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ABSTRACT

Aims. We discuss instrumental and analytic methods that have been developed for the first generation of bolometric cosmic microwave
background () polarimeters. The design, characterization, and analysis of data obtained using Polarization Sensitive Bolometers
(PSBs) are described in detail. This is followed by a brief study of the effect of various polarization modulation techniques on the
recovery of sky polarization from scanning polarimeter data.
Methods. Having been successfully implemented on the sub-orbital B experiment, PSBs are currently operational in two
terrestrial  polarization experiments (Qa and the Robinson Telescope). We investigate two approaches to the analysis of data
from these experiments, using realistic simulations of time ordered data to illustrate the impact of instrumental effects on the fidelity
of the recovered polarization signal.
Results. We find that the analysis of difference time streams takes full advantage of the high degree of common mode rejection
afforded by the PSB design. In addition to the observational efforts currently underway, this discussion is directly applicable to the
PSBs that constitute the polarized capability of the Planck HFI instrument.

Key words. cosmic microwave background – polarization – instrumentation: detectors – instrumentation: polarimeters –
techniques: polarimetric – methods: numerical

1. Introduction

Recent advances in millimeter-wave instrumentation and tech-
niques have transformed observational Cosmic Microwave
Background () research. Over the course of the past decade,
statistical detections of the minute temperature variations in the
 have given way to high signal to noise imaging of the sur-
face of last scattering.

The rapid pace of technological development in the field of
 research has contributed to an equally remarkable rate of
progress in our understanding of the Universe; cosmology is in
the midst of an abrupt transition from a data-starved theoretical
framework to a rigorously tested standard model. Remarkably,
as of early 2006, the currently avaliable  data are sufficiently
precise (and accurate!) that, within the framework of the most
simple inflationary models, the majority of the scientific poten-
tial of the  temperature anisotropies has already been real-
ized. Measurements of the polarization of the  provide an
important confirmation of the validity of the theoretical frame-
work through which the data are interpreted, and also aid in the
precise determination of the parameters of the theory.

Further motivation comes from the tantalizing possibility
that the  polarization holds a unique imprint from gravita-
tional waves generated during the epoch of Inflation. A detection

of this signature would represent a probe of physics beyond the
standard model – both that of cosmology, and potentially that of
particle physics.

Current experimental efforts are focused on the development
of high fidelity  polarimeters capable of characterizing the
small fractional polarization of the . The B03
experiment was the first bolometric instrument to measure the
polarization in the , and the first of several to use the
Polarization Sensitive Bolometers (PSBs) developed for Planck
HFI. Two additional terrestrial telescopes using PSBs, Quad and
the Robinson Telescope, are currently observing from the South
Pole.

We describe the experimental approach employed by the
first generation of bolometric instruments to successfully probe
 polarization and discuss aspects of the data analysis which
may inform future observations. Following a brief description
of PSBs, we provide a pedagogical description of the method
of analysis that has been applied to the B03 data (Masi et al.
2005; Jones et al. 2006; Piacentini et al. 2006; Montroy et al.
2006; MacTavish et al. 2005). Finally, we investigate the merits
of several modulation schemes for scanning polarimeters which
are directly applicable to current and proposed  polarization
experiments at the South Pole and from Antarctic Long Duration
Balloon flights.
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2. Polarization sensitive bolometers

Quasi-total power and correlation receivers (both heterodyne
Barkats et al. 2005 and homodyne Jarosik et al. 2003) using low
noise front-end amplifier blocks based on HEMT amplifiers are
mature technologies at millimeter wavelengths. The fundamen-
tal design principles of these receivers are well established and
have been used to construct polarimeters at radio to mm-wave
frequencies for many years (Spiga et al. 2002; O’Dell et al. 2003;
Barkats et al. 2004; Leitch et al. 2002; Readhead et al. 2004).
Although cryogenic bolometric receivers achieve much higher
instantaneous sensitivities over wider bandwidths than their co-
herent analogs, the intrinsic polarization sensitivity of coherent
systems has made them the technology of choice for the first
generation of CMB polarization experiments.

Prior to the release of the B03 results (Montroy
et al. 2006; Piacentini et al. 2006; Jones et al. 2006), all pub-
lished detections of  polarization were obtained from exper-
iments relying on the proven HEMT technology (Leitch et al.
2004; Readhead et al. 2004; Barkats et al. 2004; Hinshaw et al.
2003; Kogut et al. 2003; Page et al. 2003). While interferometry
is a robust method of polarimetry, the N2 scaling of the complex-
ity of correlators prohibits scaling of the design to large optical
throughput, limiting the raw sensitivity of a practical interfer-
ometric experiment. Although much progress has been made in
increasing the sensitivity, and decreasing the footprint, of single-
dish HEMT based correlation receivers (Gaier et al. 2003), this
technology has not yet been demonstrated with the sensitivity or
scalability of contemporary low-background bolometer arrays at
frequencies above ∼90 GHz.

We briefly describe a bolometric system that combines the
sensitivity, stability, and scalability of a cryogenic bolometer
with the intrinsic polarization capability traditionally associated
with coherent systems (Jones et al. 2003). In addition, the design
obviates the need for orthogonal mode transducers (OMTs), hy-
brid tee networks, waveguide plumbing, or quasi-optical beam
splitters whose size and weight make fabrication of large format
arrays impractical. Polarization sensitive bolometers (PSBs) are
fabricated using the proven photolithographic techniques used to
produce “spider web” bolometers, and enjoy the same benefits
of reduced heat capacity, negligible cross section to cosmic rays,
and structural rigidity (Yun 2003). Finally, unlike OMTs or other
waveguide devices, these systems can be relatively easily scaled
to ∼600 GHz, limited at high frequencies only by the ability to
reliably manufacture sufficiently small single-moded corrugated
structures. Receivers using this design have been demonstrated
at 100, 150, 217 and 353 GHz.

Polarization sensitivity is achieved by controlling the vector
surface current distribution on the absorber, and thus the effi-
ciency of the ohmic dissipation of incident Poynting flux. This
approach requires that the optics, filtering, and coupling struc-
ture preserve the sense of polarization of the incident radiation
with high fidelity. A multi-stage corrugated feed structure and
coupling cavity has been designed that achieves polarization sen-
sitivity over a 33% bandwidth.

The PSB design has been driven by the desire to minimize
systematic contributions to the polarized signal. Both senses of
linearly polarized radiation propagate through a single optical
path and filter stack prior to detection, thereby assuring both de-
tectors have identical spectral passbands and closely matched
quantum efficiencies.

Two orthogonal free-standing lossy grids, separated by
∼60 µm and both thermally and electrically isolated, are
impedance-matched to terminate a corrugated waveguide

structure. The physical proximity of the two detectors assures
that both devices operate in identical RF and thermal environ-
ments. A printed circuit board attached to the module accom-
modates load resistors and RF filtering on the leads entering the
bolometer cavity. For B, Planck HFI, QUaD, and the
Robinson Telescope, the post-detection electronics consist of a
highly stable AC readout with a system 1/ f knee below 30 mHz
(Lamarre et al. 2003; Bowden et al. 2004; Yoon et al. 2006).
Unlike coherent systems, this low frequency stability is attained
without phase switching the RF signal.

We have designed the optical elements, including the feed
antenna and detector assembly, to preserve sky polarization and
minimize instrumental polarization of unpolarized light. To this
end, the detector has been designed as an integral part of the
optical feed structure. Corrugated feeds couple radiation from
the telescope to the detector assembly. Corrugated horns are the
favored feed element for high performance polarized reflector
systems due to their superior beam symmetry, large bandwidth,
and low sidelobe levels. In addition, cylindrical corrugated feeds
and waveguides preserve the orientation of polarized fields with
higher fidelity than do their smooth-walled counterparts.

The coupling structure, which is cooled to below 1 K1,
consists of a profiled corrugated horn, a modal filter, and an
impedance-matching section that allows efficient coupling to the
polarization sensitive bolometer (see Fig. 1). In addition to a re-
duction in the physical length of the structure, the profiled horn
provides a nearly uniform phase front that couples well to the
other filters and optical elements in the system. The modal filter
isolates the detectors from any unwanted higher order modes that
may be excited in the thermal break. In addition, this filter com-
pletely separates the design of the bolometer cavity from that of
the feed, which couples to the optics. The impedance-matching
section (the re-expansion at the left side of Fig. 1) produces a
uniform vector field distribution with a well-defined guide wave-
length2 and characteristic impedance over a large (∼33%) band-
width.

The detector assembly is a corrugated waveguide that is
operated well above cutoff. The bolometers, which act as an
impedance-matched termination of the waveguide cavity, are
coupled via a weak thermal link to the temperature bath. The
electric field in the cavity drives currents on the surface of the
absorber, resulting in ohmic power dissipation in the bolome-
ter. This power is detected as a temperature rise measured by
means of matched Neutron Transmutation Doped Germanium
(NTDGe) thermistors (Beeman 2001). The bolometers each cou-
ple to a single (mutually orthogonal) linear polarization by pre-
cisely matching the absorber geometry to the vector field of
the coupling structure. The coupling structure has been tailored
to ensure that the field distribution resulting from a polarized
source is highly linear at the location of the bolometer.

Because the absorber geometry influences the field distribu-
tion within the coupling structure, a treatment of the bolometer
cavity as a black-body is in general not valid. An important con-
sequence of this fact is that any attempt to model an analogous
few-moded3 optical system must consider interference terms be-
tween modes when calculating coupling efficiencies or simply

1 The PSB feeds in B03, Quad, and the Robinson
Telescope operate at 240 mK, while the Planck HFI focal plane is
cooled to ∼100 mK.

2 The guide wavelength, λg, is typically 20% larger than free space,
and d log(λg)/d log(ν) remains small over the entire range of operation.

3 By “few-moded” we mean a system with optical throughput, 1 <
AΩ/λ2

� 10.
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Fig. 1. The corrugation geometry of the B PSB feeds, with dimensions in millimeters. The radiating aperture is on the right hand side,
while the PSB module is seated on the left.

trying to predict radiation patterns. The amplitude and phase of
any higher order modes capable of propagating to the bolome-
ter depend on the details of both the excitation and structure.
Therefore, any numerical calculation would be susceptible to
a large number of uncertainties associated with the appropriate
boundary conditions at the bolometer. For this reason, it may
prove difficult to extend the general single mode PSB design to
a few-moded application without sacrificing crosspolar perfor-
mance.

3. Analysis

3.1. Polarization formalisms

The two most commonly used conventions for treating polar-
ized radiation are the Jones and the Stokes/Mueller formalisms.
The primary difference between the two approaches is that the
Stokes/Mueller formalism manipulates irradiances, and there-
fore is applicable only to incoherent radiation. On the other hand,
the Jones formalism models optical elements with matrix opera-
tions on the (complex) field amplitudes, making it the appropri-
ate approach for coherent analysis. While the Jones formalism
is rather intuitive, the Stokes formalism is more naturally suited
to  analysis. In the following we introduce both approaches
at an elementary level, and describe the correspondence between
the two. A more detailed description of each approach may be
found in Mueller (1948); Jones (1941a,b, 1942); Hecht (1998)
and Hamaker & Bregman (1996).

The general action of linear optical elements can be de-
scribed in terms of the relationship between the input and output
electric field vectors. The Jones matrix of an optical element is
defined in terms of its action on the incident fields,

e f = J ei,

where the Jones matrix, J, of the system is a general product of
the matrices describing individual components in the system.
(

Ex

Ey

)

f

=

[
Jxx Jxy

Jyx Jyy

]

0

. . .

[
Jxx Jxy

Jyx Jyy

]

n

(
Ex

Ey

)

i

. (1)

Of course, all such components may be rotated with respect to
one another with the usual rotation matrices,

J′ = R J RT ,

with

R ≡
(

cosψ − sinψ
sinψ cosψ

)
.

Fig. 2. A photograph of a 145 GHz B PSB absorber. The
diameter of the grid is 2.6 mm, while the absorber leg spacing, g, is
108 µm. Each leg is 3 µm wide. This device is sensitive to incident
radiation polarized in the vertical direction due to the metalization of
the Si3N4 mesh in that direction. The horizontal Si3N4 beams evident
in the photo are not metalized, and provide structural support for the
device. The thermal conductivity between the absorber and the heat sink
is dominated by the metallic leads running to the thermistor chip.

This formalism allows a fairly complicated optical system to be
described by a single matrix, which need only be derived once
from the constituent components.

As an example we describe an imperfect polarizer oriented
at an angle ψ with respect to the basis in which the fields are
defined. Such an object may be represented by the Jones matrix:

Jp ≡ R

[
η 0
0 δ

]
RT (2)

=

[
η cos2 ψ + δ sin2 ψ (η − δ) cosψ sinψ

(η − δ) cosψ sinψ η sin2 ψ + δ cos2 ψ

]
, (3)

where η > δ. A perfect polarizer would have η = 1 and δ = 0.
After generous application of trigonometric identities, one re-
covers the general Jones matrix for an imperfect polarizer ori-
ented at an angle ψ

Jp =
1

2

[
(η + δ) + (η − δ) cos 2ψ (η − δ) sin 2ψ

(η − δ) sin 2ψ (η + δ) − (η − δ) cos 2ψ

]
. (4)

Each detector in a polarization sensitive bolometer pair acts as
just such a partial polarizer, followed by a total power detector.
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Fig. 3. The fractional change in the cut-sky angular power spectra (pseudo-Cℓ) for temperature (top panel), and polarization (bottom panels) from
iteration to iteration of the mapmaker. The largest scales take the longest to converge, and the polarization signal generally takes longer to converge
than does the temperature.

Fig. 4. The convergence criteria for the iterative procedure is determined by a threshold on the rms amplitude of the correction. Histograms of the
corrections to the I (left panel) and Q (right panel) maps (the change in pixel value between subsequent iterations) are shown for 5, 10, 20, 40 and
80 iterations. For comparison, the noise per pixel of the B03 temperature data at the same resolution (3.4′) is typically ∼24 µK (Jones et al. 2006).

The Stokes parameters are defined in terms of the electric
field as follows:

I ≡ 〈ExE∗x + EyE
∗
y〉 = 〈|Ex|2〉 + 〈|Ey|2〉

Q ≡ 〈ExE∗x − EyE
∗
y〉 = 〈|Ex|2〉 − 〈|Ey|2〉

U ≡ 〈ExE∗y + EyE
∗
x〉 = 2 〈|ExEy| cos(φx − φy)〉

V ≡ i〈ExE∗y − EyE
∗
x〉 = 2 〈|ExEy| sin(φx − φy)〉

where the brackets, 〈 〉, represent a time average and the fields
are specified in a coordinate system fixed with respect to the in-
strument. For Thomson scattering of electrons in a quadrupolar
radiation field there is no mechanism for the introduction of a
relative phase between the two polarizations. Therefore, the cos-
mological Stokes V parameter is presumed to be zero.

The action of linear optical elements on a Stokes vector, s,
can be described in terms of the elements’ Mueller matrix,

s f =M si.

Given the definition of the Stokes parameters, one can derive
the relationship between a Jones matrix, and the corresponding
Mueller matrix. Following Born & Wolf (1980) we find

Mi j =
1

2
tr
(
σiJσjJ

†
)
, (5)

where the σi are the Pauli matrices:

σI = σ0 ≡
(

1 0
0 1

)
σQ = σ3 ≡

(
1 0
0 −1

)

σU = σ1 ≡
(

0 1
1 0

)
σV = σ2 ≡

(
0 −i
i 0

)
.

(6)

Applying a moderate amount of algebra to Eqs. (4) and (5), we
find the first row of the Mueller matrix Mp for a partial polar-
izer. This defines the total power detected as a function of the
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Fig. 5. The time dependence of the (signal subtracted) noise power spectra of the B science channels as determined from the in-flight
data. Each frame shows the power spectrum of each noise stationary subset (chunk) from a particular channel. The series of lines above 10 mHz
corresponds to the harmonics of the scan frequency. The signal band extends from 0.05 to 5 Hz. The diurnal dependence of the 1/ f knee is evident.
The B345Z channel exhibited noise whose properties were neither stationary nor Gaussian, which is manifest in the low frequency contribution.

incident I, Q, U, and V parameters:

MII =
1

2
(η2 + δ2) (7)

MIQ =
1

2
(η2 − δ2) cos 2ψ (8)

MIU =
1

2
(η2 − δ2) sin 2ψ (9)

MIV = 0. (10)

The signal from a total power detector is proportional to the
Stokes I parameter of the incident radiation. Modeling a polar-
ization sensitive bolometer as a partial polarizer followed by a
total power detector, we find (ignoring, for the moment, the ef-
fects of finite beam size and frequency passband) the data may
be expressed as a sum

di =
s

2

[
(1 + ǫ) · I + (1 − ǫ) · (Q cos 2ψi + U sin 2ψi)

]
+ ni, (11)

where we have defined the polarization leakage term, ǫ, such that
(1 − ǫ) is the polarization efficiency4, ψ is the orientation of the
axis of sensitivity of the PSB, and s is the voltage responsivity of
the detector. For B, the value of the crosspolar leak-
age is typically ∼5%, and ranges from 2−7% for second genera-
tion devices designed for the Planck HFI, BICEP, and QUAD.

It should be noted that the noise contribution, n, is overly
simplified in Eq. (11). See Appendix A for a more detailed dis-
cussion of the noise properties of bolometric receivers, which
explain the general features of the noise power spectra shown in
Figs. 5 and 6.

4 That is, in terms of the elements of the Jones matrix for an imperfect
polarizer, the leakage ǫ ≡ δ2/η2. This is the ratio between the minimum
and peak power response to a pure linearly polarized source, which is a
directly observable property of the PSB.

3.2. Polarized beams

The angular response of an instrument can be characterized by
the copolar and crosspolar power response functions P‖(r, θ, φ)
and P⊥(r, θ, φ). In the time reversed sense these can be thought
of as the normalized power at any point in space resulting from
a linearly polarized excitation produced by the feed element in
the focal plane. That is, for a given polarization p = {‖,⊥},

Pp(r, θ, φ) ≡
|Ep(r, θ, φ)|2

|E‖(r, 0, 0)|2 · (12)

For a single moded system, Pp has nothing to do with the prop-
erties of the detector. Due to the presence of the modal filter
in the throat of the coupling feed (see Fig. 1), the beam is a
function only of the feed geometry and the optical elements of
the system. To fully characterize the system, the polarized beam
patterns must be considered separately from the detector.

The exact definitions used for the polarizations on the sphere
vary in the literature, but the standard is Ludwig’s Third defini-
tion Ludwig (1973). In any case, for small angles from the beam
centroid, they are very nearly equal to the Cartesian definition.

The copolar beam, P‖, is qualitatively similar to an Airy pat-
tern; a Gaussian near the beam centroid, with a series of side-
lobes. For most optical systems the crosspolar beam, P⊥, reaches
a minimum at the peak of the copolar beam and, for on-axis sys-
tems, is minimized along both the E- and H-planes. The peak
of the crosspolar pattern typically occurs near the half-power
point of the copolar beam, and the peak amplitude relative to
the copolar beam is fundamentally related to the asymmetry of
the copolar beam (Olver et al. 1994). For an azimuthally sym-
metric system, such as a feedhorn antenna, this produces lobes
in the 45◦ plane in all four quadrants of the beam. For an off-
axis reflector such as the B telescope, the azimuthal
symmetry is lost and the lobes are bimodal. It is worth noting
that the polarized beams generally depend on frequency as well
as the field distance.

A PSB detects the convolution of the polarized sky with
the polarized beam, integrated over the frequency bandpass, and
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Fig. 6. Left panel: the power spectral density, in  units, of the noise for a representative chunk of the deconvolved B03 time ordered data. The
black line is derived from the raw (signal plus noise) data, whereas the red line is the estimate of the signal-subtracted PSD. The scan frequency
for this chunk appears at 12 mHz, and the  dipole (which appears as a triangle wave at the scan frequency) has been subtracted from the TOD
prior to the noise estimation. Right panel: the amplitude of the noise bias as determined from an ensemble of signal plus noise simulations. The
blue line is representative of the bias in a typical high signal-to-noise chunk, whereas the red line is the most extreme example found in the low
signal-to-noise regime. Further discussion of the noise in bolometric detectors can be found in Appendix A.

subject to the polarization efficiency of the detector5. In the flat
sky approximation, a time domain sample of a single detector
within a PSB pair, di, may therefore be written as the sum of a
signal component

di =
s

2

∫
dν
λ2

Ωb

Fν

�
dΩ

(
P‖(r̂i) + P⊥(r̂i)

)[
I + γ P(r̂i)

×
(
Q cos 2ψi + U sin 2ψi

)]
, (13)

and a noise contribution. Here, the Stokes parameters are de-
fined on the full sky and the integration variable is r̂i = n̂i − r̂,
for a vector, n̂i, describing the pointing at a time sample, i. We

have also defined the beam solid angle Ωb =
�

dΩ (P‖ + P⊥).
The normalized beam response and the polarization efficiency
are given by,

P(r̂) ≡
P‖ − P⊥

P‖ + P⊥
γ ≡ 1 − ǫ

1 + ǫ
· (14)

For B03, the angle ψ is modulated by sky rotation and the motion
of the gondola. The calibration factor, s, converts the brightness
fluctuations in I, Q, and U to a signal voltage.

By rearranging Eq. (13) and dropping both the explicit spa-
tial and frequency dependencies, the relation can be written more
intuitively,

di≃
s

2

∫
dν λ2 Fν

�
dΩ
[
I + γP (Q cos 2ψi + U sin 2ψi)

]
. (15)

We have made the simplifying assumption that we may remove
the beam and polarization efficiencies from the integral over the
sky, and then absorb these prefactors into a redefinition of the

calibration constant, s = s′
∫

dν (1 + ǫ).

5 This treatment is actually more general; it holds for any receiver
that can be characterized as a total power detector preceded by an im-
perfect polarizer. That is, any receiver that is well described by a Jones
matrix of the type

Jp =

[
η 0
0 δ

]
.

In the discussion that follows, keep in mind that ǫ ≡ δ2
η2

.

3.3. Signal and noise estimation

A great deal of effort has been devoted to the development of
algorithms designed to estimate the signal and noise from noise-
dominated data, and a rich literature has developed around the
topic (for some recent examples, see Jarosik et al. 2006; Doré
et al. 2001; Amblard & Hamilton 2004). In this section we out-
line in pedagogical detail the method used to estimate the signal
and noise from the published B03 data (MacTavish
et al. 2005; Montroy et al. 2006; Piacentini et al. 2006; Jones
et al. 2006).

An estimate of the instrumental noise properties that is both
precise and accurate is required in order to avoid the introduc-
tion of a bias to the estimate of the power spectrum of the signal.
For B03, the high signal to noise ratio of the data in fact compli-
cates the noise estimation procedure. We solve for the noise and
signal simultaneously using an iterative procedure adapted from
that applied in the analysis of the data from the 1998 flight of
B (Prunet et al. 2001; Netterfield et al. 2002; Ruhl
et al. 2003). The B03 data are unique among contemporary 
experiments in that not only are the temperature maps signal
dominated at angular scales approaching the beamsize, but the
time ordered data are also characterized by signal to noise ratios
of order unity. B03 is the only polarized dataset that is compara-
ble in this regard to that anticipated from the Planck HFI.

Assuming that the data, d, are well described as the sum of a
sky signal and a noise contribution, d = Am+n, where AT is the
pointing matrix which maps time domain samples to pixels on
the sky. If the statistical properties of the noise contribution are
piecewise stationary with a (circulant) noise covariance matrix,
N, defined as

Ntt′ =
1

N

Nd∑

i

(ni+t − 〈n〉) (ni+t′ − 〈n〉) ,

then the least squares estimate of the map is given by,

m̃ =
(
AT N−1A

)−1
AT N−1d. (16)

The iterative procedure begins with the assumption of a white
noise power spectrum (i.e., diagonal N), in which case Eq. (16)
corresponds to a simple average of the data falling in a given
pixel. The noise contribution used in a given iteration on the
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solution to Eq. (16) is obtained from the estimate of the signal
obtained in the previous iteration,

ñk+1 = d − A m̃k. (17)

Piecewise stationarity of the noise allows subsequent convolu-
tions of N−1d to be performed in the Fourier domain.

For most terrestrial telescopes, which suffer from relatively
high backgrounds and large atmospheric signals, the time stream
is dominated by noise. Therefore, a good approximation to the
noise covariance matrix appearing in Eq. (16) is provided by the
power spectrum of the raw data. For orbital and balloon-based
 experiments like B, the time ordered data are
not noise dominated, greatly complicating an accurate determi-
nation of the noise. In general, an in-situ estimation of the noise
is required due to the influence of atmospheric emission, unpre-
dictable backgrounds, and scan-synchronous effects. As a result,
the simultaneous estimation of both the signal and noise is re-
quired.

An iterative solution for both N and m̃ is possible by using
an adaptation of the Jacobi method. The Jacobi method is an
iterative approach to the solution of a general linear system of
equations, such as Eq. (16), that does not require the inversion
of large matrices. The application to the solution of Eq. (16) is
derived in Appendix B. This algorithm is naturally suited to the
problem of noise estimation, as the signal subtraction is an inte-
gral part of the iterative procedure.

By iterating on the noise covariance matrix, N, as well as
the signal, m̃, one approaches a general least squares solution
for both. This procedure has been used in the noise estima-
tion of previous experiments that probed the  temperature
anisotropies (Wright et al. 1996; Prunet et al. 2001). In this ap-
plication, the approach has been extended to a polarized data set.

As described in Appendix B, each subsequent iteration on
the solution to Eq. (16), m̃k+1, is calculated from the previous
solution according to the procedure

m̃k+1 = m̃k + δm̃k+1,

where

δm̃k+1 ≡ α · diag(AT N−1
k A)−1AT N−1

k (d − A m̃k),

and the relaxation parameter, α � 1, is tuned to optimize
the speed of convergence. Recall that, in the case of polarized
data, the quantity d represents the left hand side of Eq. (21).
Therefore, the calculation of the matrix diag(AT N−1

k
A)−1 in-

volves the inversion of the polarization decorrelation matrix on
the right hand side of Eq. (21). The great advantage of this
method is that the convolution of the data with the inverse noise
correlation matrix,

nk+1 ≡ N−1
k (d − A m̃k), (18)

can be efficiently calculated in the Fourier domain, without need-
ing to invert the full time domain correlation matrix, N. This op-
eration is simply the application of a Fourier filter to the signal-
subtracted time stream using the inverse of the noise power
spectrum as the filter kernel.

The unbiased estimation of power spectra relies crucially on
the ability to accurately model the noise properties of the instru-
ment (Hivon et al. 2002; Borrill 1999). In order to treat the noise
in a self-consistent fashion as the realization of a Gaussian ran-
dom process, it is necessary to measure and store the observed
auto- and cross-correlations for all channel permutations, and
each noise stationary subset. In the North American analysis of

B036, the data are divided into 215 noise-stationary subsets, re-
ferred to as chunks, each of which consist of approximately one
hour of data. For each of these chunks the 36 (complex) auto-
and cross-power spectra are calculated, binned logarithmically,
and stored to disk. When used to generate noise realizations or
construct filtering kernels, these binned spectra are interpolated
to the discrete frequencies required by each subset of the data.

The B readout electronics are AC coupled at
∼6 mHz, and therefore there is no useful information in the time
stream on timescales longer than that set by the stationarity of
the noise. Dividing the data into these hour long subsets repre-
sents a tradeoff between sample variance and stationarity in the
accuracy of the noise estimate. The non-stationarity of the B03

noise is illustrated in Fig. 5.
The chunk boundaries are chosen to maximize the accuracy

of the noise estimate. The length of these chunks introduces a
practical limit to the length, Nτ, of the kernel applied in Eq. (18).
The computational scaling is thus Nd log(Nτ) for each iteration
of the mapmaker. The memory requirement is also set by the de-
gree of noise stationarity; the algorithm only requires the point-
ing and bolometer data for an individual chunk to be held in
memory at any given time. For B03, the contributions of file
writing and Fourier transforms to the run time are approximately
equal, depending on the avaliable memory7.

The Fourier approach to the analysis requires the data within
a chunk to be continuous and well characterized by a given noise
power spectrum. About 7% of the B03 time stream is contam-
inated by transient events (primarily cosmic ray hits and cali-
bration lamp pulses). These gaps are flagged, and replaced with
fake data that are statistically consistent with the remainder of
the chunk. The signal subtracted data are easily filled with any
reasonable realization of the noise. Due to the small fraction of
the data which are contaminated, the exact method of gap-filling
has negligible impact on the final signal and noise estimates.

For each chunk all [Nch(Nch − 1)/2 + Nch] auto and cross
power spectra are derived from the signal-subtracted time
stream, n, obtained from Eq. (16) using the maximum likeli-
hood maps derived from the full set of data. The noise spectra
obtained in this manner are generally biased due to the effect of
pixelizing the (continuous) sky signal, as well as the finite signal
to noise with which the sky signal, m̃, is recovered (Amblard &
Hamilton 2004).

Given a sufficiently high resolution pixelization, the signal
variation within a pixel can be made to be negligibly small com-
pared to the noise in the map. We pixelize the sky using the
ix method, at a resolution which corresponds to a pixel
size of ≃3.4′ (Górski et al. 2005). At this resolution we find the
effect of pixelization to be well below the instrumental noise per
pixel of the B03 data. As described in Masi et al. (2005) and
Jones et al. (2006), the B03  data are divided into a shallow
and deep field, the latter being a subset of the former. The noise
per pixel of the deep field is roughly three times lower than the
shallow field.

The impact of the noise in the signal estimate is found to be
significant for the data that constitute the shallow region of the

6 The B team implemented two independent analysis of
the time ordered data from the 2003 Antarctic Long Duration Balloon
flight. The results from both pipelines are reported in Jones et al. (2006);
Montroy et al. (2006); Piacentini et al. (2006); Masi et al. (2005).

7 The Jacobi solver implemented by the North American
B team requires ∼120 MB of RAM and produces
a converged GLS estimate of the signal and noise at a rate of
10 processor-s/channel/hour of data sampled at 60 Hz, when running
on a 2 GHz AMD Athlon64 X2 workstation.
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B03 target field. The raw sensitivity of the instrument ultimately
determines the signal to noise ratio of the time ordered data and,
when combined with the distribution of integration time on the
sky, the fidelity of the recovered signal estimate, m̃. The error in
the signal estimate, m̃, introduces a bias to the estimate of the
noise power spectrum Amblard & Hamilton (2004). This bias is
generally frequency dependent because of the finite bandwidth
of the signal. The bias in the noise estimation varies from chunk
to chunk as a result of the variation in signal to noise ratio in
different parts of the map.

The origin of this bias can be understood through closer ex-
amination of the signal-subtracted time stream, ñ, that is ob-
tained from the estimate of the Stokes parameter maps, m̃,
namely, ñ = d − Am̃. The data are assumed to consist of the
sum of a pure signal and noise, d = s + n, giving

ñ = s + n − Am̃

= n − n̂ (19)

where we have defined the projection of the signal error to the
time stream as n̂ ≡ A(m̃ − m). The raw noise power spectrum,
〈̃nñ†〉, which is estimated from Eq. (19) differs from the true
noise power spectrum, 〈nn†〉, by the factor
(

1 +
〈n̂n̂†〉
〈nn†〉

− 2
〈n̂n†〉
〈nn†〉

)
· (20)

For B03, the projection of the map errors to the time domain is
highly correlated with the true time domain noise, and therefore
the cross-correlation term dominates in Eq. (20). The raw noise
power spectra therefore tend to underestimate the true amplitude
of the noise at frequencies within the signal bandwidth. The am-
plitude of the bias term in Eq. (20) is as high as 10% for the most
poorly covered regions in the shallow field, and is below 1% for
the 175 chunks of the deep field.

To correct for the bias present in the B03 noise estimates,
we generate an ensemble of signal and noise simulations using a
fiducial noise power spectrum and run the noise estimation pro-
cedure on each realization. The transfer function of the noise es-
timation procedure is then obtained by comparing the ensemble
average of the estimated noise power spectra to the input power
spectra. The size of the ensemble is determined by the required
reduction of the sample variance at the lowest frequencies of in-
terest; we find that the transfer function is characterized at the
sub-percent level with seventy-five realizations. This bias trans-
fer function is then used to correct the spectra obtained for each
chunk of the time ordered data. A comparison of bias transfer
functions that are typical of data in the high and low signal to
noise regimes is shown in Fig. 6.

In order to produce noise realizations which accurately re-
flect the statistical properties of the instrumental noise, we re-
quire a framework in which to treat noise correlations be-
tween detectors in the time domain. Noise correlations in the
data are expected both from fundamental considerations (see
Appendix A), as well as from the presence of correlated ther-
mal/optical fluctuations, and crosstalk in the readout electronics.
The measured noise from a given channel, ñk, is modeled as the
sum of an intrinsic (uncorrelated) component, nk, and the con-
tributions from the intrinsic noise of the other channels, filtered
through a (frequency dependent) crosstalk transfer function ξik.

ñk = nk +
∑

i�k

ξikni

where, by definition, the intrinsic noise at each frequency is dis-
tributed as an uncorrelated Gaussian distribution,

〈nink〉 ≡ δikPik.

The observable quantities

〈̃niñk〉 = P̃ik

are the (Nch(Nch − 1)/2 + Nch) auto- and cross-correlations of
the signal-subtracted time streams, which are estimated directly

from the time ordered data. After correcting for bias, the P̃ik are
used to generate realizations of the noise time streams which ex-
hibit the same correlation structure observed in the data. These
noise realizations are constructed bin-by-bin in the Fourier do-
main. For each discrete frequency, we calculate the Cholesky

factorization, H̃( f ), of the complex (Hermitian positive definite)
channel correlation matrix,

P̃( f ) = H̃( f )H̃T ( f ).

Independent realizations of white noise are generated for each
channel. Simulated data with the proper correlation structure are
obtained by operating on the transform of these realizations with

the Nch × Nch matrix H̃ik( f ) for each frequency bin in a given
noise-stationary subset of the data. Once all of the frequency
components are calculated, the inverse transform provides a cor-
related noise time stream for each channel that is used in the
Monte Carlo pipeline.

3.4. Polarized mapmaking

Estimates of the I, Q, and U parameters can be recovered by
generating orthogonal linear combinations of the data. For each
sample, i, of a given detector and a measurement of the projec-
tion of the orientation of that detector on the sky, ψi, one can
construct the polarization decorrelation matrix defined by,

⎛⎜⎜⎜⎜⎜⎜⎝
di

diγci

diγsi

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 γci γsi

γci γ
2c2

i
γ2sici

γsi γ
2ci si γ

2s2
i

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
I
Q
U

⎞⎟⎟⎟⎟⎟⎟⎠ , (21)

where γ ≡ (1−ǫ)
(1+ǫ)

is a parameterization of the polarization ef-

ficiency. For simplicity we have abbreviated the trigonometric
functions, whose argument is 2ψi.

In the limit that the instrumental noise time stream, n, is
stationary, Gaussian, and is well-characterized by a white fre-
quency spectrum, the optimal map is obtained by summing all
time samples di and decorrelation matrix elements falling in a
pixel p. Assuming that the scan strategy, instrument, or chan-
nel combination provides modulation of the angle ψ, the matrix
is nonsingular and the best estimates for I,Q, and U are then
obtained by inverting the coadded (3 × 3) decorrelation matrix
at each pixel. This is the polarized analog to a naively coadded
temperature map.

The situation becomes markedly more difficult in the pres-
ence of noise with nontrivial statistics. The solution that is op-
timal in the least squares sense is again given by Eq. (16), with
the understanding that now the data consist of the linear com-
binations defined by Eq. (21). We now turn to the problem of
finding the solution to Eq. (16) for polarized data, in the pres-
ence of noise with unknown statistical properties, using channels
of varying sensitivity and polarization efficiency. In this general
case, the data are treated in the following way: estimates of the
left hand side of the noise only version Eq. (21) and the Stokes
decorrelation matrix are generated for each pixel,

n̂p =

Nch∑

j

w j

∑

i∈p

⎛⎜⎜⎜⎜⎜⎜⎝
ni

ni γ j ci

ni γ j si

⎞⎟⎟⎟⎟⎟⎟⎠ , (22)
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Fig. 7. The power spectrum of sum and difference time streams from
a typical 145 GHz PSB pair observing (apparently) unpolarized at-
mospheric fluctuations during the austral summer in Antarctica. When
measuring a small polarized signal buried in a large unpolarized back-
ground, the high degree of common mode rejection of the PSBs makes
them naturally suited to an analysis of the sum and difference time
streams, as described in Sect. 3.5.

where the ni are the elements of signal subtracted time stream.
Likewise, for the decorrelation matrix one calculates

M̂p =

Nch∑

j

w j

∑

i∈p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 γ jci γ jsi

− γ2
j
c2

i
γ2

j
cisi

− − γ2
j
s2

i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (23)

One then obtains an estimate of the corrections to the Stokes
parameters I, Q, and U maps for an iteration k, by inverting M̂
at each pixel,

Sk+1 − Sk = M̂−1
k n̂k, (24)

allowing one to iteratively obtain a solution for the maximum
likelihood maps of each Stokes parameter.

3.5. Sum and difference time streams

An alternate approach to signal and noise estimation involves op-
erations on the sum and difference of the calibrated time streams
from bolometers within a PSB pair. This has the numerical ad-
vantage of isolating the temperature and polarization terms in the
numerical inversion of Eq. (23). This approach takes full advan-
tage of the high degree of common mode rejection of the PSB
design, which is illustrated in Fig. 7. The advantages of this ap-
proach, which will be discussed in more detail in Sect. 3.6, are
obtained at the cost of suboptimal noise weighting of the chan-
nels within a pair.

We may represent a sample, i, of a single detector as the
linear combination of the sort,

si = I + γi (Q cos 2ψi + U sin 2ψi) . (25)

Assuming that the channels are properly calibrated, the sum and
difference of the signals from a PSB pair may be written as,

+si ≡
1

2
(s1 + s2)i = I +

1

2
(+αiQ +

+βiU) (26)

−si ≡
1

2
(s1 − s2)i =

1

2
(−αiQ +

−βiU), (27)

where we have defined the angular coefficients

±αi = γ1 cos 2ψ1i ± γ2 cos 2ψ2i (28)
±βi = γ1 sin 2ψ1i ± γ2 sin 2ψ2i (29)

in terms of the independent variables, ψki, where k = {1, 2} iden-
tifies the channel. Recall that for a PSB pair the angular separa-
tion of the channels is ∆ ≃ 90± 2◦, however this treatment in no
way requires that to be the case.

Following the prescription of Sect. 3.3, one generates linear
combinations of the differenced data,

( −si
−αi

−si
−βi

)
=

1

2

( −α2
i

−αi
−βi

−αi
−βi

−β2
i

) (
Q
U

)
. (30)

As before, one builds up information about the Q, U decorrela-
tion matrix through the combination of channel pairs, as well as
modulation of the angular coverage, ψ. In this regard we have

−n̂p =

Npairs∑

j

w j

∑

i∈p

( −ni
−αi

−ni
−βi

)
, (31)

where the time-streams −ni represent the polarization subtracted
difference data. The 2 × 2 decorrelation matrix is, therefore,

−M̂p =
1

2

Npairs∑

j

w j

∑

i∈p

( −α2
i

−αi
−βi

−αi
−βi

−β2
i

)
(32)

and we note that we are now using suboptimal weighting of the
pairs to generate corrections to the polarization map. Note that,
for ∆ ≃ 90◦, the quantities −α and −β have opposite parity, so
that when averaged over a large sampling of ψ, the off-diagonals
of Eq. (32) are small. Once the corrections to Q and U are ob-
tained, one may substitute them in the sum for +s to solve self
consistently for I.

3.6. Polarized cross-linking

The iterative map-making methods described in Sects. 3.4
and 3.5 result in a self-consistent estimate of the signal and
noise from the data that is “optimal” in the least-squares sense.
However, instrumental effects and the method of generating
maps from the time ordered data can introduce correlations in
and remove signal from the time domain data. These effects
generically limit the fidelity of the recovered Stokes parameter
maps8.

In simulations using noise correlations to process the sig-
nal only time streams according to Eq. (16), these effects appear
as a residual between the input and recovered Stokes parameter
maps. The spatial morphology and amplitude of these residuals
depend on the amount of cross-linking in the scan strategy, the
degree of polarization modulation, as well as the method used
to decorrelate the I, Q, and U parameters from the time stream.
While these residuals do not introduce a bias to the pseudo-Cℓ
estimates of the power spectra, they do contribute to the signal

8 Common examples of such instrumental effects include the impact
of the AC coupling of detector outputs, variations in the noise spec-
tra between detectors, scan synchronous noise, polynomial removal of
atmospheric signals, and limited accuracy of estimates of the low fre-
quency noise. These noise estimates are fundamentally sample variance
limited by the finite period over which the noise can be considered to
be stationary.
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Fig. 8. A signal-only simulation, showing the residuals between the observed and input polarization (in this case, Stokes Q). The differencing
method of Sect. 3.5 (left panel) is more robust to common mode effects than is the more general method of Sect. 3.4 (right panel), especially in
regions where the crosslinking is poor. This is due primarily to the correlations that are introduced by the preconditioning of the TODs (essentially
a highpass filter at 20 mHz) and the features in the noise kernel N−1, which introduce path dependencies to the observed I, Q, and U parameters.

covariance of the map, and therefore degrade the sensitivity of
the Monte Carlo approach relative to optimal methods9.

The fidelity of the recovered Stokes parameter maps is an
important consideration for the design of scanning polarimeters;
the statistical depth of the survey determines the level at which
these instrumental artifacts must be controlled. Unlike the noise
contribution to the Stokes parameter maps, these artifacts do not
integrate down, and can be mitigated only through improved
cross-linking and modulation of the polarization.

To investigate these effects, we generate signal-only simu-
lations based on the B03 observation strategy and the measured
B03 noise power spectra. The B03  data consist of a deep
region and a shallow region, representing the extreme cases of
possible observation strategies avaliable to Antarctic LDB pay-
loads. The B03 scan crosses each pixel in the deep survey over
many timescales and at many different orientations (due to sky
rotation), while the pixels in the shallow survey are not well sam-
pled.

Using the Healpix synfast facility (Górski et al. 2005), we
generate a noise-free polarized  sky, pixelized at 3.4′ res-
olution, from a concordance ΛCDM model. We then simulate
three polarization modulation schemes to compare with the nom-
inal B03 modulation (i.e. sky rotation alone). Each time-domain
simulation includes the nominal sky rotation in addition to that
which would be achieved with a rotating half-wave plate. We
model the following modulation schemes, which are representa-
tive of those proposed by balloon borne and terrestrial bolomet-
ric polarimeters (Oxley et al. 2004),

1. 22.5◦ steps of the polarization angle each hour.
2. 22.5◦ steps of the polarization angle at the end of every scan.
3. Continuous rotation of the polarization angle of each PSB at

350 mHz10.

We observe the simulated sky with each of these polarization
modulation schemes and create a noise-free time ordered data

9 The residuals contribute directly to the effective transfer function
for the temperature and polarization spectra (the Fℓ discussed in Hivon
et al. 2002 and Contaldi et al. 2005).

10 We choose this modulation rate to be as fast as possible, given the
B scan and sample rates.

set, s, for each. We then solve for the signal part of the gen-
eral least squares map using the B03 inverse noise filters, N−1,
according to Eq. (16):

m̃ =
(
AT N−1A

)−1
AT N−1 s.

The noise kernels, N−1, are smoothly truncated below 70 mHz11.
We decorrelate the Stokes I, Q, and U parameters at 6.8′ res-
olution, using both the general (3 × 3) method and the PSB
sum/difference (2 × 2) method, and compare the resulting polar-
ization maps with the input sky. In the case of the former method,
the residuals in the Q and U maps contain contributions from the
finite resolution of the pixelization as well as the correlations in-
troduced in the course of making maps from the time-ordered
data. The difference time streams do not contain the relatively
large unpolarized contribution, and therefore are far less suscep-
tible to these pixelization effects.

Before considering the effects of the polarization modula-
tion, we first investigate the benefits of exploiting the common
mode rejection of the PSB pairs through the analysis of the dif-
ference time streams. We compare the residuals resulting from
the application of the general method of Sect. 3.4 and from that
of Sect. 3.5. In Fig. 8 we show the qualitative improvement in the
fidelity of the reconstruction that results from the analysis of the
difference time streams. It should be noted that, even for the gen-
eral method, the sky rotation of the nominal B03 scan provides
a degree of modulation that is sufficient to reduce the residuals
to a level well below that of the instrumental noise in the B03

maps (Jones et al. 2006; Masi et al. 2005); the use of a wave-
plate in B03 would not have significantly improved the accuracy
of the polarimetry. Furthermore, the direct difference method of
Sect. 3.5 is less sensitive to the limited cross-linking of the nom-
inal scan than is the general polarization decorrelation method
of Sect. 3.4.

While the design of the PSBs is naturally suited to the
sum/difference approach, scanning experiments sensitive to a

11 The lowest frequency that can be reliably recovered clearly affects
the amplitude of the residuals, especially for the temperature fluctua-
tions which have significant power on large scales. However, the rel-
ative benefits of the scanning strategies outlined above are generally
insensitive to the exact value of the minimum frequency.
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Fig. 9. The residual signal in the Stokes Q (left column) and U (right
column) parameter maps generated using the general algorithm of
Sect. 3.4, for increasing levels of polarization modulation. At top, the
only modulation is that provided by sky rotation. The middle two
sets are the residuals obtained when stepping the half waveplate by
22.5◦ (Q → U) each hour and at the end of each azimuth scan, re-
spectively. The bottom row shows the fidelity achieved with a wave-
plate spinning continuously at 350 mHz. The remaining residuals are
dominated by pixelization effects.

single polarization (such as E Oxley et al. 2004 and S
Netterfield et al. 2006) are not able to exploit the common mode
rejection that is intrinsic to the design of the PSBs. A scheme for
polarization modulation is therefore a highly desirable feature in
singly polarized systems.

In order to illustrate the effect of the polarized cross-linking
on the fidelity of the reconstructed signal, we show in Fig. 9

Fig. 10. Histograms of the Stokes Q/U residuals, using 6.8′ pixels, for
various modulation schemes. Figure 9 shows that the errors are largest
on large scales. The residuals in the last row are dominated by pixeliza-
tion effects.

the residuals that result, for a particular  realization, from
the general (3 × 3) approach of Sect. 3.4 for the nominal B03

scan, and for each of the three modulation schemes listed above.
The fidelity of the signal reconstruction improves in proportion
to the rate of modulation. The improved cross-linking random-
izes the path dependencies of the observed Stokes parameters
that are introduced by the processing of the time ordered data,
namely Eq. (16).

As shown quantitatively in Fig. 10, the largest residuals in
the Q and U maps (which, in the B03 example, occur on rela-
tively large scales) can be significantly reduced by a modest de-
gree of polarization modulation. Nevertheless, for the effects that
have been included in this simulation, generating maps using the
sum and difference time streams of the PSBs is nearly as effec-
tive at minimizing the residuals in the Q and U maps as the use of
a half wave plate. It is important to note that beam asymmetries,
instrumental polarization, pointing errors, and calibration uncer-
tainties are examples of effects that are not included in these
simulations. Each of these effects are mitigated by the use of
an idealized modulation scheme, but not by the sum/difference
method of Sect. 3.5.

4. Summary and conclusions

We have described in detail the design and performance of the
Polarization Sensitive Bolometers (PSBs) which have enabled
the first generation of successful bolometric  polarimeters.
This discussion outlines the instrument parameters which must
be characterized to accurately decorrelate the Stokes I, Q and
U parameters from the time ordered data of a PSB. The design
of the PSBs provides a high degree of common mode rejection
that can be exploited in the analysis to minimize susceptibility to
various instrumental effects that can potentially limit the fidelity
of the recovered polarization. Simulations of PSB data including
realistic instrumental effects illustrate the benefits of analyzing
difference time streams, as well as various practical schemes for
modulating the polarization signal.
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Appendix A: Noise in bolometric receivers

General noise properties

Noise in bolometric receivers originates from several indepen-
dent sources, including contributions from the readout electron-
ics, the detector, and the intrinsic fluctuations in the optical back-
ground power. These noise sources are independent processes
and their contributions add in quadrature to the total noise of the
system.

The contribution of each of these components to the time or-
dered data are filtered by the transfer function of the one or both
of the detector and the readout electronics12. The voltage noise
(that is, the Johnson, JFET/amplifier noise, and the product of
current noise with the series impedance) of the system, nv, is

filtered only by the transfer function of the readout, Z̃( f ). The
photon noise, nγ, and phonon noise, nG, are filtered not only by

the bolometer voltage responsivity, S̃ ( f ), but also by the readout.

The bolometer transfer function, S̃ , is typically that of a single
low pass filter, or a cascade of two such filters. The details of the

readout transfer function, Z̃, vary by application but always in-
clude an anti-aliasing filter that strongly attenuates frequencies
well below the Nyquist frequency of the analog-to-digital con-
verter (ADC)13. The raw data are composed of the signal from
the sky, s, and the various noise contributions, convolved with
the bolometer and readout transfer functions,

d = Z ⊗
[

S ⊗
(
s + nγ + nG

)
+ nv
]
. (A.1)

One of the first stages of analysis involves the deconvolution,
and then the de-glitching, of this raw detector time stream. The
deconvolution is normally accomplished in the Fourier domain
by dividing the product of the bolometer and electronics transfer

functions, Z̃′ = Z̃ S̃ , from the raw data, d. While this results in
a time stream that is characterized by a signal component with
a uniform calibration in the frequency domain, the contribution
of the voltage noise is biased according to the detector transfer

function, ñv → ñv/S̃ . Because the bolometer transfer function
has the form of a low-pass filter, the deconvolved time stream
generally exhibits “ f -noise” in proportion to the time constant of
the bolometer and the amplitude of the voltage noise component.

Figure 7 is an example of the power spectrum of a time
stream prior to deconvolving the system transfer function.
Figures 5 and 6 show the power spectrum of the deconvolved
noise data. Accurate knowledge of the system transfer function
is required to avoid the introduction of instrumental artefacts in
the recovered signal. In the case of  studies, such an error
will generally bias the power spectra that are derived from the
maps (Jones et al. 2006).

Contemporary bolometric receivers, even those operating in
the low background environment provided by balloon and orbital
payloads, are designed to achieve background limited sensitivi-
ties. In these receivers photon noise represents a major, if not

12 For contemporary bolometric instruments like Planck HFI, the
readout electronics include a cold JFET amplifier, ambient temperature
amplifier/bandpass filters, and an anti-aliasing/data acquisition system.
In practice, the contribution to the noise of everything except the JFET
amplifiers and low noise preamplifier are negligible.

13 In some instances, the electronics are AC coupled, meaning that the
low frequencies are strongly attenuated. The advent of low-cost, high-
resolution ADCs has made this feature less common.

dominant, contribution to the total noise in the system. In the
following section we examine aspects of this photon noise con-
tribution, nγ, including a derivation of the (low level) noise corre-
lations expected between detectors in a PSB pair resulting from
fundamental properties of statistical fluctuations in the thermal
background radiation.

Photon noise

A fundamental limitation to the sensitivity of any receiver (band-
gap, coherent, or bolometric) derives from the intrinsic temporal
fluctuations in the optical, often thermal, background radiation.
The noise properties of thermal background radiation, or pho-
ton noise, differ greatly between radio, sub-millimeter, infrared,
and optical instrumentation due to their vastly different oper-
ational regimes of photon occupation number. Photons satisfy
Bose-Einstein statistics, and therefore the occupation of a mode
of frequency ν is

n(ν, T ) =
1

ehν/kT − 1
(A.2)

for a thermal background of temperature, T .
The ratio k/h = 20.8 [GHz/K] sets, for a given background

temperature, the frequency for which average occupancy is
above or below unity. At radio wavelengths astronomical instru-
ments typically enjoy background levels of order 10 K, with the
minimum background limited by the  monopole at 2.728 K.
At higher frequencies, atmospheric loading and thermal emis-
sion from the instrument tend to dominate the background, and
are typically ∼30−100 K for terrestrial telescopes. Therefore, in-
struments operating at frequencies above ∼100 GHz have occu-
pation numbers of order unity, while receivers at lower frequen-
cies tend to have very large occupation numbers, n ≃ kT/hν.
In the low n regime, photons can be thought of as arriving at
the detector sporadically. The photon noise in high frequency
(>∼100 GHz) instruments with low backgrounds can therefore be
expected to largely satisfy Poisson statistics, where one expects

fluctuations on the mean to scale roughly as
√

N.
Hanbury Brown and Twiss were the first to complete a rig-

orous analysis of noise correlations in photons Hanbury Brown
& Twiss (1956a,b, 1957a,b). The topic has been continually re-
visited in the fifty years since the first published work, and is
still relatively un-advertised among many instrumentalists and
observers alike. Therefore, we go through the analysis in detail.

Following Zmuidzinas (2003), we can write the covariance
matrix describing detector outputs in all generality

σ2
i j =

1

τ

∫
dνBi j

(
B ji + δi j

)
, (A.3)

where we define the power coupling matrix

Bi j ≡ hν
∑

k

S ikS ∗jknk +Ci j, (A.4)

and the internal noise term,

Ci j ≡ (I − S S†)i j

hν

2

ex + 1

ex − 1
· (A.5)

Here, S i j is the standard scattering matrix, which couples an out-
put amplitude, ai, to the inputs, bi, at each port of a network, as
in Fig. A.1. The scattering matrix is defined by this relationship,
ai =
∑

j S i jb j. In Eq. (A.5), x ≡ hν/kTS , where TS is the thermo-
dynamic temperature of the system S , and the nk in Eq. (A.4) are
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b a

a
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Fig. A.1. The scattering matrix of a four port network. A polarization
sensitive bolometer can be modeled by such a network.

the occupation numbers of the modes at port k. We take ports 0
and 1 to label the two input polarization states, and let ports 2
and 3 label the two bolometers in a PSB pair. For simplicity,
we assume that n2 = n3 = 0 (i.e., the detectors are extremely
cold with respect to the background), and that the input popu-
lations n0 = n1 = n(ν, Tload) imply no net polarization in the
background.

The internal noise term, Ci j arises as a result of losses in the
system. Any mechanism causing loss implies a thermal noise
contribution, ci, to the outgoing signals

ai = Σ jS i jb j + ci

which depends on the temperature of the lossy component.
In an ideal lossless network, the system’s thermal noise term

will vanish since S is unitary, (I − S S †)i j = 0. In this case, the
only nonzero terms in the scattering matrix are S 20 = S 31 = 1.
Since the only nonzero populations are n0,1 = n, the covariance
matrix contains only terms with B20 = B31 = n · hν. Under this
assumption the detectors’ noise is uncorrelated, and the autocor-
relations satisfy

σ2
ii =

(hν)2

τ

∫
dνn(n + 1). (A.6)

Therefore the 1σ uncertainty in the incident power due to intrin-
sic background fluctuations is

σphoton =
hν

η

√
∆ν

τ

√
ηn(ηn + 1). (A.7)

Note that in the above we have explicitly included the optical ef-
ficiency, η ≡ |S 20|2 = |S 31|2. This result differs from the familiar
Dicke radiometer equation describing coherent receivers,

σphoton =
hν

η

√
∆ν

τ
(ηn + 1). (A.8)

While Eq. (A.8) is the limiting form of Eq. (A.7) for large oc-
cupation number n, it is instructive to derive Eq. (A.8) from
Eq. (A.3).

Example 1: The Dicke radiometer equation

The scattering matrix for an idealized coherent receiver with per-
fect isolation contains a single nonzero term, |S 10|2 = G, where
G is the gain of the system. An amplifier can be thought of as a
population characterized by an inverted distribution of energy

levels, such as that found in a maser or laser. Such systems
are conveniently described in terms of a negative temperature.
As T → −0, the sign of the Ci j from Eq. (A.5) is reversed.
The only nonzero element of C is C11 = G − 1, and therefore
B11 = Gn +G − 1. Application of Eq. (A.3) gives

σ2
11 =

(hν)2

τ

∫
dν G2

[
n + 1 − (G)−1

]
[n + 1] (A.9)

= ∆ν
(hν)2

τ
G2

[
(n + 1)2 − (n + 1)

G

]
· (A.10)

In the limit that G is significantly larger than unity, the second
term becomes negligible. Referencing the noise to the input, we
recover the (lossless) Dicke radiometer equation, Eq. (A.8),

σ11 = hν

√
∆ν

τ
(n + 1).

Example 2: Polarization sensitive bolometers

A dual polarized, single-moded receiver (coherent or bolomet-
ric) is completely described by a four port network. Polarization
sensitive bolometers and coherent receivers using orthogonal
mode transducers (OMTs) are two examples of such systems.
We now derive the photon noise properties of a PSB pair.

The action of the network, S , is that of an imperfect polarized
beam splitter, with two inputs and two detectors. The PSBs (two
of the four ports, labeled say, as numbers 2 and 3) are assumed
to be at cryogenic temperatures, and therefore contribute neg-
ligibly to the photon occupation number. Therefore, the entries
in the scattering matrix relevant to the observed photon noise
are limited to the lower left quadrant, namely S 20 = γ, S 31 =

γ′, S 21 = δ, and S 30 = δ
′. Here the parameters γ and δ describe

the efficiency of transmission of the copolar amplitude and the
crosspolar amplitude, respectively, and in practice γ ≫ δ.

Only the lower right quadrant of S S † is nonzero,

(S S †)22 = γ
2 + δδ′ (S S †)23 = δ (γ + γ′)

(S S †)32 = δ
′ (γ + γ′) (S S †)33 = γ

′2 + δδ′.
(A.11)

The power coupling terms, Bi j, of interest are given by

B22 =
(
|S 20|2 n0 + |S 21|2 n1

)
hν + C22 (A.12)

=
(
γ2 n0 + δ

2 n1 + [1 − (γ2 + δδ′)] nc

)
hν (A.13)

B23 = (S 20S 30 n0 + S 21S 31 n1) hν +C22 (A.14)

=
(
γδ′ n0 + γ

′δ n1 − δ (γ + γ′) nc

)
hν (A.15)

where we have written the thermal contribution of the network

nc ≡
1

2

ex + 1

ex − 1
·

In the case of PSBs, the source of the modal coupling are the
detectors themselves and/or the optics. In the case of the detec-
tors, they are extremely cold compared to the background. For
B, the reimaging optics and filters are also cooled,
and have low emissivity. Therefore, we assume the thermal noise
contribution of the network, nc, is very small compared to the
background populations, ni. Furthermore, we assume that the
background is isotropic, i.e., n0 = n1 = n. The covariance of
the photon noise is then fully described by

σ2
ii = (hν)2∆ν

τ

[
(γ2 + δ2)2 n2 + (γ2 + δ2) n

]
(A.16)

σ2
i j = (hν)2∆ν

τ

[
(2γδ)2 n2

]
. (A.17)
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The autocorrelation, Eq. (A.16), contains terms proportional to
both n2 and n. The former is commonly referred to as the Bose
contribution, or as a “photon bunching” term. Equation (A.17)
shows that correlations between devices are proportional only to
the Bose term, implying that PSBs operating under higher back-
ground loading conditions will exhibit a higher proportion of
correlated noise than the same instrument operating in a lower
background. For an idealized system, in which the polarization
leakage δ is zero, the covariance between detectors vanishes
since the two linear polarization states are statistically indepen-
dent of one another.

In practice, we estimate the total optical background power,
Q, arising from the , atmosphere, the telescope, and emis-
sion from within the cryostat. For simplicity, this optical back-
ground is treated as having originated from a single thermal
source at an effective temperature TRJ = Q/ηkB∆ν. The noise
equivalent power from the background fluctuations is then given
by Eq. (A.16),

NEP2
photon ≃ 2hν Q (1 + η n(TRJ)) . (A.18)

This is, of course, only approximate as we do not treat the back-
ground sources independently. It is often the case, however, that
a single thermal source contributes the majority of the back-
ground optical power.

Appendix B: The Jacobi method

We outline the application of the Jacobi method to the problem
of mapmaking from scanning experiments, much of which can
be generalized to other iterative algorithms such as the method of
preconditioned conjugate gradients. We loosely follow the more
complete discussions of the topic which can be found, for ex-
ample, in Barrett et al. (1994); Acton (1990); Young (1971), and
Press et al. (1997).

The Jacobi method is a robust numerical method of solving
a set of linear equations, Ax = b, for which the matrix A is (or
can be arranged to be) diagonally dominant. The great strength
of the Jacobi method is that, subject to this requirement, it is
guaranteed to converge although it may do so relatively slowly.
Given a trial solution, one may estimate a new solution without
inverting the matrix A simply by solving for each component,
xk+1

i
, given an estimate of the values {xk

i
},

xk+1
i = A−1

ii

⎛⎜⎜⎜⎜⎜⎜⎝bi −
∑

j�i

Ai jx
k
j

⎞⎟⎟⎟⎟⎟⎟⎠ .

It is often convenient, and advantageous from a numerical point
of view, to write the above in terms of a correction to the previous
iteration,

xk+1
i = xk

i + δx
k+1
i

where

δxk+1
i ≡ η A−1

ii

⎛⎜⎜⎜⎜⎜⎜⎝bi −
∑

j

Ai jx
k
j

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.1)

Here we have inserted a convergence parameter η � 1, which
may be tuned to aid the convergence of the algorithm. In the
limit that A is diagonal, the optimal value is η = 1. Generally
speaking, the larger the off-diagonal terms become, the lower the
optimal value of η. Clearly the diagonals of A must not be near
zero. Furthermore, as can be seen from Eq. (B.1), the solution

will diverge if the absolute value of the sum of the off-diagonals
is greater than the diagonal element of each row.

As an example, consider the following linear system:

⎛⎜⎜⎜⎜⎜⎜⎝
5 −2 1
5 −7 1
−2 1 6

⎞⎟⎟⎟⎟⎟⎟⎠ x =

⎛⎜⎜⎜⎜⎜⎜⎝
−1
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.2)

Setting η = 1, and using the above procedure results in the fol-
lowing sequence of solutions:

x0 = ( 0.000, 0.000, 0.000)

x1 = (−0.200, 0.000, 0.167)

...

x5 = (−0.291,−0.187, 0.102)

...

x∞ = (−0.300,−0.200, 0.100).

This example converges to twelve significant digits after 40 iter-
ations, largely independent of x0, the trial solution. The rate of
convergence does not scale strongly with the array size, so the
solution is an efficient way of solving large systems of equations.

A minor modification to the above procedure results in the
Gauss-Seidel algorithm, for which the estimate for each value
xk+1

i
incorporates the most recent estimate of the parameters

{xk+1
j
} j<i instead of the set of values from the previous iteration.

This procedure is less numerically robust, but tends to converge
more rapidly than Jacobi iteration.

The application to Eq. (16) is clear; the Jacobi method pro-
vides a robust method of solving for the general least squares
map. Equating Eqs. (16) and (B.1) we find the correspondence,

A → C−1
N ≡ (AT N−1A)

x → m̃

b → AT N−1d.

Recall that the matrix A, which appears on the right hand side, is
the pointing matrix and should not be confused with the general
linear system described in Eq. (B.1). The algorithm we use for
calculating the correction to an estimate of the least squares map,
m̃k, is simply

δm̃k+1 ∝ diag(AT N−1A)−1AT N−1(d − Am̃k).

In practice, one can simultaneously solve for the noise covari-
ance matrix of the data, N. This typically results in slightly
slower convergence of the algorithm than when using a fixed
noise estimate.
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