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Background: Instrumental variable methods can estimate the causal 

effect of an exposure on an outcome using observational data. Many 

instrumental variable methods assume that the exposure–outcome 

relation is linear, but in practice this assumption is often in doubt, 

or perhaps the shape of the relation is a target for investigation. We 

investigate this issue in the context of Mendelian randomization, the 

use of genetic variants as instrumental variables.

Methods: Using simulations, we demonstrate the performance of a 

simple linear instrumental variable method when the true shape of 

the exposure–outcome relation is not linear. We also present a novel 

method for estimating the effect of the exposure on the outcome 

within strata of the exposure distribution. This enables the estima-

tion of localized average causal effects within quantile groups of the 

exposure or as a continuous function of the exposure using a sliding 

window approach.

Results: Our simulations suggest that linear instrumental variable 

estimates approximate a population-averaged causal effect. This is 

the average difference in the outcome if the exposure for every indi-

vidual in the population is increased by a fixed amount. Estimates 

of localized average causal effects reveal the shape of the exposure–

outcome relation for a variety of models. These methods are used 

to investigate the relations between body mass index and a range of 

cardiovascular risk factors.

Conclusions: Nonlinear exposure–outcome relations should not be a 

barrier to instrumental variable analyses. When the exposure–outcome 

relation is not linear, either a population-averaged causal effect or the 

shape of the exposure–outcome relation can be estimated.

(Epidemiology 2014;25: 877–885)

M
ost methods for estimating causal effects using instru-

mental variables (IVs) make the assumption that the 

relation between the exposure and outcome is linear.1

Although this may be approximately true in many cases, 

especially after transforming the exposure or outcome, in some 

situations, the exposure–outcome relation will be nonlinear. In 

this case, the shape of the relation may be a target for investiga-

tion. For example, the observed relation between body mass index 

(BMI) and mortality is highly nonlinear, with mortality increas-

ing sharply as BMI increases. However, an increased risk of 

mortality has also been observed for individuals with low BMI.2 

It is unclear whether this merely reflects reverse causation (sick 

people lose weight) or confounding (underweight individuals dif-

fer in other risk factors from those of average weight) or whether 

there is a causal effect of low BMI on increased mortality.3

In a randomized trial where the exposure is the treat-

ment received and the IV is treatment assignment, an IV anal-

ysis estimates a local average treatment effect.4,5

This is the average change in the outcome resulting from a 

change in the exposure among those patients for whom treatment 

assignment influences the treatment received. In a trial context, 

such patients are known as compliers, and the local average treat-

ment effect is also known as a complier-averaged causal effect.6 

Consistency of the IV estimator is subject to the assumption that 

any effect of the IV on the exposure is in the same direction for all 

persons (known as the monotonicity assumption).

In an observational study, the IV and the exposure may 

be continuous rather than dichotomous. Here, the monotonicity 

assumption is that the exposure is a nondecreasing function of 

the IV for all persons (or, equivalently, a nonincreasing function 

for all persons). This is plausible in the context of Mendelian 

randomization—the use of genetic variants as IVs—because 

the biological effects of genetic variants are likely to be in the 

same direction in each person.7 The IV estimate can then be 

viewed as a weighted average of partial derivatives of the rela-

tion of the outcome with the exposure.8 In the discrete case, 

these derivatives can be interpreted as local average treatment 

effects at different values of the exposure and the IV.
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In this study, we explore the implications of nonlinear 

exposure–outcome relations for IV analyses, particularly in the 

context of Mendelian randomization. We initially consider the 

consequences of using linear IV models to estimate the effect 

of an exposure on an outcome when the true causal relation is 

nonlinear. We then introduce a novel approach for estimating 

localized average causal effects, which are IV estimates (local 

average treatment effects) estimated for strata of the population 

defined by the value of the exposure. These can provide evi-

dence of a nonlinear effect of the exposure on the outcome. We 

discuss the findings and implications of our results and com-

pare the approach introduced in this study with other paramet-

ric and nonparametric approaches to nonlinear IV analysis. We 

assume that the exposure and outcome are continuous; issues 

relating to binary outcomes are reserved for the discussion.

This study is illustrated using data on 8090 subcohort 

participants from the multicenter case-cohort study European 

Prospective Investigation into Cancer and Nutrition (EPIC)-

InterAct, the diabetes-focused component of the EPIC.9 We use 

data on BMI (kg/m2) and a range of cardiovascular risk factors: 

systolic blood pressure (mmHg), C-reactive protein (mg/L, log-

transformed), uric acid (μmol/L), glycated hemoglobin (HbA1c, 

%), total cholesterol (mmol/L), and triglycerides (mmol/L, log-

transformed). Increases in BMI have been shown to have causal 

effects on each of these factors in previous Mendelian random-

ization studies.10–12 The observational association of each of the 

risk factors with BMI in a linear regression model, and with 

BMI and BMI-squared in a quadratic regression model, is given 

in Table 1. (BMI is centered before analysis, adjustment is made 

for age, sex, and center.) The mean levels and 95% confidence 

intervals (CIs) of the risk factors for each quintile of BMI are 

shown in Figure 1. The observational relations of BMI with sev-

eral of the risk factors are nonlinear, although this does not nec-

essarily imply that the causal relations will be nonlinear.

LINEAR INSTRUMENTAL VARIABLE ANALYSIS 
WITH NONLINEAR RELATIONS

It has been suggested that the use of linear models 

for IV analysis may have some value even if the underlying 

exposure–outcome model is nonlinear.13 We here perform a 

simulation study to investigate the interpretation of linear IV 

estimates of nonlinear relations.

Simulation Study
We simulated data for 4000 persons on an IV G, a contin-

uous exposure X taking positive values, a continuous outcome 

Y, and a confounder U. Five shapes of causal relation were con-

sidered between X and Y: a linear relation, a quadratic relation, 

a J-shaped relation (persons with lower levels of the exposure 

have slightly increased average outcomes), a U-shaped rela-

tion (persons with lower levels of the exposure have consid-

erably increased average outcomes), and a threshold relation. 

Graphs showing the nonlinear relations between the exposure 

and mean level of the outcome are given in Figure 2.

The data-generating model for individual i is:
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TABLE 1. Coefficients from Observational Analysis of the Association of Body Mass Index (BMI) with a Range of Cardiovascular 
Risk Factors in Linear and Quadratic Regression Models

Risk Factor

Linear Model Quadratic Model

BMI Coefficient (SE) BMI Coefficient (SE) BMI-squared Coefficient (SE)

Systolic BP 0.977 (0.055) 1.039 (0.060) −0.018 (0.007)

log CRPa 9.172 (0.290) 9.255 (0.327) −0.021 (0.038)

Uric acid 4.972 (0.190) 5.253 (0.213) −0.071 (0.025)

HbA1ca 2.842 (0.201) 2.402 (0.225) 0.114 (0.026)

Total cholesterola 1.997 (0.314) 2.981 (0.353) −0.248 (0.041)

log Triglyceridesa 3.445 (0.141) 4.034 (0.158) −0.148 (0.018)

BMI is centered prior to analysis, and adjustment is made for age, sex, and center.

BMI indicates body mass index; BP, blood pressure; CRP, C-reactive protein; HbA1c, glycated hemoglobin; SE, standard error.
aCoefficients and standard errors are multiplied by 100 for presentation.
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The distribution of the IV (G = 0, 1, 2) was chosen to 

represent the number of variant alleles for a single nucleotide 

polymorphism with minor allele frequency 0.3. The distri-

bution of the exposure was simulated as positively skewed, 

with increased values corresponding to greater values of the 

outcome being less common (95th percentile: 3.7). The IV 

explained on average 2.4% of the variance in the exposure 

corresponding to an average F statistic of 49.6. These simu-

lations are repeated in the eAppendix (http://links.lww.com/

EDE/A818), altering the data-generating model to allow the 

effect of the IV on the exposure to vary among individuals 

and the effect of the exposure on the outcome to vary among 

individuals.

For each of 10,000 simulated data sets, we calculated 

the ratio IV estimate (also called the Wald estimate) for the 

causal effect of the exposure on the outcome.14 This is calcu-

lated as the coefficient for the association of the IV with the 

outcome divided by the coefficient for the association of the 

IV with the exposure. For functions f
2
 to f

5
, the effect of a fixed 

increase in the exposure differs across the distribution of the 

exposure. Therefore, we considered the average effects on the 

outcome of 2 interventions in the exposure: first, to increase 

the exposure for every individual by 1 unit; and second, to 

increase the exposure in every individual in the population by 

0.25 units (the effect of a unit increase in the IV on the expo-

sure). These quantities have been called population-averaged 

causal effects15 or average partial effects,16 as they average not 

only across individuals but also across the distribution of the 

exposure. As the data are simulated, the corresponding out-

comes at these counterfactual values of the exposure can be 

calculated for each individual person.

Results
We present the mean values across simulations of the 

ratio IV estimate for a 1-unit increase in the exposure, a scaled 

ratio estimate for a 0.25-unit increase in the exposure, and the 

mean values of the average changes in the outcome (popula-

tion-averaged causal effects) for 1-unit and 0.25-unit increases 

in the exposure (Table 2). Similar results were observed when 

the effects of the IV on the exposure and of the exposure on the 

outcome were allowed to vary among individual persons (eAp-

pendix, eTables 1, 3, and 5, http://links.lww.com/EDE/A818).

In the linear case, the ratio estimates scaled to a 1-unit 

and a 0.25-unit increase in the exposure were both equal to 

the corresponding population-averaged causal effect. In the 

nonlinear cases, the population-averaged causal effect was 

similar to the ratio estimate for a 0.25-unit increase but was 

considerably different for a 1-unit increase. This difference is 

especially apparent for the U-shaped relation, where a 0.25-

unit increase in the exposure led to a fall in the average level 

of the outcome, but a 1-unit increase led to a rise. Although 

the approximate equality may not hold for extreme shapes of 

the exposure–outcome relation, in the examples presented, the 

ratio IV estimate is close to the population-averaged causal 

effect for an increase in the exposure distribution of similar 

size to that associated with a change in the IV if the increase 

is small. We provide a theoretical motivation for this finding 

in the eAppendix (http://links.lww.com/EDE/A818). Previous 
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FIGURE 1. Mean level of cardiovascular risk  factors stratified 
by quintile of body mass  index against mean value of body 
mass index in quintile (lines are ±1.96 standard errors).
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relationship models.
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theoretical results have been derived relating the linear IV 

estimate to a weighted average of derivatives8; this finding 

is similarly motivated, but the interpretation as a population-

averaged causal effect is likely to be more familiar to an audi-

ence of applied researchers.

In general, the population-averaged causal effect cannot 

be generalized to the effect of an increase in the exposure for 

an individual.17 Even in the linear case, under heterogeneity in 

the exposure–outcome model, the ratio estimate represents an 

average causal effect across the population.18 In the nonlinear 

case (such as with the threshold relation), a large proportion of 

the population will have no increase in the outcome associated 

with a small increase in the exposure, as the increased expo-

sure will not exceed the threshold level. With the J-shaped and 

U-shaped relations, a small increase in the exposure will lead 

to increases in the outcome for some persons and decreases 

for others.

POSSIBLE APPROACHES TO NONLINEAR 
INSTRUMENTAL VARIABLE ANALYSIS

Although in some cases ignoring any nonlinearity in the 

exposure–outcome relation and estimating a population-aver-

aged causal effect may be sufficient, doing so does not give the 

investigator any insight into the shape of the relation. We dis-

cuss why standard IV approaches are not generally useful for 

investigating the shape of nonlinear relations, and we introduce 

a novel method for the estimation of localized average causal 

effects at different levels of the exposure distribution.

Unsuitability of Instrumental Variable 
Approaches for Estimating Nonlinear Relations

When values across the range of the distribution of 

BMI are compared, there is heterogeneity in the association 

between BMI and mortality. For example, in an observational 

setting, comparisons are commonly made and nonlinearities 

observed between groups of persons with BMI (kg/m2) in the 

ranges below 18.5 (underweight), 18.5 to 25 (normal weight), 

25 to 30 (overweight), and over 30 (obese). In contrast, taking 

the genetic variant with the greatest association with BMI in 

the EPIC-InterAct data set (rs1421085, a variant in the FTO 

gene, R2 = 0.39%), persons with no BMI-increasing alleles 

(major homozygotes) have an average BMI of 26.3, those 

with 1 allele (heterozygotes) an average BMI of 26.7, and 

those with 2 alleles (minor homozygotes) an average BMI of 

27.1 (Figure 3). Thus, although an observational analysis can 

compare groups of persons with nonoverlapping distributions 

of BMI and marked differences in their average BMI values 

(standard deviation of BMI = 4.33), a standard IV analysis 

using rs1421085 compares groups of persons with overlap-

ping distributions of BMI and slight differences in their aver-

age BMI values (standard deviation of fitted values of BMI 

conditional on IV = 0.26).

Although approaches have been proposed for nonlin-

ear IV analysis,19–22 information for estimating the effect of 

the exposure on the outcome is available (without additional 

assumptions) only for predicted values of exposure based on 

the IV. Nonlinearity for this reduced range of the exposure dis-

tribution is unlikely to be observed. Moreover, this range does 

not increase as the sample size increases. The shape of the 

relation outside this range can be estimated by the specifica-

tion of a parametric model for the exposure–outcome relation; 

however, inference based on such models has been shown to 

be highly sensitive to the choice of parametrization.16,22 We 

consider these issues further in relation to specific nonpara-

metric IV methods in the discussion.

Stratification of the Exposure and Localized 
Average Causal Effects

Rather than estimating a population-averaged causal 

effect, we may wish to estimate an average causal effect for a 

stratum of the exposure distribution. These localized average 

causal effects will be constant in expectation if the relation is 

linear but will give insight into the shape of the exposure–out-

come relation if it is nonlinear. As the IV is associated with the 

exposure, by stratifying on the exposure distribution, an asso-

ciation between the IV and outcome may be induced even if 

this was not present in the original data.23 This can be avoided 

by stratifying based on the residual variation in the exposure 

conditional on the IV. Under the assumption that there is no 

heterogeneity in the average effect of the IV on the exposure at 

different levels of the exposure, this is equivalent to subtract-

ing the effect of the IV from the exposure, and then stratifying 

TABLE 2. Mean Values Across Simulations of the Ratio Instrumental Variable Estimate Assuming a Linear Exposure–Outcome 
Relationship and the Population-averaged Causal Effect for 1-unit and 0.25-unit Increases in the Exposure

Shape of Relationship

Ratio Estimate Population-averaged Causal Effect

1-unit Mean (SD) 0.25-unit Mean (SD) 1-unit Mean (SD) 0.25-unit Mean (SD)

Linear 0.400 (0.100) 0.100 (0.025)  0.400 (0.000)  0.100 (0.000)

Quadratic  0.338 (0.104)  0.084 (0.026)  0.430 (0.003)  0.089 (0.001)

J-shaped  0.276 (0.116)  0.069 (0.029)  0.460 (0.007)  0.077 (0.002)

U-shaped  −0.187 (0.134)  −0.047 (0.033)  0.090 (0.010)  −0.034 (0.002)

Threshold  0.283 (0.110)  0.071 (0.028)  0.467 (0.007)  0.078 (0.002)

SD indicates standard deviation.
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individuals based on their IV-free exposure level. The IV-free 

exposure level represents the expected value of the exposure, 

which would be observed if a person’s IV value was zero. 

Although the IV-free exposure may appear to have a counter-

factual interpretation, it is not intended to be a counterfactual 

variable. Rather, it is a function of the observed data. A coun-

terfactual interpretation would require the stronger assump-

tion that the effect of the IV on the exposure was constant for 

all individuals and is only necessary for the variable that is 

contrasted in the causal effect and not for the IV-free exposure 

that takes the role of a stratifying covariate.

Using the same simulated data sets as in the previous 

section, we stratified individuals based on their IV-free expo-

sure using categories below 1, 1 to 2, 2 to 3, and above 3. 

For each of these groups, we estimated the (stratum-specific) 

localized average causal effect of the exposure on the outcome 

using the ratio method (the association of the IV with the out-

come in the stratum divided by the association of the IV with 

the exposure in the population). The IV-free exposure was cal-

culated based on the estimated value of the association of the 

IV with the exposure in the whole population. Table 3 shows 

that the true shape of the exposure–outcome relation is appar-

ent from comparing the mean values of these effects across 

the simulated data sets.

We emphasize the importance of stratifying based on 

the IV-free exposure; when the same effects were estimated 

across strata of the exposure without prior subtraction of the 

effect of the IV, in the linear case, the corresponding estimates 

were −0.150, −0.052, −0.001, and −0.003. In the directed acy-

clic graph of Figure 4, conditioning on the exposure X induces 

an association between G and U, which are both parents of X 

(termed moralization). In contrast, conditioning on the IV-free 

exposure X
0
 = X − α

G
G does not induce such an association.

We calculated Cochran’s Q statistic to examine pos-

sible heterogeneity in the 4 estimates. This nonparametric 

test assesses whether differences between the estimates in the 

strata are more different than would be expected by chance. 

We also conducted a trend test by performing a meta-regres-

sion of the estimates on the mean values of the exposure in 

each stratum. This is a form of weighted regression where the 

variance of each value of the response variable is assumed to 

be known.24 The proportions of data sets where the Cochran’s 

Q test rejected the null hypothesis (P < 0.05) were as follows: 

linear 5.2%, quadratic 25.2%, J-shaped 67.0%, U-shaped 

94.7%, and threshold 85.8%. The same proportions for the 

trend test were linear 4.1%, quadratic 31.8%, J-shaped 73.9%, 

U-shaped 94.7%, and threshold 65.6%. Similar results were 

observed when the effects of the IV on the exposure and of 

the exposure on the outcome were allowed to vary among per-

sons provided that the effect heterogeneities in the IV–expo-

sure and exposure–outcome associations were not correlated 

(eAppendix, eTables 2, 4, 6, and 7, http://links.lww.com/EDE/

A818). We conclude, based on this simulation example, that 

the heterogeneity and trend tests are at least sometimes able 

to detect nonlinearities in causal relations. The trend test has 

greater empirical power to detect nonlinearities, except for in 

the case of the threshold relation.

A generalization of this approach is to estimate the 

localized average causal effect across the distribution of the 

IV-free exposure using a sliding window. This is performed by 

first ordering individuals according to their IV-free exposure. 

Using an example window size of 1,000, the localized average 

causal effect is estimated for the first 1000 people, then for the 

individuals numbered 2 through to 1,001, then 3 to 1,002, and 

so on. The estimates can then be plotted against the median 

exposure value for each window. The range of the exposure 

distribution over which the localized average causal effect is 

estimated depends on the window size; however, for a fixed 

window size, the range expands as the sample increases. In the 

next section, we explore the impact of the choice of how wide 

to make the sliding window in a real data example.

APPLIED EXAMPLE: EFFECT OF BODY MASS 
INDEX ON CARDIOVASCULAR RISK FACTORS

In this section, we apply the linear and localized IV 

methods to the EPIC-InterAct data set for the cardiovascu-

lar risk factors previously listed. Data were available on 29 

genetic variants previously shown to be associated with BMI 

in a large meta-analysis.25 Details of the variants are given 

in the eAppendix (http://links.lww.com/EDE/A818) and their 

plausibility as IVs assessed by overidentification tests in each 

center (eTable 8, http://links.lww.com/EDE/A818). An allele 

score comprising all the variants weighted by their reported 

association with BMI in the meta-analysis is used as an IV.26 

If an individual i has g
ik
 copies of variant allele k, that person’s 

allele score is 
k k ik
w g∑ , where w

k
 is the weight of the kth 

variant. The score explains 0.77% of the variance in BMI.

For each outcome, we fit a linear IV model using 

the ratio method, adjusting for age, sex, and center in the 
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FIGURE 3. Distribution  of  body  mass  index  in  subgroups 
defined  by  genetic  variant  rs1421085:  solid  line,  major 
homozygotes; dashed line, heterozygotes; dotted line, minor 
homozygotes. Densities are smoothed using a kernel-density 
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regressions of the outcome on the allele score and of the 

exposure on the allele score. We estimated the localized aver-

age causal effects of BMI on each risk factor within quin-

tiles of the distribution of BMI after the genetic component 

is subtracted (the IV-free BMI) and performed heterogeneity 

and trend tests on these values (Table 4). To account for the 

multiple centers, we standardized the BMI measure used to 

stratify the data by regressing BMI on age, sex, center, and 

allele score and stratifying individuals based on their residual 

value from this regression. Again, adjustment was made in 

the estimation of the causal effects for age, sex, and center. A 

more general sliding window approach was also used for esti-

mating localized average causal effects, initially for HbA1c, 

and then for all the outcomes. Figure 5 displays the estimates 

for HbA1c using window sizes of 500, 1,000, 1,500, 2,000, 

3,000, and 4,000. Figure 6 displays the estimates for all the 

outcomes using a window size of 2,000. For interpretability, 

the x-axis is the unstandardized BMI value corresponding to 

the BMI of the individual in the middle of the window. Previ-

ous work has shown that genetic associations with BMI are 

similar in extremely overweight individuals to those in the 

general population.27 To assess the assumption that the effect 

of the IV on BMI is similar across the exposure distribution, 

we estimated the association of the allele score with BMI in 

each of the quintiles of IV-free BMI. The association esti-

mates were 0.80, 1.02, 1.02, 0.98, 1.07; standard errors 0.08, 

0.03, 0.03, 0.04, 0.19; heterogeneity test P = 0.11; trend test 

P = 0.26. There is not sufficient evidence in this data set to 

reject this assumption.

The graphs showing localized average causal effect 

estimates for HbA1c demonstrate the trade-off in choosing a 

window size (Figure 5). With a smaller window size, there is 

increased detail in the estimate of the shape of the exposure–

outcome relation and estimates are obtained across a wider 

range of the exposure distribution. With a larger window size, 

precision of the estimates is increased. However, the possible 

threshold feature of the model, whereby the causal estimate is 

close to zero for low values of BMI, is lost as the window size 

increases. In addition, the shape of the graphs becomes closer 

to a straight line. It seems likely that much of the variabil-

ity in the estimates with a small window size reflects random 

fluctuation rather than interesting information, hence the use 

of a moderately large window size in Figure 6. Estimates for 

total cholesterol and triglycerides show a similar pattern, with 

positive point estimates for median BMI levels less than 26, 

and estimates around or below zero for median BMI greater 

than 28. Larger sample sizes are required for more definitive 

applied conclusions.

DISCUSSION
In this study, we have discussed the prospects for IV 

analyses with a nonlinear exposure–outcome relation. Spe-

cifically, we have provided an interpretation of linear IV esti-

mates in the presence of nonlinearity and have proposed a 

novel method to investigate whether causal effects depend on 

the level of the exposure.

Linear Estimation Approach
Simple linear IV estimators with a nonlinear exposure–

outcome relation estimate a parameter that approximates a 

population-averaged causal effect. This is the average effect 

resulting from an uniform increase in the exposure for all per-

sons in the population. However, the approximation may be 

poor for an IV with a large effect on the exposure and will 

break down if the population-averaged causal effect is con-

sidered for a change in the exposure much greater than that 

associated with the IV. If the exposure–outcome relation 

is monotonic (i.e., increasing or decreasing in the outcome 

for all values of the exposure), then the parameter estimated 

by a linear IV method will be in the same direction as the 

causal effect for each individual in the population. Nonlin-

ear exposure–outcome relations should therefore not be seen 

as a barrier to IV analyses, such as Mendelian randomization 

investigations. However, if the exposure–outcome relation is 

not monotonic, a causal effect of the exposure on the outcome 

may be obscured by a linear IV estimate (potentially such as in 

the applied example of the effect of BMI on log triglycerides).

TABLE 3. Mean Values Across Simulations of the Localized Average Causal Effects of the Exposure on the Outcome Within 
Strata Defined by the IV-free Exposure Level

Shape of Relationship

Below 1  

Mean (SD)

1–2  

Mean (SD)

2–3  

Mean (SD)

Above 3  

Mean (SD)

Linear  0.398 (0.179)  0.399 (0.167)  0.399 (0.267)  0.398 (0.377)

Quadratic  0.167 (0.173)  0.323 (0.165)  0.523 (0.272)  0.840 (0.524)

J-shaped  −0.065 (0.170)  0.247 (0.164)  0.647 (0.278)  1.282 (0.727)

U-shaped  −0.696 (0.165)  −0.230 (0.160)  0.371 (0.270)  1.323 (0.817)

Threshold  −0.001 (0.169)  0.136 (0.163)  0.999 (0.293)  1.000 (0.512)

G X Y

X0 U

FIGURE 4. Directed  acyclic  graph  of  relationships  among 
instrumental variable (IV) G, exposure X, IV-free exposure X0, 
confounder U, and outcome Y.



Epidemiology  •  Volume 25, Number 6, November 2014 Nonlinear Instrumental Variable Analysis

© 2014 Lippincott Williams & Wilkins  www.epidem.com  |  883

Parametric and Nonparametric Approaches
If the shape of the exposure–outcome relation is the sub-

ject of investigation, then a nonlinear parametric or nonpara-

metric IV analysis can be performed. Inference from nonlinear 

parametric models has been previously shown to be sensitive 

to the choice of parametric model in a range of real scenar-

ios.22 Inference from nonparametric models is limited when 

the IV does not explain much of the variation in the exposure. 

For example, the series method of Newey and Powell19 is a 

2-stage nonparametric IV method. The first stage constructs 

a basis set of nonlinear functions (such as a set of orthogonal 

polynomials or B-splines) of the exposure conditional on the 

IV, and the second stage fits the outcome as a linear combina-

tion of these nonlinear functions. These estimates will not be 

reliable outside the range of the fitted values of the exposure 

conditional on the IV. Similar arguments can be made for the 

kernel and series methods of Hall and Horowitz.20

An alternative approach to nonlinear IV analysis is 

the quantile regression approach of Chernozhukov and Han-

sen.21 In this case, the identifying assumption of the method 

TABLE 4. Linear IV Estimates of BMI on Risk Factor Outcome from Ratio Method; Localized Average Causal Effect Estimates of 
BMI on Each Risk Factor Within Quintiles of Participants Stratified by Their IV-free BMI; P Values for Heterogeneity (pQ) and Trend 
(ptr) of Estimates

Risk Factor

Linear IV 

Estimate (SE) 

Localized Average Causal Effects

p
Q

p
tr

Quintile 1 

Estimate (SE)

 Quintile 2 

Estimate (SE)

 Quintile 3 

Estimate (SE)

 Quintile 4 

Estimate (SE)

 Quintile 5 

Estimate (SE)

Systolic BP  0.35 (0.56)  0.42 (1.24)  1.19 (1.12)  0.44 (1.27)  −0.05 (1.20)  0.28 (1.35)  0.96  0.68

log CRPa  7.41 (3.08)  1.01 (6.97) 22.52 (6.74)  −0.63 (6.65)  12.75 (6.02)  1.82 (6.22)  0.06 0.69

Uric acid  3.04 (1.97)  2.45 (4.11)  2.32 (4.04)  9.53 (4.19)  −1.47 (4.18)  1.65 (4.68)  0.45 0.75

HbA1ca  8.08 (2.02)  −0.85 (4.05)  4.89 (4.07)  6.40 (3.76)  13.14 (4.33)  12.90 (5.94)  0.14 0.08

Total cholesterola −1.22 (3.13)  7.29 (6.77)  −6.32 (6.81)  10.70 (7.29)  −3.53 (7.05)  −11.89 (7.11)  0.13 0.28

log Triglyceridesa  1.63 (1.45)  3.75 (2.93)  2.40 (3.09)  6.66 (3.13)  2.68 (3.15)  −7.44 (3.32)  0.03 0.17

aCoefficients and standard errors are multiplied by 100 for presentation.

IV indicates instrumental variable; BMI, body mass index; BP, blood pressure; CRP, C-reactive protein; HbA1c, glycated hemoglobin.
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FIGURE 5. Localized average causal effect estimates of body 
mass index on glycated hemoglobin at various levels of body 
mass  index  from  EPIC-InterAct  data  set:  sliding  window 
approach with window sizes 500, 1,000, 1,500, 2,000, 3,000, 
and  4,000  (top-left  to  bottom-right).  Gray  lines  represent 
point wise 95% CIs.
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is that the unmeasured confounders can be represented by a 

single variable that has a monotone effect on the outcome.28 

This assumption is not only restrictive and unrealistic but 

also inherently unverifiable, and even sensitivity analyses 

to investigate the assumption cannot be performed. Such 

assumptions should not be relied on for identifying causal 

effects.

Localized Estimation Approach
By stratifying the population based on the IV-free 

exposure, localized average causal effects of the exposure on 

the outcome in each of the strata can reveal the shape of the 

exposure–outcome relation. In practice, such estimates in the 

strata may be imprecise, meaning that the true shape of the 

relation is obscured. This approach can be extended using a 

sliding window approach to provide a continuous estimate 

of the exposure–outcome relation across a wide range of the 

exposure distribution.

Unlike with other nonparametric IV approaches, this 

range widens as the sample size increases. Either stratum-

specific or sliding window estimates can equally be estimated 

with a binary outcome by using a log-linear or logistic analy-

sis model to estimate a relative risk or odds ratio parameter. A 

localized average causal effect is simply an IV estimate esti-

mated for a particular stratum of the population as defined by 

the IV-free exposure. The same provisos about the approxima-

tion of an IV estimate to a population-averaged causal effect 

being valid only for small changes in the exposure and for IVs 

with a small effect on the exposure therefore apply equally for 

localized average causal effects.

Measurement Error
In observational analyses, coefficients in a linear regres-

sion model are affected by regression dilution bias if the 

exposure suffers from classical measurement error (ie, error 

uncorrelated with the true value of the exposure).29 Estimates 

of the shape of nonlinear exposure–outcome relations can 

be distorted.30 In contrast, IV estimates under such an error 

model are unbiased.31 In the same way, since localized aver-

age causal effects are IV estimates for a given stratum of the 

population, the shape of relation estimated in a localized IV 

analysis will not be affected by classical measurement error 

in the exposure.
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