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Instrumental and "Quasi-Instrumental" Variables* 

Larry M. Bartels, University of Rochester 

The trade-off between the efficiency of an instrumental variable and its exogeneity is widely 
recognized but little understood. This paper specifies the terms of that trade-off by analyzing the 
asymptotic mean squared errors associated with the instrumental variables estimator when the instru- 
ment may not be perfectly exogenous. The analysis shows that even seemingly minor misspecifica- 
tions can play havoc with statistical inferences based on "quasi-instrumental variable" estimators. 
Simple rules of thumb are derived by which intuition can be applied to choices among alternative 
estimators based on different instrumental variables, or between instrumental variable and ordinary 
least squares estimators. The theoretical analysis is applied to an example drawn from Jacobson's 
(1990) and Green and Krasno's (1990) work on congressional campaign spending and is bolstered 
by Monte Carlo simulations that, for the most part, reproduce the patterns of errors predicted by the 
asymptotic results. 

It is common in textbook treatments of the instrumental variables estimator 
to remark upon the difficulty of knowing or demonstrating that a potential instru- 
ment is itself really exogenous. Thus, Johnston (1972, 280-81) wrote that "the 
real difficulty in practice of course is actually finding variables to play the role 
of instruments. The true disturbance is unobservable and so it is difficult to be 
confident that the instruments really are uncorrelated in the limit with the distur- 
bances." In view of this very real difficulty, it is remarkable that these same 
textbooks and the econometric literature more generally devote little or no 
attention to the practical consequences of using "instruments" that are really 
only approximately exogenous. 

It is obvious that a "quasi-instrumental variable" estimator one based on 
an instrumental variable that is only approximately uncorrelated with the distur- 
bance will not produce consistent estimates of the underlying parameters of 
interest. However, it should also be obvious that the use of such a quasi- 
instrumental variable may often be unavoidable in applied work. Moreover, even 
when a genuine (perfectly exogenous) instrument is available, it may be so in- 
efficient that a quasi-instrumental variables estimator is preferable in practice 
(e.g., by a squared error criterion) because data are in short supply. 

*This is a revised version of a paper originally presented at the 1989 Political Methodology 
Conference in Minneapolis and at the 1990 Political Methodology Conference in St. Louis. I am 
grateful to Christopher Achen, Gary King, Adrian Pagan, Douglas Rivers (twice), and David Weimer 
for helpful comments and suggestions and to Simon Jackman for assistance in generating the simu- 
lations described in section 9 and the figures. 

American Journal of Political Science, Vol. 35, No. 3, August 1991, Pp. 777-800 
(C 1991 by the University of Texas Press, P.O. Box 7819, Austin, TX 78713 
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The squared error criterion arises naturally in the context of the IV estima- 
tor, since the rationale for using instrumental variables is to purchase consistency 
at some cost in terms of precision. That trade-off is widely recognized. Kennedy 
(1985, 115) noted, "Because the typical case is one in which the instrumental 
variables are not highly correlated with the independent variable with which they 
are associated . . . the OLS estimator could be preferred on the MSE criterion." 
Hanushek and Jackson (1977, 238) even provided a Monte Carlo analysis of 
relative mean squared errors for OLS and IV estimators as a function of sample 
size and error correlation. But the trade-off is always considered under the main- 
tained assumption that the instrument itself is perfectly exogenous. Typically, in 
applied work, "the choice of an instrumental variable is highly arbitrary" (Ken- 
nedy 1985, 115), and thus the assumption of perfect exogeneity is correspond- 
ingly dubious; in that case there is an additional trade-off to be made, between 
the efficiency of an instrument and its "relative exogeneity." 

1. A Sample Squared Error Analysis 

Consider the bivariate regression model 

y = x ? + u (1) 

where y and x are n x 1 vectors of observable data, u is an n x 1 vector of 
unobserved stochastic disturbances, and /3 is a constant parameter to be 
estimated. I 

We want to evaluate the estimator 

(blv = zx) - I z'y (2) 

where z is an n x 1 vector of observations on an instrumental variable.2 The 
standard textbook assumption is that the instrumental variable z is uncorrelated 
in probability with the disturbance u thus, that plim(z'u/n) = 0. I propose to 
refer to z as a "quasi-instrumental variable" in situations in which we entertain 
the possibility of misspecification of the form plim(z'u/n) #X 0. 

The squared error for the quasi-instrumental variable estimator is 

(bv - _3)2 = [(Z'X)- 1Z'U]2 (3) 

'It is convenient to think of x and y as deviations from their respective means, so that no 
intercept is required in the model in equation (1). The presence of an intercept can be accommodated 
in the multiple regression framework analyzed in section 6. 

2The instrumental variable estimator in expression (2) is often described in terms of two dis- 
tinct regressions-most notably in the context of simultaneous equation models, where it is referred 
to as the "two-stage least squares" estimator. In the first stage, a regression of the original explana- 
tory variable x on the instrumental variable z produces the coefficient (z'z)- z'x, and thus the fitted 
values z(z'z)-'z'x. In the second stage, the original dependent variable y is regressed on the fitted 
values from the first stage, producing the parameter estimates defined in expression (2). 
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Multiplying and dividing the right-hand side of this equation successively by 
(x'x), (z'z), and (u'u) and rearranging, 

(blV - 3)2 = [(u'u)/(x'x)] [R 2/IR ] (4) 

where R2u and R 2 are the squared correlations between z and u and z and x, 
respectively. Since the factor in the first brackets on the right does not depend 
on the choice of an instrument z, it can be treated as a constant of proportionality 
for the purpose of comparing potential instruments, making the squared error for 
any given instrument proportional to the factor in the second brackets on the 
right: 

(blv - /)2 X [R2 IR 2] (5) 

Faced with a choice among alternative quasi-instrumental variables, the 
squared error criterion leads to the selection of the one for which the right-side 
ratio in expression (5) is minimized. Obviously, this does not constitute a me- 
chanical selection rule, since the numerator in the right-side ratio is inherently 
unobservable. (The denominator is, of course, the directly observable squared 
sample correlation between z and x). Nevertheless, expression (5) does convey 
the general nature of the trade-off between efficiency and exogeneity in instru- 
mental variables estimation. Given some intuition about the relative exogeneity 
of alternative instrumental variables, the expression suggests how to manage that 
trade-off intelligently. 

Notice, however, that sampling variation would make RZu greater than zero, 
even if z and u were uncorrelated in the population; hence, R 2u does not measure 
the "exogeneity" of z in the usual sense.3 Since our intuition about population 
correlations is likely to be stronger than our intuition about sample correlations, 
it will be helpful to reformulate the error properties of quasi-IV estimators in 
terms of the relevant population correlations. 

2. An Asymptotic Mean Squared Error Analysis 

Assume for the model in equation (1) that 

plim(x' xln) = o-xx plim(z' zln) = o-zz 
plim(x'z/n) = o*xz plim(z'u/n) = o-zu (6) 
plim(x'u/n) = a-xu plim(u'u/n) = o-uu 

Again, we want to evaluate the quasi-instrumental variables estimator blv, now 
using an asymptotic mean squared error criterion. 

3Interpreted as an estimate of the corresponding population value p2, any sample R2 is biased 
upward by approximately 1ln. In very small samples, it may be prudent to estimate p2 (following 
Johnson and Kotz 1972, 244) by [R2(n - 1) - 1]I(n - 2). I ignore that complication here. 



780 Larry M. Bartels 

The probability limit of the estimator is 

plim(blv) = plim(/3) + plim(z'x/n)-I plim(z'u/n) 
- / ? 

U:u/Orxz 

and its asymptotic variance iS4 

asy var(blv) = (l/n) (ou4ozz/orz) (8) 

Thus, its asymptotic mean squared error is 

AMSE(blV) = [plim(blv) - 3]2 + asy var(bjlv) (9 
- ( zo-2 + ( In) (oUU(ZZo(-_- ) 

Multiplying and dividing the right side of this equation successively by o, zzo, 
and ouu and rearranging, 

AMSE(bl,v) = [o-u/.o-x] [p2 + lln] /p2. (10) 

where p2u (= 0-2u/zzcuu) and p2z (= ax2z/x-_) are the squared population cor- 
relations (i.e., the probability limits of the corresponding squared sample corre- 
lations) between z and u and z and x, respectively. 

Since the ratio in the first brackets on the right side of equation (10) does 
not depend on our choice of instrument, it will be convenient to write 

AMSE(btlv) oc [P2 + 1ln]/p. (11p) 

Expression (11) is equivalent to expression (5) except that population correla- 
tions appear in place of sample correlations and an additional term 1/n appears 
in the numerator on the right side. Obviously, as the sample becomes large, these 
differences become correspondingly inconsequential, so that for large samples 
the asymptotic mean squared error is essentially proportional to the endogeneity 
of z (as measured by the squared correlation between z and u) and inversely 
proportional to the efficiency of z (as measured by the squared correlation be- 
tween z and x). 

3. Inferential Consequences of Misspecification 

A useful way to gauge the inferential consequences of using quasi-instru- 
mental variables is suggested by rewriting the asymptotic mean squared error of 
the quasi-IV parameter estimate in expression (10) as 

AMSE(bIV) = [ouunoxx] [1/p2z] [1 + np2 ] (12) 

4In the present instance, the usual formulation for the asymptotic variance of the IV estimator 
(e.g., Johnston 1972, 280) can be derived from the assumptions that the data are independently 
identically distributed and that the expectation of u? conditional upon z, (and in section 6 upon X2) 
is the constant value o-'. I am grateful to Douglas Rivers for providing the required derivation. 
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Expression (12) effectively partitions the asymptotic mean squared error of the 
quasi-IV parameter estimate into its asymptotic variance and its inconsistency 
(the first and second terms, respectively, in the last square brackets). Since the 
nominal standard error associated with the instrumental variable parameter esti- 
mate will capture only the first of these two components, the actual (asymptotic 
root mean squared) error will exceed that nominal standard error by a factor of 
(1 + np2.)1/2. 

The magnitude of the resulting exaggeration of the precision of quasi- 
instrumental variable parameter estimates for various sample sizes and degrees 
of endogeneity of the instrumental variable z is illustrated in Figure 1. The in- 
ferential distortions resulting from even minor violations of the assumption of 
perfect exogeneity of the instrument are very striking. For example, with a 
sample size of 250, the actual errors associated with the quasi-IV estimator are 
almost twice as large as the nominal standard errors when the population corre- 
lation of z and u is .10 (pz2" = .01); with a sample size of 1,000 the same 
correlation produces actual errors more than 3.3 times as large as the nominal 
standard errors.5 Since asymptotic correlations between the instrument and the 
disturbance as large as .10 are probably common in applied work, it seems likely 
that many of the statistical inferences based on (quasi-) instrumental variables 
estimates (at least from relatively large samples) are in fact wildly misleading. 

4. Efficiency and Exogeneity 

We can further partition the asymptotic mean squared error of the quasi-IV 
parameter estimate by rewriting expression (12) as 

AMSE(blV) = [o-../no-., [1 + (1 - pX2)/p2z + np2/px2 (13) 

Now the first term in the second square brackets corresponds to the asymptotic 
variance of the bivariate OLS estimator; the second term represents the addi- 
tional asymptotic variance produced by using the instrumental variables estima- 
tor rather than the OLS estimator; and the third term represents the inconsistency 
produced by using a quasi-instrumental variable rather than a genuine (perfectly 
exogenous) instrument. This partitioning indicates that the endogeneity of the 
instrument will be a significant source of error (relative to error of the textbook 
sort arising from the inefficiency of the instrument) iff p2u is large relative to 
(1 - pXz)In. Thus, for even moderately large samples, textbook analyses of the 
sort described above probably address only a small fraction of the real cost of 
using instrumental variables in actual applications. 

5The extent of the exaggerated precision increases with the size of the sample because the 
nominal standard error of the parameter estimate decreases as the sample gets larger, while the 
asymptotic bias attributable to misspecification does not. In absolute terms, parameter estimates 
based on large samples will not be more wrong than those based on small samples, but they will fall 
further outside the spurious confidence intervals suggested by the nominal standard errors. 
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Figure 2 provides a graphical analysis of the errors associated with the 
quasi-instrumental variables estimator-that is, a graphical representation of the 
result in expression (11) for various sample sizes and for various values of p2. 
and p"'.6 The lowest curve in each panel of the figure represents the error asso- 
ciated with the instrumental variables estimator under the standard textbook as- 
sumption that p,. equals zero. The additional curves in each panel show how the 
situation changes as the quasi-instrumental variable z becomes more endogenous 
(i.e., for increasing values of p,. ranging from .10 to .40). 

It is evident from Figure 2 that misspecification dominates inefficiency as a 
source of error over much of the plausibly occupied parameter space. With 250 
observations, for example, seemingly trivial endogeneity (p,u = .10) is suffi- 
cient to make an efficient-looking "quasi-instrument" (one whose purging re- 
gression has a population R2 of .70) no better in reality than a very weak truly 
exogenous instrument (one whose purging regression has a population R2 of .20). 
Of course, there are other circumstances in which efficiency is crucial: with 25 
observations the same "quasi-instrument" could be fairly endogenous (p2k = . 30) 
and still be clearly preferable to the weak "real" instrument. My argument is not 
that one strategy is appropriate for every circumstance but that some careful 
thought along the lines proposed here may help suggest the right strategy for any 
specific circumstance. 

5. OLS as a Quasi-IV Estimator 

Whatever other potential instrumental variables may be available, it is ob- 
viously always possible to use the endogenous variable x as an instrument for 
itself. The result in expression (10) applies directly with p2x equal to 1, giving 

AMSE(bj) = [o-uu /o-x] [p2 + 1/n] (14) 

The comparison between expressions (10) and (14) provides a basis for choosing 
in practice between the OLS and quasi-IV estimators. The OLS estimator bn will 
be superior to a quasi-IV estimator b,Iv based on the instrumental variable z, in 
spite of the stipulated endogeneity of x, iff 

[Pu + 1/n] < [pzu + 1In]/p z (15) 

Conversely, the quasi-IV estimator based on the instrumental variable z will be 
superior to the OLS estimator by the asymptotic mean squared error criterion iff 

p2Z > [p2 + 1/n]/[p2U + 1/n] (16) 

Of course, this comparison involves quantities that are not only unobserv- 

6More precisely, the figure shows the asymptotic root mean squared error for each combination 
of parameter values, ignoring the constant of proportionality in expression (10). Notice that the 
relationship between x and z is expressed as a squared correlation, since analysts typically think 
about (and report) the efficiency of an instrumental variable in terms of an R2 statistic from a purging 
regression. 
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Figure 2. Relative Errors of "Quasi-Instrumental Variables" Parameter Estimates 
as a Function of Efficiency, Exogeneity, and Sample Size 
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able but impossible to estimate directly-population correlations that involve the 
disturbance term u. Nevertheless, it is not implausible to suppose that a good 
data analyst, given a direct sample estimate of the left-side squared correlation 
in expression (16), might have sufficient intuition about the right-hand side ratio 
to judge whether the corresponding quasi-TV estimator was or was not likely to 
improve upon OLS. In any event, such decisions must be made; when they are 
made on the basis of conscious consideration, they may simply be made more 
intelligently. 
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Figure 2. (continued) 
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Note: Vertical axis is proportionate to asymptotic root mean squared error, horizontal axis iS p "2. 
Lines on the graphs correspond to the level of pzu 

6. Extension to Multiple Regression 

The expression corresponding to expression (10) for a multiple regression 
model with endogenous explanatory variable xl and additional (exogenous) ex- 
planatory variables X2 is a straightforward generalization. The model is 

y = x431 + X2J32 + u (17) 

and the (quasi-) IV estimator for ,f1 is 

blv = (z'M2x1)-1' M2M2y (18) 

where M2 = I - X2(X'X2) - X' is the "least squares residualizing matrix" 

based on the exogenous explanatory variables in X2 . We add to the assumptions 

in expression (6) that 

plim(X2X2/n) = Y;22 (a positive definite matrix) 

plim(X'xl/n) = c2x (19) 

plim(X'z/n) = cr2z 

plim(X'u/n) = 0 (since X2 is exogenous) 

7The terminology reflects the fact that multiplying any vector by M2 produces the least squares 
residual vector from a regression of the original vector on X2. For example, z'M2 is the (transposed) 
least squares residual vector obtained by regressing z on X2, and M2XI is the least squares residual 
vector obtained by regressing xi on X2. The analysis below makes use of the facts that M2 = M2, 
M2M2 = M2, and M2X2 = 0, which can be verified from the definition of M2 in the text by 
performing the required multiplications. 
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Then the probability limit of the quasi-IV estimator in expression (18) is 

plim(blv) = 81 + plim(z'M2x,/n)-1 plim(z'M2u/n) 

(since M2X2 = 0 exactly) 

= I1 + plim(z'M2x,/n)-l plim(z'u/n) + 0 (20) 

(since plim(X'u/n) = 0 by assumption) 

= 81 + Cr0,,/(U>, -r2xY22I2z) 

its asymptotic variance is 

asy var(bl ) = ( In) (oU-. (z-- 2zX2122z)/(o C-ir21ur2_ )2 (21 ) 

and its asymptotic mean squared error is 

AMSE(blv) = oul(ox - irxEi21o2Z)2 ? (22) 

(1 In) o- Xu (Ocr - 2z2i2O2_2z)C(Ur2 - 2x.221Cr2z 

Multiplying and dividing the right-hand side of expression (22) successively by 
(ox. - C2rxY21r2), ((r - Cr2'zY-212z), and oxuu and rearranging, 

AMSE (b'll) = k0fr,u/(o.u - C2x22'. f22)] (23) 
[(r2, /(ruu((r- cr2,Y22cr2,) + 1/n] 

- 2x?T2x_22 2x) (U-zz C2'2zY22C2)/(Ox, - C2xY22Cr2z)] 

[ouu/(or, - C2x22x2x)] [pZCi2x + lln]/p 21 

where P,Ui2 and P1.12 are the population correlations between z and u and z and xl, 
respectively, holding constant X2. 

Since the ratio in the first square brackets does not vary with our choice of 
instrument,8 we can write 

AMSE(blv) ?X [p2UI2 + lln]lpr-12 (24) 

which is identical to expression (1 1) except that the relevant quantities are now 
partial correlations holding constant the exogenous variables X2. Thus, all of the 
analysis in sections 3, 4, and 5 (including the graphical analysis in Figures 1 and 
2) applies to the multiple regression model as well, if direct correlations are 
replaced by partial correlations holding constant X2 (i.e., if P1:I2, P,uI2, and PxuI2 
are substituted for pr2, p2 , and pr2, respectively). 

Some intuition regarding the likely magnitudes of the partial correlation in 
the numerator of expression (24) may follow from noting that 

P2u 2 = Pu/(l - P-2) (25) 

8The constant of proportionality in expression (22) will be greater by a factor of 1/(1 - pX2) 

than the corresponding constant in expression (10); the difference may be thought of as a penalty for 
collinearity in the multiple regression model. 
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where Pz2 is the (directly estimable) population multiple correlation between the 
instrument and the exogenous explanatory variables. Thus, it is possible to trans- 
late judgments about the direct correlation between z and u straightforwardly 
into judgments about the partial correlation in expression (24) between z and u 
holding constant X2. 

Similarly, in thinking about the partial correlation in the denominator of 
expression (24), it may be enlightening to recall (from Theil 1971, 175) that 

Pxz12 =(Pp Px2)( 2 (26) 

which is simply the population analog of the proportion of previously unex- 
plained variance explained by adding z to the regression of xl on X2. (I use p2p 

to denote the squared multiple population correlation from the purging regression 
of xl on z and X2, and P22 is the corresponding squared multiple population 
correlation from a purging regression of xl on X2 only.) 

It is common in textbook treatments of the instrumental variables estimator 
to note that "the higher the correlation between Zk and Xk (so long as Zk remains 
uncorrelated with U), the lower the variance of the estimated coefficients" 
(Hanushek and Jackson 1977, 234). While that statement is true, the appearance 
of PXz12 rather than p2. in the denominator of expression (24) makes it clear that 
the statement is true in the multiple regression framework only to the extent 
that the higher correlation is with that portion of xl uncorrelated with X2. Cer- 
tainly the implication that an instrument strongly correlated with xl is superior 
to one less strongly correlated with xi can be a misleading rule of thumb for 
evaluating alternative instruments, since z may be a relatively inefficient instru- 
ment even if it is strongly correlated with xi, if it happens to be correlated with 
that portion of xl that is collinear with X2. (In that case it will add little to a 
purging regression in which X2 already appears, making the right-hand side ratio 
in expression (26)-and hence the denominator in expression (24)-relatively 
small.) 

So far I have examined only the error associated with the parameter for the 
single endogenous variable xl in the multiple regression model. Might not some 
estimator do poorly with respect to this one parameter but still be preferable 
because it produces better estimates of the other parameters in the model? In a 
word, no. We can see this by writing the vector of IV estimates for the other 
parameters (using a standard result on inverses of partitioned matrices from Theil 
1971, 18) as9 

2= (X2X2)'Xy - (X2X2)-'X'x1 (z'M2x1)_'z'M2y 

- (X2x2)'Y - (X2X2)'X'xl blv (27) 

- P2 + (X2X2)-'XfU (X2X2) IXX1 (bln /3k) 

9The second line of expression (27) follows from a direct substitution of expression (18); the 
third line from a substitution of expression (17) and rearrangement. 
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The squared inconsistencies in these parameter estimates are the main di- 
agonal elements of 

[plim(b1v) - 12] [plim(b1v) - 212] 
= 

C2.22xJ2x'2.2 
(28) 

x [plim(blv) - f1]2 

(because plim (X2u/n) = 0 by assumption). The asymptotic variances are the 
main diagonal elements of 

asy var(bv) (1/n) 0 Ujl ? 1.2j2 [asy var(bI)] (29) 

Thus, the asymptotic mean squared errors for the parameter vector blv are the 
main diagonal elements of 

AMSE(b2v) = (1/n) (o-uu .-' + Y.-Icr2xfr'xY2-I [AMSE(bilV)] (30) 

The first term of expression (30) is invariant with respect to z, and the second 
term has main diagonal elements that are increasing functions of the asymptotic 
mean squared error of blv (since the main diagonal elements of the matrix 
EY2-21C2.Cr2'2-21 must be nonnegative). It follows that whatever quasi-instrument 
seems likely to produce the best estimate of f31 will be equally likely to produce 
the best estimate of each element of 12 as well. 

7. Two-Stage Least Squares 

Suppose we regress the endogenous variable xl on the exogenous variables 
X2 plus some additional variables X0 excluded from the equation of interest and 
use the vector of fitted values 

xl = M2Xo(X'M2Xo)- XoM2x1 ? X2(XX2)-1Xx1 (31) 

as our instrumental variable in the original equation. The resulting IV estimator 
is the familiar two-stage least squares estimator. 

Just as textbooks cling to the assumption that instrumental variables are 
perfectly exogenous, they cling to the analogous assumption that excluded vari- 
ables used to construct an instrument in the 2SLS framework are perfectly ex- 
ogenous. But it is evident that, when this assumption is false, the 2SLS estimator 
may be inferior to other quasi-IV estimators, including (possibly) the OLS esti- 
mator. Given the highly optimistic nature of the exclusion restrictions in much 
applied work, this is more than a theoretical possibility. )0 

The form of the 2SLS estimator for ,f1 is 

b LS = (xlM2xl)1xlM2y 

- [XlM2Xo(X4M2Xo) - 1XoM2x1] (32) 

x xlM2XO(XOM2XO) - 0XoM2y 

IOComparisons of the sort considered here among misspecified simultaneous-equations models 
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which is equivalent to the IV estimator blv of expression (18) based on the in- 
strumental variable z = XO(XOM2XO)- XOM2x1. Thus, if there is only one ex- 
cluded variable in the simultaneous-equations model, the effective instrument z 
is proportional to it; in that case the analysis in section 6 applies directly with xo 
in place of z. If there are two or more excluded variables, the effective instrument 
z is a weighted average of the excluded variables, with the weight for each being 
the corresponding parameter estimate from the purging regression. In either 
case, the apparent complication introduced by including the right-hand side ex- 
ogenous variables X2 in the purging regression turns out to be illusory, since the 
relevant characteristics of z in expression (23) are its partial correlations with xl 
and with u holding constant X2. 

8. Empirical Illustration 

How might we apply the results of the preceding theoretical analysis to the 
real problems faced by practicing data analysts? In this section I illustrate the 
implications of my analysis for one ongoing empirical controversy. The question 
at issue is how campaign spending by incumbent representatives affects congres- 
sional election outcomes. 

The pioneering work on congressional campaign spending by Jacobson 
(1980) seemed to demonstrate that spending by congressional challengers has a 
strong impact on election outcomes but that spending by incumbents has little or 
no effect. This striking asymmetry-and the associated puzzle of why incum- 
bents go to such trouble to raise and spend money if doing so makes no appre- 
ciable difference to their electoral prospects-prompted revisionist analyses by 
Green and Krasno (1988) and others. Green and Krasno's analysis is of particular 
interest here because one of their chief departures from Jacobson's original model 
involved the addition of a new instrumental variable to the set utilized by Jacob- 
son. Subsequent debate (Jacobson 1990; Green and Krasno 1990) has focused in 
significant part on the appropriateness of this additional instrumental vari- 
able-precisely the sort of question to which the theoretical analysis presented 
here should be able to contribute some insight. 

Green and Krasno proposed treating incumbent spending in the current elec- 
tion cycle as an endogenous explanatory variable in a model that accounts for 
the challenger's vote percentage. They further proposed using an incumbent's 
spending in the prior election cycle as an instrument for spending in the current 
cycle; they argued that the prior incumbent spending level reflects an incumbent's 
"propensity to spend money given his or her abilities and tastes for fundraising" 
(1988, 897). This specification produced estimated effects of incumbent spend- 
ing much larger than those produced by Jacobson. 

Jacobson criticized Green and Krasno's use of prior incumbent spending as 

were pursued in a somewhat more general framework, albeit from the standpoint of an asymptotic 
bias criterion only, by Bartels (1985). 
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an instrument for current incumbent spending on several grounds (1990, 337), 
most notably because prior incumbent spending is strongly correlated with the 
other explanatory variables in the challenger vote model. Green and Krasno dis- 
missed this aspect of Jacobson's criticism as "simply rhetorical fluff, as collin- 
earity biases neither the TSLS estimates nor the standard errors" (1990, 364). If 
our only goal is to draw unbiased inferences from the data, then Green and 
Krasno were right to dismiss collinearity as a significant issue. However, if we 
also care about drawing the most accurate possible inferences from the data, 
then the theoretical analysis in section 6 above should make clear that Jacobson's 
criticism is quite relevant. II 

Early versions of Jacobson's model (1980, 1985) included incumbent sen- 
iority and dummy variables for primary competition in each party as potential 
instrumental variables. More recently, Jacobson has expressed substantial skep- 
ticism about the appropriateness of these and other readily available instrumental 
variables, arguing that the findings produced by his own and other similar analy- 
ses "are by no means conclusive because it is not clear that any of the models is 
really identified" (1990, 341). Thus, having criticized Green and Krasno's pro- 
posed instrumental variable as well, he was left to conclude that "TSLS models, 
where interpretable, merely repeat the ordinary least squares findings (Jacobson 
1985), implying that simultaneity bias is small and that the OLS model is ade- 
quate after all" (1990, 341).12 

The analysis presented here is a somewhat stylized representation of this 
controversy. I use Jacobson's data from one election year, 1986, to illustrate the 
implications of the theoretical results reported above for two alternative models, 
one treating incumbent spending as exogenous (in more or less the way advo- 
cated by Jacobson 1990) and estimated using ordinary least squares, and the 
other treating incumbent spending as endogenous (in more or less the way ad- 
vocated by Green and Krasno 1990) and estimated using two-stage least 
squares. 13 

The first column of Table 1 shows the results of the two-stage least squares 
purging regression of incumbent spending on prior incumbent spending and the 

"I Curiously, Green and Krasno earlier seemed to recognize this sort of criticism as more than 
"rhetorical fluff," having criticized Jacobson's original instrumental variables on similar grounds 
(1988, 896). 

12Having concluded that "simultaneity bias is small," Jacobson went on to treat both incum- 
bent spending and challenger spending as exogenous in a logit analysis of individual vote choices 
using panel data (1990, 342-56). I share Green and Krasno's (1990, 370-71) skepticism regarding 
the adequacy of this new analysis. 

13I am grateful to Stephen Ansolabahere and indirectly to Gary Jacobson for providing 
these data. For the sake of simplicity, I follow both Jacobson (1990) and Green and Krasno (1990) 
in treating challenger spending as exogenous, though both had earlier made strong arguments for its 
endogeneity (Jacobson 1980, 1985; Green and Krasno 1988). Similarly, I follow the lead of the 
principals in excluding open seats, first-term incumbents, and districts without major party challeng- 
ers in the current or immediately preceding election cycle, as well as Jack Kemp (R-NY) and Claude 
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Table 1. Purging and Auxiliary Regressions for Incumbent Spending 
in 1986 Congressional Elections 

Purging Regression Auxiliary Regression 
(Including Prior (Excluding Prior 

Incumbent Spending) Incumbent Spending) 

Intercept 2.523 9.760 
(.280)" (.277) 

Republican challenger .0363 -.0460 
(.0494) (.0678) 

Challenger party strength, 1984 - .00575 .01981 
(.00369) (.00452) 

Challenger prior office .0724 .2001 
(.0676) (.0927) 

Challenger spending .1472 .1455 
(.0229) (.0317) 

Incumbent spending, 1984 .6816 0 
(.0455) (-) 

R 2 .6428 .3140 
Standard error of regression .366 .507 
Number of observations 250 250 

a Standard errors of parameter estimates are in parentheses. 

exogenous explanatory variables. For purposes of comparison, the second col- 
umn of Table 1 shows the results of the auxiliary regression of incumbent spend- 
ing on the exogenous explanatory variables only. (The R2 statistic from this aux- 
iliary regression is a sample estimate of the squared population correlation Px22, 
which appears in expression 26 above.) It is clear from these results that current 
incumbent spending is strongly related to prior incumbent spending and that the 
use of prior incumbent spending as an exogenous variable dramatically improves 
the goodness of fit of the purging regression. 

The implications of these results for the choice between two-stage least 
squares and ordinary least squares as an estimator for the challenger vote model 
are laid out in Table 2. For each of the alternative estimators, Table 2 shows the 
observed sample correlations corresponding to the population correlations ap- 
pearing in the expression for the asymptotic mean squared error of the incumbent 
spending parameter estimate (expression 24 above). These include the R2 statis- 
tics from the purging and auxiliary regressions in Table 1, the R2 statistic from 

Pepper (D-FL), who spent heavily in 1986 in pursuit of national rather than local ambitions. These 
exclusions leave 250 observations. (Jacobson's 255 observations apparently included five first-term 
incumbents due to miscoding.) 
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Table 2. Observed Correlations between Alternative Instruments and Explanatory 
Variables in 1986 Congressional Elections 

Exp. 2SLS OLS 

R22 (X1 on X2) .3140 .3140 

Rp (x1 on X2 and z) .6428 1.0000 

R'2 (z on X2) .4885 .3140 

(26) RV2 (R -R 2) / (1 -.R 2) ,4793 1.0000 

(25) Rl,,2 = R, / (1 - R2) 1.955 R, 1.458 R, 

[R24 2 + lln] 4.079 RK2 1.458 Rzii 
(24) R92 +.0083 +.0040 

an auxiliary regression of the 2SLS instrumental variable z (derived from the 
purging regression in Table 1) on the exogenous explanatory variables in the 
challenger vote model, and the partial correlations derived from these observed 
correlations via expressions (25) and (26). 

By expression (24) the asymptotic mean squared error of the parameter 
estimate for incumbent spending in each specification is proportional to the 
population equivalent of the corresponding expression in the last row of Table 2. 
Which of these two values is likely to be smaller? Here we must draw upon some 
intuition regarding the likely correlation between each of the alternative instru- 
mental variables and the unobserved disturbance term in the challenger vote 
equation. Ignoring the terms that do not depend on M, (in each case these will 
be relatively inconsequential if R 2, exceeds .01 or so), the estimated asymptotic 
mean squared error from the OLS estimation will exceed that from the 2SLS 
estimation when the correlation between the disturbance in the challenger vote 
equation and current incumbent spending exceeds the correlation between the 
disturbance in the challenger vote equation and the instrument based on the purg- 
ing regression in Table 1 by about 67%. 

Given the imperfections of the available measures of incumbents' vulner- 
ability and challengers' electoral potential-challenger party strength is mea- 
sured by the previous challenger's vote in the district and challenger quality by a 
dichotomous variable for prior experience in elective office 14-it seems likely 
that incumbents and their potential contributors have considerably more infor- 
mation about their true electoral prospects than is captured in the challenger vote 
model. If contributions are heavily conditioned on this information (and the work 
of Jacobson and others suggests that they are), then it seems likely that the en- 

141 do not pursue here another innovation in Green and Krasno's (1988) analysis, the use of a 
more elaborate eight-point challenger quality scale. 
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Table 3. OLS and 2SLS Parameter Estimates for Challenger Vote 
Percentage in 1986 Congressional Elections 

OLS 2SLS 
Estimates Estimates 

Intercept -11.82 4.47 
(6.14)a (8.63) 

Republican challenger -4.63 -4.70 
(.61) (.62) 

Challenger party strength, 1984 .485 .518 
(.042) (.045) 

Challenger prior office 2.00 2.34 
(.84) (.87) 

Challenger spending 3.057 3.300 
(.298) (.315) 

Incumbent spending -.185 -1.855 b 

(.575) (.845) 

R 2 .724 .714 
Standard error of regression 4.56 4.64 
Number of observations 250 250 

a Standard errors of parameter estimates are in parentheses. 

bEndogenous explanatory variable replaced by instrument based on purging regres- 
sion in Table 1 (including prior incumbent spending). 

dogeneity of current incumbent spending is fairly severe. By contrast, prior in- 
cumbent spending seems relatively immune to this endogeneity, since the prior 
challenger's realized vote already appears in the model as an explanatory vari- 
able.'5 Thus, on balance, it seems likely that the relative exogeneity of the in- 
strumental variable constructed from the purging regression in Table 1 is suffi- 
cient to warrant its cost in terms of inefficiency, relative to the readily available 
alternative of estimating the challenger vote model using ordinary least squares. 

The implication of this judgment for the estimated impact of incumbent 
spending on congressional election outcomes is illustrated in Table 3. The OLS 
parameter estimates in the first column of Table 3 essentially recapitulate Jacob- 
son's story: each one-unit increase in challenger spending (e.g., from $30,000 to 
about $90,000 or from $100,000 to about $280,000) apparently increased the 

'5Some evidence for the relative exogeneity of prior incumbent spending is provided by the 
fact that prior incumbent spending contributes little or nothing to an auxiliary regression of current 
challenger spending on the other exogenous variables. It seems implausible that prior incumbent 
spending could be strongly related to unmeasured aspects of the district's political situation, yet 
entirely unrelated to factors recognized by the current challenger and his or her potential contributors. 



794 Larry M. Bartels 

challenger's vote by three percentage points, while incumbent spending had vir- 
tually no effect. The 2SLS parameter estimates in the second column of Table 3 
tell a quite different story: the estimated effect of challenger spending increases 
slightly, while the estimated effect of incumbent spending increases by an order 
of magnitude, to a level somewhat more than half that of challenger spending. 

9. Monte Carlo Analysis 

The analysis in sections 2 through 7 addresses the asymptotic behavior of 
the instrumental variables estimator under misspecification. By abstracting from 
the vagaries of sampling variation, the analysis highlights the inherent inferential 
cost of misspecification (characterized by nonzero population correlations be- 
tween quasi-instrumental variables and disturbances), even in an ideal world 
where the data at hand are always nicely representative of the underlying popu- 
lation from which they are sampled. Nevertheless, it is important as well to have 
some idea of how the vagaries of real sampling variation may modify, magnify, 
or obscure this inherent cost, especially in very small samples. 

The Monte Carlo simulation is a standard tool for analyzing the behavior of 
statistical estimators in finite samples. 16 Given a well-specified statistical model, 
a random number generator can produce a large number of artificial data sets 
that mimic the posited statistical process. The distribution of parameter estimates 
produced by applying the statistical estimator of interest to these artificial data 
sets then provides some insight into the range of likely outcomes that might be 
expected when the same estimator is applied to a single real data set generated 
by the statistical process represented in the simulation. 

The crucial characteristics of the statistical models in the theoretical analy- 
ses above are the endogeneity of a proposed instrumental variable (represented 
by the population correlation between the quasi-instrument and the disturbance 
in the regression equation of interest), its efficiency (represented by the popula- 
tion correlation between the quasi-instrument and the original endogenous vari- 
able), and the size of the sample on which the parameter estimates are based. 
(The inferential implications of these three characteristics are highlighted in Fig- 
ure 2 above.) 

For purposes of illustration, the simulations reported here take as given the 
exogenous variables in Jacobson's 1986 congressional spending data and the 
2SLS parameter estimates in Tables 1 and 3 above. The simulated endogeneity 
of the quasi-instrumental variable and the sample size are both varied systemat- 
ically, with 500 artificial data sets generated from each of the 30 combinations 
of six predetermined sample sizes (N = 25, 50, 100, 250, 500, and 1,000) and 

16Hanushek and Jackson (1977, 60-65ff.) provide a useful description and applications of the 
Monte Carlo technique. 



Figure 3. Monte Carlo and Asymptotic Results 

n= 25 

9 

8 

0 

w 

6 

3- 
0 

2 

0- 
0 

000 0.05 0.10 0.15 0.20 

Pzu 

n = 50 

9 

8 

0 
L 7 7 w 

cu~ ~ ~~~~~~~z 

CU 
U) 

3- 0 
0 

a:2 

0- 

0 00 0 05 010 015 0.20 

Pzu 



Figure 3. (continued) 
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Figure 3. (continued) 
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five predetermined levels of endogeneity of the instrumental variable based on 
the purging regression in Table 1 (pzz, = 0, .05, .10, .15, and .20).17 

Figure 3 provides a graphic comparison of the observed root mean squared 
errors of the 500 parameter estimates for incumbent spending for each sample 
size and level of endogeneity (the dotted lines in the figure) and the theoretically 
expected (asymptotic) root mean squared errors derived for the 1986 Jacobson 
data from the results in section 6 (the solid lines in the figure). For the samples 
of 250, 500, and 1,000 observations the match between the observed errors and 
the theoretically expected (asymptotic) errors is virtually exact. For smaller 
sample sizes, the observed errors are consistently smaller than the asymptotic 
results would lead us to expect, with discrepancies as large as 20% for the small- 
est samples and most endogenous instruments. 

Table 4 compares the means and standard deviations of the observed distri- 
butions of parameter estimates for the 30 simulations and the corresponding 
probability limits and asymptotic standard deviations. It is evident from the table 
that the discrepancies between the observed and asymptotic errors for the smaller 
sample sizes in Figure 3 are attributable to significantly smaller biases in the 
simulated data than the asymptotic theory suggests. The observed biases are 
about 25% smaller than the asymptotic biases for the simulation with 25 obser- 
vations, 20% smaller for the simulation with 50 observations, and 15% smaller 
for the simulation with 100 observations. 

These discrepancies suggest that the asymptotic analysis in sections 2 
through 7 should be applied with some caution to very small samples.'8 Never- 
theless, the overall pattern of observed errors across sample sizes and levels of 
endogeneity is sufficiently similar to the pattern predicted by the asymptotic 
analysis to suggest that the theoretical results derived above do constitute useful 
rules of thumb for working data analysts concerned with the actual behavior in 
finite samples of the quasi-instrumental variable estimator. 

10. Conclusions 

The preceding analysis has at least three practical implications for data ana- 
lysts who employ instrumental variables estimators (and for consumers of data 
analysis based on such estimators). 

First, the crucial role of the squared population correlation Pxz12 in the analy- 
sis in section 6 suggests that the corresponding squared sample correlation Rxzl2 

"At the maximum level of simulated endogeneity, p:, = .20, the implied independent effect 
of prior incumbent spending on current votes is 2.5, an effect about halfway between those attrib- 
uted to current incumbent and challenger spending, respectively, in Table 3. 

"Results on the exact small sample distribution of the (properly specified) instrumental vari- 
able estimator suggest that, even without the additional complication of misspecification, "the as- 
ymptotic distribution is a poor approximation to the true distribution where the instruments are poor, 
in the sense of not being highly correlated with the regressor, and when the number of observations 
is small" (Nelson and Startz 1990, 967). 
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(or the R2 statistics from the purging regression of xl on z and X2 and from an 
auxiliary regression of xl on X2 only, from which RX2Zl2 can be calculated using 
expression 26) should be computed (and reported) as a matter of course. The 
usual practice of reporting only the R2 statistic from a purging regression of xl 
on both z and X2 tends to exaggerate the real efficiency of the instrumental vari- 
able, since the total variance in xl accounted for by both z and X2 may greatly 
exceed the incremental variance accounted for by z after controlling for X2. 

Similarly, the appearance of the squared population correlation Pz2 in ex- 
pression (25) suggests that the corresponding squared sample correlation R22 (the 
R2 statistic from an auxiliary regression of z on X2) should be computed (and 
reported) as a matter of course in order to facilitate intuition regarding the likely 
magnitude of the partial correlation between z and u holding constant X2. 

Finally, and most obviously, analysts and consumers alike should bear in 
mind that, under some circumstances, even seemingly minor misspecifications 
will seriously bias statistical inferences based on instrumental variables esti- 
mators. Until the nature and magnitude of these biases become fully familiar, 
considerable care will be necessary to make appropriate adjustments in the infer- 
ential weight that we attach to parameter estimates based on what are in fact 
"quasi-instrumental variable" estimators. 

Manuscript submitted 9 August 1989 
Final manuscript received 20 August 1990 
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