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Abstract

Purpose of Review Current theories of alcohol use disorders (AUD) highlight the importance of Pavlovian and instrumental
learning processes mainly based on preclinical animal studies. Here, we summarize available evidence for alterations of those
processes in human participants with AUD with a focus on habitual versus goal-directed instrumental learning, Pavlovian
conditioning, and Pavlovian-to-instrumental transfer (PIT) paradigms.

Recent Findings The balance between habitual and goal-directed control in AUD participants has been studied using outcome
devaluation or sequential decision-making procedures, which have found some evidence of reduced goal-directed/model-based
control, but little evidence for stronger habitual responding. The employed Pavlovian learning and PIT paradigms have shown
considerable differences regarding experimental procedures, e.g., alcohol-related or conventional reinforcers or stimuli.
Summary While studies of basic learning processes in human participants with AUD support a role of Pavlovian and instru-
mental learning mechanisms in the development and maintenance of drug addiction, current studies are characterized by large
variability regarding methodology, sample characteristics, and results, and translation from animal paradigms to human research
remains challenging. Longitudinal approaches with reliable and ecologically valid paradigms of Pavlovian and instrumental
processes, including alcohol-related cues and outcomes, are warranted and should be combined with state-of-the-art imaging
techniques, computational approaches, and ecological momentary assessment methods.

Keywords Alcohol use disorder - Habits - Goal-directed control - Pavlovian conditioning - Pavlovian-to-instrumental transfer -
Humans

Introduction

Drug addiction has been characterized in terms of the brain’s
learning and memory systems. This view posits a gradual shift
from initial voluntary drug use to an increasing loss of control
over drug intake, which becomes habitual or even compulsive
drug addiction [1-4]. Drug use starts out as a goal-directed
behavior, mediated by the reinforcing and hedonic effects of
the drug, but habitual processes eventually take over, hamper-
ing attempts to stop drug intake, in spite of severely aversive
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consequences and conscious decisions to reduce consumption
or to remain abstinent. This transition is considered to depend
upon interactions between Pavlovian and instrumental learn-
ing processes [1, 3]. Habitual or even compulsive instrumental
drug-taking behaviors are thought to be triggered by internal
and external drug-associated cues, acute stress events or a
priming drug dose [5], as well as by internal mood states [6].
In chronic drug users, conditioned drug cues may gain incen-
tive salience through Pavlovian mechanisms, whereas alterna-
tive reinforcers lose relevance [7, 8]. Addictive behavior is
also characterized by negative reinforcement during with-
drawal distress and early abstinence, which is defined as drug
taking that alleviates a distress-associated aversive emotional
state [9]. In the current review, we focus on the empirical
evidence regarding these processes and the hypothetically un-
derlying learning mechanisms in the development and main-
tenance of alcohol use disorder (AUD). For each process, we
first briefly report the available behavioral paradigms and un-
derlying neural structures, and then summarize the studies
assessing participants with AUD and at-risk groups.
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Instrumental Learning: Habitual Versus
Goal-Directed Behavior

Behavioral Paradigms and Neural Circuitry

Instrumental learning can be controlled by both goal-directed
and habitual processes [10, 11]. Under habitual control, action
selection is driven by rather rigid stimulus—response (S-R)
associations and led by past reinforcement [12]. Under the
more computationally costly goal-directed control, the subject
uses their knowledge about the response—outcome (R-O) con-
tingency and the current incentive value of the outcome to
guide behavior [10, 13, 14]. Goal-directed and habitual behav-
iors differ therefore in their sensitivity to changes in both the
causal nature of the instrumental R-O relationship and the
current value of the outcome [11, 15], with insensitivity to
such changes considered a hallmark of habitual behavior [16].

Classically, sensitivity to changes in outcome value can be
assessed through outcome devaluation. Briefly, these tasks
consist of an instrumental learning stage, in which an action
is paired with a desired outcome, followed by an outcome
devaluation phase, e.g., through sensory-specific satiation,
aversive conditioning or instruction, and a test done in extinc-
tion. On the other hand, sensitivity to changes in the causal R-
O relationship can be assessed with contingency degradation
tasks, in which the probabilities of receiving action-contingent
outcomes and non-contingent outcomes are manipulated, so
that the causal R-O relationship is degraded by increasing the
latter. When both probabilities are equal, performing the ac-
tion has no effect on the likelihood of the outcome, so that the
net R-O contingency, and thus the causal status of the action,
is zero [10, 17]. It has been extensively demonstrated that both
animals and humans are sensitive to changes in outcome val-
ue, as reflected by decreased responding to devalued out-
comes [10, 18-21], as well as to contingency degradation,
with decreased responding to smaller R-O contingencies
and, in humans, explicit judgments about the causal relation-
ship between action and outcome that closely approximate
instrumental behavior [10, 17, 22-25]. Indeed, outcome de-
valuation procedures are currently considered the strongest
test of habitual behavior [26].

More recently, computational reinforcement learning theo-
ries have formalized habitual and goal-directed processes in
terms of model-free (habitual) and model-based (goal-
directed) control [13, 27]. This framework uses sequential
Markov decision tasks, such as the so-called two-step task
[28]. In this task, participants must perform two consecutive
choices to obtain a reward: first-stage stimuli lead to different
second-stage states with fixed probabilities, and second-stage
stimuli are associated with slowly changing reward probabil-
ities. While a model-free agent will repeat previously
rewarded actions, a model-based agent will take both previous
reward and the task’s transition structure into account. In the

computational model, first-stage actions are computed accord-
ing to both model-free temporal-difference learning and
model-based reinforcement learning algorithms, which are
typically weighted with a free parameter w, with w=1 indi-
cating pure model-based and w=0 pure model-free control.
Performance of clinically healthy humans in the two-step task
is consistent with a mixture of model-free and model-based
behavior [28-32]. This task has been recently back-translated
to animal research, showing a similar behavioral pattern in
rodents [33-35]. Moreover, a recent study has shown that
rodents initially only use outcomes to drive behavior, but re-
cover the structure of the environment over the course of
learning and also use it to make decisions [36]. Indeed, some
studies suggest that both rodents and humans can display pre-
dominantly model-based behavior following overtraining in
the two-step task [37, 38].

In animals, there is solid evidence pertaining the involve-
ment of the orbitofrontal cortex (OFC), prelimbic prefrontal
cortex (PFC), and dorsomedial striatum (DMS) in goal-
directed behavior, and the infralimbic PFC and dorsolateral
striatum (DLS) in habitual behavior. Lesioning the OFC has
been shown to reduce [39, 40] and stimulating to enhance [41]
goal-directed behavior in outcome devaluation tasks. OFC—
amygdala [42] and OFC—striatum [43] disconnection has been
shown to decrease sensitivity to outcome devaluation.
Similarly, reversible inactivation of the OFC also impairs
model-based choices in two-step tasks [37]. Prelimbic lesions
have been shown to impair sensitivity to both outcome deval-
uation [10, 44—46] and contingency degradation [10, 45, 47]
in rodents. In contrast, infralimbic lesions result in marked
sensitivity to outcome value [46]. Similarly, DMS lesions
abolish sensitivity to outcome devaluation and contingency
degradation [48], whereas DLS lesions increase sensitivity
to outcome value [21, 49]. Rodent research has also pointed
to a role of basolateral amygdala [40], dorsal hippocampus
[37], and anterior cingulate cortex (ACC) [33] in goal-direct-
ed/model-based control. Although ventromedial PFC
(vmPFC) and subgenual ACC have been suggested as homol-
ogous to the rodent prelimbic [11] and infralimbic PFC [50],
respectively, and anterior caudate and posterior putamen as
homologous to the rodent DMS and DLS, respectively [11],
the clear dissociations observed in rodents are yet to be repli-
cated in humans.

In humans, medial OFC (mOFC) and vmPFC have been
highlighted as key regions driving goal-directed behavior in
outcome devaluation tasks [19, 51, 52], with white matter tract
integrity between caudate and vmPFC predicting goal-
directed behavior, as reflected by increased sensitivity to
instructed devaluation [52]. In contrast, devaluation insensi-
tivity has been associated with increased subgenual ACC and
ventral striatal (VS) blood-oxygen-level-dependent (BOLD)
responses during S-R compared with R-O learning [50].
However, although vmPFC has been suggested to encode
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the probability of action-contingent outcomes [17, 53], recent
studies have found vimPFC lesioned patients to be insensitive
to outcome devaluation but not to contingency degradation
[54, 55]. With the two-step task, model-free and model-
based valuations consistently display overlapping neural sig-
natures implicating both vmPFC and VS [28, 30, 31]. Some
studies have implicated brain structures beyond medial pre-
frontal and striatal regions, suggesting that inferior frontal gy-
rus, dorsolateral PFC, hippocampus, and inferior parietal lob-
ule might also be crucial for goal-directed/model-based con-
trol [17, 50, 56-59].

Findings in Alcohol Use Disorder and At-Risk
Populations

In a seminal study, Dickinson et al. [60] posited alcohol seek-
ing as an S-R habit, by demonstrating that, in contrast to lever
pressing for food pellets, lever pressing to ethanol was insen-
sitive to devaluation in rodents. Moreover, after an extended
period of self-administration, alcohol consumption will con-
tinue even if mixed with aversive quinine concentrations [61,
62]. Subsequent studies have shown that chronic intermittent
ethanol exposure results in habitual alcohol seeking in ro-
dents, as assessed with both outcome devaluation [63, 64]
and contingency degradation [65] procedures. Yet, alcohol
further affects rodent goal-directed behavior, with acute intox-
ication [66], chronic ethanol exposure [67] as well as contex-
tual conditioning to alcohol [68] decreasing sensitivity to de-
valuation of non-alcoholic outcomes. Interestingly, the ex-
pression of alcohol-related habits appears to be sex and age
dependent. Research has shown that chromosomal male, but
not female, rodents become insensitive to alcohol devaluation
[69] and that male adult, but not adolescent, rodents become
insensitive to contingency degradation with alcohol outcomes
after overtraining [70]. A recent study showed an intriguing
interaction between sex and age at alcohol exposure. Barker
et al. [71] demonstrated that exposure to alcohol during adult-
hood, but not during adolescence, impaired adult male rats’
sensitivity to the value of sucrose solution in action-promoting
reinforcement schedules. In contrast, this impairment was ob-
served in female rats only in those exposed during adoles-
cence, whereas those that were exposed in adulthood were
sensitive to outcome devaluation in both action- and habit-
promoting schedules. Dovetailing with the lesion results de-
scribed above, operant responding for alcohol in rodents is
initially goal-directed and driven by the DMS, which exhibits
increased firing following alcohol reinforcement [21, 72]. In
contrast, the DLS shows phasic activity time-locked to lever
presses for alcohol self-administration [72], and overtraining
results in a shift to DLS control and insensitivity to outcome
devaluation [21]. Further studies have demonstrated how ha-
bitual alcohol seeking depends on glutamatergic inputs to the
DLS and D, receptors within the DLS, with infusion of a D,
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receptor antagonist restoring sensitivity to devaluation of al-
cohol [73], and how chronic ethanol exposure induces long-
lasting changes in OFC excitability and OFC-DMS transmis-
sion that contribute to the loss of goal-directed control [67].
Indeed, treatments that decrease DLS function and/or output
and that increase OFC activity have been reported to restore
goal-directed behaviors [21, 67, 73].

In humans, studies investigating the relationship between
AUD and the balance between goal-directed versus habitual
behavior are limited (Table 1). Sjoerds et al. [74¢] used an
instructed outcome devaluation task [51] to assess the behav-
ior of recently detoxified AUD participants. Although patients
with AUD and healthy controls did not differ in their instru-
mental learning performance, AUD participants already
displayed increased posterior putamen and decreased
vmPFC activity during this phase. In the outcome-
devaluation test, Sjoerds et al. [74¢] report impaired R-O
knowledge as reflected by choice behavior in AUD, with de-
creased activity in both vimPFC and anterior putamen, regions
implicated in goal-directed control, and increased activity in
the posterior putamen, an area critical for habit learning [11].
Moreover, the authors modified the task to include alcohol-
related pictures in addition to fruit images, but observed no
differences between stimulus types, suggesting a shift toward
habitual behavior in AUD that is not specific to addiction-
relevant stimuli. In contrast, in a recent study, van Timmeren
et al. [75] report no decreased devaluation sensitivity as mark-
er of goal-directed control in recently detoxified AUD patients
compared with healthy controls using an aversion-induced
outcome devaluation task [76].

Other studies have employed the two-step task devised by
Daw et al. [28]. In a group of recently detoxified abstinent
AUD participants, Sebold et al. [77] reported that, although
both groups displayed a mixture of model-free and model-
based choice behavior, AUD patients exhibited less model-
based control than healthy controls following non-rewards,
but did not differ following rewards. However, this finding
was not replicated in a subsequent study, in which AUD par-
ticipants were divided into those who abstained and those who
relapsed to alcohol at a follow-up assessment [78¢]. Neither
model-based choice behavior nor the computational parame-
ter w predicted group membership, but if poorer model-based
control was associated with higher alcohol expectancies, pa-
tients had a higher relapse risk at follow-up. At the neural
level, participants who relapsed to alcohol showed blunted
mPFC activity associated with model-based control, whereas
the authors found no differences between the groups for
model-free learning signals. This study not only underlined
the association between mPFC and goal-directed deficits in
AUD but further suggests that decreased model-based control
might predict poor treatment outcome only in combination
with high alcohol expectancies. Similarly, Voon et al. [79]
found no differences in w between long-term abstinent AUD
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participants and healthy controls. However, they also ob-
served that more prolonged abstinence was associated with
greater w values, indicating more model-based control and
suggesting that goal-directed behaviors might improve with
abstinence. Together, the studies of Sebold et al. [78¢¢] and
Voon et al. [79] indicate that model-based control may be
relevant for abstinence, both as an indicator of prospective
treatment outcome and for retrospective abstinence duration.

Additional studies have also investigated the relationship
between alcohol use and the balance between model-free and
model-based control in samples with no known diagnosis of
AUD, obtaining mixed results. Greater alcohol consumption
and having had binge drinking episodes were not found to be
associated with model-free/model-based control in 18-year-
olds [31], dovetailing with preclinical results showing that
adolescent rats did not express alcohol-related habits [70].
However, severe binge drinkers, who had had at least one
binging episode per week for the previous 6 months, have
been reported to display reduced model-based control com-
pared with healthy controls [80]. Two large online studies
have explored the association between problematic alcohol
use, assessed with the Alcohol Use Disorder Identification
Test (AUDIT [81, 82]), and model-based/model-free behav-
ior. Gillan et al. [83] reported how larger AUDIT scores were
associated with decreased model-based choice behavior, as
well as lower (3,5 scores (recent reformulations of the
computational model used to analyze the two-step task no
longer use the weighting parameter w as a measure of the
relative balance between model-based and model-free behav-
ior, but rather separate inverse temperature parameters (3,3
and (3, which are algebraically equivalent to the original
formulation under the substitution 3,,3=w( and Byr=(1 —
w)f3 [see, e.g., 83, 84]). They further observed that this asso-
ciation was steeper among “putative patients” (defined as
those scoring in the top 25% on the AUDIT). Dovetailing with
previous studies, model-free measures were not related to
questionnaire scores. Using a deterministic two-step variant
[85], however, Patzelt et al. [86] found no association between
w and AUDIT scores.

Overall, both preclinical and clinical studies have demon-
strated AUD-related changes in the fronto-striatal networks
that support goal-directed and habitual behavior. Studies with
AUD patients suggest deficits in goal-directed or model-based
action control that are, however, heavily influenced by factors
such as abstinence and alcohol expectancies.

Pavlovian Learning Mechanisms
Behavioral Paradigms and Neural Circuitry

During Pavlovian conditioning, initially neutral stimuli be-
come conditioned stimuli (CS) through repeated pairing with

an unconditioned stimulus (US) [87]. As a consequence, the
CS elicits a variety of conditioned responses (CRs) originally
provoked by the US. Repeatedly presenting these cues in ex-
tinction, i.e., without the US, weakens CRs by establishing a
new, inhibitory CS—noUS association that henceforth com-
petes for behavioral expression with the original association
[88]. This duality explains several Pavlovian relapse phenom-
ena, where CRs recover under certain conditions [89]. In an-
imals, the concepts of conditioned approach [90-92] and
place preference [93-95] have been studied extensively in
the context of addiction. In place conditioning protocols, dis-
tinct chambers (CS) are paired with the administration of ei-
ther a US or noUS. In the test phase, animals are given free
access to both chambers; those that develop conditioned place
preference will spend more time in the US-paired context.
Rewarding outcomes, including sex [96], food [97-100],
fluids [100], and numerous drugs of abuse [for a review, see
95], have been shown to reliably induce conditioned place
preference, which can be reinstated after extinction [95,
101], but can be abolished by devaluing the US [100, 102].
In Pavlovian lever autoshaping, the insertion and retraction of
a lever (CS) signals food (US) delivery, irrespective of behav-
ior. Some rats (sign-trackers) predominantly approach and
interact with the Pavlovian cue, i.e., the lever, whereas others
(goal-trackers) consistently approach the location of food de-
livery [103—106]. For sign-tracking rats, the CS appears to be
attributed with incentive salience [107-109] and can even
effectively reinforce new instrumental learning [107].
Following US devaluation, goal-trackers decrease both cue-
and outcome-directed behaviors, whereas sign-trackers con-
tinue responding to cues [110-112]. Interestingly, in contrast
to instrumental devaluation studies [46, 113], sign-tracking
rats become sensitive to outcome devaluation with extended
autoshaping training [110, 114, 115].

Most Pavlovian procedures used in humans were initially
developed in animals. However, research attempting to trans-
late the two paradigms and concepts described above is limit-
ed. Human studies often employ differential conditioning pro-
tocols in which one stimulus (CS+) is paired with the US
while a second (CS—) is not. Both appetitive and aversive
CRs have been quantified on various response systems, in-
cluding subjective ratings, psychophysiological measures,
and neuroimaging [116—120]. Recent research has found ev-
idence of behaviors similar to sign- and goal-tracking in
healthy participants. Using eye-tracking, Garofalo and di
Pellegrino [121] and Schad et al. [122¢¢] demonstrated that,
during Pavlovian conditioning, some participants gazed more
often toward the reward-predicting cues and others toward the
location where money would be delivered, consistent with
sign- and goal-tracking behavior, respectively. Although
Pavlovian conditioning was equally successful in both groups
[121], cues influenced instrumental behavior more strongly in
sign-tracking individuals [121, 122¢¢], consistent with animal
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findings [107]. Using a computational model, Schad et al.
[122¢¢] determined that goal-trackers relied strongly on
model-based state prediction errors, whereas sign-trackers ex-
hibited a neural reward prediction error signal. Attempts to
closely adapt Pavlovian lever autoshaping paradigms for
humans are also under way [e.g., 123; for a review, see
124]. The conditioned place preference model has also been
translated to humans, frequently using virtual reality or com-
puter avatars. These studies have demonstrated that partici-
pants show both implicit and explicit preference for rooms
previously paired with primary [125, 126] and secondary re-
inforcers [127-129], as well as drugs of abuse [130, 131].

Preclinical work suggests largely overlapping neural cir-
cuits are involved in Pavlovian learning processes, including
OFC [132], dorsolateral PFC [97], nucleus accumbens
(NAcc) [133], subthalamic nucleus [134], amygdala
[135-140], hippocampus [139], and insula [138], which are
widely preserved across species [141, 142]. Recent work has
shown the relevance of adrenergic, cannabinoid receptor, and
NMDA signaling for Pavlovian conditioning [99, 143-146].
Still, the seminal work of Schultz et al. [147, 148] demonstrat-
ed the critical role of dopamine by showing a shift in dopami-
nergic firing from the US to the CS over the course of condi-
tioning. Subsequent work has shown that phasic dopamine
release in the NAcc matches reward prediction error signals
in sign-tracking rats, whereas goal-tracking rats do not show a
decline in US-evoked dopaminergic release despite exhibiting
conditioned approach [149]. Dopamine has thus been posited
a role in incentive salience attribution, not S-R learning itself
[150]. A recent computational model has accounted for this
individual variation in Pavlovian conditioned approach be-
havior and dopaminergic release patterns [151] and its predic-
tions were supported experimentally [152]. This model ac-
counts for the development of distinct CRs in rodents through
a combination of a model-based and a featured-model-free
system, a revised model-free system that uses factored repre-
sentations [151, 153, 154].

Human neuroimaging studies have repeatedly identified
activity within dopaminergic midbrain, VS (including
NAcc), OFC, dorsal ACC, and amygdala during appetitive
Pavlovian conditioning [120, 155-162; for a meta-analysis,
see 163]. In line with preclinical evidence showing that the
infralimbic PFC promotes extinction recall, regulating
Pavlovian relapse phenomena [141, 164], the vimPFC is con-
sidered particularly relevant for the recall of extinction mem-
ory, in concert with striatum and amygdala [165—168], and the
inhibition of appetitive responses [117, 169]. Research further
suggests that Pavlovian value signals are encoded within
vmPFC and OFC [158, 170, 171], as well as the VS [156,
160, 172]. Indeed, VS activity has been found to shift from
US to CS over the course of learning [172] and to be consis-
tent with reward prediction error signals [162, 172]. A recent
study, however, reported NAcc model-free reward prediction

@ Springer

error activity only in those individuals classified as sign-
trackers [122¢¢], dovetailing with prior animal findings
[149]. A few studies have further suggested that the dorsal
striatum might not only be involved in instrumental [11] but
also in Pavlovian conditioning [158, 160], supporting model-
based inference, i.e., representing a cognitive map of
Pavlovian contingencies even in the absence of action, as
reflected by participants’ explicit contingency knowledge
[160]. In a similar vein, the amygdala has been found to be
engaged in model-based inference during Pavlovian condi-
tioning [173], although prediction error signals in this struc-
ture have also been reported to be stronger in sign- than goal-
tracking participants [122ee].

Findings in Alcohol Use Disorder and At-Risk
Populations

Pavlovian lever autoshaping procedures have been reported to
induce high volumes of ethanol drinking in rodents and have
been suggested as an animal learning model of AUD [91].
Using an alcoholic US not only induces sign-tracking behav-
ior in rats [174—176] but shifts conditioned approach behavior
from goal- to sign-tracking over the course of training [177,
178], demonstrating how Pavlovian alcohol cues become
powerful incentive stimuli. Moreover, sign-tracking has also
been shown to enhance operant responding for alcohol [174,
179]. Importantly, exposure to alcohol during adolescence has
been reported to blunt goal-tracking behavior [180] and in-
crease sign-tracking behavior in adulthood [181, 182].
Indeed, exposure to alcohol induces changes in the dopami-
nergic system, with both increased phasic dopamine signaling
to the CS [178] and to positive prediction errors [182].
Regarding ethanol-induced place conditioning, mice show ro-
bust conditioned place preference [183—185] (but results with
rats are mixed [for a review, see 95]) that can be facilitated by
stress [186—188] and is also prone to Pavlovian relapse effects
like reinstatement [101, 189]. Striatal dopamine [190],
cannabinoid-1 receptor [190, 191], and noradrenergic signal-
ing [192] have been attributed a role in the acquisition of
ethanol-induced conditioned place preference. Both NAcc
and amygdala have been shown to be relevant for the acqui-
sition and expression of ethanol-induced conditioned place
preference [185, 193], with antagonism of NAcc NMDA re-
ceptors blocking conditioned place preference expression
[185] and NMDA-receptor partial agonist D-cycloserine inter-
fering with reconditioning, but having no effect on extinction
[194]. Several studies have demonstrated that naloxone facil-
itates the extinction of ethanol-induced conditioned place
preference [189, 195, 196], even to the point of generating a
weak conditioned place aversion [196], suggesting that opioid
receptor activation also mediates the motivational effects of
alcohol. Indeed, injections of a delta-opioid receptor antago-
nist in the central amygdala can reverse ethanol-induced
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conditioned place preference [197]. In a compelling design,
Cunningham and Patel [198] used a modified place condition-
ing paradigm to assess conditioned approach by introducing a
visual cue in the conditioning chamber. Here, mice showed a
strong preference for the location of the visual cue that had
been associated with intraperitoneal ethanol injections, a be-
havior consistent with sign-tracking.

Although translation of the animal concepts and methodol-
ogies described above is limited, human studies have ad-
dressed related constructs, such as cue reactivity [90, 124]
(Table 1). The presentation of alcohol-associated cues, e.g.,
the sight or smell of an alcoholic beverage, has been shown to
bias approach tendencies [199-201] and attention [202—204],
with increased attentional bias predicting relapse risk [205,
206], and induce conscious craving [204, 207-212] in indi-
viduals diagnosed with AUD. Passive viewing tasks, in which
participants are shown alcohol cues (images of alcoholic bev-
erages), affectively neutral images and abstract images, have
been widely used to research cue reactivity in AUD patients.
These evoke a number of psychophysiological responses, in-
cluding increased salivation [213], changes in heart rate vari-
ability [203, 206, 209, 214], and larger pupillary dilation
[215], some of which have also been associated with higher
relapse probability at follow-up [206, 213, 215]. Moreover, in
AUD patients, alcohol cues elicit activity within limbic and
prefrontal structures involved in incentive salience attribution
and reward processing, including mPFC, OFC, ACC, poste-
rior cingulate cortex, and striatum [212, 216-222].
Interestingly, AUD duration has been shown to correlate with
activation of the posterior putamen [212], an area related to
habitual control [11]. Moreover, increased frontal activation
has been related to decreased dopamine receptor availability
in the VS [217], and these cue-elicited fronto-striatal re-
sponses have been shown to predict subsequent craving and
relapse [218-220]. Specifically, alcohol-cue reactivity in the
VS has been suggested as a prognostic factor for relapse in
AUD patients [219].

Dovetailing with results in clinical samples, cue reactivity
studies with social drinkers have also reported increases in
attentional bias [223, 224], heart rate variability [225], and
craving [226-228] in response to alcohol cues in heavy
drinkers. Interestingly, Roy-Charland et al. [223] observed
that participants who consumed more alcohol performed more
frequent saccades into and out of alcohol-related image parts,
a behavior reminiscent of sign-tracking. Neuroimaging stud-
ies have further highlighted the relevance of fronto-striatal
circuits, showing how heavy and light alcohol use modulate
PFC, ACC, and ventral and dorsal striatal responses to
alcohol-related cues [229-231]. While cue reactivity para-
digms make use of “naturally”, idiosyncratically conditioned
cues, a handful of studies have investigated de novo alcohol
conditioning in social drinkers so far [232, 233-236].
Specifically, neutral cues experimentally paired with low to

moderate doses of alcohol have been associated with in-
creased skin conductance [233, 236] and greater attentional
capture [234, 236] compared with a CS—, with attentional bias
being positively related to participants’ self-reported liking of
alcohol [234]. In a neuroimaging study, visual background
stimuli associated with intravenous alcohol (CS+) compared
with saline infusion (CS—) were found to evoke BOLD re-
sponses in frontoparietal and orbitofrontal regions, ACC,
and insula [235]. However, CS+-elicited BOLD responses
were unrelated to recent drinking or other risk factors of
AUD, such as a family history of the disorder, and no behav-
ioral conditioning effect could be observed in a reaction time
task [235]. A single study has researched alcohol-induced
place conditioning in humans [232¢]. In a multi-session set-
up, heavy social drinkers received either alcoholic or non-
alcoholic drinks in two distinct rooms, respectively. At test,
participants preferred the room previously associated with al-
cohol consumption compared with the non-alcohol-associated
room, i.e., displayed a behavior consistent with conditioned
place preference. This effect, however, was independent of
explicit awareness of context contingency, suggesting that
alcohol cues influence behavior irrespective of drug aware-
ness [232¢]. Of note, alcohol conditioning had no effect on
subsequent free choice behavior [234, 236], raising questions
about when and how the presence of alcohol-associated cues
becomes behaviorally relevant.

In summary, this line of research provides evidence that
both AUD patients and social drinkers attribute incentive sa-
lience to alcohol cues and that conditioned incentive proper-
ties may develop largely outside of the participant’s aware-
ness. While alcohol-paired cues consistently increased neural
and psychophysiological responses in individuals diagnosed
with AUD, only few studies have addressed the process of de
novo alcohol conditioning in humans.

Influence of Pavlovian Cues on Instrumental
Responding: Pavlovian-to-Instrumental Transfer

Behavioral Paradigms and Neural Circuitry

Drug-related cues do not only have high impact on psycho-
logical and neurophysiological reactions but can also directly
influence the motivation to perform certain behaviors. The
Pavlovian-to-instrumental transfer (PIT) test has been used
to assess the impact of Pavlovian cues on instrumental behav-
ior. Here, positively valued Pavlovian cues enhance instru-
mental approach behavior [for a review, see 237], while neg-
atively valued Pavlovian cues attenuate instrumental approach
behavior [e.g., 238]. Numerous animal studies have assessed
PIT [239], typically using a three-stage experimental design
[237]: in a first Pavlovian conditioning stage, the animal is
presented with a neutral stimulus that is paired with a positive
reinforcer, becoming an appetitive CS+; in a second
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instrumental training stage, the animal learns via trial and error
to press a lever to receive a desired outcome; and in a final
transfer stage, the animal is confronted with the lever (in ex-
tinction) and either the CS+ or no cue. The typical PIT effect
observed during the transfer stage is an increase in lever
presses in trials with the CS+ compared with trials with no
cue. So-called full PIT paradigms use several US types to
distinguish between general and outcome-specific PIT effects.
In general PIT, Pavlovian cues impact instrumental perfor-
mance irrespective of the associated reward, e.g., ethanol-
paired Pavlovian cues can have a general excitatory effect
on reward-seeking behavior in rats, affecting both ethanol-
associated and sucrose-associated lever pressing [240]. In
contrast, in outcome-specific PIT, the impact of Pavlovian
cues on instrumental performance is directly linked to the
associated reward, e.g., sucrose-associated Pavlovian cues se-
lectively elevate sucrose-directed but not ethanol-directed le-
ver pressing [240]. Several theories have attempted to explain
the transfer effect [for a review, see 237]. Initial theories pos-
ited that the CS+ elicits a general increase in motivational
arousal and activates the memory of the sensory-specific fea-
tures of the outcome [241-243]. More recent theories include
the associative-cybernetic model, which posits an S-O, O-R
chain through associative and S-R memories as well as a gen-
eral enhancement of instrumental actions [244], and hierarchi-
cal models, which postulate that the CS enhances instrumental
responding because of its predictive value through hierarchi-
cal CS-(R-O) associations [245-247].

The PIT paradigm has also been used in humans, with
evidence for both general and outcome-specific PIT effects
[237, 248-250]. Huys et al. [251] showed distinct effects of
appetitive Pavlovian stimuli enhancing approach and
inhibiting withdrawal behavior, while aversive stimuli
showed the opposite result. These effects were independent
of reinforcer presentation delay, which was interpreted as a
disruption in goal-directed instrumental control by Pavlovian
cues [252]. PIT effects in humans have been shown to be
insensitive to outcome-devaluation [253] (although see satiety
effects in PIT-related NAcc activation in animals [254]), but
sensitive to extinction, although this was less effective for
reducing PIT in a different context [255]. Moreover, reduced
working memory capacity has been reported to attenuate
outcome-specific but not general PIT [256].

On a neural level, animal studies have shown that dopami-
nergic neurotransmission in subcortical areas, specifically
within the NAcc, is crucial for general PIT [257-259].
However, satiety attenuated PIT-related NAcc dopaminergic
responses [254], emphasizing the role of this region on cue-
motivated behavior [for a review, see 260]. Recent work has
also highlighted the role of striatal cholinergic transmission
[261-264] and NMDA receptor—mediated signaling [146]
for cue-triggered instrumental behavior. Both NAcc and
amygdala appear to be essential structures underlying the
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PIT effect, with double dissociations reported for both re-
gions. Whereas the NAcc core [265] and the central nucleus
of the amygdala [242, 266, 267] mediate general PIT, the
NAcc shell [265, 268] and basolateral amygdala [242, 269]
mediate outcome-specific transfer. Moreover, research sug-
gests that the basolateral amygdala encodes S-O associations
and relays this information to the NAcc to mediate goal-
directed behavior [270]. The ventral tegmental area [241,
271], DLS [272], infralimbic [273] and medial PFC [274],
and OFC [274, 275] have been related to both general and/
or outcome-specific PIT effects. Indeed, outcome-specific PIT
is thought to rely on the interactions between medial ventral
pallidum, NAcc shell, mediodorsal thalamus, and VTA [271,
276], and inactivation of projections from basolateral amyg-
dala to OFC impairs outcome-specific PIT, suggesting they
enable cue-triggered reward expectations that drive goal-
directed behavior [277].

Neuroimaging studies in humans have reported the in-
volvement of similar structures as rodent research. PIT-
related activation has been found within NAcc, putamen,
insula, and amygdala [238, 248, 278-281]. Moreover, dopa-
mine depletion [282] and dopamine antagonists [283] have
been shown to reduce the influence of appetitive Pavlovian
cues on instrumental responses.

Findings in Alcohol Use Disorder and At-Risk Populations

Preclinical research has demonstrated that alcohol-predictive
cues produce a general PIT effect, increasing performance to
obtain both alcoholic and non-alcoholic outcomes [240,
284-286]. However, others have reported alcohol-specific
PIT effects when both the alcoholic and non-alcoholic out-
comes are concurrently available during the transfer test
[287, 288]. The influence of Pavlovian cues on instrumental
responding has been shown to increase with longer instrumen-
tal training [284], but can be abolished if Pavlovian extinction
is received prior to the transfer test [287]. As with primary
reinforcers, rodent research has shown that the reconsolidation
of CS-alcohol memories underlying PIT is mediated by
NMDA-receptor neurotransmission [289], and differentiated
roles for NAcc shell and core, with core inactivation reducing
the general PIT effect induced by alcohol and shell inactiva-
tion selectively reducing outcome-specific PIT [285].

Only a few studies have investigated PIT in AUD patients
(Table 1). Garbusow et al. [290, 291] investigated general PIT
with both monetary (non-drug) and alcohol-related cues, ob-
serving enhanced non-drug PIT effects in AUD patients.
Specifically, patients failed to inhibit approach behavior when
simultaneously confronted with positively valued CS, an ef-
fect that was even more pronounced in impulsive AUD pa-
tients compared with non-impulsive patients and impulsive
healthy controls [292]. This effect further predicted relapse
at 1-year follow-up [293]. Non-drug PIT effects were
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associated with NAcc activity, predicting relapse at 3-month
follow-up [291]. Similarly, high- compared with low-risk so-
cial drinkers also showed stronger non-drug PIT effects, asso-
ciated with amygdala activation and a cumulative genetic risk
for alcohol-related problems [294¢].

Conversely, AUD patients compared with healthy controls
had a lower general PIT effect elicited by alcohol versus water
cues [292, 295], suggesting an inhibition of instrumental per-
formance during alcohol-associated trials. Interestingly, this
effect was associated with NAcc activity, and both behavioral
and neural effects were driven by patients classified as ab-
stainers at follow-up, who displayed increased NAcc activity
at 6-week follow-up and stronger behavioral inhibition at 6-
month follow-up compared with both healthy controls and
individuals that relapsed to alcohol [295]. This rather surpris-
ing result dovetails with a study reporting enhanced NAcc and
mPFC activation elicited by alcohol versus neutral cues in
patients who relapsed at 3-month follow-up [220]. These re-
sults are further substantiated by a multivoxel classification
scheme showing that alcohol PIT-related mPFC activity pre-
dicted relapse in AUD patients and alcohol intake in social
drinkers at 1-year follow-up [296¢]. In contrast, studies using
neutral primary reinforcers (water, chips, snacks) in PIT tasks
have found no differences between AUD patients and healthy
controls [75, 297]. Research in subclinical populations, in-
cluding social drinkers, has found no association between
alcohol-specific PIT effects and drinking measures (e.g.,
AUDIT scores) [298-300].

Taken together, these results suggest that strong general
PIT effects on approach behavior may increase the risk for
alcohol intake in at-risk and AUD participants. However,
PIT tasks that use alcohol cues have revealed group differ-
ences among AUD patients, with individuals that are able to
abstain displaying an inhibitory effect of alcohol cues on ap-
proach behavior, whereas individuals that subsequently re-
lapse do not differ from healthy controls. This is in line with
the hypothesis that PIT effects may be modulated by goal-
directed control [297].

Discussion and Outlook

Basic learning mechanisms, including Pavlovian and instru-
mental processes, are crucial to understand the development
and maintenance of AUD. Preclinical research has extensively
demonstrated that alcohol and alcohol-paired cues heavily in-
fluence behavior and induce long-lasting changes in brain
circuitry. Animal models evidence that alcohol seeking starts
as goal-directed behavior, driven by the DMS [21, 72], but
through overtraining becomes consistent with an S-R habit,
with behavior that will persist despite negative consequences
and is driven by the DLS [21, 6062, 73]. Moreover, ethanol
infusions cause animals to develop conditioned place

preference [183—185] and pairing neutral cues with alcohol
outcomes induces sign-tracking, whereby animals interact
preferentially with the Pavlovian cues [174—178], a behavior
that also increases operant responding for alcohol [174, 179].
Indeed, alcohol-predicting Pavlovian cues have been shown
to elicit a general PIT effect, increasing responses to obtain
both alcoholic and non-alcoholic outcomes [240, 284-286].
As with instrumental conditioning, these Pavlovian processes
depend heavily on striato-limbic circuitry, especially NAcc
and amygdala [185, 193, 197, 285], as well as NMDA recep-
tor and dopaminergic signaling [178, 182, 185, 194, 289].

Translation of animal research to humans remains, howev-
er, challenging, with less clear-cut findings than animal stud-
ies due, at least in part, to heterogeneity in the paradigms used,
employed measures of conditioning (implicit physiological,
explicit self-report or neuronal), level of awareness about the
conditioning procedure and modifying factors, such as comor-
bidities, AUD severity and duration, or context (e.g., enroll-
ment in treatment programs or recent detoxification). This
notwithstanding, alcohol cues have been extensively proven
to induce attentional and psychophysiological changes and
increase craving in individuals with AUD [202-204,
206-215], as well as social drinkers [223-228]. However, in
contrast to animal research, conditioning of alcohol cues in
human studies has usually taken place outside of the experi-
menter’s control and is thus subject to an indeterminate num-
ber of potential confounders. Still, recent attempts at de novo
Pavlovian conditioning with alcohol, a procedure more simi-
lar to preclinical methods, have proven successful,
underlining the role of a number of limbic and prefrontal
structures [235] and demonstrating alcohol-induced condi-
tioned place preference in social drinkers [232¢].

In the instrumental domain, individuals with AUD exhibit
decreased goal-directed/model-based control [74e, 77], as well
as decreased mPFC and increased dorsal striatal activity in
AUD participants [74e, 78¢], consistent with rodent studies
showing that ethanol exposure results in fronto-striatal chang-
es that contribute to the loss of goal-directed control [67].
However, not all studies have observed differences in
model-based versus model-free control [78ee, 79].
Translation of research in animals to humans remains a major
challenge also in instrumental learning studies. The
overtraining-induced shift from goal-directed to habitual con-
trol found in rodents [11, 113, 301] has proven elusive in
humans [302] (although see Hardwick et al. [303] for a novel
design to test habitual responding in humans after
overtraining). Moreover, some authors [26, 304] have
questioned the suitability of the formalization of habit and
goal-directed processes as model-free and model-based con-
trol [27, 32] for the study of habit behavior in humans at all. In
light of these issues, alternative computational architectures
have been proposed [for a review of other taxonomies, see
16] that might better align with classical behavioral findings

@ Springer



170

Curr Addict Rep (2021) 8:156-180

across species. Furthermore, the recent back-translation of the
two-step task for rodents [33—37] could also shed light on
these issues. Indeed, translation of models and methodologies
between preclinical and clinical research is crucial in the study
of basic learning mechanisms in AUD. In recent years, the few
human PIT studies exploring AUD have started to elucidate
the influence of Pavlovian cues on instrumental behavior, re-
vealing stronger PIT effects in AUD patients [290-292, 295].
Recent lines of research that have started incorporating animal
concepts, e.g., sign- versus goal-trackers, into human studies
[121, 122¢] will certainly promote understanding of the rela-
tionship between Pavlovian and instrumental behavior.

The studies detailed above have further started to unearth
the complex relationship between these basic learning pro-
cesses and abstinence and relapse. Indeed, cue reactivity as
reflected by psychophysiological changes and VS activation
has been related to the probability of relapse at follow-up
[206, 213, 215, 219, 220]. Similarly, model-based control,
together with alcohol expectancies, could be both a predictor
of long-term abstinence [78¢¢] and improve with long-term
abstinence [79]. PIT-associated fronto-striatal changes have
also been related to relapse risk [291, 295, 296¢]. Animal
models seem here particularly relevant, as they could help
tease out the potential components influencing the long-term
maintenance of abstinence and have already demonstrated
how treatments influencing fronto-striatal function can im-
prove goal-directed control [21, 67, 73]. Preclinical models
are also irreplaceable in order to study the influence of age
and gender in AUD development, a field that human research
can only explore retrospectively, but in which rodent studies
have already provided powerful insights [69-71, 180—182].

A better understanding of the outlined instrumental and
Pavlovian learning processes involved in the development,
maintenance, and relapse of AUD ultimately holds promise
to improve individualized treatment options for this disorder.
Novel intervention strategies that target automated approach
tendencies and potentially also craving elicited by Pavlovian
conditioned cues include cognitive bias modification
[305-307], pharmacological adjuncts to boost cue exposure
therapy [308, 309], or techniques focusing on reconsolidation
processes [310-312] (reviewed in detail by Beck et al. in this
issue).

In order to reach this goal, research should aim for longi-
tudinal studies using reliable and ecologically valid paradigms
of Pavlovian and instrumental processes with alcohol-related
cues and outcomes, which should be combined with state-of-
the-art imaging techniques, computational modeling, and eco-
logical momentary assessment methods that collect real-time
craving and substance use data in daily life [313]. This will
allow us to better understand how these basic learning mech-
anisms contribute to the initial development and maintenance
of AUD.
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