each project has remote client-
developer structure

Project’s scope is defined through an iterative proc-
ess reliant on continuous client-dev. comm.

Students’ perceptions of working in a particular role
and with a distributed group, as well as assessment of
their remote group’s performance
Trajectory (trend) of issues identified by clients or
developers at each project milestone: post elicitation,
inspection, negotiation and validation of requirements.

Living with ambiguity/uncertainty
in remote teams i.e. tackling ill-
defined software problems, when
communication with problem owners
is computer-mediated

The client group initially defines the problem, fol-
lowed by ambiguities in specifications and uncertain-
ties about technical solutions being discussed during
requirements elicitation, inspection, negotiation and
validation.

Tracking of those issues that refer to ambiguous re-
quirements and its trend throughout the iterative devel-
opment process; number of ambiguous issues resolved
at each project milestone

Distributed project management
i.e. resource estimation and planning
in distributed heterogenous working
environments

Self managed teams, team coordinates the work on
required project deliverables

Each project team negotiates project scope based on
estimation of problem understanding and available
resources

Students’ perceived effectiveness of coordination strate-
gies

Number of issues resolved at each client meeting and
perceived effectiveness of the negotiations given the
project characteristics and CMC tools

Table 1: Client and developer groups and allocation to inter-
national project teams

 Project A Project B Project C Country Group
(number of
students) A1 A2 B1 B2 C1 C2
 Gr1 (4) Client (C) D
 Gr2 (4) D C

 Canada

 Gr3 (4) D C
 Gr4 (5) Developer (D) C Australia
 Gr5 (5) C D
 Gr6cl (7) C Italy
 Gr6dev (3) D

687

Each team self-managed its communication between clients and
developers and the coordination of its deliverables on a weekly
basis. Each weekly synchronous session had to be planned in
advance and appropriate issues brought to the team’s agenda for
discussion and follow up. Estimating the required resources based
on clients’ problem description was critical in developers’ ability
to design a system that fit their current expertise and time in the
course. A negotiation session was held mid-development in order
to agree the project scope in cooperation with the clients.

4 FINDINGS
Is it possible to create a GSD educational environment that over-
comes some of these challenges? Table 2 shows the instructional
strategies we used to address those challenges. We posit that the
true test of this question is the resulting challenges encountered,
experiences accrued and competencies gained. As a result we
focus on our second research question “How do we assess the
learning of GSD competencies?” Table 2 describes specific
strategies for assessing that the adopted instructional strategies
were effective. Due to space limitations here we describe in detail
our findings with respect to assessment of learning of the first two
skills as in Table 2. The specific research questions that we pur-
sued are:

(1) What were the students’ understandings of aspects of work-
ing in an international team such as achieving shared under-
standing, and under what conditions was this achieved? and
(2) What were the students’ understandings of using CMC
tools to mediate distributed client-developer communication
and which elements of the software process or team interaction
shaped this understanding?

Learning to design software in international teams
In order to assess students’ learning of skills of international
teamwork, we observed whether they achieved the project goal
(i.e. completed the project assigned), and asked students to reflect
on the achievement of shared understanding. We also examined
whether students reported learning about aspects of cultural di-
versity in international teams. Findings regarding the length and
quality of final project outcomes are listed in Table 3 and demon-
strate that students were successful in achieving these goals.
Shared understanding in software design
Shared understanding is what one would expect as a result of
successful teamwork. We examined whether students perceived
they reached shared understanding of software features and what
indicated to them that shared understanding had been met. Each
response was condensed to include each key point. This was done
by an independent coder who was not an instructor in the course,
and not invested in seeing particular kinds of responses (author
2). Key points were organized into themes for clients and devel-
opers. Four common themes emerged. Clients and developers

both discussed the following themes in their written comments:
(a) whether they felt they had achieved understanding (answer
yes or no usually), (b) How they knew they had achieved under-
standing, (c) How they had achieved shared understanding, (d)
Why there were problems achieving shared understanding. For
two themes (how they knew, and how shared understanding was
achieved) we have included responses that were repeated multiple
times across individual respondents. For the challenge theme, we
have included all statements about challenge and problems. Cli-
ents and developers overwhelming indicated that shared under-
standing had been achieved (23/26 of client responses; 18/20 of
developer responses). Table 4 summarizes the things that indi-
cated to students that shared understanding was reached, as well
as problems in reaching it from the clients and developers’ per-
spective respectively.
Sense of connectedness and learning community
Students responded to a classroom community scale adapted from
[21]. The classroom community scale measures students’ overall
sense of community in a course. It is comprised of two subscales:
(a) feelings of connectedness, and (b) feelings regarding the use
of interaction within the community to construct understanding
and satisfy learning goals. Students responded to the question-
naire with respect to their local community groups, and their dis-
tributed community project teams separately. A higher the score
indicates a higher the sense of community.
Students reported high perceptions of a classroom community
(Scores more than 50 indicate positive perceptions of community)
on both the learning and connectedness subscales for both local
groups (M=76.09, s=13.89) and distributed teams (M=64.06,
s=13.83). However, there were statistically significant differences
between reports of overall community (t(31)=6.357, p<.001,
d=1.01) community connectedness (t(31)=5.34, p<.001, d=.80)
and learning community (t(31)=5.71, p<.001, d=1.06) for local
groups compared to distributed teams.. Not surprisingly, students
reported stronger perceptions of classroom community in their
local groups compared to their distributed teams.
In their discussions about cultural diversity, students described
their notions of culture as broadening to include things beyond
the cross cultural differences they anticipated. Students recog-
nized cultural differences and similarities within co-located teams
not just remote teams. Students also described the importance of
professional culture, school culture, undergraduate and graduate

Table 3: Summary of project outcomes

Projects A1 A2 B1 B2 C1 C2
Assessment of SRS 100% 80% NA* 83% 96% 87%
Length of SRS (in pages) 81 19 14 41 72 29
Function Points count 153 133 142 153 171 154
*The Italian SRS was not marked since students volunteered in the course;
Assessment of SRS was performed by TAs not involved in this research

Table 4: Students’ evaluation of shared understanding and the problems encountered
How shared understanding was achieved How they

knew Client responses Developer responses
Why there were problems in reaching shared understanding

• Prototype
demo was
successful
• SRS were
fulfilled

• no major
unresolved
issue

• prototyping process
• requirements engi-

neering process
• through communica-

tion tools
• Assigned schedule for

requirements engi-
neering imposed by
teachers

• requirements
engineering
(especially after
negotiation) • continually revised
understandings using
communication tools

• IBIS

• developers had no back-
ground in GSD

• developers misunderstood a
key requirement

• we communicated our intent
and features but not WHY
they were important

• some communication diffi-
culties

• sending wrong drafts to remote group
• client not involved enough, didn't really care to discuss or

resolve issues
• client too accommodating (probably not realistic) "what-

ever is best for you"
• not enough communication
• not enough time together for first release of [spec.],

needed a second release and [issue] discovery cycle
• demanding clients…wanted things not in the SRS

688

culture on the development of shared goals and trust in this
course project. For example, students were confronted with the
challenges of having different academic goal orientations at the
graduate level (to learn the GSD process and tools) than students
at the undergraduate level (to get a good grade). For a couple of
students this was seen as more challenging than language differ-
ences. For others, sharing “student culture” provided a common
place for overcoming other cultural differences.

Learning about CMC tools in GSD
In order to assess learning with the CMC tools in the context of
mediating the interaction of global teams, students were asked to
rate the effectiveness of tools on a nominal scale (‘detrimental to
the task’, ‘not very valuable in supporting the task’, ‘somewhat
valuable in supporting the task’, and ‘essential in supporting the
task’). We calculated the frequency of responses indicating that a
tool was “essential” in supporting (a) specific activities for
achieving shared understanding (CMR=communication of miss-
ing requirements, MSR=mapping software requirements to user
needs, RA=removing ambiguity in software requirements,
RI=resolving inconsistencies in the SRS, and RM=resolving mis-
understandings in user needs or software requirements), and (b)
particular group processes involved in remote communications
(GI=generation of ideas, PT=planning, PS=problem solving,
DM=decision making, CRC=cognitive conflict resolution and
ACR=affective conflict resolution) [20]. Students also responded
to an open ended question asking them to comment on the useful-
ness and effectiveness of computer-mediated tools for group
communication. Data is summarized in Table 5 and 6.

In Table 5 (showing responses of total 32 students), we high-
lighted the tools with highest three scores in each row (if greater
or equal to 10), to give some indication of tool ranking for certain
tasks. Face-to-face medium (F2F) was also included for a com-
prehensive list of communication media. Videoconferencing (VC)
was reported as most essential (consistently higher than F2F) in
supporting both the shared understanding and the group proc-
esses, with the highest scores for removing ambiguities, commu-
nicating missing requirements and decision making (confirming
claims of ‘social cues” theories [23] that the richer the communi-
cation medium, the more it is perceived as appropriate to support-
ing interactive group tasks). Other tools that appear with an in-
teresting trend are email (only ranked third for most tasks, not
surprisingly found as most essential for planning tasks [23]). IBIS
was rated by clients as next useful tool for removing of ambigui-
ties after VC and F2F, and equal in usefulness to F2F for remov-
ing requirements inconsistencies and misunderstandings; from the
developers’ perspective, IBIS was (almost) equal in usefulness to
F2F in removing inconsistencies, next to VC.
The qualitative responses in Table 6 provide additional informa-
tion on students’ understanding of tool usage for the different
project activities and group processes. While in general, CMC
tools were effective for (a) keeping record of decisions and dis-

cussions and (b) communicating and interacting remotely, this
data indicates that students perceived each tool to be useful for
different things.

Self-reported tool frequency data for each group process (actual
numbers not included due to space constraints), indicates that
email was by far the most used tool for: planning, decision mak-
ing and problem solving; followed by F2F which was almost
equally used for all tasks, then VC for: decision-making, problem
solving, planning and affective conflict resolution; and IBIS for:
problem solving, decision making and generation of ideas.

5 CONCLUSIONS
In this paper we presented a framework of strategies for teaching
and assessment of learning of GSD skills as exemplified in a
three-University collaboration course. Due to space limitations
we highlighted findings with respect to two dimensions in the
framework: the learning of skills of international teamwork and
use of CMC tools for remote communication, demonstrating that
these learning outcomes had been met.

The students’ specific comments about shared understanding
demonstrate that they learned to recognize the presence or lack of
shared understanding between clients and developers, as well as
particular characteristics of the software development process and
GSD environment that affected or contributed to it. Differences
in responses from the students playing the roles of clients versus
developers increases our confidence in the authenticity of stu-
dents’ experience in a particular role despite the seemingly simu-
lated scenario [6]. The direct quotes below confirm this:

Table 5: Students’ tool ranking based on usefulness during
group processes in general or shared understanding
Processes/Tools VC F2F Email IBIS Skype VNC

CMR 20 16 12 8 4 4
MSR 16 15 9 8 3 8
RA 20 19 10 14 5 5
RI 17 12 8 12 2 5

Shared under-
standing (cli-
ent responses)

RM 17 14 11 13 4 5
CMR 17 12 10 9 4 4
MSR 11 12 6 6 3 3

RA 16 14 6 9 3 4
RI 14 11 6 10 3 4

Shared under-
standing (de-
veloper re-
sponses)

RM 16 12 6 6 4 4
GI 18 10 8 3 5 3
PT 15 8 21 1 3 3
PS 19 9 11 8 7 3
DM 22 10 10 5 5 2
CCR 16 9 11 7 5 2

Group proc-
esses

ACF 2 2 0 0 1 1

Table 6: Qualitative responses from students’ evaluation of CMC tools with respect to project activities

Tools Videoconferencing (VC) Email IBIS Skype VNC
Positive
qualita-
tive
re-
sponses

• best synchronous tool
• effective for use of time and meeting goal
• seeing expressions of remote team, explain,

and wait for people to think
• required more at the beginning
• reasonable tool for participation activities

(brainstorming, planning)
• personal

• best asynchronous tool because
it is universal/ubiquitous

• flexible
• can attach all file formats
• good for planning and schedul-

ing
• good when there is difficulty
• send things in different time

zones

• finding and re-
cording problems in
RS

• allowed various
ideas to be expressed

• quick resolution of
issues

• little conflict during
discrimination

• best for VoIP
• good enough

for synchro-
nous comm.

• re-creating
face-to-face
experience

• prototype
demonstra-
tions

• important
for coming
to shared
understand-
ings

689

be a fixed contract”
Client: “Shared understanding was reached. The communications
methods, when combined, gave an effective medium in which to
continually revise the meeting of requirements. The prototyping
sessions were useful in that they allowed viewing of what each
team envisaged the final application to look like, allowing best
clearing up of and requirements mapping discrepancies.”
Developer: “Yes - our clients were very demanding on some is-
sues that we were reluctant to include in the SRS for them. I can
see that most of these issues were valid, and that we understand
their needs to a much greater extent now than we did at the start.”
Given the difficulties of teaching teamwork skills, we believe this
is a significant finding that demonstrates some validity in our
strategies for learning to work in international teams.
Similarly, recent research in CMC [16] suggests that with current
advances in technologies tools usage and their effects on group
processes need to be understood in the context of their use rather
than simply seeking a general tool-task classification. Our find-
ings indicate that students were able to distinguish the affording
characteristics of each tool and judge their appropriateness to
particular group or task processes. Rather than one perfect tool,
tools were found useful for different purposes. When tool effec-
tiveness data is analyzed together with the frequency information,
interesting trends appear: students were able to identify VC as
more effective for most group interactive tasks (especially deci-
sion making) despite email being most frequently used for these
tasks: although VC was “effective for use of time and meeting
end goal”, email was more frequently used because it was “flexi-
ble”, “universal” and “ubiquitous.” Email was found most essen-
tial for planning tasks though. Since this is the only GSD course
we are aware of using this innovative approach to enabling syn-
chronous client-developer meetings, we believe that the students’
overwhelming appreciation for videoconferencing is a significant
result and warrants future research.

Recommendations for research and curricula designers
First, our findings suggest that different group tasks and processes
are supported by specific types of communication and production
tools. Since our study focused on a limited set of these group
processes (e.g., generation of ideas, decision making) and shared
understanding tasks (e.g. communicating missing requirements,
resolving misunderstandings), we suggest that future work may
examine how other global distributed software development tasks
and processes are best supported. For example, qualitative find-
ings suggest that particular processes and activities for achieving
shared understanding are supported by specific selections of
tools. This warrants more thorough examination as we have a
very limited understanding of which group processes predominate
in activities of achieving shared understanding. Second, introduc-
ing a perception of community and trust scale was revealing in
this study. We suggest that research and instruction may benefit
from administering this scale early and late in the process so in-
structors and students might consider the factors in their interac-
tion and collaboration that influence perceptions of community.

Acknowledgments
We thank all students, in particular the Italian students who vol-
unteered in this course for the experience of global software pro-
jects, and to Dr. Filippo Lanubile who guided them interaction.
Thanks to Tish Scott for data management and coding.

References
1. Alzamil, Z. Towards an effective software engineering course

project, Proc. 27th Int’l Conf. on Soft. Eng., 2005, 631-632
2. Audy, J., Evaristo, R. and Watson-Manheim, M.B., Distributed

analysis: the last frontier?, in Proc. of HICSS’ 37, 2004
3. Bernard, R. M., & Lundgren-Cayrol, K. (2001). Computer Con-

ferencing: An Environment for Collaborative Project-Based
Learning in Distance Education. E. Res. & Evaluation, 7(2/3).

4. Blaha, K., et al. Do students recognize ambiguity in software
design? A multi-national, multi-institutional report”, Proc. 27th
Int’l Conf. on Soft. Eng., 2005, 615-616

5. Boehm, B. and Port, D. Educating Software Engineering stu-
dents to manage risk, Int’l Conf. on Soft. Eng., 2001, 591-600.

6. Carver, J., et al. Issues using students in empirical studies in
software engineering education. Proc. METRICS 2003, 239-49

7. Cognition and technology Group at Vanderbilt. Anchored in-
struction and its relationship to situated cognition. Educational
Researcher, 19, 1990, 2-10.

8. Cushing, J., Cunningham, K., and Freeman, G., Towards best
practices in software teamwork, Journal of Computing Sciences
in Colleges, Volume 19 (2), 72 – 81

9. Damian, D. and Zowghi, D. Requirements Engineering chal-
lenges in multi-site software development organizations, Re-
quirements Engineering Journal, 8, 149-160, 2003

10. Favela, J. and Peña-Mora,F. An Experience in Collaborative
Software Engineering Education” IEEE Software, 2001, 47-53.

11. Ghezzi, C. and Mandrioli, D. The challenges of SE education,
Proc. 27th Int’l Conf. on Soft. Eng., 2005, 637-638

12. Hawthorne, M. and Perry, D. Software engineering education
in the era of outsourcing, distributed development, and open
source software: challenges and opportunities, Proc. 27th Int’l
Conf. on Soft. Eng., 2005, 643 - 64.

13. Herbsleb and Moitra: Introduction to The Global View, spe-
cial issue on GSD, IEEE Software, May 2001

14. http://www.realvnc.com
15. Hung, D., & Chen, D.-T. (2003). A Proposed Framework for

the Design of a CMC Learning Environment: Facilitating the
Emergence of Authenticity. Ed. Media In’l, 40(1/2), 7

16. Hine, C. Virtual Ethnography, 2000, Sage
17. IEEE SRS Std, Recommended practice for Software Re-

quirements Specifications
18. Johnston, L., et al, Requirements Analysis in Distributed

Software Engineering Education: An Experience Report, Proc.
of 6th Australian Workshop on Requirements Engineering,
2001.

19. Lanubile, F. T. Mallardo, and F. Calefato. Tool Support for
Geographically Dispersed Inspection Teams. Software Proc-
ess: Improvement and Practice, 8(4): 217-231, 2003.

20. Mcgrath, J.E. Groups: Interaction and performance, Prentice
Hall, 1984

21. Rovai, A. P. Development of an instrument to measure class-
room community. Internet and Higher Education, 5, 2002

22. Savery, J. R. & Duffy, T. M. (1995). Problem-based learning:
An instructional model and its constructivist framework. Edu-
cational Technology, 35, 31-38.

23. Short, J. et al, The social psychology of telecommunications,
1976, Wiley

24. www.accessgrid.org
25. http://segal.cs.uvic.ca/csc576b

Client: “I feel that with a language barrier it is more important to
rely on prototypes than to consider a requirements specification to

690

