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A b s t r a c t .  This article offers an examination of instructional strategies and tactics for the 

design of introductory computer programming courses in high school. We distinguish the 

Expert, Spiral and Reading approach as groups of instructional strategies that mainly differ in 

their general design plan to control students' processing load. In order, they emphasize top- 

down program design, incremental learning, and program modification and amplification. In 

contrast, tactics are specific design plans that prescribe methods to reach desired learning out- 

comes under given circumstances. Based on ACT* (Anderson, 1983) and relevant research, we 

distinguish between declarative and procedural instruction and present six tactics which can be 

used both to design courses and to evaluate strategies. Three tactics for declarative instruction 

involve concrete computer models, programming plans and design diagrams; three tactics for 

procedural instruction involve worked-out examples, practice of basic cognitive skills and 

task variation. In our evaluation of groups of instructional strategies, the Reading approach 

has been found to be superior to the Expert and Spiral approaches. 
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1 Introduction 

Computer science has recently become an integral part of the high school curricu- 

lum in most Western countries. Typically, these computer science courses 

involve elementary computer programming to a large extent because some pro- 

gramming knowledge is generally seen as a necessary element of modern literacy; 

in addition, programming is usually expected to foster the development of specific 

cognitive skills which may positively affect problem solving behavior in other 

school disciplines (Clements, 1986a, 1986b, 1987; Clements and Gullo, 1984; 

Ehrlich, Soloway and Abbott, 1982; Schulz-Zander, 1986; Soloway, Lochhead 

and Clement, 1982). 

This article deals with the question of what we may learn from cognitive psy- 

chology for the instructional design of introductory programming courses. 

Leading research concerning cognitive psychology and elementary computer pro- 

gramming concentrates on 

1 computer models (Mayer, 1979, 1981, 1982; Mayer and Bromage, 1980) 

2 programming languages (Baron, Szymanski, Lock and Prywes, 1985; Green, 

1983; Green, Sime and Fitter, 1980; Samur~ay, 1985; Soloway, Bonar and 

Ehrlich, 1982) 

3 programming plans (Ehrlich and Soloway, 1984; Soloway, 1985; Spohrer, 

Soloway and Pope, 1985) 

4 general design models (Dershem, 1980; Hoc, 1981; Linn, 1985; Mandinach 

and Linn, 1986) 

5 misconceptions (Bayman and Mayer, 1983; Bonar and Soloway, 1985; 

Sleeman, Putnam, Baxter and Kuspa, 1986; Soloway, Ehrlich, Bonar and 

Greenspan, 1982) 

6"- group work (Webb, 1983, 1984; Webb, Ender and Lewis, 1986) 

7 graphical representations of algorithms (Brooke and Duncan, 1980; Fitter and 

Green, 1979; Green, 1982; Sheppard, Kruesi and Curtis, 1981; Shneiderman, 

Mayer, McKay and Heller, 1977) 

8 intelligent tutoring systems (Anderson and Reiser, 1985; Anderson and 

Skwarecki, 1986; Johnson and Soloway, 1985a, 1985b; Reiser, Anderson and 

Farrell, 1985). 

The goal of this paper is the presentation of instructional design principles for 

introductory programming courses in high school. We distinguish between 

instruction and management as two different aspects of teaching. Whereas princi- 

ples of management depend on class size, principles of instruction hold irrespec- 

tive of the number of students in the class. In this article we confine ourselves to 

the instructional aspects of teaching. For instance, the arrangement of group work 

in programming courses remains beyond the scope of this study. 
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In addition, we distinguish between instructional strategies and instructional 

tactics. Instructional strategies are general design plans that mainly differ in their 

control of students' processing load but that all pursue the same high-level goals 

which teachers consider desirable; instructional tactics are specific design plans 

that prescribe methods to reach desired learning outcomes under given circum- 

stances. As will be argued, an evaluation of strategies is, to a certain degree, pos- 

sible by establishing the facility of applying tactics in those strategies. Thus, 

tactics may be used both to design introductory programming courses and to eval- 

uate strategies that characterize existing courses. 

The structure of our discourse is as follows. In the second section, a descrip- 

tion will be given of three groups of instructional strategies that we call the 

Expert approach, the Spiral approach and the Reading approach. The Expert 

approach is a top-down approach, which starts the novice off with a complex but 

intrinsically motivating programming problem; the Spiral approach is a parallel 

syntax and semantic acquisition emphasizing small incremental steps and building 

up a program by mastering the basics (language constructs) first; the Reading 

approach recommends that students begin by understanding relatively complex 

existing programs and then modifying and enhancing those programs. In the third 

section, we will make a distinction between declarative instruction and procedural 

instruction. Based on ACT* (J. R. Anderson, 1983) and relevant research, six 

instructional tactics will be presented. Three tactics for declarative instruction 

involve concrete computer models, programming plans and design diagrams; three 

tactics for procedural instruction involve worked-out examples, basic skills and 

task variation. The fourth section includes an evaluation of the groups of instruc- 

tional strategies, in which the Reading approach is found to be superior to other 

approaches. Finally, we will offer a discussion of our framework for instructional 

design in elementary programming and its research implications. 

2 An overv iew of ins truct ional  s trategies  

Typically, introductory programming courses aim at four categories of skills 

(e.g., Mayer, 1975; Webb, 1984). First, students have to learn how to proceed in 

the programming environment, which includes the operating system and the edi- 

tor. Second, they should be able to apply the syntactic rules of the programming 

language. Third, they should gain understanding of the semantics of the language 

and master abilities that are necessary to analyze code so as to comprehend pro- 

grams. Finally, students should become able to generate programs themselves. 

The first two categories are never seen as ultimate goals: Rather, they function as 

vehicles to reach the latter two categories of goals. 
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In elementary programming, time is lacking to learn all four categories of 

skills to the same high level of  performance. In agreement with Anderson (1982), 

we distinguish three stages in the development of a complex cognitive skill. In 

the first stage, there is an initial performance level which enables students to gen- 

erate the desired behavior to some degree, but their performance is slow and sub- 

ject to many errors; in the second stage, there is an intermediate performance level 

which enables students to perform the skill faster and with most errors ehminated; 

in the third stage, there is a high performance level which enables students to per- 

form the skill fast and without errors. In elementary programming, skills neces- 

sary to proceed in the programming environment and to apply syntactic rules have 

to be learned from an intermediate to a high performance level because they serve 

as vehicles to reach the ultimate goals. Skills necessary to comprehend or generate 

programs can only be acquired from an initial to intermediate performance level 

because available time does not allow the setting of higher instructional goals. 

Two aspects can be distinguished in the ability to generate a program that is a 

possible solution to a given problem. First, students analyze the problem and pro- 

duce an algorithmic solution; second, they translate this algorithm into program 

code. This distinction between design aspects and coding aspects in program gen- 

eration is found in most curriculum documents and point-of-view papers on ele- 

mentary programming (e.g., Balzert and Hille, 1980; Schulz-Zander, 1981; 

Woodhouse, 1983). 

In the 1970s, programming was presented as a fundamentally easy task: One 

only had to learn a programming language to engage in it. Programming courses 

were, in fact, language courses fully stressing the coding aspects of program gen- 

eration. In the last decade, program generation came to be emphasized as a prob- 

lem solving activity which included substantial design aspects. 

This modem view often appeared difficult to implement. Students are generally 

inclined to rush to the computer and focus on the coding aspects of program gen- 

eration. They frequently attempt to go from a detail of the problem specification 

to the programming code, without any consideration of how to solve the problem 

as a whole, how to plan the solution, or how to design the code (Dalbey and 

Linn, 1986). Thus, despite the resolution to stress careful design, the teacher is 

frustrated by the students' tendency to focus on the computer and the more con- 

crete aspects of program generation. 

Several instructional strategies were developed to overcome this difficulty. In 

this article we distinguish between three widespread groups of strategies: the 

Expert approach, the Spiral approach and the Reading approach. Our classification 

is based upon a literature search as well as on an investigation of existing courses 

and programming textbooks. The classification has been chosen to highlight the 

differences between approaches. As a consequence, our descriptions may - to a cer- 

tain degree - be seen as exaggerations. 
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2.1 The Expert approach 

The Expert approach in designing introductory programming courses is closely 

related to the ideas that originated within the discipline of structured programming 

(Dahl, Dijkstra and Hoare, 1972; Wirth, 1974; Yourdon, 1975). Originally, this 

discipline addressed itself to professional programmers. However, many ideas were 

embraced by teachers in elementary programming. 

For over a decade, the discipline of structured programming has been having an 

enormous influence on the practice of programming because it urges programmers 

to work within certain limitations and according to certain rules. These constraints 

are claimed to ease the programming process for the programmer and to make pro- 

grams easier to comprehend, to write and to debug. In agreement with Sime, 

Arblaster and Green (1977), we distinguish between constraints on the program- 

ming language and constraints on the programmer's procedure. 

Language constraints 

Interest in specific language features seriously began when Dijkstra (1968) 

assailed the GOTO statement. He argued that this statement made it difficult both 

to comprehend and to develop programs. The structured programming discipline 

called for more restriction in specifying control and data structures to be included 

in future languages. Ever since, much research has been done that demonstrated 

the value of structured language features in programming (see for a review, Curtis, 

1983). 

Several authors (e.g., Atherton, 1981; Woodhouse, 1983) advocated the use of 

structured languages such as Pascal, PL/1, or COMAL-80 in introductory pro- 

gramming courses. They particularly criticized the use of BASIC for its lack of 

structure: Learning BASIC as a In'st programming language was supposed to 

interfere with subsequently learning a structured programming approach (e.g., 

Atherton, 1982; Baird, 1982). Their opinion is summarized in the well-known 

statement: "BASIC damages the brain!". 

Nowadays, the use of structured programming languages in introductory pro- 

gramming courses is commonly accepted. Thus, using a well-structured program- 

ming language is not reserved to the Expert approach but is possible and, in our 

opinion, highly desirable in all instructional strategies. Throughout this article, 

we presuppose the use of a structured programming language in the Expert, 

Spiral, as well as Reading approach: They do not differ in this respect. 

Procedure constraints 

Programming should essentially be seen as a problem solving activity in which 

the responsibility of the programmer extends beyond producing code that works. 

First, programmers have to structure their programs so that they are readable for 

others: Joni and Soloway (1986) referred to these constraints as "discourse rules". 
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Second, programmers are recommended to adopt a model of"stepwise refinement" 

to achieve algorithm and program design in a top-down fashion. Thus, they 

should begin writing a program by first specifying the top levels of the task- 

hierarchy to design the algorithm and then proceed to successively specify lower 

levels until the actual language cede has been reached. Especially well-structured 

languages should make a top-down approach feasible because they facilitate break- 

ing down large programming tasks into smaller subtasks. 

In the design of introductory programming courses, the characteristic feature of 

the Expert approach is its emphasis on both algorithm and program design in a 

systematic top-down fashion. For this reason, students are offered problem specifi- 

cations during the course that are characterized as non-trivial design problems. 

That is, from the outset of the course they receive problems for which algorithms 

have to be developed. Working according to the presented model of stepwise 

refinement should allow the students to concentrate more on the semantic content 

of the algorithm because less attention is required to Irack actions on lower pro- 

gram code levels. 

2.2 The Spiral approach 

This approach is closely related to the ideas of Ausubel (1968). Shneiderman 

(1977a) coupled Ausubel's educational theory to his syntactic/semantic model 

(Shneiderman and Mayer, 1979) of programmer behavior. In this model, syntactic 

knowledge is defined as unorganized knowledge of low level details, such as the 

syntax of language features and the names and arguments of functions; in contrast, 

semantic knowledge is defined as hierarchically organized knowledge with con- 

cepts ranging from lower levels, such as the assignment statement, to higher lev- 

els, such as the pattern of code for finding the mean of an array. Based on this 

distinction and on Ausubel's notion of "anchoring" new material to an "ideational 

structure" through a process of"progressive differentiation", Shneiderman (1977a) 

presented the Spiral approach for teaching introductory programming courses. 

According to him: "The Spiral approach is the parallel acquisition of syntactic and 

semantic knowledge in a sequence which provokes student interest by using mean- 

ingful examples, builds on previous knowledge, is in harmony with the student's 

cognitive skills, provides reinforcement of recently acquired material and develops 

confidence through successful accomplishment of increasingly difficult tasks" 

(p.193). 

In short, more complex forms of knowledge are developed in a hierarchical 

manner. By selecting small instruction steps, complex ideas are built from combi- 

nations of simpler ideas. Each step must (a) contain both syntactic and semantic 

elements, (b) present a minimal extension of previous knowledge, (c) be explained 

in relation to former knowledge and (d) be trained in exercises. Syntactic know- 

ledge is learned by repetition and must frequently be rehearsed to prevent forget- 
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ring; semantic knowledge is acquired through meaningful learning and is better 

resistant to forgetting. However, semantic information must always be presented 

in small units that are higher level organizations of previously acquired 

knowledge. 

The characteristic feature of the Spiral approach is its emphasis on stepwise 

incremental learning. Problem specifications that are presented to students during 

the course gradually become more complex in both the coding and the design 

aspects that they require. Consequently, in the beginning of the course students 

receive more or less trivial problems that emphasize syntactic and lower level 

semantic knowledge. After students have gained more experience, problems 

become more complex and can be seen as non-trivial design problems that require 

serious algorithm design. 

2.3 The Reading approach 

This approach emphasizes the reading, modification and amplification of non- 

trivial, well-designed and working programs. Deimel and Moffat (1982) promoted 

the Reading approach and separated four phases in introductory programming 

courses. In the first - short - phase, students run working programs, observe their 

behavior and evaluate their strengths and weaknesses. In phase two, students are 

actually introduced to well-structured programs. Their primary activities in this 

phase are reading and hand Ixacing of programs. Thus, learning the specific lan- 

guage is largely done by extracting the language features from concrete programs. 

During the third phase, students modify and amplify existing programs and prac- 

tice both design and coding aspects on a modest scale. Finally, students generate 

programs on their own and continue practicing basic design techniques and struc- 

tured coding. 

Several authors recommended strategies that we assign to the Reading 

approach. Dalbey, Tourniaire and Linn (1985) reported that students showed a seri- 

ous lack of planning in program generation. They suggested that "it would seem 

quite appropriate to begin instruction with comprehension of program code... 

Those programs would demonstrate how planning is used in programming... 

Thus, students would have a better understanding of the role of planning in pro- 

gramming" (p. 18). Pea (1986) reported negative effects of"bugs" on the learning 

process in programming. Bugs are misconceptions that students have about the 

operation of computers and the working of programming languages. These mis- 

conceptions cause systematic errors in program comprehension and generation. 

According to Pea, "bugs like these could be snared ff one used program reading or 

debugging activities as central components of programming instruction" (p. 34). 

The characteristic feature of the Reading approach is its emphasis on program 

comprehension, modification and amplification. For this reason, students are con- 

fronted with non-trivial design problems from the beginning of the course. 
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However, these problems are presented in combination with their complete or par- 

tial solutions in the form of well-designed, well-structured and well-documented 

programs. The students' tasks gradually become more complex during the course, 

changing from using and analyzing programs, through modifying and extending 

programs, to independently designing and coding programs. 

2.4 A preliminary comparison of strategies 

In this section, we offer a preliminary overview of major similarities and differ- 

ences between the Expert, Spiral and Reading approaches. A more thorough com- 

parison and evaluation of instructional strategies ensues in a later section. Both 

the Expert approach and the Spiral approach employ program generation as a pri- 

mary student activity. During the course, the complexity of presented problems 

gradually increases in both approaches. However, the Expert approach emphasizes 

top-down design aspects by immediately offering non-trivial design problems and 

top-down design techniques; the Spiral approach stresses parallel, stepwise teach- 

ing of syntactic and semantic aspects by offering relatively simple coding prob- 

lems in the beginning of the course and more complex problems, demanding 

serious algorithm design, only later in the course. 

Like the Expert approach, the Reading approach advocates the presentation of 

design problems in an early stage of the course. However, the Reading approach is 

taking a different route by not merely presenting problems but also complete or 

partial solutions in the form of well-designed programs: The complexity of offered 

problems is relatively constant throughout the course, whereas the students' tasks 

vary from comprehension, through modification and amplification, to designing 

and coding complete programs. 

The most conspicuous differences occur between the Spiral approach and the 

Reading approach. Whereas the Spiral approach adopts program generation as a 

primary and, throughout the course, constant activity, the Reading approach 

employs the comprehension, modification and amplification of programs as sub- 

sequent student activities. Besides, problem complexity in the Spiral approach 

increases from relatively simple coding problems to more difficult design prob- 

lems; in the Reading approach, problem complexity is high from the outset but 

the problems are presented in combination with their complete or partial 

solutions. 

3 An o v e r v i e w  of  i n s t r u c t i o n a l  tactics 

Instructional principles can be formulated in a circumstances-method-outcomes 

format (Reigeluth, 1983). Circumstances are factors that influence the effects of 

methods - and are therefore important for prescribing methods - but they cannot 
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be manipulated; methods are manipulations to achieve different outcomes under 

different circumstances; outcomes are effects that provide a measure of alternative 

methods under different circumstances. Outcomes may be desired or actual: In this 

article, we are concerned with desired outcomes that are equivalent to instructional 

goals. For this reason, we formulate - instead of principles - instructional tactics 

in a goals-circumstances-method format. The structure of a tactic may be illus- 

trated by an example of the classroom questioning behavior of teachers. Research 

on this topic suggests that the cognitive level of questions asked should depend on 

student home background and age (Gall, 1984). The following tactic could be 

derived from this research: 

Example of a Tactic 

GOAL(S): 

- mastery of elementary skills 

CIRCUMSTANCE(S): 

- the teacher is engaged in a classroom discussion 

- the age of the students is below eight years 

- the students have disadvantaged home backgrounds 

METHOD: 

- ask mainly factual questions that students are expected to answer correctly 

Each instructional tactic should have at least one goal, often one or more cir- 

cumstances to delimit its validity and exactly one method. For our purposes, 

goals are formulated as desired learning outcomes; circumstances are formulated as 

characteristics of the student population and the subject matter; methods are for- 

mulated as manipulations affecting the instructional design. We have already dis- 

tinguished four categories of  desired learning outcomes for elementary 

programming: skills necessary to (a) proceed in the programming environment, 

(b) apply syntactic rules, (c) comprehend programs and (d) generate programs. In 

addition, these skills may be mastered up to either an initial, intermediate, or high 

performance level. In this section, we present six tactics that include goals, cir- 

cumstances and methods in the above-mentioned format_ Moreover, these tactics 

will be related to a common cognitive-psychological background and, when possi- 

ble, they will be supported by relevant research. 

3.1 Theoretical background 

The ACT* theory ("Adaptive Control of Thought"; Anderson, 1982, 1983; 

Anderson, Greeno, Kline and Neves, 1981; Anderson, Kline and Beasly, 1980; 

Neves and Anderson, 1982) offers a suitable theoretical background for discussing 

instructional tactics in elementary programming because (a) it makes general 
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claims about the organization and acquisition of complex cognitive skills and it is 

capable of explaining most results in cognitive research on computer program- 

ming, (b) it offers various points of contact for instructional design as shown in 

the development of  computer-based LISP tutors (Anderson and Reiser, 1985; 

Anderson and Skwarecki, 1986; Reiser, Anderson and Farrell, 1985), and (c) it has 

already been successfully applied to simulate learning processes involved in pro- 

gramming: In particular, these processes are simulated in GRAPES ("Goal- 

Restricted Production System"; Anderson, Farrel and Sauers, 1984), which 

embodies parts of the cognitive architecture as specified in ACT*. 

Cognitive architecture 

Newel1 and Simon (1972) promoted production system theories by making the 

claim that a set of condition-action pairs called "productions" underlies human 

cognition. The condition part specifies various features; if elements that match 

those features are in working memory, the production applies. The action part 

specifies what to do ff the condition is matched; if the production applies, it adds 

new elements to working memory. As an extension of this cognitive architecture, 

ACT* makes a fundamental distinction between declarative and procedural know- 

ledge; in addition to the active part of information in working memory and a set 

of productions in procedural memory, it contains a set of facts in declarative 

memory. 

Declarative memory contains cognitive units to encode sets of elements that 

have a particular relationship. Cognitive units appear as elements of one another 

to create complex hierarchical smJctures: Interconnections between these structures 

and elements form a network. An activation process that is working on this net- 

work defines the working memory. Furthermore, each cognitive unit has a 

strength associated with it that is a function of the frequency of use; this strength 

determines the spread of activation throughout the network. 

Working memory refers to active information that is basically declarative in 

nature. Each element that enters into working memory is a temporary source of 

activation. In addition, a single goal element may serve as a permanent source of 

activation. In particular, working memory contains temporary structures that are 

either created by the perception of objects in the outside world or deposited in 

working memory by actions of productions. If a slructure is created in working 

memory, there is a probability that a permanent copy of it will be made in declar- 

ative memory; if a copy already exists, its slrength will increase. 

Procedural memory contains productions of which the conditions are matched 

with the structures in working memory. When the match is successful, temporary 

structures are added to working memory by execution of the action. Thus, produc- 

tions operate on declarative knowledge that is currently active in working mem- 

ory. In addition, a strengthening process increases the strength of a production 

with every successful application. 
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Goal-directed processing 

In ACT*, special attention is given to goal-directed productions that match for a 

single goal in their condition as well as for other features. I f  the goal specification 

matches the current goal in working memory, it is given precedence over all other 

productions. The GRAPES system (Anderson et al., 1984) restricts itself to such 

goal-directed productions to simulate the processes involved in learning to pro- 

gram. In fact, productions can create a goal structure that reflects the problem sol- 

ver 's  plan of action. When a goal has been achieved, it is removed from working 

memory and attention is shifted to the next (sub)goal in the structure. For 

instance, a condition specifies a particular programming goal and some problem 

specifications; if  the condition matches the contents of working memory, execu- 

tion of the action may set new (sub)goals, reformulate the problem specification, 

or write program code. 

Elaborative processing 

According to ACT*, to-be-learned information always comes in declarative form. 

One of the best ways to increase students' memory for new information is to have 

them elaborate on the instructional material. Elaborative processing indicates that 

productions use declarative knowledge structures that already exist in memory to 

generate elaborations which are embellishments of the instructional material. The 

retrieved knowledge is called a schema because it provides a cognitive slructure for 

understanding a situation in general terms. In the elaborative process, productions 

connect the schema with the instruction and infer information from the schema 

that is not in the instruction. As a result, the elaboration of the instructional 

material is a more richly connected cognitive slructure than was specified in the 

instructional material. The processes involved in elaborative processing may be 

seen as a form of meaningful learning because subjects connect new material with 

one or more schemata that already exist in memory. These schemata provide struc- 

tural understanding and may subsequently guide problem solving behavior. 

Skill acquisition 

Learning a complex cognitive skill develops from a declarative to a procedural 

stage by a process referred to as knowledge compilation. In the declarative stage 

students receive instruction about the skill mainly by reading textbooks and lis- 

tening to lectures. New facts are stored in declarative memory. To generate behav- 

ior on the basis of  newly acquired knowledge, students must use existing domain- 

independent productions to interpret those facts. Although the interpretation of 

knowledge in declarative form has the advantage of flexibility, it also has serious 

costs. The process is slow because interpretation requires continuous retrieval of 

facts from declarative memory and because the individual interpretative production 

steps are usually small. 
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Knowledge compilation creates task-specific productions through practice. It 

includes the subprocesses composition and proceduralization. Composition collap- 

ses sequences of productions into single productions and considerably speeds up 

production application because the new productions embody sequences of steps 

that are needed in a particular domain. Proceduralization embeds factual, task- 

specific knowledge in productions and reduces load on working memory because 

declarative information need no longer be held active. Hence, with practice the 

declarative knowledge is gradually converted into a procedural form in which it 

directly conlrols behavior. During knowledge compilation, the skill is performed 

at an intermediate level. 

In the procedural stage, the performance level is high because knowledge about 

the skill is directly embodied in task-specific productions which may be applied 

very fast and with low demands on working memory. A further tuning makes the 

knowledge more selective in its range of applications. In ACT*, tuning includes - 

in addition to slrengthening - generalization to create more general productions 

and discrimination to create more specific productions. However, it should be 

noted that in the PUPS successor of ACT* (PenUltimate Production System; 

Anderson, Boyle, Corbett and Lewis, 1986) there are neither generalization nor 

discrimination mechanisms that automatically compare the current situation with 

past situations. Whereas in ACT* generalizations and discriminations are produc- 

tions rendered by automatic learning mechanisms, in PUPS they are schema-like, 

declarative knowledge structures that are produced by problem solving 

productions. 

Our review of relevant aspects of ACT* set up a framework for discussing 

instructional tactics. We distinguish between declarative instruction and procedural 

instruction. Declarative instruction involves methods for the initial presentation 

of information about the computer, the programming language and the design pro- 

cess to facilitate the storage of new declarative knowledge; procedural instruction 

involves methods for the design of practice to facilitate knowledge compilation. 

3.2 Tactics for Declarative instruction 

Some general recommendations for declarative instruction, not limited to elemen- 

tary programming, are: (a) let students explain new information in their own 

words, verbally or by taking notes, to relate the instructions to existing know- 

ledge, (b) assess students' misconceptions about the task and subsequently use 

them in the design of instructional materials and (c) teach students not only useful 

actions but also the conditions under which those actions are useful (Larkin, 

1979; Simon, 1980). These recommendations may eventually be specified to ful- 

fil the conditions that we laid down for instructional tactics. However, in this arti- 

cle we limit ourselves to tactics for declarative instruction that have already been 

especially developed for elementary programming. 
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A problem with most instructional materials for elementary programming is 

that many things that students have to know are omitted; they must figure them 

out by trial and error. In our opinion, a key aspect for declarative instruction 

should be the teaching of facts, such as language statements and syntactic rules, in 

combination with schema-like knowledge to encourage elaborative processing. We 

will discuss three tactics that concern such schema-like knowledge by focussing 

on (a) the machine, by introducing a concrete computer model, (b) the programs, 

by offering programming plans and (c) the design process, by presenting a design 

diagram. These tactics are explicitly concerned with the acquisition of declarative 

knowledge so that their instructional goals are limited to mastery of skills at an 

initial performance level. Whereas it is obvious that ultimate goals involve higher 

performance levels, these are not within reach because practice is not yet included 

in declarative instruction. 

Concrete computer models 

DuBoulay, O'Shea and Monk (1981) introduced the distinction between a "black 

box approach" and a "glass box approach" in elementary programming. In the 

black box approach, students have no idea of what goes on inside the computer 

because they lack an adequate model. In the glass box approach, students do have 

such an idea because the instruction includes a concrete but simplified computer 

model. This model makes it possible to emphasize a "notional machine" on both 

a general level, such as in teaching the relationship between the terminal and the 

computer and a specific level, such as in teaching assignment statements 

(DuBoulay, 1986). 

Mayer (1975) either gave students in an introductory BASIC course a concrete 

computer model or he did not. The group that received the model excelled in com- 

prehension and generation of new programs; the group that received no model per- 

formed equally well on problems that were very much like the material in the 

instructional text. According to Mayer, the presentation of the model provided a 

context in which students could relate new instructions to an already familiar anal- 

ogy. Consequently, the instruction resulted in a broader learning outcome. 

In subsequent studies (Mayer, 1976; Mayer and Bromage, 1980), the model 

was presented either before or after the reading of the instructional text. In agree- 

ment with the previous results, the group that received the model before reading 

the text excelled in comprehension and generation of new programs as well as on 

recall of information that could be conceptually related to the operation of the 

computer. Thus, the model facilitated learning only if it was available to students 

before reading the instructional text. 

Summing up, students who received a computer model before reading showed 

more integrated learning of information, which improved their comprehension and 

generation of new programs. We suppose that the presentation of the model early 

in the learning process encouraged elaborative processing. That is, the subsequent 
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reading of the instructional text resulted in a more richly connected knowledge 

structure, which improved program comprehension and program generation learn- 

ing outcomes. As a consequence, our first instructional tactic for declarative 

instruction in elementary computer programming is" 

Computer model tactic 

GOAL(S): 

- initial performance level in program comprehension and generation 

CIRCUMSTANCE(S): 

- students are pre-novices in computer programming and are in the declarative 

stage 

METHOD: 

- present a concrete computer model early in learning 

Programming plans 

Expert programmers at a glance recall far more information from a computer pro- 

gram than novices (McKeithen, Reitman, Rueter and Hirtle, 1981). Experts have 

more knowledge concerning programs and - perhaps even more important - this 

knowledge is better organized into cognitive structures. Adelson (1981) studied 

differences between expert and novice programmers in their recall of complete pro- 

grams. Novices were attending to the syntactic surface smacture of single program 

lines; experts used a more abstract hierarchical organization based on the func- 

tional principles in blocks of related program lines. In agreement with these 

results, Shneiderman (1976, 1977b) and Barfield (1986) found that experienced 

programmers could recall more lines of programming code than novices when the 

program was organized in executable order; however, the groups performed at sim- 

ilar levels when the programs consisted of random lines of code. Thus, experts 

seem to organize their knowledge of programs into cognitive structures that con- 

tain templates of language code. 

Experts not only use such cognitive structures to comprehend programs but 

also to understand problem specifications in program generation. Atwood, Turner, 

Ramsey, Hooper and Sidorsky (1977) presented programming problems that sub- 

jects had to summarize in their own words. Whereas novices omitted all details of 

the problem specification, intermediates and experts emphasized the details that 

were of importance to program design. This is in agreement with the results of a 

study by Weiser and Shertz (1983), in which novices and experts had to sort pro- 

gramming problems. Novices sorted problems according to their field of applica- 

tion, such as word processing, data management and robotics; experts sorted 

problems regarding their deep structure, such as the fundamental algorithms that 

were underlying their solutions. 
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Ehrlich and Soloway (1984) presented a theory of programming plans in which 

they tried to identify the content of cognitive structures as used in programming. 

The goal of the theory is to improve the teaching of elementary programming and 

to support the building of computer based programming tutors (Johnson and 

Soloway, 1985a, 1985b). Fundamental in their approach is that expert program- 

mers organize their programming knowledge into schemata that represent patterns 

of code that are associated with specific programming problems. Programming 

plans give a concrete form to these schemata as templates of programming code in 

combination with comments that describe the goals and reasons for the various 

expressions in the template. Such programming plans are largely independent of 

the programming language that is used and can be learned directly from 

instruction. 

According to Soloway (1985), instruction should not only emphasize the syn- 

tax and statements of a particular programming language but also programming 

plans. This makes it possible to stress the structure of, and relationships between, 

specific programming problems and programs. Thus, the explicit presentation of 

programming plans supports the development of cognitive structures that are used 

in both the comprehension of programs and the understanding of problem specifi- 

cations in program generation. In fact, programming plans begin to appear in 

textbooks that teach elementary programming (e.g., Cooper and Clancy, 1982; 

Dale and Orschalick, 1983). Based upon the theory of programming plans, we for- 

mulate our second instructional tactic for declarative instruction: 

Programming-plans tactic 

GOAL(S): 

- initial performance level in program comprehension and generation 

CIRCUMSTANCE(S): 

- students are novices in computer programming and are in the declarative stage 

METHOD: 

- explicitly present programming plans 

Design diagrams 

Jeffries, Turner, Poison and Atwood (1981) studied the processes involved in pro- 

gram design and distinguished three major mechanisms: (a) the decomposition of 

the problem specification into a collection of modules, (b) the specification of the 

relationships and interactions among modules as control structures that indicate 

when and under which conditions modules are activated and (c) the specification of 

data structures that are involved in the solution. Expert programmers have abstract 

knowledge concerning the processes involved in generating a good design and its 

overall structure. This knowledge is referred to as a general design schema. 
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The design schema may be used recursively to generate a decomposition of the 

problem into more and more detailed modules in a process of "successive refine- 

ment", which leads to a top-down, breadth-first expansion of the solution. The 

design process continues until programming code has been identified for each sub- 

problem. This description of expert programming behavior is in accordance with 

both the dominant view of planning as a process that starts with high-level goals 

and refines them into achievable actions (Newell and Simon, 1972; Sacerdoti, 

1977) and the principles of goal-directed processing as specified in ACT*. In addi- 

tion, it is nearly equivalent to the model of stepwise refinement as promoted by 

the structured programming discipline. 

In contrast to experts, novices do not possess a general design schema and usu- 

ally have severe difficulties in coordinating their activities. Because they lack a 

structure for organizing their behavior, they are often unable to decompose the 

problem into appropriate subproblems, to correctly interface modules and to iden- 

tify necessary data structures. In our opinion, a common difficulty in introductory 

programming courses is that they do not embody instructional tactics that reflect 

the students' need for "direction" in problem solving. Consequently, novices often 

attempt to go from their incomplete design to implementing the program, with- 

out further consideration of how to plan the complete solution. This often results 

in badly structured, buggy programs. 

Bradley (1985) reported a positive correlation between top-down processing 

styles and learning outcomes in a 15-lesson introductory LOGO-course.  

Instructional materials may support such top-down processing by explicitly 

presenting a design diagram: A flow-chart or structured diagram prescribing in 

detail the actions and methods that ensure a systematic and effective design pro- 

cess. Equivalent design diagrams for solving elementary science problems are 

sometimes referred to as SAP-charts ("Systematic Approach to Problem-solving"; 

see for an example, Mettes, Pilot and Roossink, 1981). The presentation of  a 

design diagram clarifies the complementary processes of successive ref'mement and 

top-down program design and facilitates the development of a general design 

schema. Based upon this idea, we formulate our last tactic for declarative 

instruction: 

Design diagram tactic 

GOAL(S): 

- initial performance level in top-down program design and successive ref'mement 

CIRCUMSTANCE(S): 

- students are novices in computer programming and are in the declarative stage 

METHOD: 

- explicitly present a design diagram 
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3.3 Tactics for  Procedural instruction 

Whereas the key aspect in declarative instruction is teaching schema-like know- 

ledge to encourage elaborative processing in the learning of related facts, the key 

aspect in procedural instruction is supporting processes involved in knowledge 

compilation and tuning. Thus, procedural instruction primarily involves the 

instructional design of practice to make the transition from the declarative stage to 

the procedural stage as smooth as possible. Note that practice does not imply that 

students always have the disposal of a computer; for instance, algorithm design 

may be practiced without a computer. 

In general, students initially have serious difficulties in applying newly 

acquired declarative knowledge in practice. This is in agreement with ACT*, 

which predicts that in the declarative stage the use of knowledge by interpretative 

productions is - as a result of high demands on working memory - a slow process 

characterized by many errors. Three instructional tactics for procedural instruction 

involve (a) worked-out examples, (b) practice of basic cognitive skills and (c) task 

variation. Because these tactics are concerned with knowledge compilation and 

subsequent tuning, the instructional goals for mastery of certain skills may vary 

from an intermediate to a high performance level. 

Worked-out examples 

In the declarative stage, students usually study instructional materials or listen to 

lectures to encode declarative information. After these activities they start practic- 

ing, which often involves program generation, program modification, or program 

amplification. Anderson et al. (1984) reported that students in this stage of know- 

ledge compilation make a highly selective use of instructional materials. In partic- 

ular, they use concrete examples of problem solutions - related to the problem at 

hand - that have the form of concrete computer programs. These worked-out 

examples function as analogies, which students use as blue-prints or concrete 

schemata to map their new solutions. Thus, analogy is used to bridge the gap 

between the current declarative knowledge and the desired programming behavior. 

After students have gained more experience, their need for worked-out examples 

disappears, as a result of knowledge compilation. 

The key to the use of analogy is interpreting information by general produc- 

tions. Whereas in elaborative processing productions interpret schemata and create 

elaborations by mapping the schemata onto the instructional material, in the use 

of analogy productions interpret worked-out examples and create new solutions by 

mapping the examples onto existing declarative knowledge. Thus, students trans- 

form a worked-out example that is the solution for one problem into a new pro- 

gram that is the solution for another problem by interpreting the example and 

mapping it onto existing knowledge about programming. Obviously, analogy is a 

powerful tool in guiding programming behavior but it is never an automatic map- 
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ping of the example onto the new solution: students always need newly acquired 

knowledge about programming to reach a correct solution. 

An instructional implication of ACT* is that students have to induce generali- 

zations and discriminations from carefully selected examples because these are pro- 

ductions created by the automatic learning mechanisms of generalization and 

discrimination. However, in the PUPS successor of ACT*, generalizations and 

discriminations are seen as declarative knowledge structures that are produced by 

general problem solving productions. This leads to the additional implication that 

one should explicitly tell the students what the critical features in an example are 

(Anderson et al., 1986). Thus, whereas the presentation of worked-out examples is 

important in its own right, the examples should be annotated with information 

about what they are supposed to illustrate. 

Annotated examples bear resemblance to programming plans: they both offer 

templates of code instead of unorganized factual information and they both slress 

the critical features in this template. But, whereas programming plans primarily 

serve to present new information concerning a template of programming code and 

its relationship with specific programming problems, annotated, worked-out 

examples serve as an analogy to support knowledge compilation. In fact, we think 

that it is desirable to further annotate worked-out examples by explicitly referring 

to the programming plans they use. 

Based on the function of worked-out examples as analogies that both guide 

programming behavior and support knowledge compilation, we present our first 

tactic for procedural instruction: 

Tactic of worked-out examples 

GOAL(S): 

- intermediate performance level in program generation 

CIRCUMSTANCE(S): 

- students are novices in computer programming and the necessary declarative 

knowledge is already present 

METHOD: 

- present concrete, annotated, worked-out examples in the form of concrete pro- 

grams for well-described programming problems that are related to the prob- 

lems at hand 

Basic cognitive skills 

In the declarative stage, knowledge must continually be represented in working 

memory to be interpreted by general productions. The content of working memory 

rapidly changes because the interpretative production steps usually are small. The 

resulting high processing load has major costs in terms of speed as well as errors. 

Knowledge compilation decreases the load on working memory, both because 
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declarative information is built up into productions (proceduraiization) so that it 

needs no longer be represented in working memory, and because production steps 

become larger (composition) so that the content of working memory is changing 

less frequently. 

Basically, ACT* is a theory of learning by doing because practice is seen as a 

necessary condition for knowledge compilation. Practice may rapidly produce task- 

specific productions that result in a decrease of processing load. The same pro- 

cesses work for the compilation of productions that concern either basic skills or 

higher skills involved in programming. For instance, practice may build produc- 

tions that help students to proceed in the programming environment, to apply 

syntactic rules, to couple particular programming problems to templates of lan- 

guage code, or to reformulate specific programming problems. 

The idea is that students may have difficulties with higher skills involved in 

programming because the necessary basic skills have not been sufficiently prac- 

riced (e.g., Resnick and Ford, 1981). By building up task-specific productions for 

basic cognitive skills, processing efficiency is increased so that the cognitive sys- 

tem is able to simultaneously perform another, higher-order task which does make 

demands on working memory. Although it is clearly impossible, given the availa- 

ble time, to Wain expert programmers in introductory programming courses, even 

a modest performance level in programming requires that several basic cognitive 

skills are learned up to the procedural stage so that the attention can be paid to the 

more complicated aspects of the total task. This leads us to the second tactic for 

procedural instruction: 

Basic skills tactic 

GOAL(S): 

- high performance level in basic cognitive skills such as those involved in pro- 

ceeding in the programming environment and applying syntactic rules 

CIRCUMSTANCE(S): 

- students are novices in computer programming and the necessary declarative 

knowledge is already present 

METHOD: 

- offer extensive practice in those basic skills 

Task variation 

It takes at least 100 hours to achieve only a very modest facility in programming 

skill (Anderson, 1982) and, in addition to formal training, several years of practical 

experience to become an expert programmer. Even after extensive training and prac- 

rice, programmers with the same background generating a program for the same 

problem show large differences in performance; in addition, different problem 

specifications of the same difficulty lead to large differences for one programmer 
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(Barfield, Lebold, Salvendy and Shodja, 1983; Sackman, Erickson and Grant, 

1968). The procedural knowledge base of an expert programmer is estimated to 

consist of ten to hundreds of thousands of highly task-specific productions (e.g., 

Brooks, 1977), which all have to be acquired through the interpretative use of 

declarative knowledge. This explains why learning to program is a lengthy pro- 

cess and why there are considerable performance differences between and within 

programmers. 

An instructional implication is that there must be enough task variation in 

practice to develop a broad procedural knowledge base, which underlies flexibility 

in programming behavior on a high performance level. This implication is partic- 

ularly important for the training of professional programmers; in introductory pro- 

gramming courses at high school level there is neither occasion for extensive 

practice of all skills involved in programming nor for much task variation within 

practice. However, some variation in elementary programming may be offered by 

(a) the assignment of different tasks, such as using the editor, comprehending pro- 

grams, designing algorithms, generating programs, debugging programs and so 

forth, and (b) the presentation of a broad range of both programming problems 

that have different underlying solutions in program generation and programs that 

are the solutions for different programming problems in program comprehension. 

Offering task variation explicitly aims at the compilation - and subsequent 

tuning - of a broad procedural knowledge base. We think that in elementary pro- 

gramming it is at least equally important to support the development of schema- 

like, declarative knowledge structures. Interpreting such declarative structures by 

general productions also offers flexibility in programming behavior; although this 

has certain disadvantages in terms of speed and errors, it certainly is a realistic 

instructional goal to strive for in elementary programming. For this reason and in 

accordance with our discussion of worked-out examples, it is not only important 

to offer students some variation in problems and programs but it is also important 

to tell them what the critical features in these different problems and programs are. 

Based upon the function of task variation for the development of procedural 

knowledge, we present our last tactic for procedural inslruction: 

Task variation tactic 

GOAL(S): 

- intermediate/high performance level and flexibility in program comprehension 

and generation 

CIRCUMSTANCE(S): 

- students are novices/intermediates and the necessary declarative knowledge is 

already present 

METHOD: 

- offer variation in the different skills involved in computer programming and 

present a wide range of programming problems and programs 
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3.4 Processing load, strategies and tactics 

Novice programmers make errors that may either be contributed to their miscon- 

ceptions or to processing overload (Gilmore, 1986). Errors that only occur when 

tasks become more complex - where the meaning of "complex" changes as stu- 

dents gain more experience - may be explained by a processing overload model; 

errors that are independent of task complexity may be contributed to misconcep- 

tions. According to Anderson and Jeffries (1985), processing overload places the 

more serious constraints on both problem solving performance and learning in 

computer programming. 

Students' errors and slowness resulting from processing overload are clearly 

shown in their behavior when they generate programs. Whereas experts show a 

systematic top-down, breadth-first expansion of the solution, novices show less 

structured and more opportunistic behavior. Such behavior may be explained 

either by a model of opportunistic planning (e.g., Hayes-Roth and Hayes-Roth, 

1979) or by a goal-directed system, such as GRAPES, that is subject to serious 

failures of working memory resulting from processing overload. That is, novices 

who show opportunistic behavior simply forget their goals as a result of process- 

ing overload and after losing their goal structures from working memory, they 

analyze the current state and construct some partial solution to iL 

Groups of instructional s~ategies for designing programming courses may be 

distinguished by their approach to controlling processing load. The Spiral 

approach controls processing load by offering simple coding problems in the 

beginning of the course and more complex design problems only later in the 

course; the Reading approach controls processing load by varying the difficulty of 

the students' task from reading, through modification and amplification, to coding 

and designing complete programs. In the Expert approach, the complexity of the 

presented design problems gradually increases during the course but the problems 

involve algorithm design from the outset. Thus, they are relatively complex and 

may cause processing overload; this is one of the reasons that students are urged 

to adopt top-down programming techniques. Working according to a top-down 

model should enable students to assign working memory capacity to, succes- 

sively, high level goals that include reformulation of the problem and design of 

the algorithm, low level goals that include finding solutions for subproblems, and 

achievable actions that include coding program statements. 

However, top-down design techniques may minimize processing load for 

expert programmers but not for novices. Strictly speaking, top-down program- 

ming is possible if students have at each step available an appropriate set of pro- 

ductions as well as the necessary declarative knowledge. This only occurs if both 

the problem is of a familiar type and the student has experience with the program- 

ming language. When top-down programming is possible, it will minimize pro- 

cessing load; however, when it is not possible - as will often be the case for 



272 

novices - it c a n n o t  prevent processing overload. Consequently, top-down pro- 

gramming in introductory programming courses may be desirable, but it is often 

not possible because the necessary knowledge is not available. 

Summarizing, instructional strategies differ in great measure in the way they 

control processing load. We stated that the Expert approach possibly succeeds in 

this to a lesser degree than the other approaches. In addition, the way processing 

load is controlled determines the global structure of an instructional strategy. As 

we will see in the next section, this has serious consequences for the facility of 

adopting instructional tactics in those slrategies. 

4 An e v a l u a t i o n  o f  i n s t r u c t i o n a l  s trategies  

Before actually starting an evaluation of instructional strategies, we will discuss 

how such an evaluation can take place. Obviously, the six instructional tactics 

can be used to evaluate the design of concrete introductory programming courses. 

The tactics constitute available knowledge from cognitive theory and empirical 

research directed towards learning to program. So, an effective programming 

course should incorporate those tactics. 

Adopting a particular instructional strategy for the design of a programming 

course has consequences for the instructional tactics to be applied. Some tactics 

can be effectively applied in courses designed according to the strategy; others are 

less compatible with the strategy. If more strategies are available and only one is 

compatible with all tactics, this strategy is clearly superior. In this sense, tactics 

can be used to evaluate not only the design of actual courses but also the strate- 

gies underlying the designs. In this section, we make such a comparative evalua- 

tion for the three groups of instructional strategies that we found dominant in 

designing introductory programming courses. 

An evaluation of  strategies is only possible if they underlay the design of 

courses with the same goals. We base our evaluation of strategies on the assump- 

tion that the global goal of all courses is to lake students as close as possible to 

the state of expert programmer. As a consequence, all courses are supposed to be 

directed towards program comprehension and generation paying attention to both 

design and coding aspects of programming. Furthermore, we assume that basic 

cognitive skills, such as those involved in proceeding in the programming envi- 

ronment and in applying syntactic rules of the language, should be practiced up to 

a high performance level; higher skills, such as those directly involved in program 

comprehension and generation, can only be learned up to an intermediate perfor- 

mance level because time limits prohibit the setting of higher learning outcomes. 

Thus, according to our evaluation, all three groups of instructional strategies 

should be compatible with all six tactics. 
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What does compatibility between strategies and tactics mean here? This ques- 

tion should be answered differently for declarative and procedural instruction. 

Declarative instruction takes place before students start practicing. Irrespective of 

the underlying strategy, it is possible to present all kinds of information to stu- 

dents, and thus all three elements of declarative instruction discussed, namely a 

computer model, programming plans and a design diagram. However, what is of 

main importance is that the declarative instruction should well prepare for subse- 

quent practice. In other words, the central question to be answered is: "To what 

degree does declarative instruction deliver knowledge that is actually used in prac- 

rice, when the student is performing tasks that are typical of the courses designed 

according to the particular strategy?". 

Compatibility of procedural tactics with an instructional strategy is of another 

nature. The Expert, Spiral and Reading approach mainly differ from one another in 

the way they control processing load. The danger of processing overload is espe- 

cially present when students perform programming tasks; that is, when they 

receive procedural instruction. As to the evaluation of strategies, relevant ques- 

tions to ask include: "What help is given for problem solving?", "What kinds of 

problems and tasks are assigned?" and "How is task variation accomplished?" 

Thus, compatibility between a strategy and a procedural tactic stands for self- 

evidence of incorporation of this tactic in a course designed according to the strat- 

egy. That is, a course should contain worked-out examples, extensive practice in 

basic skills and some task variation. 

4.1 Evaluation of the Expert approach 

The Expert approach emphasizes systematic, top-down algorithm and program 

design. Program generation is presented as a primary student activity and design 

aspects are stressed by the presentation of non-trivial design problems from the 

outset of the course. 

Declarative instruction 

Knowledge of a computer model is especially useful when students must compre- 

hend or generate lines of program code, such as for instance an assignment state- 

ment or a loop slructure in Pascal. The Expert approach, however, heavily 

emphasizes design aspects in program generation; in most presented tasks the 

design of an algorithm forms the kernel of the problem. Consequently, we do not 

expect much result of the presentation of a model and we conclude that there is a 

low compatibility between the Computer model tactic and the Expert approach. 

This low compatibility may explain why this tactic is only sporadically applied 

in the Expert approach. 
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-The presentation of programming plans is very suitable to an approach that is 

directed toward teaching expert behavior. Without doubt, students will often use 

knowledge of programming plans when they solve the design problems that are 

typical of this approach. We expect a high compatibility between the 

Programming-plans tactic and the Expert approach. The fact that programming 

plans begin to appear more and more in courses and textbooks categorized under 

the Expert approach gives support to this expectation. 

Whereas novice programmers usually have great difficulties in coordinating 

their activities, experts systematically use a top-down model of successive refine- 

ment to coordinate their activities in algorithm and program design. The Expert 

approach tries to model expert behavior; this can be done by explicitly presenting 

a design diagram. Assuming that students believe in its effectiveness, they can 

profitably use it in solving the design problems that characterize this approach. 

Thus, we assume a high compatibility between the Design diagram tactic and the 

Expert approach. 

Procedural instruction 

Most textbooks labelled under the Expert approach contain sufficient worked-out 

examples. Clearly, the importance of such inslxuctional elements is widely real- 

ized by those who adhere to the Expert approach. However, these examples gener- 

ally function as declarative inslruction; they are presented in isolation from the 

tasks assigned as practice. While trying to solve problems, students have to search 

for examples that fit in with their solution and they must turn back leaves, look- 

ing for examples analogous with the solution. This is a difficult task as students 

cannot be sure that a useful example is available; sometimes an example at first 

glance looks similar to the solution of the problem at hand but in fact it cannot 

be mapped correctly, which may result in serious mistakes. Therefore, we expect a 

moderate compatibility between the Tactic of worked-out examples and the Expert 

approach. 

Whereas a generally accepted principle within the Expert approach is that stu- 

dents should get enough opportunity to practice, design activities are heavily 

emphasized and little attention is given to practice of basic skills. For this reason, 

we think that there is only a moderate compatibility between the Basic skills tac- 

tic and the Expert approach. In addition, neglecting the importance of practicing 

basic skills may further hamper an effective control of processing load. 

Task variation is difficult to realize in the Expert approach as design aspects in 

program generation are emphasized at the cost of coding aspects, program compre- 

hension and basic skills; furthermore, variation in offered problems and programs 

is low. The presentation of non-trivial design problems from the outset of the 

course takes a great amount of the available inslructional time; usually, one pro- 

gramming problem engages the students' attention during one or two lesson peri- 

ods. For this reason, the total number of problems that is presented to the 
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students remains small. We conclude that there is a low compatibility between the 

Task variation tactic and the Expert approach. 

In short, we assume a high compatibility of the Expert approach with two tac- 

tics (programming plans, design diagram), a moderate compatibility with two tac- 

tics (worked-out examples, basic skills), and a low compatibility with two tactics 

(computer model, task variation). In addition, we like to recall that the control of 

processing load is probably ineffective in the Expert approach. 

4.2 Evaluation of the Spiral approach 

The Spiral approach is characterized by stepwise incremental learning. Program 

generation is presented as a primary student activity. Initially, coding activities are 

emphasized; the assigned tasks are mainly trivial coding problems requiring only 

syntactic and low level semantic knowledge. Gradually, when the students gain 

more experience, the assigned tasks become more complex and attention is 

directed to design aspects of programming. 

Declarative instruction 

Knowledge of a computer model is especially helpful in comprehending and gener- 

ating lines of program code. Tasks of this kind are, at least during the main part 

of the course, emphasized in the Spiral approach. Furthermore, it should be 

recalled that research demonstrating the effectiveness of computer models was 

restricted to courses that we assign to the Spiral Approach. Therefore, we expect a 

high compatibility between the Computer model tactic and the Spiral approach. 

To our knowledge, programming plans have never been presented in courses 

designed according to the Spiral approach. However, we expect knowledge of pro- 

gramming plans to be extremely useful for tasks that stress design aspects as well 

as for tasks stressing coding aspects in programming. Thus, we conclude that 

there is a high compatibility between the Programming-plans tactic and the Spiral 

approach. 

Knowledge of a design diagram is especially useful in solving design prob- 

lems. In the Spiral approach, such problems appear only late in the course so that 

the usefulness of knowledge of a design diagram is limited. In addition, this dia- 

gram can only be sensibly presented towards the end of the course, when genuine 

design problems are assigned; in the meantime, students may have acquired bad 

programming habits that are difficult to unlearn. As these habits may violate the 

ideas underlying systematic design, we expect a low compatibility between the 

Design diagram tactic and the Spiral approach. 

Procedural instruction 

The presentation of worked-out examples is well possible in courses designed 

according to the Spiral approach. In fact, example programs can be found in most 



276 

textbooks that we assign to this approach. The examples are usually solutions for 

trivial coding problems in the form of rather simple programs. As in the Expert 

approach, these examples often function as declarative instruction, but because of 

their simple nature we expect students to have fewer difficulties in finding exam- 

ples that match the solutions of problems they are trying to solve. Thus, there is 

a moderate compatibility between the Tactic of worked-out examples and the 

Spiral approach. 

Stepwise incremental learning in the Spiral approach warrants application of 

the Basic skills tactic because each separate step is finished with practice and there 

is an initial emphasis on coding activities. For instance, students are forced to 

extensive practice in using the programming environment and applying syntactic 

rules of the language. Clearly, a high compatibility exists between the Basic 

skills tactic and the Spiral approach. 

Students' activities in the Spiral approach are especially directed towards the 

generation of programs at the cost of program comprehension. Although many 

tasks or problems may be assigned, they show a strong tendency, during the main 

part of the course, to solve trivial coding problems paying little attention to 

design aspects. Therefore, we conclude that there is a low compatibility between 

the Task variation tactic and the Spiral approach. 

Summarizing, we assume a high compatibility of the Spiral approach with 

three tactics (computer model, programming plans, basic skills), a moderate com- 

patibility with one tactic (worked-out examples), and a low compatibility with 

two tactics (design diagram, task variation). 

4.3 Evaluation of the Reading approach 

The Reading approach is characterized by its emphasis on program comprehen- 

sion, modification and amplification. From the beginning of the course, students 

are confronted with program reading assignments in the form of non-trivial design 

problems in combination with their complete or partial solutions. The assigned 

tasks gradually become more complex during the course, changing f~om using and 

analyzing programs, through modifying and extending programs, to designing and 

coding programs. 

Declarative instruction 

Knowledge of a computer model helps students to comprehend lines of program 

code. In courses that have been designed according to the Reading approach most 

assigned tasks require the comprehension of code; especially in the beginning of 

the course, students are required to comprehend separate program lines while trac- 

ing programs. So, we expect a high compatibility between the Computer model 

tactic and the Reading approach. 
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Programming plans can easily be presented in the Reading approach. In fact, 

the solutions of the presented problems may be further annotated by explicitly 

referring to the plans they use. Knowledge of programming plans is not only use- 

ful for program comprehension - as for instance required in program modification 

and amplification - but also for design as well as coding activities in program 

generation. Thus, we assume a perfect compatibility between the Programming- 

plans tactic and the Reading approach. 

Knowledge of a design diagram is particularly useful in solving non-trivial 

design problems. According to the Reading approach, such genuine design prob- 

lems are assigned only late in the course. However, in contrast to the Spiral 

approach, a design diagram may be sensibly presented in an early phase of the 

course: In combination with the presented well-structured programs, the design 

diagram illustrates the usefulness of top-down design techniques and systematic 

planning. Students actually see that programming according to a design diagram 

helps to understand algorithms and perform other tasks that are typical of the 

Reading approach. We conclude that there certainly is a moderate compatibility 

between the Design diagram tactic and the Reading approach. 

Procedural instruction 

Presenting worked-out examples automatically takes place in courses designed 

according to the Reading approach. Unlike worked-out examples in the Expert and 

Spiral approaches, there is a direct bond between examples and practice in the 

Reading approach. Furthermore, these examples concern working programs that 

can be well-documented and annotated with information about what they are sup- 

posed to illustrate. Obviously, the compatibility between the Tactic of worked-out 

examples and the Reading approach is very high. 

Practice in basic skills is very well possible within the Reading approach. 

Students immediately start handling the computer and using the programming 

environment when they run given programs; soon after, they have to apply syn- 

tactic rules when tasks are assigned to them in which programs have to be modi- 

fied or amplified. Thus, students start with intensive practice of basic skills on a 

modest scale. We expect a high compatibility between the Basic skills lactic and 

the Reading approach. 

Task variation is easily accomplished as all kinds of tasks, such as using the 

editor, applying syntax, interpreting programs and generating programs appear in 

the course. Whereas the complexity of the presented design problems in the 

Expert approach is high and only few problems can be presented, the difficulty of 

assigned tasks in the Reading approach is better controllable so that the students 

can be confronted with a greater amount of problems. Furthermore, these prob- 

lems considerably vary in design and coding activities they require, unlike the 

often trivial coding problems in the Spiral approach. Finally, the presentation of a 

wide range of example programs is inherent in the Reading approach. For these 
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reasons, we conclude that there is a high compatibility between the Task variation 

tactic and the Reading approach. 

In short, we assume a high compatibility of the Reading approach with five 

tactics (computer model, programming plans, worked-out examples, basic skills, 

task variation) and a moderate compatibility with only one tactic (design diagram). 

4.4 A final comparison of strategies 

The results of the separate evaluations of groups of instructional strategies are dis- 

played in Table 1. Based on these results, a comparative evaluation of the Expert, 

Spiral and Reading approach is possible. 

Table 1. Compatibility between Instructional Strategies and Instructional Tactics 

Tactics 

Strategies 

Expert Spiral Reading 

Approach Approach Approach 

Declarative Instruction 

Computer Models + + 

Programming Plans + + + 

Design Diagrams + 4+ 

Procedural Instrucdon 

Worked-out Examples -/+ 4+ + 

Basic Skills 4+ + + 

Task Variation + 

Note. - Low, -/+ Moderate, + High 

According to Table 1, the Reading approach scores higher than or equal to the 

other groups of instructional strategies on five out of six instructional tactics. If 

all tactics get equal weight, the Reading approach is the best strategy to follow in 

the instructional design of introductory programming courses. The superiority of 

the Reading approach to the Spiral approach is, given our evaluation, beyond dis- 

pute. The Expert approach would only be able to compete with the Reading 

approach if the Design diagram tactic was given very much weight; as we feel that 

- as an extra benefit - the Reading approach is superior in its control of process- 

ing load, this approach is proclaimed to be the best strategy according to our 

evaluation. 

A direct comparison of the Expert approach with the Spiral approach is less 

easy. The Expert approach should be preferred if the Design diagram is considered 
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very important; on the other hand, the Spiral approach should be preferred if both 

the Computer model tactic and the Basic skills tactic are considered as more 

important than the other tactics. As a speculation, we think that courses designed 

according to the Spiral approach will be slightly more successful, in part thanks 

to their better control of processing load. 

5 Discussion and research implications 

We offered a theoretical framework for the instructional design of introductory pro- 

gramming courses. In this framework, the distinction between instructional strate- 

gies and instructional tactics on the one hand, and between declarative instruction 

and procedural instruction on the other hand, was emphasized. Instructional strate- 

gies were defined as general design plans that mainly differ in their control of stu- 

dents' processing load but that all pursue the same global instructional goals. We 

described the Expert, Spiral and Reading approach as three groups of  closely 

related strategies. In order, they emphasize top-down design techniques, incremen- 

tal learning, and program modification and amplification. 

Against the background of ACT*, we stressed the distinction between decLara- 

tive instruction and procedural instruction. Declarative instruction involves the 

initial presentation of new information; procedural instruction involves the design 

of practice. We presented six instructional tactics that could partially be supported 

by relevant research. Tactics were defined as specific plans of action that prescribe 

methods to reach desired learning outcomes under given circumstances. Tactics for 

declarative instruction include concrete computer models, programming plans and 

design diagrams; tactics for procedural instruction include worked-out examples, 

practice of basic cognitive skills and task variation. Tactics may be used both to 

design new courses and to evaluate existing strategies. In our evaluation of the 

three groups of instructional strategies, the Reading approach was found to be 

superior to the Expert and the Spiral approach. 

The framework presented is an attempt to organize available knowledge for the 

design of introductory programming courses. However, it is not yet completed as 

several aspects that we feel to be important for instructional design have been 

omitted. First, these include management aspects of instruction; that is, we did 

not present instructional tactics that depend on class size. Second, several areas of 

research may lead to valuable instructional tactics that can eventually be included 

in our framework. For instance, declarative instruction may be further improved 

by applying tactics that take students' misconceptions into account; procedural 

instruction may be further improved by tactics that offer methods for individual- 

ized tutoring of problem solving processes involved in programming. 

Furthermore, the role of several "intermediate" products that may be used in 

instruction, such as flow-charts, pseudo-programming languages and structure- 
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diagrams, has not been discussed. Programmers may profit from the use of  such 

intermediates because they provide a clear separation of the design and coding 

activities involved in programming. The idea is that design activities should result 

in a flow-chart, pseudo-program, or structure-diagram which may subsequently be 

translated into the programming code at hand. Whereas, to our knowledge, a posi- 

tive effect of  using intermediates on learning outcomes has never been clearly 

demonstrated in elementary programming, it may obviously have important con- 

sequences for instructional design. 

Our analysis of  instructional strategies and tactics is subject to some further 

limitations. First, the distinction between three groups of instructional strategies 

is based upon an investigation of textbooks, curricula and point-of-view papers in 

which clear differences appeared in the way students' processing load was con- 

trolled. However, most instructional materials and courses really used a mixture 

that was only leaning towards one of the approaches and, whereas there were many 

instructional materials that could be assigned to the Expert or the Spiral approach, 

there were only few materials available that could be classified under the Reading 

approach. Second, instructional tactics were not exclusively based on empirical 

research; some of them were formulated against the theoretical background of 

ACT* and should be seen as hypotheses that have yet to be confirmed. Clearly, 

the development of new insights into current psychological theory will have direct 

consequences for our framework. 

Another difficulty is that the steps that were taken from the psychological the- 

ory to the formulation of instructional tactics were not - and in our opinion, can- 

not be - straightforward. A psychological theory usually does not provide enough 

information to give a precise description of the circumstances under which a tactic 

is valuable and, on the other hand, the methods to reach desired learning outcomes 

are only implicitly present. For instance, it is not clear if the presentation of a 

computer model is valuable in the teaching of a functional programming language 

(e.g., LISP) instead of an imperative language (e.g., BASIC, Pascal); moreover, if 

this should be the case, it is still not clear what form the new computer model 

should have. 

In our opinion, the tracing, formulation and confirmation of instructional tac- 

tics should be a first concern for research on instructional design for introductory 

programming courses. This research should focus upon (a) an extension of the set 

of  tactics, (b) a refinement of goals, circumstances and methods in tactics, (c) an 

assignment of weights to tactics and (d) an assessment of interactions between tac- 

tics. By coupling the tactics to a common theoretical background it will eventu- 

ally become possible to build a coherent, comprehensive framework for 

instructional design in elementary programming. 

A second, strongly related concern should be a comparison of instructional 

strategies that apply different sets of  tactics. Our evaluation of the Expert, Spiral 

and Reading approach was based upon our weak assumptions regarding the appli- 
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cability of tactics; however, a strict arrangement was not possible because we 

lacked more precise information about those tactics. By making careful compari- 

sons of learning outcomes in courses designed according to strategies that apply 

different tactics, we think it will be possible both to gather more information 

about the tactics applied and to track down global guidelines for instructional 

design. 

Future research on instructional design for elementary computer programming 

should also take into account other important features of strategies, such as man- 

agement aspects, students' and teachers' motivation, and possibilities of individu- 

alized tutoring. The significance of such research is clear. Whereas the teaching of 

computer programming in high schools is already very common now, and the 

research concerning the psychological processes involved in programming is 

quickly developing, there are still few guidelines that teachers and others in the 

educational field can use for their design of introductory programming courses. 
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