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1Abstract

This article revisits Paas and Van Merriënboer’s (1993) measure of instructional efficiency, 

which can be applied by educational researchers to compare the effects of different 

instructional conditions on learning. This measure relied on performance and mental effort on 

the test, and as such gave an indication of the quality of learning outcomes. The acquisition of 

more (less) efficient cognitive schemata is indicated by combinations of high (low) 

performance and low (high) mental effort. This instructional efficiency measure has become 

widely adopted, but in an adapted form that incorporates mental effort invested in the learning 

phase instead of the test phase. This article demonstrates that the adaptation has important 

consequences for the construct of instructional efficiency, and for the type of conclusions that 

can be drawn. Examples are given to illustrate the various implications of different 

combinations of mental effort and performance measures in the light of more contemporary 

developments in educational research. 
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Instructional Efficiency: Revisiting the Original Construct in Educational Research

In 1993, Paas and Van Merriënboer introduced a measure of efficiency of instructional 

conditions, based on test performance and mental effort invested to attain this test 

performance, that could aid researchers and instructional designers in comparing the effects of 

different instructional approaches on learning. What became known as the measure of 

“instructional efficiency”, has become widely adopted, but in an adapted form, based on 

mental effort invested in learning and test performance. This way, the construct that was 

measured changed from efficiency of instructional conditions in terms of learning outcomes, 

into efficiency in terms of the learning process. This article revisits Paas and Van 

Merriënboer’s measure of instructional efficiency in the perspective of its original intention 

and recent developments in educational research. We will argue here that: a) the use of this 

adapted measure may not have posed a problem and may have provided interesting 

information in earlier studies that focused on instructional formats that reduced learners’ 

mental effort investment in processes that are not effective for learning (i.e., extraneous 

cognitive load), and b) the use of the adapted measure may be problematic in other cases, for 

example in studies on instructional formats that seek to stimulate learners’ mental effort 

investment in processes that foster learning (i.e., germane cognitive load). We will first 

discuss cognitive load theory and the importance of measuring cognitive load, after which we 

will discuss the original and adapted instructional efficiency measures and provide guidelines 

regarding the conditions under which the different measures can be used.

Cognitive Load Theory and Educational Research

Because there is a large body of literature describing cognitive load theory in detail 

(see e.g., Sweller, 1988, 2005; Sweller, Van Merriënboer, & Paas, 1998; Van Merriënboer & 

Sweller, 2005) we will only shortly summarize the most important elements of the theory. 

The central tenet of cognitive load theory is that in order to be effective, instruction should be 
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designed in alignment with learners’ cognitive architecture. Human cognitive architecture is 

held to consist of a limited-capacity working memory and a virtually unlimited long-term 

memory. Working memory capacity is considered limited to holding seven plus or minus two 

elements or chunks of information (Miller, 1956), and even less when processing information 

(Cowan, 2000). It has also been suggested that it is not so much the number of information 

elements as it is the time that an information element could remain active without rehearsing 

it that defines working memory capacity (Baddeley, 1986). However, according to Cowan 

this is a controversial and unsettled issue, which is “nearly intractable because any putative 

effect of the passage of time on memory for a particular stimulus could instead be explained 

by a combination of various types of proactive and retroactive interference from other 

stimuli.” (Cowan, 2000, p. 88). Either way, because information has to pass through working 

memory before it can be consolidated in long-term memory, the limited capacity of working 

memory can be considered the bottleneck for learning. Learning is considered to take place 

via schema construction, elaboration, and automation. Schemata are constructed by 

combining new, single information elements, into one larger element (schema), and are 

elaborated by adding new information elements to existing schemata. Through intensive and 

consistent practice, schemata can become automated, that is, executed without controlled 

processing. 

Cognitive load theory distinguishes three types of cognitive load imposed by learning 

materials: intrinsic, extraneous, and germane cognitive load. Intrinsic cognitive load refers to 

the number of interacting information elements the material contains. Interactive elements 

have to be processed simultaneously in working memory for learning to commence (Chandler 

& Sweller, 1991), and consequently, learning new material that contains a high number of 

interacting elements will impose a high working memory load. Intrinsic load is influenced by 

expertise or prior knowledge: High prior knowledge learners have incorporated several or all 
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of the information elements presented in the learning materials in a cognitive schema. 

Because this schema can be treated as a single element in working memory, intrinsic load 

decreases with increasing prior knowledge. Extraneous and germane load, in contrast, are not 

considered inherent to the learning material, but are imposed by the design of that material. 

When the cognitive load imposed by the design is ineffective or detrimental for learning, it is 

called extraneous cognitive load; when it is effective for learning it is referred to as germane 

cognitive load (Sweller et al., 1998). 

Not surprisingly given the central tenet of cognitive load theory, the aim of researchers 

in the field of cognitive load theory has been to engineer the instructional control of cognitive 

load to provide the means to optimize cognitive load in learning arrangements. Please note the 

use of the term ‘optimize’; a common misunderstanding is that the aim is to reduce the load 

imposed on the learners’ working memory. This is not the case, rather, the aim is to avoid 

both overload and underload, because learning deteriorates under these conditions (Teigen, 

1994; Young & Stanton, 2002), as well as to reduce the load imposed by processes that do not 

contribute to or hamper learning (i.e., extraneous load), and increase the load imposed by 

processes that foster learning (i.e., germane load; see also Paas, Renkl, & Sweller, 2003, 

2004; Paas & Van Gog, 2006). For a long time intrinsic load was considered unalterable by 

instruction, but recently some research effort has been devoted to finding techniques to 

manage this load (e.g., Pollock, Chandler, & Sweller, 2002), which may be unavoidable in 

situations where tasks are extremely complex in order for learning to commence. Many 

‘early’ research efforts have been devoted to finding instructional formats that reduce 

extraneous load, because it is imposed by processes that do not contribute to learning. 

Although extraneous load does not have a significant negative impact on learning when tasks 

are low in intrinsic load, it does so when tasks are high in intrinsic load. Therefore, reducing 

extraneous load is considered imperative for such tasks (Van Merriënboer & Sweller, 2005). 
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Examples of extraneous load reducing measures are: Using integrated text and diagram 

formats instead of split-source formats (split-attention effect; e.g., Chandler & Sweller, 1991), 

avoiding presentation of redundant information (redundancy effect; e.g., Chandler & Sweller, 

1991), and making use of multiple modalities to present mutually referring textual and 

pictorial information (modality effect; e.g., Mousavi, Low, & Sweller, 1995). A more recent 

development is the search for instructional strategies that reduce extraneous and increase 

germane cognitive load (Paas, Renkl, et al., 2003; Sweller et al., 1998; Van Merriënboer & 

Sweller, 2005). When extraneous load is lowered, learners may have cognitive capacity left 

that can be invested in processes that impose a germane load, that is, which do contribute to 

learning. However, they are unlikely to engage in such activities spontaneously. Hence, 

research efforts have been directed towards identifying instructional techniques that stimulate 

learners to invest cognitive resources in activities relevant for learning. Examples of germane 

load inducing measures are imagination or self-explanation assignments to process the 

solution steps in worked examples more deeply (e.g., Atkinson, Renkl, & Merrill, 2003; 

Cooper, Tindall-Ford, Chandler, & Sweller, 2001), or study assignments of high-variability 

sequences of worked examples (e.g., Paas & Van Merriënboer, 1994). Another more recent 

development is that studies increasingly take into account the learners’ levels of prior 

knowledge (see Kalyuga, Ayres, Chandler, & Sweller, 2003) or changes in the learners’ level 

of knowledge during instruction (Atkinson et al., 2003; Kalyuga, 2006; Van Gog, Paas, & 

Van Merriënboer, 2006, in press). 

Measuring Cognitive Load in Educational Research

Different subjective and objective techniques are available for measuring cognitive 

load during (online) or after (offline) task performance. We will only shortly describe those 

techniques; for an in-depth discussion of cognitive load measurement the reader is referred to 

Paas, Tuovinen, Tabbers, and Van Gerven (2003). Objective on-line measures include 
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physiological measures such as heart-rate variability (Paas & Van Merriënboer, 1994; note 

though, that they found this measure to be quite intrusive as well as insensitive to subtle 

fluctuations in cognitive load), psychophysiological measures such as eye-movement data 

(Van Gerven, Paas, Van Merriënboer, & Schmidt, 2004), secondary-task procedures 

(Brünken, Plass, & Leutner, 2003), as well as the more common time-on-task or response 

time measures. 

Subjective measures usually consist of rating scales. The NASA-Task Load Index 

(NASA-TLX; Hart & Staveland, 1988) measures task load on several dimensions by 

subjective ratings participants provide of perceived: performance, effort, frustration, and 

mental, physical and temporal demands. Note that this measure of task load encompasses 

more than cognitive load, although it has been used in cognitive load research (see e.g., 

Gerjets, Scheiter, & Catrambone, 2004, 2006; Kester, Lehnen, Van Gerven, & Kirschner, 

2006). The unidimensional 9-point symmetrical category rating scale developed by Paas 

(1992) presents participants with one item on which they have to translate their perceived 

amount of invested mental effort into a numerical value. Mental effort is defined as “the 

aspect of cognitive load that refers to the cognitive capacity that is actually allocated to 

accommodate the demands imposed by the task; thus, it can be considered to reflect the actual 

cognitive load” (Paas, Tuovinen, et al., 2003, p. 64). This 9-point mental effort rating scale 

has shown good internal consistency. For example, Paas, Van Merriënboer, and Adam (1994) 

report high reliability coefficients (Cronbach’s alpha) of 0.90 and 0.82 for this rating scale in 

two studies (i.e., Paas, 1992, and Paas &Van Merriënboer, 1994), Kester, Kirschner, & Van 

Merriënboer (2004) report a reliability of 0.91, and analyses of data of Van Gog et al. (2006, 

in press) reveal a reliability of .83 and .93. Moreover, the concurrent validity of the 9-point 

mental effort rating scale is shown by its sensitivity to detect variations in task complexity 

(see Paas et al., 1994), and to variations in intrinsic load during task performance (Ayres, 
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2006).

It should be noted though, that many authors have adapted the 9-point mental effort 

rating scale (see Table 1), using 5-point or 7-point scales, or asking participants not to rate 

mental effort, but to rate how difficult they perceived the task to be. Although the concepts of 

invested mental effort and perceived task difficulty are to some extent related, asking students 

to rate how much mental effort they invested in completing a task versus how difficult they 

perceived a task to be, are two different questions that can lead to different interpretations. 

The first question (invested mental effort) pertains to a process, and the perception thereof 

will likely involve more aspects than only the task itself, whereas the second question 

(perceived task difficulty) pertains mainly to the task. This difference will become more 

pronounced at the extreme end of the scale: Research has shown that when a learner perceives 

a problem to be extremely difficult, s/he may not be motivated to invest much effort in this 

problem (see e.g., Bandura, 1989; Cennamo, 1993; Paas, Tuovinen, Van Merriënboer, & 

Darabi, 2005; Pintrich & Schrauben, 1992). As such, questions of perceived task difficulty or 

invested mental effort will presumably lead to non-equivalent ratings.

Because the NASA-TLX is a multidimensional scale, it is usually administered only 

once, at the end of a learning or test phase. The unidimensional 9-point mental effort rating 

scale can be used for multiple measurements during an experiment, that is, a single 

measurement after each task. Consequently, this scale allows for a more fine-grained analysis 

of the invested mental effort, and allows for estimations of internal consistency (see Paas et 

al., 1994). Because the subjective cognitive load measures are usually recorded after each task 

(9-point mental effort rating scale) or after a series of tasks has been completed (NASA-

TLX), they are usually considered to be off-line measures. However, Ayres (2006) showed 

that the 9-point mental effort rating scale can be used during task performance as well. 

Whereas on-line measures are very suitable for studying fluctuations in cognitive load during 
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task performance, subjective off-line data are often easier to collect and analyze, and seem to 

provide a good indication of the overall cognitive load a task imposed (Paas, 1992; Paas & 

Van Merriënboer, 1993; Paas, Tuovinen, et al., 2003). Note that all measures, whether 

objective or subjective, online or offline, provide indications of cognitive load as a whole, 

rather than of its constituent aspects (i.e., intrinsic, extraneous, germane). Although some 

attempts have been made, at present no measure exists that can distinguish between intrinsic, 

extraneous and germane load imposed by a task. However, information on variations in the 

different constituent aspects of overall cognitive load can be obtained by varying only one 

aspect of load (e.g., intrinsic load) and holding the others constant (cf. Ayres, 2006), or by 

holding intrinsic load constant and regarding mental effort scores in relation to performance 

scores, because extraneous and germane load are defined as being detrimental or beneficial 

for learning, respectively. This issue is addressed in more detail in the following section.

Instructional Efficiency: How the Relationship between Mental Effort and Performance 

Measures Can Be Used to Evaluate Instruction

As indicated in the previous section, mental effort measures reflect the cognitive 

capacity allocated to accommodate to the demands imposed by the task (i.e., the actual 

cognitive load). The task can be either an instructional task (i.e., during the learning phase) or 

a test task designed to measure learning outcomes. In this section we will discuss what kind of 

information mental effort measurements during and after the learning phase can provide, in 

relation to measures of performance during and after the learning phase. Our use of the term 

‘performance’ here, is aligned with the most common use of the term in the field, that is, as an 

evaluation of the learning outcomes in terms of a scoring of correct answers, or errors made1. 

Mental Effort Measurements During the Learning Phase

As mentioned before, next to the intrinsic load imposed by the number of interacting 

information elements of a task, there is extraneous and germane load imposed by the design 
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of the task. Extraneous cognitive load is defined as being ineffective for learning, that is, it 

does not contribute to, or may even harm learning outcomes. Germane cognitive load, in 

contrast is defined as being effective for learning (see Sweller et al., 1998). In other words, 

when a task is high in extraneous load, it requires high levels of mental effort investment, but 

this effort is invested in processes that do not contribute to or even hamper learning. On the 

other hand, when a task is high in germane load, it also requires high levels of mental effort 

investment, but this effort is invested in processes that foster learning. The main aim of 

cognitive load theory research, is to find instructional formats that reduce extraneous and 

increase germane load, which challenge the learner to invest effort, but in processes that are 

relevant for learning. 

However, when we know the mean rating of invested mental effort during the learning 

phase of a group of learners, we do not know whether they invested this effort in processes 

that were relevant (germane) or irrelevant (extraneous) for learning, if we do not regard their 

learning outcomes. For example, when we know that two groups of learners (A and B), of 

equal levels of expertise (i.e., materials will impose a comparable intrinsic load), both 

indicated that they on average invested ‘high mental effort’ (i.e., a mean rating of 7 on a 9-

point scale) during learning with two different instructional formats A (group A) and B (group 

B), we do not know very much. However, if we would also know that the learning outcomes 

of group B were higher than those of group A, we can conclude that the high level of effort 

invested by group B in studying format B was apparently more effective for learning than the 

same level of effort invested by group A studying format A.

Nonetheless, measuring mental effort during the learning phase may provide some 

interesting information to researchers and instructional designers. For example, if, given equal 

intrinsic load, two instructional formats (A and B) lead to equal learning outcomes, but format 

A requires significantly less investment of mental effort during learning than format B, then it 
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might be more desirable to implement format A in practice. However, the phrase “equal 

learning outcomes” is of pivotal importance here, and should encompass more than a 

performance score, as we will show in the next paragraph. 

Mental Effort Measurements During the Test Phase

We already mentioned the relationship between cognitive load and expertise: With 

increasing levels of expertise or prior knowledge, individuals increasingly acquire, elaborate, 

and/or automate task-relevant cognitive schemata, which decreases the intrinsic load imposed 

by completing such a task for learners with more prior knowledge compared to learners with 

less prior knowledge. Therefore, individuals with more expertise are able to attain equal or 

higher levels of performance with less investment of mental effort (cf. Anderson & Fincham, 

1994; Yeo & Neal, 2004). This also implies that learners who managed to gain more 

knowledge during the learning phase as a result of a more effective type of instruction, should 

experience less cognitive load when completing test tasks than learners who received a less 

effective instructional format (who, as a result, learned less). For example, consider two 

groups of learners (X and Y) learning with two instructional formats (X and Y, respectively), 

that both managed to reach a high mean test performance score of 80% correctly answered. 

Group X reported a mean mental effort invested in the test tasks of 4 (out of 9) and group Y 

of 7 (out of 9). If we would rely only on performance scores, we would (erroneously) 

conclude that both instructional formats were equally effective. However, if we would take a 

closer look and take into account the mental effort scores, it becomes clear that the quality of 

learning of group X, was higher than that of group Y; in other words, learners in group X 

have gained more expertise. This example illustrates the importance of relying not only on 

measures of test performance to draw conclusions about the effects of instructional 

conditions, but to consider mental effort invested in solving the test problems as an important 

element of the learning outcomes. Mental effort in combination with performance measures, 
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will provide us with a better, more subtle, indicator of the quality of learning outcomes, that 

is, in terms of the efficiency of cognitive schemata acquired, elaborated, or automated as a 

result of instruction, and hence, with a better indicator of the quality of different instructional 

conditions. Nevertheless, as can be seen in Table 1, many studies do not even measure mental 

effort during the test phase.

Efficiency: Combining Mental Effort and Performance Measures 

Original instructional efficiency measure. In searching for a single measure to 

determine the relative efficiency of instructional conditions in terms of learning outcomes, 

Paas and Van Merriënboer (1993) developed a computational approach for combining 

measures of test performance with measures of mental effort invested to attain this test 

performance. Performance and mental effort scores on the test are first standardized. Then, 

mean standardized test performance (P) and test mental effort (E) scores attained by learners 

in a certain condition are entered into the following formula: 
2

testtest zEzP
Efficiency

−
= . 

Although developed for measuring the efficiency of instructional conditions, the combination 

of performance and mental effort is also indicative of expertise (the quality of acquired 

cognitive structures), and hence, this measure can also be used outside instructional situations 

to evaluate learners’ relative levels of expertise/acquired cognitive structures (cf. Van Gog, 

Paas, & Van Merriënboer, 2005). 

Although Paas and Van Merriënboer (1993) proposed the use of performance and 

mental effort in the efficiency measure, other measures of cognitive load might also be used. 

For example, since time-on-task can be regarded as an objective measure of cognitive load, 

one could also define an efficiency measure based on test performance and time-on-task 

invested in the test. At least, this is the case when time-on-task is not restricted by the 

experimenter or instructor. Under conditions where time-on-task is restricted, it will no longer 
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have a very strong relation with cognitive load, and it may be more useful to rely on mental 

effort invested in the test, or to incorporate both performance, time-on-task, and mental effort 

invested in the test into the efficiency measure (cf. Tuovinen & Paas, 2004).

Adapted instructional efficiency measure. As is shown in Table 1, many studies have 

adopted, but simultaneously adapted the original instructional efficiency measure, by 

combining test performance with mental effort invested in the learning phase instead of the 

test phase: 
2

learningtest zEzP
Efficiency

−
= . In fact, of the 37 studies in this Table after 1993, 

only 4 used the original measure! Whereas the original measure was developed for examining 

instructional efficiency in terms of learning outcomes, that is, to obtain a more subtle measure 

of the quality of the cognitive structures acquired as a consequence of instruction than 

performance scores only, the adapted measure examines instructional efficiency in terms of 

the learning process, that is, combining the effort investment during instruction with the test 

performance attained as a result of instruction. The latter, adapted, measure reflects a 

somewhat more general economic cost-benefit view of efficiency. 

This difference between the original and the adapted measure has important 

implications, because mental effort invested in the learning phase and mental effort invested 

in the test phase are very different (at least from a research perspective; for the learner they 

may not be, s/he just rates the effort s/he invested in a task, whether it is a learning task or a 

test task). As mentioned before, it is very hard to interpret mental effort scores in the learning 

phase, because the exact processes in which a learner invests effort in the learning phase are 

often unknown, and the relative contributions of those processes to effort investment are 

unknown. What we do know, however, is that the design of the instruction in the different 

conditions will have a major influence, and hence, that these processes differ between 

conditions. The same argument holds for effects on time-on-task during the learning phase 
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when one would want to use this variable to measure efficiency rather then mental effort. In 

contrast, in the test phase, problems are identical for all students and mental effort is 

influenced mainly by their knowledge, which allows for a more unequivocal interpretation of 

the mental effort scores on the test phase across conditions.

As a result, there are significant differences in what is actually being measured by the 

original and adapted measures, that is, the first defines the construct of instructional efficiency 

in terms of learning outcomes (original), whereas the second defines the construct of 

instructional efficiency in terms of the learning process (adapted). This also implies that there 

are differences regarding the type of conclusions that can be drawn from these measures. We 

will return to this issue in more detail in the next section.

Efficiency measure for adaptive task selection. Efficiency measures have also found 

use in algorithms for adaptive, personalized task selection, as is shown in Table 1 (measure 

descriptions preceded by 1). Because the amount of mental effort invested in a task combined 

with the performance on that task can be used to assess learners’ acquired cognitive 

structures, this information can be used to dynamically adapt task sequences. That is, 

depending on efficiency scores on a certain task, the complexity or amount of support 

provided by a next task can be tailored to the learner’s current knowledge state. This strategy 

ensures that each next task is in optimal alignment with the individual learner’s cognitive 

architecture. 

Original Versus Adapted Instructional Efficiency Measures

In this section, it is argued that although it measures a very different kind of efficiency 

than the original efficiency measure, the adapted efficiency measure might provide useful 

information in some circumstances, such as when the aim is to decrease extraneous load, but 

not in others, such as when the aim is to increase germane load. 

Efficiency Measures in Studies Aiming to Decrease Extraneous vs. Increase Germane Load
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In comparing instructional materials, the adapted measure seems most useful in 

situations where the aim is to reduce cognitive load during learning (cf. the ‘early’ research on 

cognitive load theory that aimed at the development of instructional techniques that reduce 

extraneous load). Consider for example a comparison of learning from conventional problem 

solving, which imposes a high extraneous load, with learning from studying worked 

examples, which reduces extraneous load for novice learners. However, when instruction 

aims to stimulate learners to invest high levels of effort in processes relevant for learning (cf. 

the ‘later’ research on cognitive load theory focusing on both reducing extraneous load and 

increasing germane load), the adapted measure does not seem very suitable. Consider for 

example a comparison of learning from studying regular (product-oriented) worked examples, 

which reduce extraneous load compared to conventional problem solving, with learning from 

studying process-oriented worked examples, which reduce extraneous load compared to 

conventional problem solving and increase germane load compared to regular, product-

oriented worked examples for novice learners. Instructional formats that successfully 

substitute germane cognitive load for extraneous cognitive load, would require more 

investment of effort from learners during the learning phase than formats that only decrease 

extraneous load. Because the adapted measure uses only one aspect of learning outcomes, that 

is, a performance score, and it is highly unlikely that this increase in effort would be 

proportional to the increase in performance, efficiency according to the adapted measure 

would be lower in the germane load inducing condition. This might lead to the erroneous 

conclusion that this condition is less desirable than the other. 

We will illustrate these points with empirical data. We will first provide an example of 

a condition under which the adapted measure can be useful, and then provide an example of a 

condition in which it is not, which will illustrate how the original and adapted efficiency 

measures can lead to very different conclusions when applied under the wrong conditions. 
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These examples are based on parts of the data sets of two empirical studies by Van Gog et al. 

(2006, in press) 2. 

Compared to learning from conventional problem solving, studying carefully designed 

worked examples would be hypothesized to reduce extraneous load, which would lead to less 

investment of mental effort in the training, higher performance on the test, and less/equal 

effort investment in the test. A summary of such data from an empirical study (Van Gog et al., 

2006) is presented in Table 2. If we analyze efficiency using the adapted and original 

measures, we find that both lead to the conclusion that studying worked examples is more 

efficient: adapted, t(28) = 3.642, p = .001 (two-tailed); original, t(28) = 2.197, p = .036 (two-

tailed). So when the aim is to study formats that reduce extraneous load, and these formats are 

successful in doing so, the adapted measure can be used to come to the same conclusion, but 

one needs to realize that it provides information about efficiency in terms of the process of 

learning rather than learning outcomes. 

A germane load inducing measure combined with worked examples, could be the use 

of process-oriented worked examples, which aim to increase students’ understanding of the 

solution procedures presented in the examples (see Van Gog, Paas, & Van Merriënboer, 

2004). As mentioned above, studying regular, product-oriented worked examples, would be 

hypothesized to reduce extraneous load (compared to conventional problem solving). 

Studying process-oriented worked examples, however, would be hypothesized to not only 

reduce extraneous load (compared to conventional problem solving) but also increase 

germane load (compared to product-oriented worked examples) for novice learners. This 

would be expected to lead to more investment of mental effort in the learning phase when 

studying process-oriented worked examples, but because this effort is invested in processes 

relevant for learning, one would also expect an equal/higher performance score on the test, 

and less investment of mental effort in the test compared to product-oriented worked 
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examples. A summary of such data from an empirical study (Van Gog et al., in press) is 

presented in Table 3. Here we find that if we use the adapted measure, we have to conclude 

that both formats are equally efficient: t(79) = .038, p = .970 (two-tailed). If we look at the 

learning outcomes, however, using the original measure, we find that studying process-

oriented worked examples is more efficient for learning than studying product-oriented 

worked examples: t(79) = 2.073, p = .041 (two-tailed). So, in studies that do not aim to lower 

investment of effort during learning, but rather increase it to increase learning outcomes, and 

are successful in doing so, the adapted measure that relies on mental effort during learning is 

not very useful. 

Efficiency Measures in Studies on Adaptive Task Selection

In addition, in studies on adaptive task selection, there is another argument for not 

using the adapted efficiency measure. As Table 1 shows, some studies on adaptive task 

selection have not only used an efficiency measure for adaptive task selection, but also 

applied the adapted instructional efficiency measure to draw conclusions about the differential 

effects of conditions, that is, they used the standardized mean mental effort invested in the 

learning tasks combined with test performance. This is problematic, because adaptive task 

selection based on efficiency implies that one is directly influencing the mental effort that 

needs to be invested in each next learning task (this is kept at an optimal level), whereas this 

is not the case in the other conditions. Using the mental effort invested in the learning tasks in 

the efficiency formula to compare conditions, then, would be inappropriate in these studies, 

because this measure has been influenced by the instructional manipulation. Therefore, using 

the original instructional efficiency measure would also be more appropriate in studies such 

as these.

Efficiency Measures: More General Arguments

A final, more general argument for using the original efficiency measure instead of the 
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adapted measure is related to the differences between instructional conditions that are 

characteristic for instructional research. As mentioned previously, instructional conditions 

normally differ not only with regard to task format but also with regard to the type of 

cognitive processes required (cf. germane load inducing learning activities), completion time 

needed, and so on. As it is difficult or impossible to disentangle these factors it is not clear 

which of them, and to what extent, has contributed to the invested mental effort in the 

learning phase. This also goes for efficiency measures based on performance and time-on-

task, because the same problems for interpreting mental effort invested in the learning phase 

also hold for interpreting time-on-task invested in the learning phase. In contrast, in the test 

phase, problems are identical for all students, which allows for a more unequivocal 

interpretation of the mental effort (and time-on-task) scores. Research has also shown that 

data acquired during the learning phase might easily lead to incorrect conclusions about 

learning outcomes. Among others, Bjork (1999) shows that processes that are helpful to 

learning may lead to slow performance gains during the learning phase (and/or high cognitive 

load; cf. germane load), whereas processes that lead to high performance gains during the 

learning phase may not actually have effects on learning as measured by learning outcomes. 

Regarding the use of a perceived difficulty rating in the adapted efficiency measure, 

which many authors do (see Table 1), researchers should be aware that they are not only 

diverting from the original measure, but may also be measuring yet another construct than the 

adapted measure based on mental effort would. As mentioned previously, the question to rate 

perceived task difficulty or invested mental effort, will lead to different interpretations and 

outcomes, especially at the extreme end of the rating scale. When a learner perceives a 

problem to be extremely difficult, s/he may not be motivated to invest much effort in this 

problem. Hence, under such conditions, the outcomes of the effort and difficulty questions 

that are inserted in the efficiency formula are completely opposite. Using a difficulty rating in 
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the original definition of the efficiency measure seems even less sensible, because the 

efficiency of an instructional condition would then be considered high in case of high 

performance on a perceived easy test task, which does not seem indicative of quality of 

learning outcomes –high performance on a difficult task would be, but this would not be 

efficient according to the formula.

In sum, when analyzing efficiency of instructional conditions, we would strongly 

recommend researchers to always use the original measure based on mental effort (rather than 

difficulty) ratings and performance scores in the test phase. In certain situations, the adapted 

measure may provide some useful additional information, but it: a) should not replace the 

original measure, b) should not be used when instructional conditions that decrease 

extraneous and increase germane load are compared to conditions that only decrease 

extraneous load, and c) should not be used when one of the instructional conditions 

incorporated an efficiency measure for adaptive task selection. 

Discussion

This article revisited the ideas behind the original measure of instructional efficiency, 

in an attempt to clarify that what has become known as the instructional efficiency measure of 

Paas and Van Merriënboer (1993), is in fact an adaptation. This should not be taken to imply 

that the studies summarized in Table 1 are suspect, for two reasons illustrated by the examples 

based on empirical data: 1) the use of the adapted measure may be useful when the goal is to 

reduce extraneous load, and 2) in studies that seek to enhance germane load, the use of the 

adapted measure might lead to the conclusion of no significant differences (and in theory it 

might even lead to an opposite effect). In this case, researchers may have calculated the 

adapted efficiency measure, but are not likely to report it because it does not add interesting 

results, and therefore the studies for which our argument would have consequence, are not 

likely to be in this Table. 
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The studies in Table 1 served the purpose of illustrating that many authors only seem 

to know the adapted measure, and not the original one, which has hardly been used in 

educational research. Moreover, because many authors in this Table refer to the original 

measure but use an adapted measure, they do not seem to be aware of the fact that they use an 

adapted measure. Although this adapted measure can be argued to measure some kind of 

efficiency of instructional conditions (i.e., in terms of the learning process), it does not 

measure the efficiency of instructional conditions in the original definition (i.e., in terms of 

learning outcomes), which has consequences both for application of this adapted measure and 

conclusions that can be drawn from it. This article intended to make educational researchers 

more aware of the differences between the original and adapted measures and the conditions 

under which they can and cannot be applied. 

Here, however, we should ask a logical question that we did not address yet: Why did 

the measure become adapted and then accepted so quickly? The answer may lie in a rhetoric 

question: What’s in a name? The term “efficiency of instructional conditions” (or 

“instructional efficiency”) itself may well be one of the reasons why the measure became 

adapted in the first place, and why the adaptation was not really noticed. It is not so difficult 

to imagine that this term is interpreted as referring to the efficiency of the process of 

instruction, because, as mentioned before, this reflects a more general, economic notion of 

efficiency in terms of process costs and attained benefit. Somehow, regarding instructional 

efficiency as the amount of effort one has to invest when one is confronted with the 

instruction (i.e., in the learning phase) in relation to performance attained as a result of the 

instruction, instead of as referring to the results of instruction (i.e., learning outcomes), does 

seem more intuitive. That the term instructional efficiency indeed seems to evoke some 

ambiguity in interpretation is also reflected in the alternative terms that the authors who did 

realize they were using adapted versions started to use. For example, even though most 
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authors simply use the term instructional efficiency, the adapted measure has also been called 

“training efficiency” (e.g., Salden, Paas, Broers, & Van Merriënboer, 2004; Van Gerven, 

Paas, Van Merriënboer, & Schmidt, 2002), which seems indeed more accurate for the adapted 

measure and helps to distinguish the original measure from the adapted one, and “learning 

efficiency” (e.g., Kester et al., 2006), which is still somewhat ambiguous in whether it refers 

to a process or outcome. The original measure has also been called “performance efficiency” 

(e.g., Kester, Kirschner, & Van Merriënboer, 2006; Kester, Lehnen, et al., 2006), and this 

term has also been used in situations where the efficiency measure was used as a measure of 

relative expertise (Van Gog, et al., 2005). The term “mental efficiency” has been used in 

adaptive task selection settings (e.g., Camp, Paas, Rikers, & Van Merriënboer, 2001; Salden 

et al., 2004), where efficiency scores per task served as input for selection of a next task. Both 

“performance efficiency” and “mental efficiency” seem to more clearly convey the meaning 

of the original measure, that is, stressing the efficiency of acquired cognitive structures as a 

consequence of instruction, than “instructional efficiency” does.

Interesting directions for future research would be to study the viability of alternative 

efficiency measures. For example, other subjective ratings such as NASA-TLX (cf. Kester, 

Lehnen, et al., 2006) might be used. As mentioned before, it can be very useful to incorporate 

time-on-task on the test as an objective measure of cognitive load (when time-on-task is not 

restricted), but it might also be possible to use objective measures such as secondary task or 

eye movement data. Moreover, efficiency measures incorporating more variables than 

performance and cognitive load can be conceived of (cf. Tuovinen & Paas, 2004), for 

example, measures of motivation have been included by some (Hummel, Paas, & Koper, 

2004). However, in exploring these alternative measures, care should be taken, to define 

clearly what these efficiency measures intend to measure. Moreover, attention for the nature 

of the relationships between the different measures included in the efficiency measure is 
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necessary, for example, motivation is likely to influence effort investment (cf. Paas et al., 

2005), so it is questionable whether adding it as a separate variable to the efficiency measure 

has added value. 

In addition, it might also be interesting to investigate the use of the efficiency measure 

in longitudinal studies of learning or expertise development (cf. Van Gog et al., 2005). The 

efficiency measure is relative, that is, it allows for comparing the efficiency of one 

group/individual with another group/individual, and does not position an individual on an 

exact point of the continuum from novice to expert. However, given a set of standard test 

tasks, it might be possible and useful to take ones own past efficiency on these tasks as a 

reference point to measure learning (i.e., increase in efficiency) over time. Again, because not 

only performance would be regarded, but also invested effort (or some other measure such as 

time-on-task), more subtle improvements in learning outcomes could be detected. This would 

not only give learners and their teachers, instructors, mentors, or coaches a more accurate 

picture of learners’ individual progress, but might also be more motivating for learners. 
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Footnotes

1 Though we would ideally prefer performance measures to incorporate mental effort (or other 

cognitive load) measures.

2 The Van Gog et al. (2006) study consisted of 4 conditions, data of 2 conditions are presented 

here. The Van Gog et al. (in press) study consisted of two alternating learning and test phases: 

Learning1 – Test 1 – Learning 2 – Test 2. The data presented here are only those of the first 

half of the experiment (i.e., Learning 1 and Test 1), in which students studied either process-

oriented or product-oriented worked examples in the learning phase.
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Table 1

Type of Efficiency Measures Applied in Studies from 1993-2006

Studies Learning Phase Test Phase Efficiency Measure
Paas & Van Merriënboer (1993) ME (9-pt effort); P * ME Test; P Test 
Paas & Van Merriënboer (1994) ME (9-pt effort) ME (9-pt effort); P * ME Test; P Test
Cerpa, Chandler, & Sweller (1996) ME (9-pt difficulty) P ME Learn; P Test
Marcus, Cooper, & Sweller (1996) ME (7-pt difficulty) P ME Learn; P Test
Tindall-Ford, Chandler, & Sweller (1997) ME (7-pt effort) P ME Learn; P Test
Yeung, Jin, & Sweller (1997) ME (9-pt difficulty) P ME Learn; P Test
Kalyuga, Chandler, & Sweller (1998) ME (7-pt difficulty) P ME Learn; P Test
Kalyuga, Chandler, & Sweller (1999) ME (7-pt difficulty) P ME Learn; P Test
Tuovinen & Sweller (1999) ME (9-pt effort) ME (9-pt effort); P ME Learn; P Test
Yeung (1999) ME (9-pt difficulty) P ME Learn; P Test
Kalyuga, Chandler, & Sweller (2000) ME (7-pt difficulty) P ME Learn; P Test
Camp, Paas, Rikers, & Van Merriënboer (2001) ME (5-pt effort); P 1 ME Learn; P Learn

ME Learn; P Learn
Kalyuga, Chandler, & Sweller (2001) ME (7-pt difficulty) P ME Learn; P Test
Kalyuga, Chandler, Tuovinen, & Sweller (2001) ME (9-pt difficulty) P ME Learn; P Test
Cuevas, Fiore, & Oser (2002) ME (7-pt difficulty) P ME Learn; P Test
Pollock, Chandler, & Sweller (2002) ME (7-pt difficulty; 9-pt 

difficulty)

P ME Learn; P Test

Van Gerven, Paas, Van Merriënboer, & Schmidt (2002) ME (9-pt difficulty) P ME Learn; P Test
Van Merriënboer, Schuurman, De Croock, & Paas (2002) ME (9-pt effort) P ME Learn; P Test
Carlson, Chandler, & Sweller (2003) ME (7-pt effort); P P ME Learn; P Learn

ME Learn; P Test
Van Gerven, Paas, Van Merriënboer, Hendriks, & Schmidt ME (9-pt difficulty) P ME Learn; P Test
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(2003)
Hummel, Paas, & Koper (2004) ME (9-pt effort); TT; 

MOT; P

P 2 ME Learn; MOT Learn; TT 

Learn; P Learn

2 ME Learn; MOT Learn; TT 

Learn; P Test
Kalyuga, Chandler, & Sweller (2004) ME (7-pt difficulty; 9-pt 

difficulty)

P ME Learn; P Test

Kester, Kirschner, & Van Merriënboer (2004) ME (9-pt effort) P ME Learn; P Test
Moreno (2004) ME (10-pt difficulty) P ME Learn; P Test
Salden, Paas, Broers, & Van Merriënboer (2004) ME (5-pt effort); TT; P P 1 ME Learn; P Learn

2 ME Learn; TT Learn; P Test
Halabi, Tuovinen, & Farley (2005). ME (5-pt effort) P ME Learn; P Test
Kalyuga & Sweller (2005) ME (9-pt difficulty); P 1 ME Learn; P Learn
Moreno & Valdez (2005) ME (7-pt difficulty) P ME Learn; P Test
Corbalan, Kester, & Van Merriënboer (2006) ME (7-pt effort); P ME Learn; P Learn
Kalyuga (2006) ME (9-pt difficulty); P P 1 ME Learn; P Learn 

ME Learn; P Test
Kester, Kirschner, Van Merriënboer (2006) ME (9-pt effort) ME (9-pt effort); P ME Learn; P Test

* ME Test; P Test
Kester, Lehnen, Van Gerven, & Kirschner (2006) ME (NASA-TLX) ME (NASA-TLX); P ME Learn; P Test

ME Test; P Test
Ngu & Rethinasamy (2006) ME (7-pt effort) P ME Learn; P Test
Salden, Paas, Van der Pal, & Van Merriënboer (2006) ME (5-pt effort); P P 1 ME Learn; P Learn
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ME Learn; P Test
Salden, Paas, & Van Merriënboer (2006) ME (5-pt effort); P ME (5-pt effort); P 1 ME Learn; P Learn

2 ME Test; P Test
Hasler, Kersten, & Sweller (in press) ME (9-pt effort) P ME Learn; P Test
Paas, Van Gerven, & Wouters (in press) ME (9-pt effort) ME (9-pt effort);P * ME Test; P Test
Van Gog, Paas, & Van Merriënboer (in press) ME (9-pt effort) ME (9-pt effort);P * ME Test; P Test
Note 1. Studies are listed in chronological, then alphabetical order. Note 2. ME = Mental Effort; P = Performance; TT = Time on Task; MOT = 

motivation; Learn = learning phase; Test = test phase; * = Original measure; 1 = efficiency computed for adaptive/dynamic task selection during 

training (i.e., not based on mean score of entire learning phase but per task); 2 = multidimensional measure (see Tuovinen & Paas, 2004). Note 3. 

This Table provides an overview of scientific articles in which use of an efficiency measure was reported, and shows what kind of efficiency 

measure was used. This overview was generated as follows. We surveyed the list of publications referring to Paas and Van Merriënboer (1993) in 

Thomson Web of Science and Google Scholar on January 24, 2007, as well as in press articles we knew of, and included the empirical and 

published/in press articles that applied the efficiency measure in some way in this table (i.e., theoretical or review articles, dissertations, 

proceedings or conference papers, empirical articles referring to but not applying the efficiency measure, and unpublished not in press 

manuscripts presented on private websites were ignored).
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Table 2

Summary of Data per Condition (Van Gog et al., 2006)

Conventional problems (n = 16) Worked examples (n = 14)
M SD M SD

Training mental effort (0-9) 5.22 1.56 4.01 1.82
Test performance (0-3) 1.36 .40 1.83 .48
Test mental effort (0-9) 4.97 1.59 4.71 1.54
Original efficiency -.37 .85 .42 1.11
Adapted efficiency -.54 .70 .61 1.02
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Table 3

Summary of Data per Condition (Van Gog et al., in press)

Product-oriented worked examples (n = 41) Process-oriented worked examples (n = 41)
M SD M SD

Training mental effort (0-9) 3.18 1.36 3.50 1.57
Test performance (0-3) 1.70 .52 1.81 .45
Test mental effort (0-9) 5.43 1.12 4.83 1.47
Original efficiency -.24 1.04 .24 1.05
Adapted efficiency -.004 .97 .004 1.04
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