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Instrument for the measurement of hysteresis loops of magnetotactic
bacteria and other systems containing submicron magnetic particles 
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An electronic control system for the measurement of hysteresis curves of microscopically observed

magnetic structures such as chains of magnetosomes in magnetotactic bacteria suspended or

swimming in water is described. Using continuous magnetic fields generated by four coils for

guidance or orientation of the bacteria or other magnetic structures, and pulsed magnetic fields in

two additional coils for changing the degree of magnetization in small steps, hysteresis curves can

be traversed. The circuits described can be constructed with readily available components. The

guiding- and pulsed-field coils can be fashioned in any standard machine shop. The typical

sensitivity of the system is better than 10!12 ergs/G, which makes a wide range of bacteria

accessible to quantitative measurement of their magnetosome chains. The electronic circuits as well

as the coil systems are described in detail. © 2001 American Institute of Physics.
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I. INTRODUCTION	 tion" remanent magnetization in the bacterium’s magneto-
some chain. 

After the discovery by Blakemore1 of magnetotactic bac- !2" The bacterium is then subjected to increasing nega-
teria in 1975, many different types of these bacteria have tive pulses BP !the pulse-field amplitude is generally in-
been found in marine and freshwater environments around creased in small steps to provide sufficient detail in the loop". 
the world.2–4 Magnetotactic bacteria swim in or against the When the pulse field has exceeded the coercive force of the
direction of an external magnetic field. Their orientation magnetosome chain, the cell will be observed to rotate 180°
along magnetic-field lines is due to intracytoplasmic ‘‘mag- immediately following the pulse. 
netosomes,’’ i.e., membrane-enclosed magnetic iron mineral !3" After each pulse, the guiding field is reversed and the
particles, ranging in size from about 40–100 nm. In most time required for rotation of the bacterium over a well-
magnetotactic bacteria the iron mineral is magnetite !Fe3O4),  defined angle perpendicular to the rotation axis is deter-
but in some marine organisms the mineral is greigite !Fe3S4). mined. Alternatively, the dc guiding field can be rotated in
The magnetosomes are usually arranged in one or more the horizontal plane at fixed frequency. The amplitude of the
chains and comprise a permanent magnetic dipole of the or- rotating field is then decreased until the cell stops following
der of 10!12 emu !ergs/G" that is fixed within the cell.5 A the rotating field. Either of these measurements can be used
bacterium is oriented as it swims by the torque exerted by the to determine the remanent magnetization following the
external magnetic field !the geomagnetic field in natural en- pulse, relative to the saturation remanent magnetization. 
vironments" on its magnetic dipole.6 The instrument de- !4" This process is repeated for regularly increasing val-

ues of the pulse-field amplitude until saturation remanentscribed here was designed to make hysteresis measurements
magnetization in the negative direction is achieved. The firston magnetosome chains in individual cells.
half of the hysteresis curve can now be drawn through theThe hysteresis measurements are performed for indi-
measured points. After this, the bacterium can be rotatedvidual bacteria suspended in water within a capillary of rect-
180° by the guiding field and the process continued to mea-angular cross section and viewed with a microscope or re- sure the other half of the hysteresis curve.corded with a video camera !see Fig. 1". The method is Recently, we published the results of hysteresis measure-essentially the same as that used previously by Knowles.7 

ments for three different types of magnetotactic bacteria.8 In
Points on the hysteresis curve are obtained as follows: that paper, we also gave a more-detailed account of the

!1" With a magnetic bacterium oriented in a dc external method of measurement, including the influence of the vis-
‘‘guiding’’ field BG !up to about 10 G", a strong magnetic cosity of the liquid and viscous drag on the cell.
pulse Bp !peak amplitude up to 800 G and 1–3 ms duration" In view of the more general interest in the properties of
is applied in the direction of the guiding field !we will call acicular, submicron magnetic particles,7 as well as of other 
this direction positive". This results in the maximum !satura- types of magnetic bacteria than those already described in

Ref. 8, we give here a more-detailed description of the in-
a"Electronic mail: rfrankel@calpoly.edu strument. It is intended to help anyone interested in the con-
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FIG. 1. Photograph of the magnetometer. Left: Olympus BH-2 microscope
with video camera and coil system on microscope stage. Right: control
panel for guiding magnetic bacteria and changing their magnetization. 

struction of the magnetometer that has some experience in
building electronic instruments. The instrument might also
be used to distinguish magnetic from nonmagnetic bacteria
in natural samples,9 or for light scattering by rotating submi-

cron magnetic particles or rotating bacteria.10 It could be 
useful in experiments in which nonmagnetic mutants are
generated from magnetic cells for genetic analysis, or in ge-
netic engineering involving magnetic bacteria. 

II. GENERAL DESCRIPTION OF THE MAGNETOMETER 

A photograph of the magnetometer system is shown in
Fig. 1. At the left is an Olympus BH-2 microscope in which
the normal, metal, microscope stage has been replaced with a
lucite stage holding a multiple magnetic coil system and a
capillary containing the magnetic bacteria !or other samples". 
The capillary can be moved over a few mm in the north–
south !NS" and east–west !EW" directions so as to select the 
part of the specimen to be investigated. The sample can be
viewed simultaneously through the standard binocular eye-
pieces and a mono-ocular connected to a TV camera. On the
right is the control system for energizing the coils. A per-
spective rendering of the coil system is shown in Fig. 2!a". 
The functions of the controls are given in Fig. 2!b" and fur-
ther defined in Secs. III A–III G !see, also, Table I". 

The magnetometer comprises circular coils that generate
horizontal magnetic fields in the plane of the microscope 

FIG. 2. !a" Coil system in perspective
view. The four coils N, W, E, and S,
placed in square, provide the guiding
field that steers the swimming bacte-
ria. The two coils EP and WP inside 
the square generate a pulse field that
can influence the degree of magnetiza-
tion of the bacteria held at the center. 
!b" Front panel of the control unit.
Most of the switches, variable con-
trols, and test points are discussed in
the circuit descriptions !see Secs. 
III A–III G". 
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TABLE I. Front-panel controls and connectors shown in Fig. 2!b", with 
definitions and connection to the circuits given in Figs. 3!b"–3!g". Note that 
when there are separate amplifiers, as for the NS and EW guiding fields, and
for the EP and WP fields, the component designations in the circuits are the
same for both channels. 

Controls and connectors Circuit designations 

Left !top to bottom" 
Time/leg!s" 
1/4 period!s" 
Sense CCW/CW 
Amplitude !G" 
ON–OFF 
O1, O2 !2X" 

Square mode: switch R5 in Fig. 3!b" 
Circular mode: switch R3 in Fig. 3!c" 
See Sec. III G 
Guiding-field square/circle amplitude pot R1 

Output of Fig. 3!e" to NS or EW coils !L1 ,L2" 
Outputs of Fig. 3!e" to NS or EW coils 

Right !top to bottom" 
Single pulse 
Pulse width 
Amplitude !P" 
O1,"O1,O2, !2X" 

Push-button S1 in Fig. 3!d" 
Switched resistor R1 in Fig. 3!d" 
Thumb wheel pots R22 in Fig. 3!f" 
Connectors from Fig. 3!f" to EP and WP coils 

Middle !top to bottom" 
Test connectors !in" 
GND Ground !chassis" 
EW CAL 
EW GUIDE 
NS CAL 
NS GUIDE 

R10 in Fig. 3!e" !EW AMPL" 
TP1 in Fig. 3!e" !EW AMPL" 
R10 in Fig. 3!e" !NS AMPL" 
TP1 in Fig. 3!e" !NS AMPL" 

Test connectors !out" 
LOGIC 

W PULSE 
W ZERO 
E PULSE 
E ZERO 
DVM 

Square: Fig. 3!b" EWG, NSG 
Circle: Fig. 3!c" EWG, NSG 
TP1 wrt GND Fig. 3!f" 
TP2 wrt GND Fig. 3!f" 
TP1 wrt GND Fig. 3!f" 
TP2 wrt GND Fig. 3!f" 
Digital voltmeter to GND Fig. 3!g" 

Trimpots
Left !top to bottom" 
EW BAL 
EW CAL 
EW ZERO 
NS ZERO 

R8 in Fig. 3!e" 
R10 in Fig. 3!e" 
R9 in Fig. 3!e" 
R9 in Fig. 3!e" 

Right !top to bottom" 
EP CAL 
EP ZERO 
WP CAL 
WP ZERO 

R19 in Fig. 3!f" 
R18 in Fig. 3!f" 
R19 in Fig. 3!f" 
R18 in Fig. 3!f" 

stage, on which is placed the thin, flat capillary tube contain-
ing the bacteria in water. Two types of field are generated: a
guiding magnetic field that steers the bacteria along pre-
scribed paths through the liquid and a pulsed magnetic field
that allows the magnetization of the bacteria to be changed in
steps. Two pairs of flat coils, designated NS and EW gener-
ate the guiding field. Each of the four guiding field coils, N,
S, E, and W, consists of 150 turns of 0.5-mm-diam, insu-
lated, copper wire !coil resistance 2.5 %" wound on circular 
lucite forms !6.7 cm o.d., 5.1 cm i.d., width 6 mm". The coil 
planes are vertical and placed in a square so that the NS and
EW magnetic-field axes cross each other in the middle !C" of 
the horizontal plane, where a thin, flat capillary containing
the sample is placed #Fig. 2!a"$. The NS and EW guiding-
field coils are so connected in series that the magnetic fields
generated by them add in the center. 

By energizing the two pairs of coils sequentially, the
bacteria can be made to swim in a square horizontal path.
Nonmotile cells rotate in 90° steps. For some measurements,
a continuously rotating magnetic field is desired,7,9,10 which 
would cause the cells to swim in a circular path or cause
nonmotile bacteria to rotate continuously about the center of
their permanent magnetic dipole. For the rotating field, sinu-
soidal currents simultaneously energize the NS and EW coil
pairs with a 90° phase difference between them.

The horizontal pulsed magnetic field is generated by an-
other pair of coils oriented parallel to each other and placed
between the E and W guiding-field coils, closer to the capil-
lary tube. The two pulsed-field coils #east pulsed !EP" and 
west-pulsed !WP"$ #Fig. 2!a"$, each consist of 600 turns of
0.5-mm-diam insulated copper wire !coil resistance 7.4 %" 
and are also circular !5.5 cm o.d., 3.0 cm i.d., width 2.0 cm". 
They are placed so that their inner flanges are 21.4 mm apart.
The capillary is generally placed at C, midway between the
pulse-field coils on the common axes of all coils. Since the
sample is usually small compared with the distance between
the coils, the guiding and pulsed fields are quite homoge-
neous at the position of the sample. The pulse width can be
varied from 1 to 5 ms in five steps, while the field amplitude
can be varied in small steps from 0 to about "800 G. Satu-
ration magnetization of most magnetic bacteria is reached for
a pulsed field greater than about 600 G. The maximum value
of the pulsed field is determined after each pulse by a peak-
field meter. The peak-measuring circuit is described in Sec.
III F. 

The pulsed field can also be used in conjunction with a
dc guiding field. In this case, the EW guiding-field coil pair
is connected to an external dc current source through a re-
versing switch and the NS guiding-field coil pair is switched
off. 

The magnetic fields are calibrated with the aid of a Hall-
probe magnetometer that replaces the capillary at the center 
!C" of the coils. The pulsed-field amplitude is calibrated such
that one digital step of the pulsed field corresponds to 10 G.
The field BP midway between the coils and on their common
axis is set to 70!0.5" G/A per coil. The voltage across 10 % 
resistors placed in series with the coils is measured with an
oscilloscope !E,W PULSE OUT". The simple relation be-
tween the field BP and the measured voltages VP(W) 
#VP(E) for the calibrated system is 

BP! G"#14 VP !V". 

The accuracy of this calibration, taking into account the ex-
isting calibration of a standard oscilloscope, is of the order of 
"2%. 

The heat dissipation in the coils is moderate. In the
guiding-field coils at the highest current !about 2 A/coil" and 
with equal loading of the coils, the heat produced per coil is
about 2 W. However, at a constant maximum current the
energized coil would overheat if the switching provided by
the logic stops. The two pulse coils !EP and WP" will not be 
overloaded as long as the relative pulse width is less than 1%
of the repetition rate. 
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III. ELECTRONIC CIRCUITS AND THEIR FUNCTIONS 
A comprehensive block diagram of the subcircuits of the

magnetometer is given in Fig. 3!a". The circuits indicated are 
discussed separately below. 

A. ‘‘Square’’ generator †Fig. 3„b…‡ 
This circuit is called the square generator because it pro-

duces a stepped magnetic-field sequence that causes motile 

FIG. 3. !a" Block diagram of the magnetometer con-
trols. Circuits, !b", !c", and !e" are used to generate the
guiding field in the sample. There are two modes,
square and circular, and two senses, CW and CCW.
Switches shown in Fig. 2!b" select the mode and the 
sense. Outputs from the square and circular generators
are also used to control the timing in the pulsed-field
generator, circuit d. !b" Square generator. Outputs go to
the two guiding-field amplifiers when the square mode
is selected at the square/circular mode switch #see front 
panel, Fig. 2!b"$. The sense is selected by the CW/CCW
switch. The switch connections are indicated in Sec. 
III G. !c" Circle generator. When the circular mode is
selected, the outputs EWG and NSG are connected
through the square/circle mode switch to the second
stage of the guiding-field amplifiers !e" at the inputs 
EW! and NS! and switch S1 is open. The sense of ro-
tation is selected by the CW/CCW switch. The switch
connections are given in Sec. III G and are selected by
the SENSE switch in Fig. 2!b". !d" Pulsed-field genera-
tor. Input from either circuit !b" or !c" !depending on 
the mode switch" enters at Point N. The outputs EP and 
WP go to the two pulsed-field amplifiers !f". !e" 
Guiding-field amplifiers. Input is from the square gen-
erator #circuit !b"$ at R1 or from the circle generator 
circuit !c" at R9, depending on the mode switch selec-
tion #Fig. 2!b"$, which is represented by the switches S1 

and S2. For the square mode, S1 is closed and S2 is 
open; for the circular mode S1 is open and S2 is closed. 
!f" Pulsed-field amplifiers. 4 V, 1–5-ms-wide pulses 
!EP, WP" from circuit !d" generate current pulses in the 
coils EP and WP. !g" Pulse-peak detector. 

magnetotactic bacteria to swim in a !horizontal" square. It 
starts from the classic No. 555 timer chip that delivers a $5 

V square wave with a variable frequency that can be set by a 
switch that selects one of four different fixed resistors !R 

#32.2, 80, 127, and 375 K" or one variable resistor of 1 M%. 
From this clock signal other square waves are derived by 

dividing the frequency by 2, 4, or 8 in a No. 74161 chip 
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¯ !designated by A, A, E, Ē, and G, Ḡ , respectively". They are
composed by adders and AND gates to the signals H, L, K, 
and M and then to the trapezoidal shape of the signals for the
guiding fields H$L, K$M in the pulse-shape diagram and 
north–south gate !NSG" and east–west gate !EWG" at the 
outputs. The bacteria swim in a square provided the relative
amplitudes of the component currents are properly adjusted,
which is part of the calibration procedure. This path is gen-
erated for each period T of the guiding field if the currents 

FIG. 3. !Continued." 

through the coils produce a field B0 at the sample in the 
following sequence: 

0→T/4, B!NS"#$B0, B!EW"#0,
 
T/4→T/2, B!EW"#$B0 , B!NS"#0,
 
T/2→3T/4, B! NS"#!B0 , B!EW"#0,
 
3T/4→T , B! EW"#!B0 , B!NS"#0.
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B. ‘‘Circle’’ generator †Fig. 3„c…‡ 
Sinusoidal currents producing a magnetic field of ampli-

tude B0 in the NS and EW coils achieve the rotating guiding
field for circular bacterial motion: 

B! NS"#B0 cos!&t ", B!EW"#B0 sin!&t ", !T#2'/&". 

These wave forms are simultaneously realized with a quadra-
ture oscillator, such as is available from Analog Devices.11 

This device contains chips of types AD630, 2xAD639, and a
LF351 !used as an integrator" #Fig. 3!c"$. The period T is 
determined by the value of the resistor R that can be 
switched to 22 K, 8.1 K, 2.8 K, or 584 %, corresponding to 
2, 4, 8, 16 s, respectively, or to a 1 M% variable resistor. The 
output signals EWG and NSG are connected to a switch in
circuit !g" !Fig. 3" that selects the square or the circular
mode. A trigger pulse is also generated in circuit !c" !Fig. 3" 
output P for the pulsed-field generation in unit !e" !Fig. 3" 
when the system is in the circular mode. 

C. Pulsed-field generator †Fig. 3„d…‡ 
This circuit combines signals from various sources to

yield input pulses at the right time and duration for the pulse
amplifiers, but only once after the ‘‘single-pulse’’ switch is
closed. Depending on the guiding-field mode !square/circle",
this lets through one pulse that comes from a trigger at point
N, resulting either from point B on the square generator #Fig.
3!b"$ or from point P on the circle generator #Fig. 3!c"$. Both 
of these pulses are timed to occur at the middle of a leg in the
square mode, or at a quarter of a full circle in the circular
mode. The triggers are then transformed to clean, rectangular
pulses by the 555 timer U1, with a width determined by the
value of resistor R1; for R1#30, 83, 127, 169, and 211 K",
the pulse width is 1, 2, 3, 4, and 5 ms, respectively. 

D. Guiding-field amplifiers †Fig. 3„e…‡ 
The guiding-field amplitude can be varied from 0 G up

to about 15 G with R9. The maximum value of the guiding
field, 15 G, exceeds the geomagnetic field by about a factor
of 30, large enough to neglect the geomagnetic field in most
cases, but not so large that it would cause excessive heating
of the coils or of the circuit itself. The square or circular 

FIG. 3. !Continued." 

shape of the guiding fields is prescribed by signals from the
pulse logic, as discussed in Secs. III A and III B. The dura-
tion of one cycle can be set from 2 to 16 s in four steps of 2
by the switched resistor R5 in Fig. 3!b", or continuously.

The preamplifiers consist of 741 opamps followed by
bipolar followers. These provide a voltage gain of about 1
and deliver a balanced signal to the ECG 261/262 heat-sink-
protected power amplifiers that feed the NS and EW guiding-
field coil pairs. The balance !Bal" and the zero-field setting 
!Gain" of the coils are adjusted with trimpots R6 and R7, as 
indicated in the circuit diagram. 

E. Pulsed-field amplifiers †Fig. 3„f…‡ 
There are two identical power amplifiers, one for each

coil, that generate the pulsed-field current. The pulse fields,
Bp(E) and Bp(W), are normally equal. The reason for hav-
ing separate amplifiers is that for the available coil size, the
voltage or current would be excessive if the coils were
placed in series or parallel, respectively. With the present
arrangement, the maximum field at the sample position is
800 G for $4 V  !standard" pulses at the inputs of both am-
plifiers. The input signals pass first through 1 k% thumb 
wheel attenuators R22 !Hartmann Gerätebau, Beiersdorf, 
Germany, 20030" that allow the pulsed-field amplitude to be
varied in small steps #Fig. 2!b", right$. Next, the attenuated 
pulses are applied to opamps !741" where the quiescent dc 
current in the power stage !ECG60" is set with the aid of the 
741 bias !the 10 K pot R18" at a value about $1 mV between 
test points TP2 and TP3 #EP ZERO and WP ZERO in Fig. 
2!b"$. 

The input signal at the base of the ECG60 is delivered
through two, cascaded, emitter followers !2N3035". To pre-
vent bottoming of the ECG60, a diode D2 is connected from 
the collector of the ECG60 to a point clamped at $6 V  
during the pulse. The maximum output pulse is measured as
a voltage across the 10 % resistors placed in series with the
EP and WP coils. The oscilloscope test point TP1 for the
pulses is provided at the bottom of the 10 % resistor R2 

placed in series with the coil. A diode$resistor clamp D1R8 

prevents the pulse coil from producing an inductive over-
shoot after each pulse. 
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FIG. 4. Pulsed-field shape from the pulse amplifiers !see Sec. III E". The 
pulses become distorted above 400 G, but a unique maximum value is
determined by the pulse-peak detector #Fig. 3!g"$. 

The pulse current supply must deliver a voltage of $50 
to $150 V with respect to ground and be resistant to the (5 
ms 10 A pulses, but it does not need much long-term stabil-
ity. The two other supplies !$12 and !12 V with respect to 
ground" need not deliver more than about 200 mA, and mod-
est regulation is sufficient. 

F. Pulse peak detector †Fig. 3„g…‡ 
The pulse field is not very linear as a function of the

setting of the pulse amplitude control R22 in Fig. 3!f", and,
moreover, the top of the pulse is not flat at high pulse cur-
rents. The effective pulse duration is further reduced by the
delaying effect of the inductance of the coil. This effect is
shown in Fig. 4. Therefore, the maximum pulsed-field am-
plitude is measured with a pulse-peak detector. This circuit
comprises two actions; the first stage is a simple adder that
delivers the sum of the negative pulses appearing at the out-
puts of the pulsed-field amplifiers as applied to the 7.4 % 
pulsed-field coils, and the second stage is the detector 
proper.12 The feedback in this circuit very effectively clamps
the output voltage to the top value of the output pulse from
the adder. This value is read with a digital voltmeter !DVM" 
between the test point DVM and ground after each pulse. 

G. Switches 

This part of the circuit only contains switches between
parts of other circuits; the connections are summarized as
follows: 

1. Square guiding field 
Circuit !b" output !EW"→circuit !e" input !EW !"; S1
 

closed, S2 open.

Circuit !b" output !NS"→circuit !e" input !NS !"; S1 closed,

S2 open.
 

2. Circle guiding field 
Circuit !c" output !EWG"→circuit !e" input !EW ""; S1
 

open, S2 closed.
 
Circuit !c" output !NSG"→circuit !e" input !NS ""; S1 open,

S2 closed.
 

3. Switching between clockwise (CW) and counter-
clockwise (CCW) motion 
Circuit !b" CW: output !E"→input !E!"; CCW: output
 
!Ē "→input !E!".
 
Circuit !b" CW: point S→point S!; point T→point T!; CCW:
 
point S→point T!; point T→point S!.
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