
Instructional Science 16:251-285 (1987) 251
© Martinus Nijhoff Publishers (Kluwer), Dordrecht - Printed in the Netherlands

I n s t r u c t i o n a l s t r a t e g i e s a n d t a c t i c s f o r t h e d e s i g n o f

i n t r o d u c t o r y c o m p u t e r p r o g r a m m i n g c o u r s e s in high
s c h o o l

JEROEN J. G. VAN MERRIENBOER & HEIN P. M. KRAMMER
Department of Instructional Technology, University of Twente, P.O. Box 217, 7500 AE

Enschede, The Netherlands

A b s t r a c t . This article offers an examination of instructional strategies and tactics for the

design of introductory computer programming courses in high school. We distinguish the

Expert, Spiral and Reading approach as groups of instructional strategies that mainly differ in

their general design plan to control students' processing load. In order, they emphasize top-

down program design, incremental learning, and program modification and amplification. In

contrast, tactics are specific design plans that prescribe methods to reach desired learning out-

comes under given circumstances. Based on ACT* (Anderson, 1983) and relevant research, we

distinguish between declarative and procedural instruction and present six tactics which can be

used both to design courses and to evaluate strategies. Three tactics for declarative instruction

involve concrete computer models, programming plans and design diagrams; three tactics for

procedural instruction involve worked-out examples, practice of basic cognitive skills and

task variation. In our evaluation of groups of instructional strategies, the Reading approach

has been found to be superior to the Expert and Spiral approaches.

Contents

1 Introduction

2 An overview of inslructional strategies

2.1 The Expert approach

2.2 The Spiral approach

2.3 The Reading approach

2.4 A preliminary comparison of strategies

3 An overview of instructional tactics

3.1 Theoretical background

3.2 Tactics for Declarative instruction

3.3 Tactics for Procedural instruction

3.4 Processing load, strategies and tactics

4 An evaluation of instructional strategies

4.1 Evaluation of the Expert approach

4.2 Evaluation of the Spiral approach

4.3 Evaluation of the Reading approach

4.4 A final comparison of strategies

5 Discussion and research implications

252

1 Introduction

Computer science has recently become an integral part of the high school curricu-

lum in most Western countries. Typically, these computer science courses

involve elementary computer programming to a large extent because some pro-

gramming knowledge is generally seen as a necessary element of modern literacy;

in addition, programming is usually expected to foster the development of specific

cognitive skills which may positively affect problem solving behavior in other

school disciplines (Clements, 1986a, 1986b, 1987; Clements and Gullo, 1984;

Ehrlich, Soloway and Abbott, 1982; Schulz-Zander, 1986; Soloway, Lochhead

and Clement, 1982).

This article deals with the question of what we may learn from cognitive psy-

chology for the instructional design of introductory programming courses.

Leading research concerning cognitive psychology and elementary computer pro-

gramming concentrates on

1 computer models (Mayer, 1979, 1981, 1982; Mayer and Bromage, 1980)

2 programming languages (Baron, Szymanski, Lock and Prywes, 1985; Green,

1983; Green, Sime and Fitter, 1980; Samur~ay, 1985; Soloway, Bonar and

Ehrlich, 1982)

3 programming plans (Ehrlich and Soloway, 1984; Soloway, 1985; Spohrer,

Soloway and Pope, 1985)

4 general design models (Dershem, 1980; Hoc, 1981; Linn, 1985; Mandinach

and Linn, 1986)

5 misconceptions (Bayman and Mayer, 1983; Bonar and Soloway, 1985;

Sleeman, Putnam, Baxter and Kuspa, 1986; Soloway, Ehrlich, Bonar and

Greenspan, 1982)

6"- group work (Webb, 1983, 1984; Webb, Ender and Lewis, 1986)

7 graphical representations of algorithms (Brooke and Duncan, 1980; Fitter and

Green, 1979; Green, 1982; Sheppard, Kruesi and Curtis, 1981; Shneiderman,

Mayer, McKay and Heller, 1977)

8 intelligent tutoring systems (Anderson and Reiser, 1985; Anderson and

Skwarecki, 1986; Johnson and Soloway, 1985a, 1985b; Reiser, Anderson and

Farrell, 1985).

The goal of this paper is the presentation of instructional design principles for

introductory programming courses in high school. We distinguish between

instruction and management as two different aspects of teaching. Whereas princi-

ples of management depend on class size, principles of instruction hold irrespec-

tive of the number of students in the class. In this article we confine ourselves to

the instructional aspects of teaching. For instance, the arrangement of group work

in programming courses remains beyond the scope of this study.

253

In addition, we distinguish between instructional strategies and instructional

tactics. Instructional strategies are general design plans that mainly differ in their

control of students' processing load but that all pursue the same high-level goals

which teachers consider desirable; instructional tactics are specific design plans

that prescribe methods to reach desired learning outcomes under given circum-

stances. As will be argued, an evaluation of strategies is, to a certain degree, pos-

sible by establishing the facility of applying tactics in those strategies. Thus,

tactics may be used both to design introductory programming courses and to eval-

uate strategies that characterize existing courses.

The structure of our discourse is as follows. In the second section, a descrip-

tion will be given of three groups of instructional strategies that we call the

Expert approach, the Spiral approach and the Reading approach. The Expert

approach is a top-down approach, which starts the novice off with a complex but

intrinsically motivating programming problem; the Spiral approach is a parallel

syntax and semantic acquisition emphasizing small incremental steps and building

up a program by mastering the basics (language constructs) first; the Reading

approach recommends that students begin by understanding relatively complex

existing programs and then modifying and enhancing those programs. In the third

section, we will make a distinction between declarative instruction and procedural

instruction. Based on ACT* (J. R. Anderson, 1983) and relevant research, six

instructional tactics will be presented. Three tactics for declarative instruction

involve concrete computer models, programming plans and design diagrams; three

tactics for procedural instruction involve worked-out examples, basic skills and

task variation. The fourth section includes an evaluation of the groups of instruc-

tional strategies, in which the Reading approach is found to be superior to other

approaches. Finally, we will offer a discussion of our framework for instructional

design in elementary programming and its research implications.

2 An overv iew of ins truct ional s trategies

Typically, introductory programming courses aim at four categories of skills

(e.g., Mayer, 1975; Webb, 1984). First, students have to learn how to proceed in

the programming environment, which includes the operating system and the edi-

tor. Second, they should be able to apply the syntactic rules of the programming

language. Third, they should gain understanding of the semantics of the language

and master abilities that are necessary to analyze code so as to comprehend pro-

grams. Finally, students should become able to generate programs themselves.

The first two categories are never seen as ultimate goals: Rather, they function as

vehicles to reach the latter two categories of goals.

254

In elementary programming, time is lacking to learn all four categories of

skills to the same high level of performance. In agreement with Anderson (1982),

we distinguish three stages in the development of a complex cognitive skill. In

the first stage, there is an initial performance level which enables students to gen-

erate the desired behavior to some degree, but their performance is slow and sub-

ject to many errors; in the second stage, there is an intermediate performance level

which enables students to perform the skill faster and with most errors ehminated;

in the third stage, there is a high performance level which enables students to per-

form the skill fast and without errors. In elementary programming, skills neces-

sary to proceed in the programming environment and to apply syntactic rules have

to be learned from an intermediate to a high performance level because they serve

as vehicles to reach the ultimate goals. Skills necessary to comprehend or generate

programs can only be acquired from an initial to intermediate performance level

because available time does not allow the setting of higher instructional goals.

Two aspects can be distinguished in the ability to generate a program that is a

possible solution to a given problem. First, students analyze the problem and pro-

duce an algorithmic solution; second, they translate this algorithm into program

code. This distinction between design aspects and coding aspects in program gen-

eration is found in most curriculum documents and point-of-view papers on ele-

mentary programming (e.g., Balzert and Hille, 1980; Schulz-Zander, 1981;

Woodhouse, 1983).

In the 1970s, programming was presented as a fundamentally easy task: One

only had to learn a programming language to engage in it. Programming courses

were, in fact, language courses fully stressing the coding aspects of program gen-

eration. In the last decade, program generation came to be emphasized as a prob-

lem solving activity which included substantial design aspects.

This modem view often appeared difficult to implement. Students are generally

inclined to rush to the computer and focus on the coding aspects of program gen-

eration. They frequently attempt to go from a detail of the problem specification

to the programming code, without any consideration of how to solve the problem

as a whole, how to plan the solution, or how to design the code (Dalbey and

Linn, 1986). Thus, despite the resolution to stress careful design, the teacher is

frustrated by the students' tendency to focus on the computer and the more con-

crete aspects of program generation.

Several instructional strategies were developed to overcome this difficulty. In

this article we distinguish between three widespread groups of strategies: the

Expert approach, the Spiral approach and the Reading approach. Our classification

is based upon a literature search as well as on an investigation of existing courses

and programming textbooks. The classification has been chosen to highlight the

differences between approaches. As a consequence, our descriptions may - to a cer-

tain degree - be seen as exaggerations.

255

2.1 The Expert approach

The Expert approach in designing introductory programming courses is closely

related to the ideas that originated within the discipline of structured programming

(Dahl, Dijkstra and Hoare, 1972; Wirth, 1974; Yourdon, 1975). Originally, this

discipline addressed itself to professional programmers. However, many ideas were

embraced by teachers in elementary programming.

For over a decade, the discipline of structured programming has been having an

enormous influence on the practice of programming because it urges programmers

to work within certain limitations and according to certain rules. These constraints

are claimed to ease the programming process for the programmer and to make pro-

grams easier to comprehend, to write and to debug. In agreement with Sime,

Arblaster and Green (1977), we distinguish between constraints on the program-

ming language and constraints on the programmer's procedure.

Language constraints

Interest in specific language features seriously began when Dijkstra (1968)

assailed the GOTO statement. He argued that this statement made it difficult both

to comprehend and to develop programs. The structured programming discipline

called for more restriction in specifying control and data structures to be included

in future languages. Ever since, much research has been done that demonstrated

the value of structured language features in programming (see for a review, Curtis,

1983).

Several authors (e.g., Atherton, 1981; Woodhouse, 1983) advocated the use of

structured languages such as Pascal, PL/1, or COMAL-80 in introductory pro-

gramming courses. They particularly criticized the use of BASIC for its lack of

structure: Learning BASIC as a In'st programming language was supposed to

interfere with subsequently learning a structured programming approach (e.g.,

Atherton, 1982; Baird, 1982). Their opinion is summarized in the well-known

statement: "BASIC damages the brain!".

Nowadays, the use of structured programming languages in introductory pro-

gramming courses is commonly accepted. Thus, using a well-structured program-

ming language is not reserved to the Expert approach but is possible and, in our

opinion, highly desirable in all instructional strategies. Throughout this article,

we presuppose the use of a structured programming language in the Expert,

Spiral, as well as Reading approach: They do not differ in this respect.

Procedure constraints

Programming should essentially be seen as a problem solving activity in which

the responsibility of the programmer extends beyond producing code that works.

First, programmers have to structure their programs so that they are readable for

others: Joni and Soloway (1986) referred to these constraints as "discourse rules".

256

Second, programmers are recommended to adopt a model of"stepwise refinement"

to achieve algorithm and program design in a top-down fashion. Thus, they

should begin writing a program by first specifying the top levels of the task-

hierarchy to design the algorithm and then proceed to successively specify lower

levels until the actual language cede has been reached. Especially well-structured

languages should make a top-down approach feasible because they facilitate break-

ing down large programming tasks into smaller subtasks.

In the design of introductory programming courses, the characteristic feature of

the Expert approach is its emphasis on both algorithm and program design in a

systematic top-down fashion. For this reason, students are offered problem specifi-

cations during the course that are characterized as non-trivial design problems.

That is, from the outset of the course they receive problems for which algorithms

have to be developed. Working according to the presented model of stepwise

refinement should allow the students to concentrate more on the semantic content

of the algorithm because less attention is required to Irack actions on lower pro-

gram code levels.

2.2 The Spiral approach

This approach is closely related to the ideas of Ausubel (1968). Shneiderman

(1977a) coupled Ausubel's educational theory to his syntactic/semantic model

(Shneiderman and Mayer, 1979) of programmer behavior. In this model, syntactic

knowledge is defined as unorganized knowledge of low level details, such as the

syntax of language features and the names and arguments of functions; in contrast,

semantic knowledge is defined as hierarchically organized knowledge with con-

cepts ranging from lower levels, such as the assignment statement, to higher lev-

els, such as the pattern of code for finding the mean of an array. Based on this

distinction and on Ausubel's notion of "anchoring" new material to an "ideational

structure" through a process of"progressive differentiation", Shneiderman (1977a)

presented the Spiral approach for teaching introductory programming courses.

According to him: "The Spiral approach is the parallel acquisition of syntactic and

semantic knowledge in a sequence which provokes student interest by using mean-

ingful examples, builds on previous knowledge, is in harmony with the student's

cognitive skills, provides reinforcement of recently acquired material and develops

confidence through successful accomplishment of increasingly difficult tasks"

(p.193).

In short, more complex forms of knowledge are developed in a hierarchical

manner. By selecting small instruction steps, complex ideas are built from combi-

nations of simpler ideas. Each step must (a) contain both syntactic and semantic

elements, (b) present a minimal extension of previous knowledge, (c) be explained

in relation to former knowledge and (d) be trained in exercises. Syntactic know-

ledge is learned by repetition and must frequently be rehearsed to prevent forget-

257

ring; semantic knowledge is acquired through meaningful learning and is better

resistant to forgetting. However, semantic information must always be presented

in small units that are higher level organizations of previously acquired

knowledge.

The characteristic feature of the Spiral approach is its emphasis on stepwise

incremental learning. Problem specifications that are presented to students during

the course gradually become more complex in both the coding and the design

aspects that they require. Consequently, in the beginning of the course students

receive more or less trivial problems that emphasize syntactic and lower level

semantic knowledge. After students have gained more experience, problems

become more complex and can be seen as non-trivial design problems that require

serious algorithm design.

2.3 The Reading approach

This approach emphasizes the reading, modification and amplification of non-

trivial, well-designed and working programs. Deimel and Moffat (1982) promoted

the Reading approach and separated four phases in introductory programming

courses. In the first - short - phase, students run working programs, observe their

behavior and evaluate their strengths and weaknesses. In phase two, students are

actually introduced to well-structured programs. Their primary activities in this

phase are reading and hand Ixacing of programs. Thus, learning the specific lan-

guage is largely done by extracting the language features from concrete programs.

During the third phase, students modify and amplify existing programs and prac-

tice both design and coding aspects on a modest scale. Finally, students generate

programs on their own and continue practicing basic design techniques and struc-

tured coding.

Several authors recommended strategies that we assign to the Reading

approach. Dalbey, Tourniaire and Linn (1985) reported that students showed a seri-

ous lack of planning in program generation. They suggested that "it would seem

quite appropriate to begin instruction with comprehension of program code...

Those programs would demonstrate how planning is used in programming...

Thus, students would have a better understanding of the role of planning in pro-

gramming" (p. 18). Pea (1986) reported negative effects of"bugs" on the learning

process in programming. Bugs are misconceptions that students have about the

operation of computers and the working of programming languages. These mis-

conceptions cause systematic errors in program comprehension and generation.

According to Pea, "bugs like these could be snared ff one used program reading or

debugging activities as central components of programming instruction" (p. 34).

The characteristic feature of the Reading approach is its emphasis on program

comprehension, modification and amplification. For this reason, students are con-

fronted with non-trivial design problems from the beginning of the course.

258

However, these problems are presented in combination with their complete or par-

tial solutions in the form of well-designed, well-structured and well-documented

programs. The students' tasks gradually become more complex during the course,

changing from using and analyzing programs, through modifying and extending

programs, to independently designing and coding programs.

2.4 A preliminary comparison of strategies

In this section, we offer a preliminary overview of major similarities and differ-

ences between the Expert, Spiral and Reading approaches. A more thorough com-

parison and evaluation of instructional strategies ensues in a later section. Both

the Expert approach and the Spiral approach employ program generation as a pri-

mary student activity. During the course, the complexity of presented problems

gradually increases in both approaches. However, the Expert approach emphasizes

top-down design aspects by immediately offering non-trivial design problems and

top-down design techniques; the Spiral approach stresses parallel, stepwise teach-

ing of syntactic and semantic aspects by offering relatively simple coding prob-

lems in the beginning of the course and more complex problems, demanding

serious algorithm design, only later in the course.

Like the Expert approach, the Reading approach advocates the presentation of

design problems in an early stage of the course. However, the Reading approach is

taking a different route by not merely presenting problems but also complete or

partial solutions in the form of well-designed programs: The complexity of offered

problems is relatively constant throughout the course, whereas the students' tasks

vary from comprehension, through modification and amplification, to designing

and coding complete programs.

The most conspicuous differences occur between the Spiral approach and the

Reading approach. Whereas the Spiral approach adopts program generation as a

primary and, throughout the course, constant activity, the Reading approach

employs the comprehension, modification and amplification of programs as sub-

sequent student activities. Besides, problem complexity in the Spiral approach

increases from relatively simple coding problems to more difficult design prob-

lems; in the Reading approach, problem complexity is high from the outset but

the problems are presented in combination with their complete or partial

solutions.

3 An o v e r v i e w of i n s t r u c t i o n a l tactics

Instructional principles can be formulated in a circumstances-method-outcomes

format (Reigeluth, 1983). Circumstances are factors that influence the effects of

methods - and are therefore important for prescribing methods - but they cannot

259

be manipulated; methods are manipulations to achieve different outcomes under

different circumstances; outcomes are effects that provide a measure of alternative

methods under different circumstances. Outcomes may be desired or actual: In this

article, we are concerned with desired outcomes that are equivalent to instructional

goals. For this reason, we formulate - instead of principles - instructional tactics

in a goals-circumstances-method format. The structure of a tactic may be illus-

trated by an example of the classroom questioning behavior of teachers. Research

on this topic suggests that the cognitive level of questions asked should depend on

student home background and age (Gall, 1984). The following tactic could be

derived from this research:

Example of a Tactic

GOAL(S):

- mastery of elementary skills

CIRCUMSTANCE(S):

- the teacher is engaged in a classroom discussion

- the age of the students is below eight years

- the students have disadvantaged home backgrounds

METHOD:

- ask mainly factual questions that students are expected to answer correctly

Each instructional tactic should have at least one goal, often one or more cir-

cumstances to delimit its validity and exactly one method. For our purposes,

goals are formulated as desired learning outcomes; circumstances are formulated as

characteristics of the student population and the subject matter; methods are for-

mulated as manipulations affecting the instructional design. We have already dis-

tinguished four categories of desired learning outcomes for elementary

programming: skills necessary to (a) proceed in the programming environment,

(b) apply syntactic rules, (c) comprehend programs and (d) generate programs. In

addition, these skills may be mastered up to either an initial, intermediate, or high

performance level. In this section, we present six tactics that include goals, cir-

cumstances and methods in the above-mentioned format_ Moreover, these tactics

will be related to a common cognitive-psychological background and, when possi-

ble, they will be supported by relevant research.

3.1 Theoretical background

The ACT* theory ("Adaptive Control of Thought"; Anderson, 1982, 1983;

Anderson, Greeno, Kline and Neves, 1981; Anderson, Kline and Beasly, 1980;

Neves and Anderson, 1982) offers a suitable theoretical background for discussing

instructional tactics in elementary programming because (a) it makes general

260

claims about the organization and acquisition of complex cognitive skills and it is

capable of explaining most results in cognitive research on computer program-

ming, (b) it offers various points of contact for instructional design as shown in

the development of computer-based LISP tutors (Anderson and Reiser, 1985;

Anderson and Skwarecki, 1986; Reiser, Anderson and Farrell, 1985), and (c) it has

already been successfully applied to simulate learning processes involved in pro-

gramming: In particular, these processes are simulated in GRAPES ("Goal-

Restricted Production System"; Anderson, Farrel and Sauers, 1984), which

embodies parts of the cognitive architecture as specified in ACT*.

Cognitive architecture

Newel1 and Simon (1972) promoted production system theories by making the

claim that a set of condition-action pairs called "productions" underlies human

cognition. The condition part specifies various features; if elements that match

those features are in working memory, the production applies. The action part

specifies what to do ff the condition is matched; if the production applies, it adds

new elements to working memory. As an extension of this cognitive architecture,

ACT* makes a fundamental distinction between declarative and procedural know-

ledge; in addition to the active part of information in working memory and a set

of productions in procedural memory, it contains a set of facts in declarative

memory.

Declarative memory contains cognitive units to encode sets of elements that

have a particular relationship. Cognitive units appear as elements of one another

to create complex hierarchical smJctures: Interconnections between these structures

and elements form a network. An activation process that is working on this net-

work defines the working memory. Furthermore, each cognitive unit has a

strength associated with it that is a function of the frequency of use; this strength

determines the spread of activation throughout the network.

Working memory refers to active information that is basically declarative in

nature. Each element that enters into working memory is a temporary source of

activation. In addition, a single goal element may serve as a permanent source of

activation. In particular, working memory contains temporary structures that are

either created by the perception of objects in the outside world or deposited in

working memory by actions of productions. If a slructure is created in working

memory, there is a probability that a permanent copy of it will be made in declar-

ative memory; if a copy already exists, its slrength will increase.

Procedural memory contains productions of which the conditions are matched

with the structures in working memory. When the match is successful, temporary

structures are added to working memory by execution of the action. Thus, produc-

tions operate on declarative knowledge that is currently active in working mem-

ory. In addition, a strengthening process increases the strength of a production

with every successful application.

261

Goal-directed processing

In ACT*, special attention is given to goal-directed productions that match for a

single goal in their condition as well as for other features. I f the goal specification

matches the current goal in working memory, it is given precedence over all other

productions. The GRAPES system (Anderson et al., 1984) restricts itself to such

goal-directed productions to simulate the processes involved in learning to pro-

gram. In fact, productions can create a goal structure that reflects the problem sol-

ver 's plan of action. When a goal has been achieved, it is removed from working

memory and attention is shifted to the next (sub)goal in the structure. For

instance, a condition specifies a particular programming goal and some problem

specifications; if the condition matches the contents of working memory, execu-

tion of the action may set new (sub)goals, reformulate the problem specification,

or write program code.

Elaborative processing

According to ACT*, to-be-learned information always comes in declarative form.

One of the best ways to increase students' memory for new information is to have

them elaborate on the instructional material. Elaborative processing indicates that

productions use declarative knowledge structures that already exist in memory to

generate elaborations which are embellishments of the instructional material. The

retrieved knowledge is called a schema because it provides a cognitive slructure for

understanding a situation in general terms. In the elaborative process, productions

connect the schema with the instruction and infer information from the schema

that is not in the instruction. As a result, the elaboration of the instructional

material is a more richly connected cognitive slructure than was specified in the

instructional material. The processes involved in elaborative processing may be

seen as a form of meaningful learning because subjects connect new material with

one or more schemata that already exist in memory. These schemata provide struc-

tural understanding and may subsequently guide problem solving behavior.

Skill acquisition

Learning a complex cognitive skill develops from a declarative to a procedural

stage by a process referred to as knowledge compilation. In the declarative stage

students receive instruction about the skill mainly by reading textbooks and lis-

tening to lectures. New facts are stored in declarative memory. To generate behav-

ior on the basis of newly acquired knowledge, students must use existing domain-

independent productions to interpret those facts. Although the interpretation of

knowledge in declarative form has the advantage of flexibility, it also has serious

costs. The process is slow because interpretation requires continuous retrieval of

facts from declarative memory and because the individual interpretative production

steps are usually small.

262

Knowledge compilation creates task-specific productions through practice. It

includes the subprocesses composition and proceduralization. Composition collap-

ses sequences of productions into single productions and considerably speeds up

production application because the new productions embody sequences of steps

that are needed in a particular domain. Proceduralization embeds factual, task-

specific knowledge in productions and reduces load on working memory because

declarative information need no longer be held active. Hence, with practice the

declarative knowledge is gradually converted into a procedural form in which it

directly conlrols behavior. During knowledge compilation, the skill is performed

at an intermediate level.

In the procedural stage, the performance level is high because knowledge about

the skill is directly embodied in task-specific productions which may be applied

very fast and with low demands on working memory. A further tuning makes the

knowledge more selective in its range of applications. In ACT*, tuning includes -

in addition to slrengthening - generalization to create more general productions

and discrimination to create more specific productions. However, it should be

noted that in the PUPS successor of ACT* (PenUltimate Production System;

Anderson, Boyle, Corbett and Lewis, 1986) there are neither generalization nor

discrimination mechanisms that automatically compare the current situation with

past situations. Whereas in ACT* generalizations and discriminations are produc-

tions rendered by automatic learning mechanisms, in PUPS they are schema-like,

declarative knowledge structures that are produced by problem solving

productions.

Our review of relevant aspects of ACT* set up a framework for discussing

instructional tactics. We distinguish between declarative instruction and procedural

instruction. Declarative instruction involves methods for the initial presentation

of information about the computer, the programming language and the design pro-

cess to facilitate the storage of new declarative knowledge; procedural instruction

involves methods for the design of practice to facilitate knowledge compilation.

3.2 Tactics for Declarative instruction

Some general recommendations for declarative instruction, not limited to elemen-

tary programming, are: (a) let students explain new information in their own

words, verbally or by taking notes, to relate the instructions to existing know-

ledge, (b) assess students' misconceptions about the task and subsequently use

them in the design of instructional materials and (c) teach students not only useful

actions but also the conditions under which those actions are useful (Larkin,

1979; Simon, 1980). These recommendations may eventually be specified to ful-

fil the conditions that we laid down for instructional tactics. However, in this arti-

cle we limit ourselves to tactics for declarative instruction that have already been

especially developed for elementary programming.

263

A problem with most instructional materials for elementary programming is

that many things that students have to know are omitted; they must figure them

out by trial and error. In our opinion, a key aspect for declarative instruction

should be the teaching of facts, such as language statements and syntactic rules, in

combination with schema-like knowledge to encourage elaborative processing. We

will discuss three tactics that concern such schema-like knowledge by focussing

on (a) the machine, by introducing a concrete computer model, (b) the programs,

by offering programming plans and (c) the design process, by presenting a design

diagram. These tactics are explicitly concerned with the acquisition of declarative

knowledge so that their instructional goals are limited to mastery of skills at an

initial performance level. Whereas it is obvious that ultimate goals involve higher

performance levels, these are not within reach because practice is not yet included

in declarative instruction.

Concrete computer models

DuBoulay, O'Shea and Monk (1981) introduced the distinction between a "black

box approach" and a "glass box approach" in elementary programming. In the

black box approach, students have no idea of what goes on inside the computer

because they lack an adequate model. In the glass box approach, students do have

such an idea because the instruction includes a concrete but simplified computer

model. This model makes it possible to emphasize a "notional machine" on both

a general level, such as in teaching the relationship between the terminal and the

computer and a specific level, such as in teaching assignment statements

(DuBoulay, 1986).

Mayer (1975) either gave students in an introductory BASIC course a concrete

computer model or he did not. The group that received the model excelled in com-

prehension and generation of new programs; the group that received no model per-

formed equally well on problems that were very much like the material in the

instructional text. According to Mayer, the presentation of the model provided a

context in which students could relate new instructions to an already familiar anal-

ogy. Consequently, the instruction resulted in a broader learning outcome.

In subsequent studies (Mayer, 1976; Mayer and Bromage, 1980), the model

was presented either before or after the reading of the instructional text. In agree-

ment with the previous results, the group that received the model before reading

the text excelled in comprehension and generation of new programs as well as on

recall of information that could be conceptually related to the operation of the

computer. Thus, the model facilitated learning only if it was available to students

before reading the instructional text.

Summing up, students who received a computer model before reading showed

more integrated learning of information, which improved their comprehension and

generation of new programs. We suppose that the presentation of the model early

in the learning process encouraged elaborative processing. That is, the subsequent

264

reading of the instructional text resulted in a more richly connected knowledge

structure, which improved program comprehension and program generation learn-

ing outcomes. As a consequence, our first instructional tactic for declarative

instruction in elementary computer programming is"

Computer model tactic

GOAL(S):

- initial performance level in program comprehension and generation

CIRCUMSTANCE(S):

- students are pre-novices in computer programming and are in the declarative

stage

METHOD:

- present a concrete computer model early in learning

Programming plans

Expert programmers at a glance recall far more information from a computer pro-

gram than novices (McKeithen, Reitman, Rueter and Hirtle, 1981). Experts have

more knowledge concerning programs and - perhaps even more important - this

knowledge is better organized into cognitive structures. Adelson (1981) studied

differences between expert and novice programmers in their recall of complete pro-

grams. Novices were attending to the syntactic surface smacture of single program

lines; experts used a more abstract hierarchical organization based on the func-

tional principles in blocks of related program lines. In agreement with these

results, Shneiderman (1976, 1977b) and Barfield (1986) found that experienced

programmers could recall more lines of programming code than novices when the

program was organized in executable order; however, the groups performed at sim-

ilar levels when the programs consisted of random lines of code. Thus, experts

seem to organize their knowledge of programs into cognitive structures that con-

tain templates of language code.

Experts not only use such cognitive structures to comprehend programs but

also to understand problem specifications in program generation. Atwood, Turner,

Ramsey, Hooper and Sidorsky (1977) presented programming problems that sub-

jects had to summarize in their own words. Whereas novices omitted all details of

the problem specification, intermediates and experts emphasized the details that

were of importance to program design. This is in agreement with the results of a

study by Weiser and Shertz (1983), in which novices and experts had to sort pro-

gramming problems. Novices sorted problems according to their field of applica-

tion, such as word processing, data management and robotics; experts sorted

problems regarding their deep structure, such as the fundamental algorithms that

were underlying their solutions.

265

Ehrlich and Soloway (1984) presented a theory of programming plans in which

they tried to identify the content of cognitive structures as used in programming.

The goal of the theory is to improve the teaching of elementary programming and

to support the building of computer based programming tutors (Johnson and

Soloway, 1985a, 1985b). Fundamental in their approach is that expert program-

mers organize their programming knowledge into schemata that represent patterns

of code that are associated with specific programming problems. Programming

plans give a concrete form to these schemata as templates of programming code in

combination with comments that describe the goals and reasons for the various

expressions in the template. Such programming plans are largely independent of

the programming language that is used and can be learned directly from

instruction.

According to Soloway (1985), instruction should not only emphasize the syn-

tax and statements of a particular programming language but also programming

plans. This makes it possible to stress the structure of, and relationships between,

specific programming problems and programs. Thus, the explicit presentation of

programming plans supports the development of cognitive structures that are used

in both the comprehension of programs and the understanding of problem specifi-

cations in program generation. In fact, programming plans begin to appear in

textbooks that teach elementary programming (e.g., Cooper and Clancy, 1982;

Dale and Orschalick, 1983). Based upon the theory of programming plans, we for-

mulate our second instructional tactic for declarative instruction:

Programming-plans tactic

GOAL(S):

- initial performance level in program comprehension and generation

CIRCUMSTANCE(S):

- students are novices in computer programming and are in the declarative stage

METHOD:

- explicitly present programming plans

Design diagrams

Jeffries, Turner, Poison and Atwood (1981) studied the processes involved in pro-

gram design and distinguished three major mechanisms: (a) the decomposition of

the problem specification into a collection of modules, (b) the specification of the

relationships and interactions among modules as control structures that indicate

when and under which conditions modules are activated and (c) the specification of

data structures that are involved in the solution. Expert programmers have abstract

knowledge concerning the processes involved in generating a good design and its

overall structure. This knowledge is referred to as a general design schema.

266

The design schema may be used recursively to generate a decomposition of the

problem into more and more detailed modules in a process of "successive refine-

ment", which leads to a top-down, breadth-first expansion of the solution. The

design process continues until programming code has been identified for each sub-

problem. This description of expert programming behavior is in accordance with

both the dominant view of planning as a process that starts with high-level goals

and refines them into achievable actions (Newell and Simon, 1972; Sacerdoti,

1977) and the principles of goal-directed processing as specified in ACT*. In addi-

tion, it is nearly equivalent to the model of stepwise refinement as promoted by

the structured programming discipline.

In contrast to experts, novices do not possess a general design schema and usu-

ally have severe difficulties in coordinating their activities. Because they lack a

structure for organizing their behavior, they are often unable to decompose the

problem into appropriate subproblems, to correctly interface modules and to iden-

tify necessary data structures. In our opinion, a common difficulty in introductory

programming courses is that they do not embody instructional tactics that reflect

the students' need for "direction" in problem solving. Consequently, novices often

attempt to go from their incomplete design to implementing the program, with-

out further consideration of how to plan the complete solution. This often results

in badly structured, buggy programs.

Bradley (1985) reported a positive correlation between top-down processing

styles and learning outcomes in a 15-lesson introductory LOGO-course.

Instructional materials may support such top-down processing by explicitly

presenting a design diagram: A flow-chart or structured diagram prescribing in

detail the actions and methods that ensure a systematic and effective design pro-

cess. Equivalent design diagrams for solving elementary science problems are

sometimes referred to as SAP-charts ("Systematic Approach to Problem-solving";

see for an example, Mettes, Pilot and Roossink, 1981). The presentation of a

design diagram clarifies the complementary processes of successive ref'mement and

top-down program design and facilitates the development of a general design

schema. Based upon this idea, we formulate our last tactic for declarative

instruction:

Design diagram tactic

GOAL(S):

- initial performance level in top-down program design and successive ref'mement

CIRCUMSTANCE(S):

- students are novices in computer programming and are in the declarative stage

METHOD:

- explicitly present a design diagram

267

3.3 Tactics for Procedural instruction

Whereas the key aspect in declarative instruction is teaching schema-like know-

ledge to encourage elaborative processing in the learning of related facts, the key

aspect in procedural instruction is supporting processes involved in knowledge

compilation and tuning. Thus, procedural instruction primarily involves the

instructional design of practice to make the transition from the declarative stage to

the procedural stage as smooth as possible. Note that practice does not imply that

students always have the disposal of a computer; for instance, algorithm design

may be practiced without a computer.

In general, students initially have serious difficulties in applying newly

acquired declarative knowledge in practice. This is in agreement with ACT*,

which predicts that in the declarative stage the use of knowledge by interpretative

productions is - as a result of high demands on working memory - a slow process

characterized by many errors. Three instructional tactics for procedural instruction

involve (a) worked-out examples, (b) practice of basic cognitive skills and (c) task

variation. Because these tactics are concerned with knowledge compilation and

subsequent tuning, the instructional goals for mastery of certain skills may vary

from an intermediate to a high performance level.

Worked-out examples

In the declarative stage, students usually study instructional materials or listen to

lectures to encode declarative information. After these activities they start practic-

ing, which often involves program generation, program modification, or program

amplification. Anderson et al. (1984) reported that students in this stage of know-

ledge compilation make a highly selective use of instructional materials. In partic-

ular, they use concrete examples of problem solutions - related to the problem at

hand - that have the form of concrete computer programs. These worked-out

examples function as analogies, which students use as blue-prints or concrete

schemata to map their new solutions. Thus, analogy is used to bridge the gap

between the current declarative knowledge and the desired programming behavior.

After students have gained more experience, their need for worked-out examples

disappears, as a result of knowledge compilation.

The key to the use of analogy is interpreting information by general produc-

tions. Whereas in elaborative processing productions interpret schemata and create

elaborations by mapping the schemata onto the instructional material, in the use

of analogy productions interpret worked-out examples and create new solutions by

mapping the examples onto existing declarative knowledge. Thus, students trans-

form a worked-out example that is the solution for one problem into a new pro-

gram that is the solution for another problem by interpreting the example and

mapping it onto existing knowledge about programming. Obviously, analogy is a

powerful tool in guiding programming behavior but it is never an automatic map-

268

ping of the example onto the new solution: students always need newly acquired

knowledge about programming to reach a correct solution.

An instructional implication of ACT* is that students have to induce generali-

zations and discriminations from carefully selected examples because these are pro-

ductions created by the automatic learning mechanisms of generalization and

discrimination. However, in the PUPS successor of ACT*, generalizations and

discriminations are seen as declarative knowledge structures that are produced by

general problem solving productions. This leads to the additional implication that

one should explicitly tell the students what the critical features in an example are

(Anderson et al., 1986). Thus, whereas the presentation of worked-out examples is

important in its own right, the examples should be annotated with information

about what they are supposed to illustrate.

Annotated examples bear resemblance to programming plans: they both offer

templates of code instead of unorganized factual information and they both slress

the critical features in this template. But, whereas programming plans primarily

serve to present new information concerning a template of programming code and

its relationship with specific programming problems, annotated, worked-out

examples serve as an analogy to support knowledge compilation. In fact, we think

that it is desirable to further annotate worked-out examples by explicitly referring

to the programming plans they use.

Based on the function of worked-out examples as analogies that both guide

programming behavior and support knowledge compilation, we present our first

tactic for procedural instruction:

Tactic of worked-out examples

GOAL(S):

- intermediate performance level in program generation

CIRCUMSTANCE(S):

- students are novices in computer programming and the necessary declarative

knowledge is already present

METHOD:

- present concrete, annotated, worked-out examples in the form of concrete pro-

grams for well-described programming problems that are related to the prob-

lems at hand

Basic cognitive skills

In the declarative stage, knowledge must continually be represented in working

memory to be interpreted by general productions. The content of working memory

rapidly changes because the interpretative production steps usually are small. The

resulting high processing load has major costs in terms of speed as well as errors.

Knowledge compilation decreases the load on working memory, both because

269

declarative information is built up into productions (proceduraiization) so that it

needs no longer be represented in working memory, and because production steps

become larger (composition) so that the content of working memory is changing

less frequently.

Basically, ACT* is a theory of learning by doing because practice is seen as a

necessary condition for knowledge compilation. Practice may rapidly produce task-

specific productions that result in a decrease of processing load. The same pro-

cesses work for the compilation of productions that concern either basic skills or

higher skills involved in programming. For instance, practice may build produc-

tions that help students to proceed in the programming environment, to apply

syntactic rules, to couple particular programming problems to templates of lan-

guage code, or to reformulate specific programming problems.

The idea is that students may have difficulties with higher skills involved in

programming because the necessary basic skills have not been sufficiently prac-

riced (e.g., Resnick and Ford, 1981). By building up task-specific productions for

basic cognitive skills, processing efficiency is increased so that the cognitive sys-

tem is able to simultaneously perform another, higher-order task which does make

demands on working memory. Although it is clearly impossible, given the availa-

ble time, to Wain expert programmers in introductory programming courses, even

a modest performance level in programming requires that several basic cognitive

skills are learned up to the procedural stage so that the attention can be paid to the

more complicated aspects of the total task. This leads us to the second tactic for

procedural instruction:

Basic skills tactic

GOAL(S):

- high performance level in basic cognitive skills such as those involved in pro-

ceeding in the programming environment and applying syntactic rules

CIRCUMSTANCE(S):

- students are novices in computer programming and the necessary declarative

knowledge is already present

METHOD:

- offer extensive practice in those basic skills

Task variation

It takes at least 100 hours to achieve only a very modest facility in programming

skill (Anderson, 1982) and, in addition to formal training, several years of practical

experience to become an expert programmer. Even after extensive training and prac-

rice, programmers with the same background generating a program for the same

problem show large differences in performance; in addition, different problem

specifications of the same difficulty lead to large differences for one programmer

270

(Barfield, Lebold, Salvendy and Shodja, 1983; Sackman, Erickson and Grant,

1968). The procedural knowledge base of an expert programmer is estimated to

consist of ten to hundreds of thousands of highly task-specific productions (e.g.,

Brooks, 1977), which all have to be acquired through the interpretative use of

declarative knowledge. This explains why learning to program is a lengthy pro-

cess and why there are considerable performance differences between and within

programmers.

An instructional implication is that there must be enough task variation in

practice to develop a broad procedural knowledge base, which underlies flexibility

in programming behavior on a high performance level. This implication is partic-

ularly important for the training of professional programmers; in introductory pro-

gramming courses at high school level there is neither occasion for extensive

practice of all skills involved in programming nor for much task variation within

practice. However, some variation in elementary programming may be offered by

(a) the assignment of different tasks, such as using the editor, comprehending pro-

grams, designing algorithms, generating programs, debugging programs and so

forth, and (b) the presentation of a broad range of both programming problems

that have different underlying solutions in program generation and programs that

are the solutions for different programming problems in program comprehension.

Offering task variation explicitly aims at the compilation - and subsequent

tuning - of a broad procedural knowledge base. We think that in elementary pro-

gramming it is at least equally important to support the development of schema-

like, declarative knowledge structures. Interpreting such declarative structures by

general productions also offers flexibility in programming behavior; although this

has certain disadvantages in terms of speed and errors, it certainly is a realistic

instructional goal to strive for in elementary programming. For this reason and in

accordance with our discussion of worked-out examples, it is not only important

to offer students some variation in problems and programs but it is also important

to tell them what the critical features in these different problems and programs are.

Based upon the function of task variation for the development of procedural

knowledge, we present our last tactic for procedural inslruction:

Task variation tactic

GOAL(S):

- intermediate/high performance level and flexibility in program comprehension

and generation

CIRCUMSTANCE(S):

- students are novices/intermediates and the necessary declarative knowledge is

already present

METHOD:

- offer variation in the different skills involved in computer programming and

present a wide range of programming problems and programs

271

3.4 Processing load, strategies and tactics

Novice programmers make errors that may either be contributed to their miscon-

ceptions or to processing overload (Gilmore, 1986). Errors that only occur when

tasks become more complex - where the meaning of "complex" changes as stu-

dents gain more experience - may be explained by a processing overload model;

errors that are independent of task complexity may be contributed to misconcep-

tions. According to Anderson and Jeffries (1985), processing overload places the

more serious constraints on both problem solving performance and learning in

computer programming.

Students' errors and slowness resulting from processing overload are clearly

shown in their behavior when they generate programs. Whereas experts show a

systematic top-down, breadth-first expansion of the solution, novices show less

structured and more opportunistic behavior. Such behavior may be explained

either by a model of opportunistic planning (e.g., Hayes-Roth and Hayes-Roth,

1979) or by a goal-directed system, such as GRAPES, that is subject to serious

failures of working memory resulting from processing overload. That is, novices

who show opportunistic behavior simply forget their goals as a result of process-

ing overload and after losing their goal structures from working memory, they

analyze the current state and construct some partial solution to iL

Groups of instructional s~ategies for designing programming courses may be

distinguished by their approach to controlling processing load. The Spiral

approach controls processing load by offering simple coding problems in the

beginning of the course and more complex design problems only later in the

course; the Reading approach controls processing load by varying the difficulty of

the students' task from reading, through modification and amplification, to coding

and designing complete programs. In the Expert approach, the complexity of the

presented design problems gradually increases during the course but the problems

involve algorithm design from the outset. Thus, they are relatively complex and

may cause processing overload; this is one of the reasons that students are urged

to adopt top-down programming techniques. Working according to a top-down

model should enable students to assign working memory capacity to, succes-

sively, high level goals that include reformulation of the problem and design of

the algorithm, low level goals that include finding solutions for subproblems, and

achievable actions that include coding program statements.

However, top-down design techniques may minimize processing load for

expert programmers but not for novices. Strictly speaking, top-down program-

ming is possible if students have at each step available an appropriate set of pro-

ductions as well as the necessary declarative knowledge. This only occurs if both

the problem is of a familiar type and the student has experience with the program-

ming language. When top-down programming is possible, it will minimize pro-

cessing load; however, when it is not possible - as will often be the case for

272

novices - it c a n n o t prevent processing overload. Consequently, top-down pro-

gramming in introductory programming courses may be desirable, but it is often

not possible because the necessary knowledge is not available.

Summarizing, instructional strategies differ in great measure in the way they

control processing load. We stated that the Expert approach possibly succeeds in

this to a lesser degree than the other approaches. In addition, the way processing

load is controlled determines the global structure of an instructional strategy. As

we will see in the next section, this has serious consequences for the facility of

adopting instructional tactics in those slrategies.

4 An e v a l u a t i o n o f i n s t r u c t i o n a l s trategies

Before actually starting an evaluation of instructional strategies, we will discuss

how such an evaluation can take place. Obviously, the six instructional tactics

can be used to evaluate the design of concrete introductory programming courses.

The tactics constitute available knowledge from cognitive theory and empirical

research directed towards learning to program. So, an effective programming

course should incorporate those tactics.

Adopting a particular instructional strategy for the design of a programming

course has consequences for the instructional tactics to be applied. Some tactics

can be effectively applied in courses designed according to the strategy; others are

less compatible with the strategy. If more strategies are available and only one is

compatible with all tactics, this strategy is clearly superior. In this sense, tactics

can be used to evaluate not only the design of actual courses but also the strate-

gies underlying the designs. In this section, we make such a comparative evalua-

tion for the three groups of instructional strategies that we found dominant in

designing introductory programming courses.

An evaluation of strategies is only possible if they underlay the design of

courses with the same goals. We base our evaluation of strategies on the assump-

tion that the global goal of all courses is to lake students as close as possible to

the state of expert programmer. As a consequence, all courses are supposed to be

directed towards program comprehension and generation paying attention to both

design and coding aspects of programming. Furthermore, we assume that basic

cognitive skills, such as those involved in proceeding in the programming envi-

ronment and in applying syntactic rules of the language, should be practiced up to

a high performance level; higher skills, such as those directly involved in program

comprehension and generation, can only be learned up to an intermediate perfor-

mance level because time limits prohibit the setting of higher learning outcomes.

Thus, according to our evaluation, all three groups of instructional strategies

should be compatible with all six tactics.

273

What does compatibility between strategies and tactics mean here? This ques-

tion should be answered differently for declarative and procedural instruction.

Declarative instruction takes place before students start practicing. Irrespective of

the underlying strategy, it is possible to present all kinds of information to stu-

dents, and thus all three elements of declarative instruction discussed, namely a

computer model, programming plans and a design diagram. However, what is of

main importance is that the declarative instruction should well prepare for subse-

quent practice. In other words, the central question to be answered is: "To what

degree does declarative instruction deliver knowledge that is actually used in prac-

rice, when the student is performing tasks that are typical of the courses designed

according to the particular strategy?".

Compatibility of procedural tactics with an instructional strategy is of another

nature. The Expert, Spiral and Reading approach mainly differ from one another in

the way they control processing load. The danger of processing overload is espe-

cially present when students perform programming tasks; that is, when they

receive procedural instruction. As to the evaluation of strategies, relevant ques-

tions to ask include: "What help is given for problem solving?", "What kinds of

problems and tasks are assigned?" and "How is task variation accomplished?"

Thus, compatibility between a strategy and a procedural tactic stands for self-

evidence of incorporation of this tactic in a course designed according to the strat-

egy. That is, a course should contain worked-out examples, extensive practice in

basic skills and some task variation.

4.1 Evaluation of the Expert approach

The Expert approach emphasizes systematic, top-down algorithm and program

design. Program generation is presented as a primary student activity and design

aspects are stressed by the presentation of non-trivial design problems from the

outset of the course.

Declarative instruction

Knowledge of a computer model is especially useful when students must compre-

hend or generate lines of program code, such as for instance an assignment state-

ment or a loop slructure in Pascal. The Expert approach, however, heavily

emphasizes design aspects in program generation; in most presented tasks the

design of an algorithm forms the kernel of the problem. Consequently, we do not

expect much result of the presentation of a model and we conclude that there is a

low compatibility between the Computer model tactic and the Expert approach.

This low compatibility may explain why this tactic is only sporadically applied

in the Expert approach.

274

-The presentation of programming plans is very suitable to an approach that is

directed toward teaching expert behavior. Without doubt, students will often use

knowledge of programming plans when they solve the design problems that are

typical of this approach. We expect a high compatibility between the

Programming-plans tactic and the Expert approach. The fact that programming

plans begin to appear more and more in courses and textbooks categorized under

the Expert approach gives support to this expectation.

Whereas novice programmers usually have great difficulties in coordinating

their activities, experts systematically use a top-down model of successive refine-

ment to coordinate their activities in algorithm and program design. The Expert

approach tries to model expert behavior; this can be done by explicitly presenting

a design diagram. Assuming that students believe in its effectiveness, they can

profitably use it in solving the design problems that characterize this approach.

Thus, we assume a high compatibility between the Design diagram tactic and the

Expert approach.

Procedural instruction

Most textbooks labelled under the Expert approach contain sufficient worked-out

examples. Clearly, the importance of such inslxuctional elements is widely real-

ized by those who adhere to the Expert approach. However, these examples gener-

ally function as declarative inslruction; they are presented in isolation from the

tasks assigned as practice. While trying to solve problems, students have to search

for examples that fit in with their solution and they must turn back leaves, look-

ing for examples analogous with the solution. This is a difficult task as students

cannot be sure that a useful example is available; sometimes an example at first

glance looks similar to the solution of the problem at hand but in fact it cannot

be mapped correctly, which may result in serious mistakes. Therefore, we expect a

moderate compatibility between the Tactic of worked-out examples and the Expert

approach.

Whereas a generally accepted principle within the Expert approach is that stu-

dents should get enough opportunity to practice, design activities are heavily

emphasized and little attention is given to practice of basic skills. For this reason,

we think that there is only a moderate compatibility between the Basic skills tac-

tic and the Expert approach. In addition, neglecting the importance of practicing

basic skills may further hamper an effective control of processing load.

Task variation is difficult to realize in the Expert approach as design aspects in

program generation are emphasized at the cost of coding aspects, program compre-

hension and basic skills; furthermore, variation in offered problems and programs

is low. The presentation of non-trivial design problems from the outset of the

course takes a great amount of the available inslructional time; usually, one pro-

gramming problem engages the students' attention during one or two lesson peri-

ods. For this reason, the total number of problems that is presented to the

275

students remains small. We conclude that there is a low compatibility between the

Task variation tactic and the Expert approach.

In short, we assume a high compatibility of the Expert approach with two tac-

tics (programming plans, design diagram), a moderate compatibility with two tac-

tics (worked-out examples, basic skills), and a low compatibility with two tactics

(computer model, task variation). In addition, we like to recall that the control of

processing load is probably ineffective in the Expert approach.

4.2 Evaluation of the Spiral approach

The Spiral approach is characterized by stepwise incremental learning. Program

generation is presented as a primary student activity. Initially, coding activities are

emphasized; the assigned tasks are mainly trivial coding problems requiring only

syntactic and low level semantic knowledge. Gradually, when the students gain

more experience, the assigned tasks become more complex and attention is

directed to design aspects of programming.

Declarative instruction

Knowledge of a computer model is especially helpful in comprehending and gener-

ating lines of program code. Tasks of this kind are, at least during the main part

of the course, emphasized in the Spiral approach. Furthermore, it should be

recalled that research demonstrating the effectiveness of computer models was

restricted to courses that we assign to the Spiral Approach. Therefore, we expect a

high compatibility between the Computer model tactic and the Spiral approach.

To our knowledge, programming plans have never been presented in courses

designed according to the Spiral approach. However, we expect knowledge of pro-

gramming plans to be extremely useful for tasks that stress design aspects as well

as for tasks stressing coding aspects in programming. Thus, we conclude that

there is a high compatibility between the Programming-plans tactic and the Spiral

approach.

Knowledge of a design diagram is especially useful in solving design prob-

lems. In the Spiral approach, such problems appear only late in the course so that

the usefulness of knowledge of a design diagram is limited. In addition, this dia-

gram can only be sensibly presented towards the end of the course, when genuine

design problems are assigned; in the meantime, students may have acquired bad

programming habits that are difficult to unlearn. As these habits may violate the

ideas underlying systematic design, we expect a low compatibility between the

Design diagram tactic and the Spiral approach.

Procedural instruction

The presentation of worked-out examples is well possible in courses designed

according to the Spiral approach. In fact, example programs can be found in most

276

textbooks that we assign to this approach. The examples are usually solutions for

trivial coding problems in the form of rather simple programs. As in the Expert

approach, these examples often function as declarative instruction, but because of

their simple nature we expect students to have fewer difficulties in finding exam-

ples that match the solutions of problems they are trying to solve. Thus, there is

a moderate compatibility between the Tactic of worked-out examples and the

Spiral approach.

Stepwise incremental learning in the Spiral approach warrants application of

the Basic skills tactic because each separate step is finished with practice and there

is an initial emphasis on coding activities. For instance, students are forced to

extensive practice in using the programming environment and applying syntactic

rules of the language. Clearly, a high compatibility exists between the Basic

skills tactic and the Spiral approach.

Students' activities in the Spiral approach are especially directed towards the

generation of programs at the cost of program comprehension. Although many

tasks or problems may be assigned, they show a strong tendency, during the main

part of the course, to solve trivial coding problems paying little attention to

design aspects. Therefore, we conclude that there is a low compatibility between

the Task variation tactic and the Spiral approach.

Summarizing, we assume a high compatibility of the Spiral approach with

three tactics (computer model, programming plans, basic skills), a moderate com-

patibility with one tactic (worked-out examples), and a low compatibility with

two tactics (design diagram, task variation).

4.3 Evaluation of the Reading approach

The Reading approach is characterized by its emphasis on program comprehen-

sion, modification and amplification. From the beginning of the course, students

are confronted with program reading assignments in the form of non-trivial design

problems in combination with their complete or partial solutions. The assigned

tasks gradually become more complex during the course, changing f~om using and

analyzing programs, through modifying and extending programs, to designing and

coding programs.

Declarative instruction

Knowledge of a computer model helps students to comprehend lines of program

code. In courses that have been designed according to the Reading approach most

assigned tasks require the comprehension of code; especially in the beginning of

the course, students are required to comprehend separate program lines while trac-

ing programs. So, we expect a high compatibility between the Computer model

tactic and the Reading approach.

277

Programming plans can easily be presented in the Reading approach. In fact,

the solutions of the presented problems may be further annotated by explicitly

referring to the plans they use. Knowledge of programming plans is not only use-

ful for program comprehension - as for instance required in program modification

and amplification - but also for design as well as coding activities in program

generation. Thus, we assume a perfect compatibility between the Programming-

plans tactic and the Reading approach.

Knowledge of a design diagram is particularly useful in solving non-trivial

design problems. According to the Reading approach, such genuine design prob-

lems are assigned only late in the course. However, in contrast to the Spiral

approach, a design diagram may be sensibly presented in an early phase of the

course: In combination with the presented well-structured programs, the design

diagram illustrates the usefulness of top-down design techniques and systematic

planning. Students actually see that programming according to a design diagram

helps to understand algorithms and perform other tasks that are typical of the

Reading approach. We conclude that there certainly is a moderate compatibility

between the Design diagram tactic and the Reading approach.

Procedural instruction

Presenting worked-out examples automatically takes place in courses designed

according to the Reading approach. Unlike worked-out examples in the Expert and

Spiral approaches, there is a direct bond between examples and practice in the

Reading approach. Furthermore, these examples concern working programs that

can be well-documented and annotated with information about what they are sup-

posed to illustrate. Obviously, the compatibility between the Tactic of worked-out

examples and the Reading approach is very high.

Practice in basic skills is very well possible within the Reading approach.

Students immediately start handling the computer and using the programming

environment when they run given programs; soon after, they have to apply syn-

tactic rules when tasks are assigned to them in which programs have to be modi-

fied or amplified. Thus, students start with intensive practice of basic skills on a

modest scale. We expect a high compatibility between the Basic skills lactic and

the Reading approach.

Task variation is easily accomplished as all kinds of tasks, such as using the

editor, applying syntax, interpreting programs and generating programs appear in

the course. Whereas the complexity of the presented design problems in the

Expert approach is high and only few problems can be presented, the difficulty of

assigned tasks in the Reading approach is better controllable so that the students

can be confronted with a greater amount of problems. Furthermore, these prob-

lems considerably vary in design and coding activities they require, unlike the

often trivial coding problems in the Spiral approach. Finally, the presentation of a

wide range of example programs is inherent in the Reading approach. For these

278

reasons, we conclude that there is a high compatibility between the Task variation

tactic and the Reading approach.

In short, we assume a high compatibility of the Reading approach with five

tactics (computer model, programming plans, worked-out examples, basic skills,

task variation) and a moderate compatibility with only one tactic (design diagram).

4.4 A final comparison of strategies

The results of the separate evaluations of groups of instructional strategies are dis-

played in Table 1. Based on these results, a comparative evaluation of the Expert,

Spiral and Reading approach is possible.

Table 1. Compatibility between Instructional Strategies and Instructional Tactics

Tactics

Strategies

Expert Spiral Reading

Approach Approach Approach

Declarative Instruction

Computer Models + +

Programming Plans + + +

Design Diagrams + 4+

Procedural Instrucdon

Worked-out Examples -/+ 4+ +

Basic Skills 4+ + +

Task Variation +

Note. - Low, -/+ Moderate, + High

According to Table 1, the Reading approach scores higher than or equal to the

other groups of instructional strategies on five out of six instructional tactics. If

all tactics get equal weight, the Reading approach is the best strategy to follow in

the instructional design of introductory programming courses. The superiority of

the Reading approach to the Spiral approach is, given our evaluation, beyond dis-

pute. The Expert approach would only be able to compete with the Reading

approach if the Design diagram tactic was given very much weight; as we feel that

- as an extra benefit - the Reading approach is superior in its control of process-

ing load, this approach is proclaimed to be the best strategy according to our

evaluation.

A direct comparison of the Expert approach with the Spiral approach is less

easy. The Expert approach should be preferred if the Design diagram is considered

279

very important; on the other hand, the Spiral approach should be preferred if both

the Computer model tactic and the Basic skills tactic are considered as more

important than the other tactics. As a speculation, we think that courses designed

according to the Spiral approach will be slightly more successful, in part thanks

to their better control of processing load.

5 Discussion and research implications

We offered a theoretical framework for the instructional design of introductory pro-

gramming courses. In this framework, the distinction between instructional strate-

gies and instructional tactics on the one hand, and between declarative instruction

and procedural instruction on the other hand, was emphasized. Instructional strate-

gies were defined as general design plans that mainly differ in their control of stu-

dents' processing load but that all pursue the same global instructional goals. We

described the Expert, Spiral and Reading approach as three groups of closely

related strategies. In order, they emphasize top-down design techniques, incremen-

tal learning, and program modification and amplification.

Against the background of ACT*, we stressed the distinction between decLara-

tive instruction and procedural instruction. Declarative instruction involves the

initial presentation of new information; procedural instruction involves the design

of practice. We presented six instructional tactics that could partially be supported

by relevant research. Tactics were defined as specific plans of action that prescribe

methods to reach desired learning outcomes under given circumstances. Tactics for

declarative instruction include concrete computer models, programming plans and

design diagrams; tactics for procedural instruction include worked-out examples,

practice of basic cognitive skills and task variation. Tactics may be used both to

design new courses and to evaluate existing strategies. In our evaluation of the

three groups of instructional strategies, the Reading approach was found to be

superior to the Expert and the Spiral approach.

The framework presented is an attempt to organize available knowledge for the

design of introductory programming courses. However, it is not yet completed as

several aspects that we feel to be important for instructional design have been

omitted. First, these include management aspects of instruction; that is, we did

not present instructional tactics that depend on class size. Second, several areas of

research may lead to valuable instructional tactics that can eventually be included

in our framework. For instance, declarative instruction may be further improved

by applying tactics that take students' misconceptions into account; procedural

instruction may be further improved by tactics that offer methods for individual-

ized tutoring of problem solving processes involved in programming.

Furthermore, the role of several "intermediate" products that may be used in

instruction, such as flow-charts, pseudo-programming languages and structure-

280

diagrams, has not been discussed. Programmers may profit from the use of such

intermediates because they provide a clear separation of the design and coding

activities involved in programming. The idea is that design activities should result

in a flow-chart, pseudo-program, or structure-diagram which may subsequently be

translated into the programming code at hand. Whereas, to our knowledge, a posi-

tive effect of using intermediates on learning outcomes has never been clearly

demonstrated in elementary programming, it may obviously have important con-

sequences for instructional design.

Our analysis of instructional strategies and tactics is subject to some further

limitations. First, the distinction between three groups of instructional strategies

is based upon an investigation of textbooks, curricula and point-of-view papers in

which clear differences appeared in the way students' processing load was con-

trolled. However, most instructional materials and courses really used a mixture

that was only leaning towards one of the approaches and, whereas there were many

instructional materials that could be assigned to the Expert or the Spiral approach,

there were only few materials available that could be classified under the Reading

approach. Second, instructional tactics were not exclusively based on empirical

research; some of them were formulated against the theoretical background of

ACT* and should be seen as hypotheses that have yet to be confirmed. Clearly,

the development of new insights into current psychological theory will have direct

consequences for our framework.

Another difficulty is that the steps that were taken from the psychological the-

ory to the formulation of instructional tactics were not - and in our opinion, can-

not be - straightforward. A psychological theory usually does not provide enough

information to give a precise description of the circumstances under which a tactic

is valuable and, on the other hand, the methods to reach desired learning outcomes

are only implicitly present. For instance, it is not clear if the presentation of a

computer model is valuable in the teaching of a functional programming language

(e.g., LISP) instead of an imperative language (e.g., BASIC, Pascal); moreover, if

this should be the case, it is still not clear what form the new computer model

should have.

In our opinion, the tracing, formulation and confirmation of instructional tac-

tics should be a first concern for research on instructional design for introductory

programming courses. This research should focus upon (a) an extension of the set

of tactics, (b) a refinement of goals, circumstances and methods in tactics, (c) an

assignment of weights to tactics and (d) an assessment of interactions between tac-

tics. By coupling the tactics to a common theoretical background it will eventu-

ally become possible to build a coherent, comprehensive framework for

instructional design in elementary programming.

A second, strongly related concern should be a comparison of instructional

strategies that apply different sets of tactics. Our evaluation of the Expert, Spiral

and Reading approach was based upon our weak assumptions regarding the appli-

281

cability of tactics; however, a strict arrangement was not possible because we

lacked more precise information about those tactics. By making careful compari-

sons of learning outcomes in courses designed according to strategies that apply

different tactics, we think it will be possible both to gather more information

about the tactics applied and to track down global guidelines for instructional

design.

Future research on instructional design for elementary computer programming

should also take into account other important features of strategies, such as man-

agement aspects, students' and teachers' motivation, and possibilities of individu-

alized tutoring. The significance of such research is clear. Whereas the teaching of

computer programming in high schools is already very common now, and the

research concerning the psychological processes involved in programming is

quickly developing, there are still few guidelines that teachers and others in the

educational field can use for their design of introductory programming courses.

N o t e s

The authors wish to express their gratitude to Sanne Dijkstra. Otto Jdsma and Georg Rakers

for their helpful comments on a draft of this article. Correspondence concerning this article

should be addressed to Jeroen J. G. van Merrienboer.

R e f e r e n c e s

Adelson, B. (1981). Problem solving and the development of abstract categories in program-

ming languages. Memory and Cognition, 9, 422-433.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge: The Harvard University

Press.

Anderson, J. R., Boyle, C. F., Corber), A. and Lewis, M. (1986). Cognitive modelling and

intelligent tutoring (Tech. Rep. No. ONR-86-1). Pittsburgh, PA.: Carnegie-Mellon

University, Psychology Department.

Anderson, J. R., Farrell, R. and Sauers, R. (1984). Learning to program in LISP. Cognitive
Science, 8, 87-129.

Anderson, J. R., Greeno, J. G., Kline, P. J, and Neves, D. M. (1981). Acquisition of problem

solving skill. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 191-

230). Hillsdale, NJ.: Erlbaurn Associates.

Anderson, J. R. and Jeffries, R. (1985). Novice LISP errors: Undetected losses of information

from working memory. Human-Computer Interaction, 1, 107-131.

Anderson, J. R., Kline, P. J. and Beasly, C. M. (1980). Complex learning processes. In R. E.

Snow, P. A. Federico and W. E. Montague (Eds.), Aptitude, learning and instruction: Vol.
2. Hillsdale, NJ.: Erlbaum Associates.

Anderson, J. R. and Reiser, B. J. (1985). The LISP tutor. Byte, 10(4), 159-175.

Anderson, J. R. and Skwarecki, E. (1986). The automated tutoring of introductory computer

programming. Communications of the ACM, 29, 842-849.

Atherton, R. (1981). Requirements for a general purpose high-level programming language for

schools. Computer Education, 38, 14-16.

Atherton, R. (1982). BASIC damages the brain. Computer Education, 40, 14-17.

282

Atwood, M. E., Turner, A. A., Ramsey, H. R., Hooper, J. N. and Sidorsky, R. C. (1979). An

exploratory study of the cognitive structures underlying the comprehension of software

design problems (Tech. Rep. No. 392). Alexandria, VA.: US Army Research Institute for

the Behavioral and Social Sciences.

Ausubel, D. P. (1968). Educational psychology: A cognitive approach. New York: Holt,

Rinehart & Winston.

Baird, W. E. (1982). Problem solving, teamwork and structured programming - in high

school? In J. Smith and G. Schuster Moon (Eds.), Proceedings of the NECC (pp. 331-334).

Columbia: University of Missouri.

Balzert, H. and Hille, H. (1980). A standardized curriculum in informatics for adult education.

Computers and Education, 4, 189-198.

Barfield, W. (1986). Expert-novice differences for software: Implications for problem-solving

and knowledge acquisition. Behavior and Information Technology, 5, 15-29.

Bar'field, W., LeBold, W. K., Salvendy, G. and Shodja, S. (1983). Cognitive factors related to

computer programming and software productivity. In Proceedings of the Human Factors

Society, 27th Annual Meeting (pp. 647-651). Norfolk, VA.: Human Factors Society.

Baron, L, Szymanski, B., Lock, E. and Prywes, N. (1985). An argument for non-procedural

languages. In R. /ernigan, B. W. Hamill and D. M. Weinstraub (Eds.), The role of lan-

guage in problem solving (pp. 127-144). Amsterdam, North Holland: Elsevier Science

Publishing.

Bayman, P. and Mayer, R. E. (1983). A diagnosis of beginning programmer's misconceptions

of BASIC programming statements. Communications of the ACM, 26, 677-679.

Bonar, J. and Soloway, E. (1985). Preprogramming knowledge: A major source of misconcep-

tions in novice programmers. Human-Computer Interaction, 1, 133-161.

Bradley, C. A. (1985). The relationship between students' information processing style and

Logo programming. Jourrial of Educational Computing Research, 1, 427-433.

Brooke, J. B. and Duncan, K. D. (1980). Experimental studies of flowchart use at different

stages of program debugging. Ergonomics, 23, 1057-1091.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer programming.

International Journal of Man-Machine Studies, 9, 737-751.

Clements, D. H. (1986a). Effects of Logo and CAI environments on cognition and creativity.

Journal of Educational Psychology, 78, 309-318.

Claments, D. H. (1986b). Logo and Cognition: A theoretical foundation. Computers in Human

Behavior, 2, 95-110.

Clements, D. H. (1987). Longitudinal study of the effects of Logo programming on cognitive

abilities and achievement. Journal of Educational Computing Research, 3, 73-94.

Clements, D. H. and Gullo, D. F. (1984). Effects of computer programming on young chil-

dren's cognition. Journal of Educational Psychology, 76, 1051-1058.

Cooper, D. and Clancy, M. (1982). Oh/Pascal!. New York: W. W. Norton.

Curtis, B. (1983, March). A review of human factors research on programming languages and

specifications. Monitor, pp. 24-30.

Dald, O. J., Dijkstra, E. W. and Hoare, C. A. R. (1972). Structured programming. London:

Academic Press.

Dalbey, J. and Linn, M. C. (1986). Cognitive consequences of programming: Augmentations

to basic instruction. Journal of Educational Computing Research, 2, 75-93.

Dalbey, J., Toumiaire, F. and Linn, M. C. (1985). Making programming instruction cogni-

lively demanding: An intervention study (ACCCEL report). Berkeley: University of

California, Lawrence Hall of Science.

Dale, N. and Orschalick, D. (1983). Introduction to Pascal and structured design. New York: D.

C. Heath and Co.

Deimel, L. E. and Moffat, D. V. (1982). A more analytical approach to teaching the introduc-

tory programming course. In J. Smith and M. Schuster (Eds.), Proceedings of the NECC

(pp. 114-118). Columbia: The University of Missouri.

Dershem, H. L. (1980). Computer problem solving (Modules and monographs in undergraduate

mathematics and its applications project). Newton, MA.: Educational Development Center_

283

Dijkstra, E. W. (1968). GOTO statement considered harmful. Communications of the ACM, 11,

147-148.

DuBoulay, B. (1986). Some difficulties of learning to program. Journal of Educational

Computing Research, 2, 57-73.

DuBonlay, B., O'Shea, T. and Monk, J. (1981). The black box inside the glass box:

Presenting computing concepts to novices. International Journal of Man-Machine Studies,

14, 237-249.

Ehrlich, K. and Soloway, E. (1984). An empirical investigation of the tacit plan knowledge in

programming. In J. Thomas and M. L. Schneider, Human factors in computer systems (pp.

I13-133). Norwood, NL: Ablex Publishing Corp.

Ehrlich, K., Soloway, E. and Abbott, V. (1982). Transfer effects from programming to algebra

word problems: A preliminary study (Tech. Rep. No. 257). New Haven, CT.: Yale

University, Dept. of Computer Science.

Fitter, M. I. and Green, T. R. G. (1979). When do diagrams make good computer languages?

International Journal of Man-Machine Studies, 11, 235-261.

Gall, M. (1984). Synthesis of research on teachers' questioning. Educational Leadership, 42

(3), 40-47.

Gilmore, D. J. (1986). Structural visibility and program comprehension. In M. D. Harrison

and A. F. Monk (Eds.), People and computers: Designing for usability (pp. 527-545).

Cambridge: Cambridge University Press.

Green, T. R. G. (1982). Pictures of programs and other processes, or how to do things with

lines. Behaviour and Information Technology, I, 3-36.

Green. T. R. G. (1983). Learning big and little programming languages. In A. C. Wilkinson

(Ed.). Classroom computers and cognitive science (pp. 71-93). New York: Academic Press.

Green, T. R. G.. Sime, M. E. and Fitter. M. J. (1980). The problems the programmer faces.

Ergonomics, 23, 893-907.

Hayes-Roth, B. and Hayes-Roth, F. (1979). A cognitive model of planning. Cognitive

Science, 3, 275-310.

Hoc, J. M. (1981). Planning and direction of problem solving in structured programming: An

empirical comparison between two methods. International Journal of Man-Machine

Studies, 15, 363-383.

Jeffries, R., Turner, A. A.. Poison, P. G. and Atwood, M. E. (1981). The processes involved

in designing software. In I. R. Anderson (Ed.), Cognitive skills and their acquisition (pp.

255-284). Hillsdale, NJ.: Erlbaum Associates.

Johnson, W. L. and Soloway, E. (1985a). PROUST: Knowledge-based program understanding.

IEEE Transactions on Software Engineering, 11, 267-275.

Johnson. W. L. and Soloway. E. (1985b). PROUST: An automatic debugger for Pascal pro-

grams. Byte, 10(4), 179-193.

Joni, S. A. and Soloway, E. (1986). But my program runst Discourse rules for novice pro-

grammers. Journal of Educational Computing Research, 2, 95-125.

Larkin, J. H. (1979). Information processing models and science instruction. In J. Lochhead

and ft. Clement (Eds.), Cognitive process instruction (pp. 109-118). Philadelphia, PA.:

The Franklin Institute Press.

Linn, M. C. (1985). The cognitive consequences of programming instruction in classrooms.

Educational Researcher, 14(5), 14-29.

Mandinach, E. B. and Linn, M. C. (1986). The cognitive effects of computer learning envi-

ronments. Journal of Educational Computing Research, 2, 411-427.

Mayer, R. E. (1975). Different problem solving competencies established in learning com-

puter programming with and without meaningful models. Journal of Educational
Psychology, 67, 725-734.

Mayer, R. E. (1976). Some conditions of meaningful learning for computer programming:

Advanced organizers and subject control of frame order. Journal of Educational
Psychology, 68, 143-150.

284

Mayer, R. E. (1979). A psychology of learning BASIC. Communications of the ACM, 22,

589-593.

Mayer, R. E. (1981). The psychology of how novices learn computer programming.

Computing Surveys, 13, 121-141.

Mayer, R. E. (1982). Contributions of cognitive science and related research in learning to

the design of computer literacy curricula. In R. Seidel, R. Anderson and B. Hunter (Eds.),

Computer literacy (pp. 129-159). New York: Academic Press.

Mayer, R. E. and Bromage, B. (1980). Different recall protocols for technical text due to

advance organizers. Journal of Educational Psychology, 72, 209-225.

McKeithen, K. B., Reitman, I. S., Rueter, H. H. and Hirtle, S. C. (1981). Knowledge organi-

zation and skill differences in computer programmers. Cognitive Psychology, 13, 307-

325.

Mettes, C. T. W., Pilot, A. and Roossink, H. J. (1981). Linking factual and procedural knowl-

edge in solving science problems: A case study in a thermodynamics course. Instructional

Science, 10, 333-361.

Neves, D. M. and Anderson, J. R. (1982). Knowledge compilation: mechanisms for the auto-

matization of cognitive skills. In J. R. Anderson (Ed.), Cognitive skills and their acquisi-

tion (pp. 57-84). Hillsdale, NJ.: Erlbaum Associates.

Newell, A. and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ.:

Prentice-Hall.

Pea, R. D. (1986). Language-independent conceptual "hugs" in novice programming. Journal

of Educational Computing Research, 2, 25-36.

Reigeluth, C. M. (1983). Instructional design: What is it and why is it? In C. M. Reigeluth

(Ed.), Instructional.design theory and models (pp. 3-36). Hillsdale, NJ.: Erlbaum

Associates.

Reiser, B. J. Anderson, J. R. and Farrell, R. G. (1985). Dynamic student modelling in an

intelligent tutor for LISP programming. In Proceedings of LICAI-85 (pp. 8-14). Los

Angeles: LICAI.

Resnick, L. B. and Ford, W. W. (1981). The psychology of mathematics for instruction.

Hillsdale, NJ.: Erlbaum Associates.

Sacerdoti, E. G. (1977). A structure for plans and behavior. New York: Elsevier Science

Publishing.

Sackman, H., Erickson, W. J. and Grant, E. E. (1968). Exploratory exl~rimental studies com-
. ~~

paring onlme and offlme programmmg performance. Communzcat~o?~.s of the ACM, 11, 3-

14.

Samurqay, R. (1985). Learning programming: An analysis of looping strategies used by

beginning students. Journal for the Learning of Mathematics, 5, 37-43.

Schulz-Zander, R. (1981). Ein didaktischer Ansatz ffir den Informatikumerricht [A didactic pro-

posal for computer science education]. Log In, 1, 24-27.

Schulz-Zander, R. (1986). Auswirkungen yon Programmiersprachen auf alas Probleml

i~severhalten yon Schiilern [Effects of programming languages on students' problem-

solving behavior]. Kiel: Institut ftir die PJidagogik der Namrwissenschaften an der

Universit~t Kiel.

Sheppard, S. B., Kruesi, E. and Curtis, B- (1981). The effects of symbology and spatial

arrangement on the comprehension of software specifications. In Proceedings of the Fifth

International Conference on Software Engineering (pp. 207-214). Silver Spring, MD.:

IEEE computer society.

Simeiderman, B. (1976). Exploratory experiments in programmer behavior. International

Journal of Computer and Information Sciences, 5, 123-143.
Shneiderrnan, B. (1977a). Teaching programming: A spiral approach to syntax and semantics.

Computers and Education, 1, 193-197.

Shneiderman, B. (1977b). Measuring computer program quality and comprehension.

International Journal of Man-Machine Studies, 9, 46-59.

285

Shneiderman, B. and Mayer, R. (1979). Syntactic/semantic interactions in programmer behav-

ior: A model and experimental results. International Journal of Computer and Information

Sciences, 8, 219-238.

Shneiderrnan, B., Mayer. R., McKay, D. and Heller, P. (1977). Experimental investigations of

the utility of detailed flow-charts in programming. Communications of the ACM, 20, 373-

381.

Sime, M. E., Arblaster, A. T. and Green, T. R. G. (1977). Structuring the programmer's task.

Journal of Occupational Psychology, 50, 205-216.

Simon, H. A. (1980). Problem solving and education. In D. T. Tuma and F. Reif (Eds.),

Problem solving and education: Issues in teaching and research. Hillsdale, NJ.: Erlbanm

Associates.

Sleeman, D., Pumam, R. T., Baxter, J. and Kuspa, t (1986). Pascal and high school students:

A study of errors. Journal of Educational Computing Research, 2, 5-23.

Soloway, E. (1985). From problems to programs via plans: The content and structure of

knowledge for introductory LISP programming. Journal of Educational Computing

Research, 1, 157-172.

Soloway, E., Bonar, J. and Ehrlich, K. (1982). Cognitive strategies and looping constructs:

An empirical study (Tech. Rep. No. 242). New Haven: Yale University, Dept. of Computer

Science.

Soloway. E., Ehrlich, K., Bonar, J. and Greenspan, J. (1982). What do novices know about

programming? In A. Badre and B. Shneiderman (F~s.). Directions in human-computer inter-

actions (pp. 27-54). Norwood, NJ.: Ablex Publishing Corp.

Soloway, E., Lochhead, J. and Clement, J. (1982). Does computer programming enhance

problem solving ability? Some positive evidence on algebra word problems. In R. Seidel,

R. Anderson and B. Hunter (Eds.), Computer literacy (pp. 171-185). New York: Academic

Press.

Spohrer, J. C., Solowsy, E. and Pope, E. (1985). A goal/plan analysis of buggy Pascal pro-

grams. Human-Computer Interaction, 1. 163-207.

Webb, N. M. (1983). Predicting learning from student interaction: Defining the interaction

variables. Educational Psychologist, 18, 33-41.

Webb. N. M. (1984). Microcomputer learning in small groups: cognitive rcquire~nents and

group processes. Journal of Edunational Psychology, 76, 1076-1089.

Webb. N. M., Ender, P. and Lewis. S. (1986). Problem solving strategies and group processes

in small groups learning computer programming. American Educational Research Journal,

32, 243-261.

Weiser. M. and Shertz, J. (1983). Programming problem representation in novice and expert

programmers. International Journal of Man-Machine Studies, 19, 391-398.

Wirth, N. (1974). On the composition of well-structured programs. Computing Surveys, 6,

247-259.

Woodhouse, D. (1983). Introductory courses in computing: Aims and languages. Computer

Education, 7(2), 79-89.

Yourdon, E. (1975). Techniques of program structure and design. Englewood Cliffs, NJ.:

Prentice-Hall.

