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Threshold models (sample splitting models) have wide application in economics. 
Existing estimation methods are confined to regression models, which require that 
all right-hand-side variables are exogenous. This paper considers a model with 

endogenous variables but an exogenous threshold variable. We develop a two- 
stage least squares estimator of the threshold parameter and a generalized method 
of moments estimator of the slope parameters. We show that these estimators are 
consistent, and we derive the asymptotic distribution of the estimators. The thresh- 
old estimate has the same distribution as for the regression case (Hansen, 2000, 
Econometrica 68, 575-603), with a different scale. The slope parameter esti- 
mates are asymptotically normal with conventional covariance matrices. We inves- 
tigate our distribution theory with a Monte Carlo simulation that indicates the 

applicability of the methods. 

1. INTRODUCTION 

Threshold models have some popularity in current applied econometric prac- 

tice. The model splits the sample into classes based on the value of an observed 

variable-whether or not it exceeds some threshold. When the threshold is 

unknown (as is typical in practice) it needs to be estimated, and this increases 

the complexity of the econometric problem. A theory of estimation and infer- 

ence is fairly well developed for linear models with exogenous regressors, includ- 

ing Chan (1993), Hansen (1996), Hansen (1999), Hansen (2000), and Caner 

(2002). These papers explicitly exclude the presence of endogenous variables, 

and this has been an impediment to empirical application, including dynamic 

panel models. 

This paper develops an estimator and a theory of inference for linear models 

with endogenous variables and an exogenous threshold variable. We derive a 
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large sample distribution theory for the parameter estimates and test statistics. 
The estimator is based on estimation of a reduced form regression for the endog- 
enous variables as a function of exogenous instruments. This requires the devel- 
opment of a model of the conditional mean of the endogenous variables as a 
function of the exogenous variables. Based on the reduced form, predicted val- 
ues for the endogenous variables are formed and substituted into the structural 
equation of interest. Least-squares (LS) minimization yields the estimate of the 
threshold. Estimation of the slope parameters of this equation occurs in the third 
step, where the sample is split based on the estimated threshold, and then con- 
ventional two-stage least squares (2SLS) or generalized method of moments 
(GMM) estimation is performed on the subsamples. 

Although we demonstrate that our estimator is consistent, we do not know if 
it is efficient, as other estimators are possible and efficiency is difficult to estab- 
lish in nonregular models. 

We make the important assumption that the threshold variable is exogenous. 
This is an important feature of the model and limits potential applications. In 
some cases, it may be desired to treat the threshold variable as endogenous. 
This would be a substantially different model and would require a distinct esti- 
mator. Hence we do not treat this case in this paper, and we leave it to future 
research. 

Our asymptotic theory allows either for a random sample or for weakly depen- 
dent time-series data (thereby excluding trends and unit roots). 

Our statistical analysis of our threshold estimator follows Hansen (2000) by 
using a "small threshold" asymptotic framework. Specifically, the difference in 
the regression slopes between regions is modeled as decreasing as the sample 
size grows. This device reduces the convergence rate of the threshold estimate 
and allows the development of a simpler distributional approximation. The analy- 
sis is therefore probably most relevant to empirical applications where the thresh- 
old effect is "small." The small threshold assumption was first developed in the 
change-point literature by Picard (1985) and Bai (1997). 

An example of a potential application is q theory, which specifies that mar- 
ginal q (the ratio of a firm's market value to replacement value) should be a 
sufficient predictor for firm investment. Empirical evidence has suggested that 
this relation is violated by financially constrained firms, whose investment is 
also affected by the level of cash flow. This literature, including Fazzari, Hub- 
bard, and Petersen (1988), Barnett and Sakellaris (1998), Hu and Schiantarelli 
(1998), and Hansen (1999), uses threshold models for the investment equation 
where the threshold variables are measures of financial constraints. Erickson 
and Whited (2000) challenge this literature by arguing that these findings are 
artifacts of measurement error in marginal q. They use GMM estimates with 
sample splits based on firm size and bond ratings but do not estimate the thresh- 
old levels. Our methods would allow these split points (threshold parameters) 
to be estimated rather than fixed at arbitrary values. 

The plan of the paper is as follows. In Section 2, we lay out the model. In 
Section 3, we describe our proposed estimators for the model parameters. Sec- 
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tion 4 presents the asymptotic distribution theory. Section 5 discusses testing 
for a threshold. A Monte Carlo simulation is reported in Section 6. The conclu- 
sion is Section 7. The Appendix contains the proofs of the asymptotic distribu- 
tion results. 

A Gauss program that computes the statistics discussed in the paper is avail- 
able at http://www.ssc.wisc.edu/-bhansen/. 

2. MODEL 

The observed sample is { y =, zx, , where yi is real valued, zi is an m-vector, 
and xi is a k-vector with k ' m. The threshold variable qi = q(xi) is an element 
(or function) of the vector xi and must have a continuous distribution. The data 
are either a random sample or a weakly dependent time series (so that unit 
roots and stochastic trends are excluded). 

The structural equation of interest is 

yi = j9 zi + ei, qi ' y, 

yi = O'zi + ei, qi > Y, 

which also may be written in the form 

Yi = 61 zi I (qi < y) + 02z I (qi > y) + ei. (1) 

The threshold parameter is y E F where F is a strict subset of the support of qi. 
This parameter is assumed unknown and needs to be estimated. 

The model allows the slope parameters 01 and 02 to differ depending on the 
value of qi. The magnitude of the threshold effect is the difference between 
these parameters. Our statistical analysis of our threshold estimator will utilize 
a "small threshold" asymptotic framework, where n = 02 - 01 will tend to 
zero slowly as n diverges. We do not interpret this as a behavioral assumption 
but rather as a device for the construction of a useful asymptotic approximation. 

The equation error is a martingale difference sequence 

E(eijl_) = 0, (2) 

where (xi, zi) are measurable with respect to Zsi-1, the sigma field generated 
by xi_j, zij,ei I_j:j ? 0}. It is important that the error ei satisfy this strong 
assumption, as simple orthogonality assumptions are insufficient to identify non- 
linear models (including threshold models). 

In the special case where xi = zi, (2) implies that (1) is a regression, but in 
general ei may be correlated with zi, so zi is endogenous. It is important for 
our analysis and methods that the threshold variable qi is treated as exogenous. 
Our methods do not generalize to the case of endogenous threshold variable, 
and different methods will need to be developed for that case. 
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The reduced form is a model of the conditional expectation of zi given xi: 

Zi9g(xi,) + ui, (3) 

E(ui I Xi) 0, (4) 

where ir is a p X 1 parameter vector, g(,.) maps Rk X RP to R', and ui is 
m X 1. The function g is presumed known, whereas the parameter XT is unknown. 
For simplicity, when performing the evaluation at the true value we will write 

gi = g (xi, -o) 

It will turn out to be useful to substitute (3) into (1), yielding 

'= 0gi1(qi <y) + 'gi I(qi > y) + vi, (5) 

where 

vi = O'ui I (qi y) + Of ui I (qi > y) + ei. (6) 

This will be important, as it turns out that the first-order asymptotic theory for 
our estimate of y will behave as if it has been estimated directly from equation 
(5), i.e., as if the conditional mean gi were observable. The error vi (equa- 
tion (6)) thus plays an important role in this distribution theory. 

Our analysis will apply to several reduced form models. We explicitly pro- 
vide regularity conditions for two examples. One is linear regression: 

g (Xi, i) = Tx (7) 

where 1I is k X m. The second is threshold regression: 

(xi, lT) = I1xi1(qi ? p) + f1xix1(qi > p). (8) 

In the latter specification, the reduced form threshold parameter p may equal 
the threshold y in the structural equation, but this is not necessary, and this 
restriction will not be used in estimation. For this model, our asymptotic analy- 
sis will assume that Ill =/= H2 are fixed parameters (in contrast to 01 and 02)- 

Under these conditions Chan (1993) shows that the LS estimator p for p is 

o(n-1) consistent. This fast rate of convergence is critical and is exploited in 
our theory. A reasonable interpretation is that if a threshold regression (8) is 
used for the reduced form, our theory is most appropriate if the latter is well 
identified with a large threshold effect. 

3. ESTIMATION 

We estimate the parameters sequentially. First, we estimate the reduced form 
parameter 7T by LS. Second, we estimate the threshold y using predicted values 
of the endogenous variables zi. Third, we estimate the slope parameters 01 and 
02 by 2SLS or GMM on the split samples implied by the estimate of y. 
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3.1. Reduced Form 

It is helpful to partition zi = (zli, Z2i) where Z2i E xi are "exogenous" (a func- 

tion of xi) and zli are endogenous. Similarly, partition g = (g1, g2), so that the 
reduced form parameters v enter only gl. 

Because (3) is a regression, the reduced form parameter iT is estimated by 
LS. If there are no cross-equation restrictions (common parameters) in the m 
equations, this is equation-by-equation LS (for each variable in zli). If there 
are cross-equation restrictions, then the multivariate LS estimator solves 

n\ 

r = argmin det(E (zIi - g1(xi, )) (z1i - gl(xi, g))')* (9) 

Given 7r, the predicted values for zi are 

A 
A 

, A\ 

Zi = gi = 9(xi, 
A 

) 

For example, in the threshold regression model (8) the threshold parameter p 
is common across equations-a cross-equation restriction-so the multivariate 
estimator (9) is appropriate. The solution is found as follows. For each p E F 

define 

/n -1n 

ti1 (P) EXi XZ 1 (qi - ) EXi Z' li (qi -<p), 

n \1n 

l2(P) = (i xixi i > P)i) > P), 

u I )= -P1(p)'x 1(qi <p) - 
A 
2(p'Xi1(qi > p). 

Then we obtain the LS estimates (9) by minimization of the concentrated LS 
criterion: 

n 

p argmin det u u 

= A (), 
A2(P). 

For this model of the reduced form, the predicted values are 

gj xi I = xl(qi i P) ? flxi1(qi > P) 

3.2. Threshold Estimation 

We now turn to estimation of the threshold y in the structural equation. For any 
y, let Y, ZY, and Z1 denote the matrices of stacked vectors yZ, z1 (qi ? y), and 
zl (qi > y), respectively. Let Sn(y) denote the LS residual sum of squared 
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errors from a regression of Y on ZY, and Z1. Our 2SLS estimator for y is the 
minimizer of the sum of squared errors: 

y = argmin S, (y). 
yEF 

As a by-product of estimation, we obtain natural test statistics for hypoth- 
eses on y, which take the form Ho: y = yo. Following Hansen (2000), we con- 
sider the LR-like statistic 

S (Y)- Sn(A) 
LRn(y) = nn S (A) 

3.3. Slope Estimation 

Given the estimate 5 of the threshold y, the sample can be split into two sub- 
samples, based on the indicators 1 (qi <5) and 1 (qi > 5). The slope param- 
eters 01 and 02 can then be estimated by 2SLS or GMM separately on each 
subsample. We focus our discussion on the case where the reduced form is lin- 
ear in xi in each subsample. 

A A A A 

Let X1, X2, Z1, and Z2 denote the matrices of stacked vectors x'l (qi 
A ) 

x1'l(qi > 5), z'l(qi ' 5), and z'l(qi > 5), respectively. The 2SLS estimators 
for 01 and 02 are 

A A A A A A A A A A 

61= (?fxk1(kIkD1k?X z1<1(2lk(k{k1)k Y), 

A 
f A7 ( Av 

11 
IA t 7 -1 7 

( 
Af 

A 
-(v 

A 
_ 

A 

V~~~'2 X ~2 Z 2 X2 X21 X2 J 2A2A 

The residual from this equation is 

ei = yi -zi1 1(qi <5) -z62l(qi > 5). 

Construct the weight matrices 

n 

Q11=zX xix ei21(qi _c A) 
i=ll 

n 

E= XXi2l (qi > ). 

i=l 

The GMM estimators for 01 and 02 are 

A A A ~ A A A~ A 

01 = (Z1 X1_1 I)_I Zf XI Q1 1 
f 

Y), (10) 

A A A 
I ( A A 1 A A I A 

02 = Z21X2f12 1XIZ2) 1(Z2X2f'2- X2 Y-(l 
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The estimated covariance matrices for the GMM estimators are 
A A ^ " A 

I A1 
^ 

) I 

IZ - {71 y n-1 y 7 A-1 f(13) 
V2 =(Z2/X2f12- X2 2)-1. 13 

We now briefly discuss the asymptotic efficiency of these estimators. As we 
show in Section 4.3, they are asymptotically equivalent to their ideal counter- 
parts constructed with the unknown true value of y rather than the estimated 
value ^, and so for the purposes of asymptotic efficiency, we can examine the 
case of known y. The GMM estimators (01, 02) are easily seen to be efficient 
estimators of (01, 02) (in the sense of Chamberlain, 1987) under the moment 
conditions 

E (xi ei I (qi '< y))-? = 0(14) 

E(xi ei I(qi > y)) ? 0 

These equations are implied by the assumed multidimensional scaling (MDS) 
assumption (2) but do not in general exhaust its implications, suggesting 
that our GMM estimator is not fully efficient. However, under the leading 
assumption of conditional homoskedasticity E(e0-i1) = 2, both the 2SLS 
and GMM estimators achieve the semiparametric efficiency bound. 

4. DISTRIBUTION THEORY 

4. 1. Assumptions 

Define the moment functionals 

M(y) = E(gi g'l (qi ? ))) 

D1 (y) = E(gi gi' qi = Y), 

and 

D2(y) = E(gi gi'v qi = y). 

Let f(q) denote the density function of qi, yo denote the true value of y, 

DI = DI(yo), D2 = D2(yo),f =f(yo), and M = E(gig1'). 

Assumption 1. 

1. (xi, gi, ei, ui) is strictly stationary and ergodic with p mixing coefficients 
~jf$p0l/2 < cc; 

2. E (ei I ~s'j_ ) = ; 
3. E(uiZsi-,) 0; 
4. E gi14 < oo and EIgivi14 < cc; 

5. for all y E r, E(| gi 14Vi I qi = y) C C and E(| gi 14 1 qi = y) C C for some 
C < oo; 

6. for all y E F,f(y)f < o; 
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7. f(y), DI(y), and D2(y) are continuous at y = yo; 
8. 8n = 1 - 602 = cn-a with c 0 0 and 0 < a < 2; 

9. c'Dlc > 0, c'D2c > 0, andf > 0; 
10. M > M(y) > 0 for all y E F. 

Assumption 1.1 is relevant for time series applications and is trivially sat- 
isfied for independent observations. The assumption of stationarity excludes 
time trends and integrated processes. Assumptions 1.2 and 1.3 impose the 
correct specification of the conditional mean in the structural equation and 
reduced form. Assumptions 1.4 and 1.5 are unconditional and conditional 
moment bounds. Assumptions 1.6 and 1.7 require the threshold variable to 
have a continuous distribution and essentially require the conditional variance 

E(v7jqi = y) to be continuous at yo, which excludes regime-dependent het- 
eroskedasticity. Assumption 1.8 is the small threshold effect assumption. 
Assumptions 1.9 and 1.10 are full rank conditions needed to have nondegen- 
erate asymptotic distributions. 

We require that the reduced form predicted values be consistent for the true 
reduced form conditional mean. Let 

ri = gi -_g 

denote the estimation error from the reduced form estimation. The following 
high-level conditions are sufficient for our theory. Let an = n1-2a. 

Assumption 2. Let Hi {gi, vi, ri}. First, 

1" 
sup EHi )71 (qi C y) = Op(l). (15) 

Second, there exists a 0 < B < oo such that for all E > 0 and 6 > 0, there is a 
v < oo and n < oo such that for all n 'n 

(|E Hi r'l (1 (qi < y) - 1(qi ' yo))| 

P sup I-or > 15 < :.(16) 
D/anc ly7-yo !5B n |y 

- 
Yol 

Third, 

n 

sup n- Hi ri (I (qi ' -YO + lan)- (qi ' )'o)) ,p O. (17) 
Hlcv i=l 

We can show that Assumption 2 holds for important cases of both linear and 
threshold reduced form models. 

Lemma 1. If g(xi, T) takes the linear form (7), or if g(xj, T) takes the thresh- 
old form (8) with 12 # Ht, and Assumption 1 holds, then Assumption 2 holds. 
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4.2. Threshold Estimate 

Let 

= Evl, 

c'D2 C 

(cD c)2f 

2 c'D2c 
CJ2 C 'D1 c 

In the leading case of conditional homoskedasticity E(v2|xi) 0-v2, then these 
constants simplify as follows: 

V 
(0= 

C'Dl cf 

2= 1. 

Let W(r) denote a two-sided Brownian motion on the real line. Define the 
random variables 

T = argmax (- I rI + W(r)) 
-00<r<oo 2 

and 

sup(-IrI + 2W(r)). 
rG=R 

THEOREM 1. Under Assumptions ] and 2, 

n1-2a (9 - Yo) O4 T, (18) 

LR(yo) -4 q2. (19) 

The rate of convergence n 1-2' and asymptotic distribution T for the thresh- 
old estimate shown in (18) are the same as in LS estimation of threshold regres- 
sion models (see Hansen, 2000, Theorem 1). The main difference is that in the 
2SLS case the scale w (which inversely determines precision) is proportional 
to the variance of vi (the variance of the error (6) from equation (5)) rather than 
that of the equation error ei and is inversely proportional to the conditional 
design matrix E(gi g'l qi = yo) of gi, the conditional expectation of regressors 

zi given the instruments xi, rather than the conditional design of the regressors. 
The distribution function of T is derived by Bhattacharya and Brockwell (1976). 

Theorem 1 makes the cracial assumption that 8in = 1- -2 = cn-a - 0 as 
n -e oo. This is the small threshold effect assumption. In contrast, if we assume 
8,, 0 0 fixed, then the convergence rate for - is 0(n- 1) as shown for LS esti- 
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mation by Chan (1993). However, the asymptotic distribution for n(-y - yo) is 
quite complicated and not useful for inference on y. By adopting the small 
threshold effect assumption, we effectively slow down the rate of convergence 
from n to n1-2a, which allows asymptotic averaging to simplify the sampling 
distribution. 

The asymptotic distribution of the LR-like test LR(yo) in (19) takes the same 
form as for the LS case. If the error vi is homoskedastic, then rj2 - 1 and the 
asymptotic distribution is free of nuisance parameters, facilitating testing and 
confidence interval construction. Otherwise, q 2 can be estimated as in Sec- 
tion 3.4 of Hansen (2000). The distribution function of 5 is derived in Theo- 
rem 2 of Hansen (2000) and is P(e ? x) (1 -e-x/2)2. Some critical values 
are provided in Table 1 of Hansen (2000). 

To form an asymptotic confidence interval for y we use the test-inversion 
method advocated by Hansen (2000). Let C be the 95% percentile of the dis- 
tribution of (. The most straightforward method assumes that the errors vi are 
homoskedastic and then sets 

F {y:LRn(Y) <C, 

the set of values of y such that the LR-like statistic is below the 5% asymptotic 
critical value. For a confidence region robust to heteroskedasticity, set 

F = {y: LRn(y) C I } 

where 7 2 is an estimate of 772. Theorem 1 shows that F is an asymptotically 
valid 95% confidence region for yo. 

A useful method to visually assess the estimator ' and its precision is to plot 

LRn(y) against y. The point where LRn(Y) strikes zero is the estimator '. The 
points where LRn(Y) < C are the points in the confidence region. The param- 
eter yo is more precisely estimated the more "peaked" is the graph of LRn(Y). 
In samples with strong information about y, LRn(Y) will tend to have a sharp V 
shape with clearly delineated minimum. In samples with low information about 

y, LRn(y) will tend to have a more irregular shape with less clearly defined 
minimum. 

4.3. Slope Parameters 

We first state the asymptotic distribution of the 2SLS slope estimators. 

THEOREM 2. Under Assumptions ] and 2, 

n*1/2 (1 - 01) 4N(0, V12sLS), 

* 1/2 (62-02) 4 N(O, V22sLS), 
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where 

V,2sLs = (R Q1R1)-'R'Qj1Q1QR1(R'Q1R1)-, 

V2sLS = (R Q2 

Q1 = E(x.x2l(q. ' Yo)), 

Q2 = E(xi x l(qi > yo)), 

= E(xi z'l (qi ' <yo)), 

E(xiz1l(qi > yo)), 

lI = E(xix1'el(qi ' yo)) 

f12 = E (xi x'e 21(qi > yo)). 

Second, we give the asymptotic distribution of the GMM slope estimators. 

THEOREM 3. Under Assumptions 1 and 2 

n 1/2 (ol - ) -4 N(O, V1), 

n 1/2 (02 - 02) 4N(O, V2), 

where 

V1 = (R'fl- Rj)-', 

V2 = (R'fljR2)'. 

Furthermore, 

n?l1 -u,p Vi, 
A 

n?V2 -)jp V2. 

Theorems 2 and 3 give the asymptotic distributions of the 2SLS and GMM 
estimators of the slope coefficients under the small threshold effect assump- 
tion. It is not hard to see that if instead we make the assumption that 01 - 02 
3 is fixed with sample size, then the results are unaltered. 

5. TESTING FOR A THRESHOLD 

In model (1), the threshold effect disappears under the hypothesis 

Ho: 01 = 02. 

To test Ho we recommend an extension of the Davies (1977) Sup test to the 
GMM framework. 

The statistic is formed as follows. First, fix y E F at any value. Given this 
fixed threshold, estimate the model (1) by GMM under the moment conditions 
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(14). These estimators take the form (10) and (11) except that they are evalu- 
ated at this fixed value of y rather than 5. Corresponding to these estimates are 
their estimated covariance matrices V1 (y) and V2(y), which take the form (12) 
and (13) except that again they are evaluated at y rather than 5. Then, still for 
this fixed value of y, the Wald statistic for Ho is 

Wn(y) 01(Y) 
_ 

02(Y)) (VI (y) + V22(y)) (01(v) 
- 02(Y)). 

This calculation is repeated for all y E F. The Davies Sup statistic for Ho is 
then the largest value of these statistics: 

SupW = Sup W(Qy). 
yEF 

We now present the asymptotic null distribution of this statistic. Define 

QI(y) = E(xi xi e1 (qi ? ))) 

Q(yX) = E (xi z'l(qi '< y)), 

V1(y) =(QI(y)' l(y) QI(y)) 

Q2(Y) = E(xix1'e7I(qi > y)), 

Q2(Y) = E(xiz'l(qi > y)), 

V2(Y) =(Q2(Y)'Q2(Y)-lQ2(Y))- 

Let S1(y) be a mean-zero Gaussian process with covariance kernel 

E(S1(yi)Si(Y2)') = fl(yl A Y2), let S = plim7,0Sj(y), and let S2(y) = S - 

Sl(y). Following the analysis of Davies (1977), Andrews and Ploberger (1994), 
and Hansen (1996), we have the following theorem. The proof is in the 
Appendix. 

THEOREM 4. Under Assumption 1 plus the null hypothesis 01 = 02, 

SUpW X>d SUp(S1(Y)'ft1(Y)1Q1(Y)V1(y) - S2(y)'f2(y)<Q2(y)V2(Y)) 
yEGF 

X (V1(y) + V2(Y))' 

(V1(Y)Q1(y)'f11(y)<1S1(y) - V2(Y)Q2(YYfl2(Y)-1S2(Y)). 

Because the parameter y is not identified under the null hypothesis, this 
asymptotic distribution is not chi-square but can be written as the supremum of 
a chi-square process. This asymptotic distribution is nonpivotal but easily can 
be calculated by simulation. The argument presented in Hansen (1996) extends 
to the present case. Define the pseudodependent variable y = -ei(y)ri, where 

ei(y) is the estimated residual under the unrestricted model for each y, and mi 
is independent and identically distributed (i.i.d.) N(0, 1). Then when we repeat 
the calculation presented previously using this pseudodependent variable in place 
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of yi, the resulting statistic SupW* has the same asymptotic distribution' as 
SupW. Thus by repeated simulation draws, the asymptotic p-value of the statis- 
tic SupW can be calculated with arbitrary accuracy. 

6. MONTE CARLO SIMULATION 

6.1. Model 

The structural and reduced form equations are 

yi = 0'ziI(qi ' y) + 02zil(qi > y) + ei, 

zi = 
Zli 

Z=i = (Im1 + n7T12Xi)l(qi < p) + (T21 + 722)Xi)(qi > p) + u1i 

The structural equation has a single endogenous variable zli and a single 
excluded exogenous variable xi. 

We generate the exogenous variables as xi - N(O, 1) and qi j N(2, 1), and we 
generate the errors as ui - N(O, 1) and ei = 0.5 ui. Making ei perfectly corre- 
lated with ui is an extreme specification for endogeneity and is done to illus- 
trate the robustness of the results to extreme settings. 

We set the reduced form parameters as p = 2, m1 = 1, 1T2 = 2, IT21 = 1, and 
I722 = 1. In the structural equation, we set y = 2. The statistics we report depend 
on 01 and 02 only through the difference 8 01 - 02 = (81, 82)'. We set 81 = 1 
and vary 82 and the sample size n. All results are based on 1,000 simulation 
replications. 

For each simulated sample, we estimate the threshold reduced form by LS, 
substitute the predicted values of the endogenous variable z ii into the structural 
equation, and then estimate the structural equation threshold by LS and finally 
estimate the slopes by GMM, as described in Sections 3.1-3.3. 

6.2. Threshold Estimation 

We first assess the performance of the threshold estimator j. Table 1 reports 
the 5%, 50%, and 95% quantiles of the simulation distribution of ', varying 82 

TABLE 1. Quantiles of - distribution, y = 2 

82 0.25 82 = 1 62 = 2 

Quantiles 5 50 95 5 50 95 5 50 95 

n = 100 -0.08 1.35 3.78 1.13 1.97 2.16 1.83 1.98 2.06 
n = 250 -0.03 1.66 3.70 1.82 1.99 2.05 1.94 1.99 2.02 
n = 500 0.05 1.97 3.21 1.95 2.00 2.04 1.97 2.00 2.01 



826 MEHMET CANER AND BRUCE E. HANSEN 

TABLE 2. Nominal 90% confidence interval cov- 
erage for y 

82 0.25 0.5 1.0 1.5 2.0 

n = 50 76 86 92 95 97 
n = 100 73 88 96 98 98 
n = 250 80 94 98 98 99 
n = 500 86 96 99 98 98 
n= 1,000 92 97 98 99 98 

among 0.25, 1, and 2 and n among 100, 250, and 500. Performance improves, 
as expected, as 82 and/or n increases. In particular, we observe that for a small 
threshold effect (82 = 0.25), the distribution of 

' 
is quite dispersed, whereas a 

large threshold effect (82 = 2) yields a tight sampling distribution, even for a 
sample size as small as n = 100. 

A 

Second, we assess the performance of our proposed confidence interval F 
for y. Table 2 reports simulated coverage probabilities of a nominal 90% inter- 
val F, constructed without a correction for heteroskedasticity, varying 82 among 
0.25, 0.5, 1.0, 1.5, and 2.0 and n among 50, 100, 250, 500, and 1,000. We see 
that for any value of 82, the coverage probability increases as n increases, becom- 
ing fairly conservative for the large sample sizes. Similarly, for fixed n, the 
coverage probability increases as 82 increases. These findings do not contradict 
the distribution theory of Theorem 1, as that result requires that the threshold 
effect 82 decreases as n increases, which implies taking a diagonal path in Table 2 
roughly from the upper right toward the lower left, where the coverage proba- 
bilities indeed fall close to the nominal 90% level. Interestingly, the results in 
Table 2 are consistent with Theorem 3 of Hansen (2000), which suggests that 
at least in the leading case of i.i.d. Gaussian errors, the confidence interval F is 
asymptotically conservative for fixed parameter values as n goes to infinity. 

6.3. Slope Parameters 

Theorem 3 shows that the GMM slope estimates 01 and 02 are asymptotically 
normal and standard errors can be consistently computed from the covariance 
estimators V1 and V2. This implies that conventional asymptotic confidence inter- 
vals can be constructed based on the normal approximation. We denote this 
interval as 00, for reasons given later. In the first row of Table 3 we present the 
finite sample coverage of nominal 95% confidence intervals for 82 constructed 
using this method. We see that if 82 iS large, the interval 60 has about the cor- 
rect coverage, but coverage rates are quite poor for small values of 82. Cover- 
age improves as the sample size n increases, but even for n = 500 coverage is 
quite poor for small values of 82. 
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TABLE 3. Nominal 95% confidence interval coverage for 82 

n-100 n = 250 n = 500 

82 0.25 0.5 1.0 2.0 0.25 0.5 1.0 2.0 0.25 0.5 1.0 2.0 

00 54 69 87 93 59 82 93 94 70 87 92 96 
00.5 86 89 95 95 84 94 96 95 90 96 97 95 
A 

00.8 94 94 96 97 94 98 98 96 96 98 97 97 
00.95 98 99 99 98 99 99 98 98 99 99 98 98 

To improve the coverage rates, we can use the Bonferroni-type approach advo- 
cated in Hansen (2000). The premise is that the poor coverage rates for 00 are 
because it does not take into account uncertainty concerning y. The solution is 
to incorporate the confidence interval F for y developed in Section 4.2. 

First, for any fixed value of y we can calculate the GMM estimators of Sec- 
tion 3.3. Specifically, the sample is split by the indicators I (qi < y) and 1 (qi > 

y), the slope coefficients estimated by GMM on each subsample, and standard 
errors calculated using the conventional GMM formula. Given these estimates 
and standard errors, let 0(y) denote the constructed C-level confidence region 
for 0 (for this fixed value of y). 

Second, for any 0 ? K < 1, let i(K) denote the confidence interval of Sec- 
tion 4.2 for y with asymptotic coverage K. 

Third, construct the union of the intervals @(y), where the union is taken 
over the values of y in r(K), 

AK U A(y). 

y E(K) 

Theorem 3 shows that O0 0 
(y) has asymptotic coverage C. Because (0 C 

OK it follows that 

P( E iEK) > P(6 E 0) -< C 

as n x oc. Thus the intervals OK should be asymptotically conservative. 
We report in the four rows of Table 3 the coverage rates of the interval /K 

using K = 0, 0.5, 0.8, and 0.95. As expected, the coverage rates increase sub- 
stantially over the Oo interval. We see that in this example K 0.8 provides 
good coverage in each case, which is the same recommendation as for the regres- 
sion model investigated in Hansen (2000). 

7. CONCLUSION 

We have developed consistent estimators for the threshold in a model with endog- 
enous variables and an exogenous threshold variable. The estimator for the 
threshold is a 2SLS estimator, and the estimator of the slope parameters is a 
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GMM estimator. It may be possible to construct alternative estimators of the 
parameters based on the GMM principle, and we make no claim to asymptotic 
efficiency. We specifically focus on the case of an exogenous threshold vari- 
able. The case of an endogenous threshold variable would require an alternative 
estimation approach, and this would be a worthwhile subject for future research. 

NOTE 

1. A formal argument for this claim follows the same reasoning as Theorem 2 in Hansen (1996). 

The key condition to verify is equation (13) of Hansen (1996) which is satisfied in our case by 

(A.65) in the Appendix. 
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APPENDIX 

Proof of Lemma 1. We need to show that Assumptions 1 and 2 imply equations 
(15)-(17) for both the reduced form linear model (7) and the reduced form threshold 
model (8). First, we note the form of ri and the rates of convergence of the parameter 
estimates in these two models. In the linear model (7), 
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r, ^1-I)xi, 

,IIn - iI) = Op(1). (A.1) 

In the threshold model (8), we let po denote the true value of p and write 

Ai(y)= 1(qi y) - (qi o), 

A2i (P) = l(qi <p) - I(qi Po). 

Then 

ri= ( 11-h1)xil(qi : Po) + (12- 112)Xi1(qi > Po) 

+ (h2- - )XiA2i (P), (A.2) 

(IIV-n H) = OP (1), (A.3) 

n1(H2 - H2) = Op(1), (A.4) 

(h2 - 1 ) = OP(l), (A.5) 

n( - po) = OP(l). (A.6) 

Equation (A.2) is simple algebra, and equations (A.3)-(A.6) are shown by Chan (1993). 
We now sequentially establish (15)-(17). 

Proof of (15). First, take the linear model (7). 

|7 , H'il(qj-' y) | C-j Hixi I -1j =Op(l), 

establishing (15). 
Second, take the threshold model (8). Chan (1993) establishes that 

n n 

,Hi xi'l(qi '< Y) IA2i(p I EHi x'||I A2i (P) I = ?p (1). (A.7) 
i=l1 i=l 

Combining this with (A.5), we conclude that 

| Hi i ;`l <(qi ' y) I - Hi X!Hx'\H(Il-T11 + 112-21 

+ 
7 

whc/2 hHiXi' ||2i(P) 1 52 1. 

=p O(1), 

which is (15). 
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Proof of (16). By Lemma A.7 of Hansen (2000), there exist constants B and k such 
that for all q > 0 and s > 0 there exists a v < co such that for all n 

/ ~~~~n\ 

I E {~~~~~Hi x, I lAi(y) )l 

P sup i_1 > (I1 q) k (A.8) 
--ly7-yol-B nly 

- 
ol 2 

a, 

First, take the linear model (7). Using (A.8), 

n n 

Hi riA i (y) E IHixlj IIAi (y)1 

- sup n<-a sup nls up np 

-Iy-yoLsB ly-Yl -Th'-yol?B n'-0 
a, an 

because n1/2111 - 11l = O(l). Similarly 

n n 

3 ri )/iA (Y) 3 lxixli/i(y)j 

sup I-< sup nly jy nII-flI2 O 

-j1y-yOj5B n y 
- 

Xol -Cle-YOjc )' 1B 
a, an 

which is (16). 
Second, take the threshold model (8). By (A.8), (A.3)-(A.6), and (A.7), we can pick 

v, v2, K1, K2, and n so that for all n 2 ni, with probability exceeding 1 - s, 

n 

ya I Hi Xi'lI I Ai (y') I 
i=1 

sup i=l (1? +7)k, 

-_v )O- nly7 - Zyol -?Iy-,YoISB 
a, 

naQll -1 + 1H2 -2) 2(1 + -q)k' 

H2 -1i K1, 

-Pol- 2, (A.9) 

n -a 
IHi xi'lI2(p)l 2KI (A.10) 

Using (A.2) 

n n 

Hi CAi (y) = Hi xiAi (y) I(qi '< po)(HI -1 
i~=l i=l1 

n 

+ Hix'i(y)1(qi > Po)(1 -f2) 
i=l 

n 

+ , i Xi'Ai (Y)A2i (') (2-[t ) - 
i=l 
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Observe that if l/an - I y - yo - B, then 

Ji (y)j --- Ai (yo + B)l + |zi(yo o-B)I 

and 

1 1 

n-aly-yol -na 

Hence 

n 

I Hi Xi'Ai (Y)) A\2i (P^) 1n 

sup I Hi x' (I Ai (yo + B) I 

an 

+ JAi(yo- B)I)IA2i(P)l =Aln (A.ll) 

Thus with probability exceeding 1 - s, 

n 

Hi H7A i(y) 
i=l1 

sup 1-a 
--?Iy-y0IsB n l'y - YoI 

an 

n 

Hixi' Ai (y) 

- _ sup na rl + 1) 
<ly-yol-B nly )- yol 

I 1 I2 '1 

an 

n 

Hi Xi'Ai (Y)A2i (P') 

+ sup 112y H- 
--Fy-yol?B 

n l 
an 

' +AlnK,. (A.12) 
2 

We conclude by showing IA lnIK1 ? 8/2, which completes the proof of (16). This is 

simplest when p0 y Yo, for then we pick B and n so that 

B + V )'oP01 (A.13) 

By (A.9) and the triangle inequality, 

IYO-Pol ' Yo-Pi + I I)oP +- (A.14) 

Expressions (A.13) and (A.14) imply |P - yol > B. Thus for all i 

(jAi(yo + B)I + I Ai(yo- B)I)lA 2i(Pi) = 0, 

and thus A1In = 0. 
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For the case po = yo, we pick ni so that h2a ? 0/02. (A.9) implies 

P - PoO C /an ' v2In, 

and thus for all i 

(IAi(yo+B)I + I Ai(yoB) <2i(P) C 2i(P) 

Hence using (A.10), A1nK, ' 8/2 for sufficiently large n. U 

Proof of (17). Define 

A*(v) = I(qi ' Yo + v/a_) -(qi '<Yo). 

By Lemma A.10 of Hansen (2000), 

n 

sup n -2a I Hi xi' A* (v) = Op (1). (A.15) 
IvI?i3 i=l 

First, take the linear model (7). Using (A.15) and (A.1), 

sup n- Hi jA* (v) | sup n -2cx Hi xJ'A (v) | aI I-I = op (1) 
Ivliv~~~~ i= ivc = 

and 

sup n- r i 'z*(v) | sup n2 | xix,'A (v) na IH-112=op(l) 
lUl'v~~~~ ~ ~~ ~~~~~ i= 

op(l 
i= 

as desired. 

Second, take the threshold model (8). Using (A.2) and (A.15), 

n n 

sup n - Hi ' A* (v) C sup n-2 lHix'|A*(v)n a(H1- 1 + 1- H2 1) 
lvlCv~~~~ i= ivC 'Ii=lT1 

'1 

+ sup n E |Hixil IA7 (0 I|2i( ')I | |2 1 
Ivl'v ij=1 

op (1) + Op(1) A2n, 

where 

A2n = > |HX i'J(jz\*(b)j + fA*(-V)j)jp21(1)l. 
i=l 

The proof is completed by showing that A2n = op(l). If yo 0 po, then for large enough 
n, (I Ai (v) + I A* (-v) ) I A2i (P) I = 0 and A2, = 0 with probability arbitrarily close to 1. 

If y0 = po, then for large enough n, (IA*() I + IA*(-)D) )A2i() = 1A2i(,)l and 

n 

A2n , n- 
- IHHix' I A2i(P)I = op(l) 

i-l 

by (A.7)- U 
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Let Vi- 
= 702 + vi and v = r02 + v. Let Go be the matrix obtained by stacking the 

vectors gl (qi ? yo). 

LEMMA 2. Uniformly in y E F, 

in 
ZYZY-= n 2 i I (qi y) -) M (y), (A.16) 

in 
ZG= - i gI' 1(qi y0) -p MO = M(yo), (A.17) 

n n j=1 

I n 

- Z,v= b = _z V!I(qi'y)=Op(1). (A.18) 

Proof of Lemma 2. To show (A.16), because zi =g gi - Pri, using (15) and 

Lemma 1 of Hansen (1996), 

1 n I n 1n 
- i Zi1(qi ! y) = gi g1g I(qi ? y) - gi gjl (qi y) 

n j=1 n j=1 n j=1 

in 1 n 

- - ri g,'l(qi ?5 y) + - > ri rl 1(qi Cy) 
n j=1 n j=1 

->p M(y) 

uniformly in y E F. Equation (A.17) follows similarly. To show (A.18), using Lemma 
A.4 of Hansen (2000) and (15), 

1n 1n 1n 

Z ?i Vl (qi y) 
$ 

gi v1I (qi - y) - 
v r v1 

(qi - y) 

in in 

+ ,- E gi r, l2 1 (qi- y) - , ri r^'021 (qi y)' 

- Op(l). 

LEMMA 3. 5 p Yo. 

Proof of Lemma 3. It will be convenient to write (5) in the format 

Yi= gi (On + 02) 1 (qi <-Yo) + g9i 02 1 (qi > yo) + Vi 

= 
g,02 + g!l1(qi- Yo)8n + Vi. 

Define the matrices G, G, r, and v by stacking gi', gi', r?i, and vi. This equation can be 
written in matrix format as 

Y = GO + Gocn- + v, (A.19) 

where we use 8n = cn-. 
Let P= Z (Z Z7) 4, PL Z1 (Z_ Z1 ) ZL, and P= Z (ZZ,) Z' where 

(Zy,Z).Because Z,ZL -, it can be shown that P * = P'+P1. 
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Because G = G + r and Z = G is in the span of Z*, then 

(I - P*)G = (I- P*)r. 

Thus using (A.19), 

(I - P,,)Y Y (I - P) (Go cn- + v). 

Hence 

Sn (y) Y' (I-JP) Y 

= (n-ca'G + vf') (I -P,) (Go cn-a + ) 

= (n -ac'Go + v")(Gocn- +b) - (n-c'G' + b')P*(Gocn-a + v). (A.20) 

Because the first term in the last expression does not depend on y, and - minimizes 

Sn(Y), we see that - maximizes 

Sn*(y) = n2al(n c'Go + v')P(Gocna v) 

= na c'G6PGoc + n-a2c Gfp*b + 2a-l,'Ip*f, 

From Lemma 2, we see that uniformly in y G [yo, T ], 

G6PY GO = n GoZ?( -ZZ) - GO ZP MO MZ Go)-MO, 

n-lGPy G= n-l/2Go Zo Z7) 0, 

a2- = 2a-l-2 

and 

1 v 1 1 \ v ( )Vp 01 

When y > Yo then P1G0 = 0, so PG0 =PTGoand 

S2a(-l) = nZc'G'P G0c ? n-i2c'G6P, + ?2a-lv'p b + n20 1b 'P1b 

-o, c'tM0M(y)'lM0c 

uniformly on y v [Yo,],which is uniquely maximized at Yo as shown in the proof of 
Lemma A.5 of Hansen (2000). Symmetrically, on y E [y, Yo], S,*(y) converges uni- 
formly to a limit function uniquely maximized at -y0. Because jy maximizes S*(^y), it 
follows that j Yo y. 

LEMMA 4. aan^y-dYo) = Od(1). 

Proof of Lemma 4. Let the constants B, d, k be defined as B > 0, 0 <d < oo, 0 K 

k W no . Let M = supLGYOYIBlM(y)| and D = supP*GO IPBGDl(y)f(y)a Fix ? > 0. 
Pick K and reduce B if necessary so that 
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K + 3kM*(DB + 2K)(1 + M*(Mo + K)) < d/12, (A.21) 

K(Mo + K)M*[l + 3kM*] ' d/12, (A.22) 

K2M*[2 + 3kM*] d/12, (A.23) 

where M* = M + M2K and Mo = M(yo). To simplify some inequalities, assume without 

loss of generality that K ? k. 

Define 

Ai(y) = 1(qi <y) - I(qi ? Yo). 

Define the joint event 

n 

Igil2Ai(y) 
i=l 

sup n 13k/12, (A.24) 
[J/a,l---yoyls- n(y 

- 
yo) 

n 

(C 1gi)2Ai(y) 
i=l 

inf (lld/12, (A.25) 
['/an-ly-yol-B n(y -yo) 

n n n 

gi i i\ (') r^i gi, Ai (y) r i(Y) 
i=l i~~=l1 i=l 

sup - ____-+ <K (A.26) 
b/an-ly-yoIlB n(y - Yo) n(y - Yo) n(y - Yo) - 

| ( gi - ) i(Y) 

sup 
n 1-a 

(<y Yo) 
K (A.27) 

i)/an:5y-y0j?-B N ) o 

1' - yOl B, (A.28) 

sup -Z ,Z,-M(Y) ?K, (A.29) 
yEfr n 

sup -Z,Z,, -j M(y) ?K, (A.30) 
yC=F nl 

sup -Z0 GO-MO ?K, (A.31) 
yc,r n 

sup 1-Za yv ?K. (A.32) 

By Lemma A.7 of Hansen (2000) and (16), there exist sufficiently large vi = V(s) < oc 

and n = fi() < oo so that for all n ' ni, equations (A.24)-(A.27) hold jointly with 

probability exceeding 1 - e/2. By Lemmas 2 and 3, equations (A.28)-(A.32) hold jointly 

with probability exceeding 1 - s/2 (increasing n if necessary). Thus (A.24)-(A.32) hold 

jointly with probability exceeding 1 - 
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We show subsequently that (A.24)-(A.32) imply 

(G'(P* - P)G 
inf c' ( c ? 5d/6, (A.33) 

O/a.-Iy-yoI?B n(y - yo) 

c'G6 (P* -P*V 

sup | nI/(yT ) ? d/12, (A.34) 

CJ/an?I-YYOJ-B n1a I 
- 

O 

sua pyB| - ( o) | d/6. (A.35) 

Using (A.20) and applying (A.33)-(A.35) we can calculate that for b/an I IY - 7Yo s 

B, (A.24)-(A.32) imply 

Sn(y)-SSn(Y) _ (Po-P)v + '(P0-P)Goc c2G 
(P -P,)Goc 

n 1-2a(- YO) nl12a (y -yO) nl1a (y - yO) n(y- yo) 

? d/2. 

Because Sn(y) - Sn(y0) ' 0, this establishes that (A.24)-(A.32) imply I-5 - yol ' 

l/an. As discussed previously, (A.24)-(A.32) hold jointly with probability exceeding 

1 - s for all n 2 n. Thus P(anlY - YO7 > v) ' s for n ? n- as required. 

The proof is completed by showing that (A.24)-(A.32) imply (A.33)-(A.35). 

For simplicity, we restrict attention to the region [yo + ?/an ? y - To + B], as 

the analysis for the case [yo -van 2 !y 2 y To - B] is similar. This restriction implies 

GoZ = G6Zo, ZZy = Z'Zo, and PLGo = 0 so (P* - P$)Go = (Po - Py)Go. 

We start with some useful bounds. Equation (A.30) implies 

B1n= sup (n1Z z )i 
O/an-ly-yol?B 

sp |IM(y)I|--IM(,i2|\ - Zye -M(y)1I 
2 

sup IM()KZMT) z~2 -IMf 
0/a,,-Iy-yOJB nfl 

M + M2K-M*. (A.36) 

Equations (A.29), (A.31), (A.36), and a Taylor's expansion imply 

B2n sup zz, ) (0oGO)I 
v/a,nI|y-yol-B 

?B1n sup z y zoGo 
v/a,,Iy-yo&?B 

Bln sup IM(y) - M(yo)l +2K 

?M*(DB + 2K). (A.37) 

Expressions (A.31), (A.32), and (A.36) imply 

B = sup l(Z )1(Zy Go)l MM*(Mo + K) (A.38) 
3/an-I Y-yol-B 
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and 

B4n = sup an(ZeZ)l(Zob)I?M*K (A.39) 
5/a,?jy-yo!?B 

Next, observe that 

n n n n 

Z1Z-Z o- = E gigAi(y))- gJi'Ai(y)-' Yrigi i(y) + Er'iCli(y). 
'Yi= i= i= i= 

(A.40) 

Equations (A.24)-(A.27) imply 

Cln n y y- | ( (1+ -r)k + K 3k, (A.41) 
Fv/an:51y-yol<::B |n(y YO) 

inf C' I 
I I 1 

Z'Z -Z,oo 
C2n = inf c' (I - -) d - K, (A.42) 

Dla,,:! I y -Y yo I B n (y -yo ) 

and 

ZYV-ZOV l(g,-~~~~~~ri vi'\() 2,b (gi - "iy 

C312 sup n1-a( -s /upB 1- a( -) ?K. 

b)/a,,' jY-y0|-B |n (y YO) TVDan ly-yol-B n a(y YO)/0 

(A.43) 

We can now show (A.33). We calculate that 

G6(Po- (Zy2y - - - Z0Z0)(Im- (2,4)-12G0) 

-(Ifn -G620(z2 6201)(2' 2 y - _ zo2 6) (22)'12Go. (A.44) 

Hence, using (A.37), (A.38), (A.41), and (A.42), 

iG6(P* - P)GO 
inf c' . c 

O/an2Iy-yoj?B n(y - yo) 

C2n - CnB2n- CnB2nB3n 

(1 - ) d - K -3kM*(DB + 2K)(l + M*(Mo + K)) 

2 (1 - 2) d, 

the last inequality being (A.21). This is (A.33). 
Next, we show (A.34). We calculate that 

G' P* 
8- P*)V^-' GoZ0,z,- -(Z' ,z I 3 z2) (A.45 0f 0 7 -OOVOO y y ? v ) O 

- GoZo( yz)-if (Z,,V v-ZO v)- (A.45) 
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Hence, using (A.38), (A.39), (A.41) and (A.43), 

u/a :lSy-yol-B n I-aG (P - P) | C14B3nI4, + B3,C3n 

< 3kM*(Mo + K)M*K + M*(Mo + K)K ? 77d, 

the last inequality being (A.22). This is (A.34). 
Finally, we show (A.35). Observe that 

v (PO P p ) = "(Po- PY) + A'(P1 - (A.46) 

We examine the first term of (A.46). We calculate that 

-(o 
_ 

y) 
A 

o( o o) ( 
A A I A A A I 

v v~~ v Zo ( z z )- (Z y v zo v, ) *(A47v 

- 2hZ0Z Z7 (,f ZV A). (A.47) 

Hence using (A.39), (A.41), and (A.43), 

sup |-2 a B4Cln, + 2B4nC3n 
Vanl?y-yolk5B n (y Yo) 

? M*2K23k + 2M*K2 d 7 

the last inequality being (A.23). A similar argument applies to the second term of (A.46). 

Together, we find 

A, 

(Po _e p)A 

sup b'( - i ?2d-q. 
0/an, ?y-yol:B n 1-2a (y - Yo) 

This is (A.35) and completes the proof. A 

LEMMA 5. OnE -i,l] 

Qn(v)= Sn (yo) - Sn(yo + v/an) =* -btIl VI + 2A1/2W(V), 

where ,= c'D1cf and A = c'D2cf. 

Proof of Lemma 5. Reparameterize all functions of y instead as functions of V. For 

example, Z = 
ZyO+Vlan'I P Y 

- y0+Il/an' Ai(V) = Ai(y + v/an). We show subsequently 
that uniformly on v G -v,v] 

n'-2ac'G(P - P*)Goc = i Av,L, (A.48) 

n-aC'G6(P V -P =V A1/2W(V), (A.49) 

v (POP* ) u V O. (A.50) 
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Using (A.20) and (A.48)-(A.50), we find 

Qn () = (n-ac'GO + v")PP(Gocna + )- (n-c'GO + Vb)P *(Gocna + v) 

= 2A1/2W(') - I VI I 

as stated. The proof is completed by demonstrating (A.48)-(A.50). 
First, observe that using the decomposition (A.40), Lemma A.10 of Hansen (2000), 

and (17), we have 

-2a Z ZI4 - Z I 

n n n 

'n-2 g 25() + 2n- gri'iv + n2 Pi rir! Ai (v) 

so 

n-2 sup Z| - = OZ(1). (A.51) 
I z< v) 

Second, by Lemma 2 

n Z- 1Z =Z M(yo) = Mo* (A.52) 

Then, by (A.44), (A.51), (A.52), Lemma 2, (A.40), (17), and Lemma A.10 of Hansen 

(2000), 

n-2ac'GO(P* -P)G c' 

= n 2aC (~Zv Z - Z0ZO)c 

- n-2ct(ZvZ - 
ZoZ0)(Im -(Z Z ZoZoZ 

C'(Im - G'Z (zZo )l)n2 (ztz - 

n 

= n2 E (c'gi)2A1i(V) + op(l) 
i=l 

~/LI'I.V 

This is (A.48). 
By Lemma 2 and (A.52), uniformly in v z [-v,v], 

n (ZVZV) -^0v b= (n )-1,n-(1 a)f-Z3 
= 

ov- (1) (A.53) 
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By (17) 

n 

n Z' vZO v)-a iv Ai (v) 
i=1 

n n n 

=n-a - i rAit02AJi v) +r n-a Y. gi vi Ai (v) -n-azr viAli (7,,) 

i= I f~ ~ ~~=1 = 

n 

-n -C 
gj viAi (v) + op(l 

> B(v), (A.54) 

a vector Brownian motion with covariance matrix D2f, where the final convergence uses 
Lemma A.1 1 of Hansen (2000). Thus by (A.45), (A.5 1), (A.52), (A.53), and (A.54), 

naGO(P0 P )v Go Zn (ZZ ) n Z(Zy Z - v 

- n~(4b - 2 -a( + f o -(1) - 
- 

Gof Zo (Z', Z,) -n (Zv v o 
) 

=-n ( t _ t )+ ? ( 
O) 

B B(v). 

This yields (A.49). 
Finally, by (A.47), (A.51), (A.53), and (A.54) 

( 
p p ) 

0,~~1. ZtZ) 1 2 a ( 
A,_ 

A 
A A 6 A 

-p pV)I 
a- fla~0 Z~1n2a~ZZ u f) ^ U - ~~n 0( 0 v 0fZ) n z - Zf o)n Z Z z) Ov 

- 2a(Df Z, - b, "a(~ )-I6 

op (1) 

uniformly in ' EE [-v, v]. A similar argument applies to v'(P10 - PL) b. Combined with 

(A.46) this establishes (A.50) and completes the proof. A 

Proof of Theorem 1. By Lemma 4, an(A - yo) = argmax,Qn(v) = Op(l) and by 
Lemma 5, Qn(v) =* -,u lvl + 2A1/2W(p), where the limit functional is continuous with 
a unique maximum almost surely. Appealing to Theorem 2.7 of Kim and Pollard (1990), 
(18) and (19) follow by the argument in the proofs of Theorem 1 and 2 of Hansen (2000). 

U 

The 2SLS and GMM estimators of 01 and 02 introduced in Section 3 are special cases 

of the class of estimators 

_2 

I A A 

(A.56) 

01 = (Z2X1 W1XZ1)1(Z2 X1 W1 X2 Y), (A.S5) 

where W1 and W2 are sequences of weight matrices. 
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LEMMA 6. If W1 -p WI > 0 and W2 -p W2 > 0 then 

-~n(61 - 01) 4d N(,Vl), 

- 
(62 - 02) Xd N(0, V2), 

where 

V1 = (R W1R4)'R WQ1 W1 R(RW1R1)-l (A.57) 

V2 = (R2W2R2) 1R W2 Q2W2R2(R W2R2)-1. (A.58) 

Proof of Lemma 6. We provide the details of the proof for O1. Let Z,, ZL, AZ,, X, 
denote the matrices obtained by stacking, respectively, 

zl (qi ' yo + n-(l-2a)v), 

zl (qi > yo + n-(I-2a)v), 

Zi1(qi C yo + n-(1-2a)V) - z1 (qi < yo), 

xt'1(qi y Yo + n-(1-2a)v). 

By Lemma 1 of Hansen (1996), Lemma A.4 of Hansen (2000), and Lemma A.10 of 

Hansen (2000), uniformly on v C [-v,v], 

1 
- XI Z, ---p RI1, (A.59) 

n 

1 
- Xve N, 

- N(0, fll), (A.60) 

2a X AZV = Op (1). (A.61) 

Let 

=1( ) (ZvXvW1XVZv) (ZvXv XV Y)- 

A little rewriting of the model shows that 

Y= ZU61 + Z?02-AZvA + e. 

Uniformly on v E [-v,v], by (A.59)-(A.61), 

'\f (61 (v) - 0 () - Z W - XUZv) (n I( X'e- - X>AZ a)) 

(R ' WI R 1 ) 
- 

(R' WI N1 ). 

Because v = nl2a( - yo) = Op(l) and 01 = 61(0), it follows that 

(01-01) = (61(b) -01) > (R'W R ) l(R'WINI) -N(O,VI) 

as stated. . 
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Proof of Theorem 2. The 2SLS estimators (61, 62) fall in the class (A.55) and (A.56) 

with 

I n 

WI 
x=ixl 

i 
n i=1 

I n 

W2= - xixtl (qi > 7) 
n j.i 

By Lemma 1 of Hansen (1996) and the consistency of 9, 11 -p Qi and W2 -b Q2. 

Thus (61, &2) are asymptotically normal, with covariance matrices given by the formula 

(A.57) and (A.58) with Qi and Q2 replacing WI and W2, yielding the stated result. H 

Proof of Theorem 3. Let 

I n 

(Q)= - xi xx7i (qi ? y). 
n i=1 

It will be enough to show that 

flj(y)->p E(Xxix'ei2 (qi ' -y)) (A.62) 

uniformly in y E F, for then by the consistency of , n-1fl = fl1() -4p f, and the 

theorem follows by Lemma 6. Hence we show (A.62). 

Set z = (z I(qi < yo), z1(qi > yo))', A ̂ i = zi((qi I ))- 1(qi ' To)), and 5 = 

61 - 62. Algebraic manipulation shows that 

ji = ei-z z'(6-0) -AV 

Hence 

I n 22 n 
fl (y)-- x x1xi e i(qi ? y) -- x x xi'1(qi ? y)eeiz( -60) 

ni=1 ni= 

2 n 

--Exi xi'l (qi y' )ei Aig 
n 

1 n 
+ - E xixil(qi <y)(6 - )'fz7*4(6 - 0) 

n i=1 

in 

+ - >x xx,'l(qi 'y y)(6-)Z 
* 
AZS. n i~=i 

1 n 

+ i 7)8 Z i Z i 
n = 

It is straightforward to show that the terms on the right-hand side converge in probabil- 

ity to zero, uniformly in y. For example, the first term is bounded by 

2 n 2 
- xix1i(qj'y)eiz*'(6-0) IXil 1eil IIzi I1-01 0p ? 
n i=1 n i=1 
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because the data have bounded fourth moments and 16 - 61 -4p 0. Hence, 

I n 

h1(y) = - x xx1'e71(qi < y) + op(1) ->op E(xix'e?2l(qi < y)) 
n i=1 

uniformly in y, by Lemma 1 of Hansen (1996), which is (A.62). This completes the 

proof. U 

Proof of Theorem 4. Under the null of 61 = 62, 

01(- 1 061 (=Z X Q X Z 1 ) Z I e). 

Then by Lemma 1 of Hansen (1996) and Assumption 1.3, uniformly in y 

Vt 7, 
I n 

- Exizl(qj ' y)-') Q1(y). (A.63) 
n n i=1 

Via Lemma A.4 of Hansen (2000) 

X'e 
-= S1(y). (A.64) 

n 

Use (A.63) and (A.64) with (A.62) to have 

n1/2 (0(y) - ) =' V1(y)Q1(y)'f11(y)-'S(y). (A.65) 

In the same manner we derive 

n /2(2Qy) - 62) =* V2(Y)Q2(Y) Q2(Y) 'S2(Y) 

A similar argument applies to the covariance matrices. Combining these results com- 

pletes the proof. Q 
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