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In this paper, the authors describe different instrumental variable (IV) estimators of causal risk ratios and odds
ratios with particular attention to methods that can handle continuously measured exposures. The authors present
this discussion in the context of a Mendelian randomization analysis of the effect of body mass index (BMI; weight
(kg)/height (m)2) on the risk of asthma at age 7 years (Avon Longitudinal Study of Parents and Children, 1991–
1992). The authors show that the multiplicative structural mean model (MSMM) and the multiplicative generalized
method of moments (MGMM) estimator produce identical estimates of the causal risk ratio. In the example, MSMM
and MGMM estimates suggested an inverse relation between BMI and asthma but other IV estimates suggested
a positive relation, although all estimates had wide confidence intervals. An interaction between the associations of
BMI and fat mass and obesity-associated (FTO) genotype with asthma explained the different directions of the
different estimates, and a simulation study supported the observation that MSMM/MGMM estimators are nega-
tively correlated with the other estimators when such an interaction is present. The authors conclude that point
estimates from various IV methods can differ in practical applications. Based on the theoretical properties of the
estimators, structural mean models make weaker assumptions than other IV estimators and can therefore be
expected to be consistent in a wider range of situations.

causal inference; causality; confounding factors (epidemiology); effect modifiers (epidemiology); generalized
method of moments; instrumental variables; Mendelian randomization analysis; structural models

Abbreviations: ACE, average causal effect; BMI, body mass index; COR, causal odds ratio; CRR, causal risk ratio; FTO, fat mass
and obesity-associated gene; GMM, generalized method of moments; IV, instrumental variable; LSMM, logistic structural mean
model; MGMM, multiplicative generalized method of moments; MSMM, multiplicative structural mean model; SMM, structural
mean model.

The instrumental variable (IV) approach to causal inference
has the potential to control for unmeasured confounding and
reverse causation, which can bias results from standard ep-
idemiologic analyses (1). As is the case for all approaches to
causal inference, IV methods depend on assumptions, some
of which are untestable, that vary between the different
estimators. Randomization of individuals’ genotypes at con-
ception, under Mendel’s first and second laws of genetics
(‘‘Mendelian randomization’’), motivates the use of geno-
types as IVs (2–5). Such analyses permit testing for a causal

effect of a phenotype (modifiable risk factor or exposure) on
the outcome and, under additional modeling assumptions,
estimation of causal effects.

A number of IV estimators are available for situations
where the outcome variable is continuous (6). These have
well-documented statistical properties and are available in
statistical software. However, IV estimation poses particular
statistical challenges when the outcome variable is binary
and the phenotype continuous and investigators wish to es-
timate either a causal risk ratio (CRR) or a causal odds ratio
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(COR) (7). Various approaches have been proposed (8–11)
and compared (12, 13) in the statistical, econometric, and
epidemiologic literature, but these often consider only a
binary phenotype. Given the increasing use of Mendelian
randomization (14), epidemiologists need to be aware of
the assumptions required for IV estimation of these causal
parameters.

In this paper, we describe and compare IV estimators of
the CRR and COR. We compare resulting estimates in the
context of an example investigating the effect of body mass
index (BMI; weight (kg)/height (m)2) on the risk of asthma
in children using fat mass and obesity-associated (FTO)
genotypes as an instrument. We investigate reasons for dif-
ferences between estimates using a simulation study based
on the example.

THE IV ASSUMPTIONS

In this section, we describe aspects of causal inference
relevant to IV analysis. We use the following notation: Y
denotes the outcome variable, X the phenotype, Z the IV
(genotype), U a set of unmeasured confounding variables,
and p the probability of the outcome; we also define logit
(p) ¼ log(p/(1 � p)) and its inverse expit(x) ¼ exp(x)/(1 þ
exp(x)). The subscript i denotes an individual.

In the context of Mendelian randomization, the IV as-
sumptions (7), which are common to all IV estimators, state
that genotype should be

1) associated with the phenotype,

2) independent of the unmeasured confounding factors,
and

3) independent of the outcome given the phenotype and
unmeasured confounding factors.

The conditional independencies implied by these assump-
tions can be encoded in a directed acyclic graph (15) as
shown on the left-hand side of Figure 1 (7). Assumption 1
is represented by the arrow between Z and X, while assump-
tions 2 and 3 are encoded by the absence of arrows. The
dotted lines in the directed acyclic graph on the right-hand
side of Figure 1 indicate associations (in either direction)
or associations due to common causes that are excluded. If
measured covariates are controlled for in the analysis, the IV
assumptions are conditional on these.

To draw causal inferences, it is additionally necessary
to make a ‘‘structural’’ assumption, which specifies how
intervention on the phenotype operates on the system of
variables (7, 16). In our context, this says that intervention
does not affect genotype or the confounders and only af-
fects the outcome through the changed value of the phe-
notype (7, 17). Using Pearl’s do() operator to express the
fact that X is set to a particular value as a result of in-
tervention (18) and the symbol ? to denote conditional
independence, the IV and structural assumptions imply
(Figure 2) that

Z ? Y jdoðXÞ: ð1Þ

The property in equation 1 is analogous to the ‘‘exclusion
restriction’’ (17), which has also been described by Hernán
and Robins (9) in terms of potential outcomes. The exclusion
restriction implies the ‘‘conditional mean independence’’ as-
sumption, that under intervention in X the mean of Y is in-
dependent of Z, which is a weaker form of the exclusion
restriction and is sufficient for some estimation approaches.

For a continuous outcome, it is common to target an ‘‘av-
erage causal effect’’ (ACE)—the difference in the expected
value of the outcome for a 1-unit difference in the phenotype:

ACEðx0; x0 þ 1Þ ¼ EðYjdoðX ¼ x0 þ 1ÞÞ � EðYjdoðX ¼ x0ÞÞ:
ð2Þ

ACEs can also be estimated for binary outcomes, in which
case they represent causal risk differences (1). For a binary
outcome, the CRR for a 1-unit change in the phenotype
is defined as the ratio of the probabilities of disease when
X is set to x0 and x0 þ 1:

CRRðx0; x0 þ 1Þ ¼ PðY ¼ 1jdoðX ¼ x0 þ 1ÞÞ
PðY ¼ 1jdoðX ¼ x0ÞÞ

: ð3Þ

Similarly, for a 1-unit change in the phenotype, the COR
is defined as the ratio of the odds of disease when X is set
to x0 and x0 þ 1:

Z X Y

U

Z X Y

U

Figure 1. Directed acyclic graph (DAG) encoding the instrumental
variable (IV) assumptions (left) and DAG encoding the IV assump-
tions with excluded associations shown by dotted lines (right). U, un-
measured confounders; X, phenotype; Y, outcome variable; Z,
instrumental variable.

Z do(X) Y

U

Figure 2. Directed acyclic graph representing the exclusion restric-
tion—the instrumental variable assumptions under intervention in X
(denoted do(X)).

CORðx0; x0 þ 1 Þ ¼ PðY ¼ 1jdoðX ¼ x0 þ 1ÞÞPðY ¼ 0jdoðX¼ x0ÞÞ
PðY ¼ 0jdoðX¼ x0 þ 1ÞÞPðY ¼ 1jdoðX¼ x0ÞÞ

:

ð4Þ
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The causal models discussed in this paper assume that their
respective causal parameters are constant across values of x0.

‘‘Population causal effects’’ are comparisons of the effect
of setting X at different values for the whole population of
interest (13). They are averaged over unobserved variables,
particularly the confounders. For example, comparisons of
the effect of treating all subjects compared with treating
no subjects, obtained from a randomized trial with perfect
compliance, are population causal effects. IV estimation of
population effects typically relies on stronger assumptions
than estimation of ‘‘local causal effects,’’ which are effects
in specified population subgroups—for example, the effect
of exposure on the exposed or treatment on the treated (9).
The most common use of the term ‘‘local’’ is to refer to the
‘‘complier causal effect,’’ which compares treatment with
control among persons who would always comply with
assignment to treatment or control regardless of the actual
assignment (17).

BINARY OUTCOME IV ESTIMATORS

We now describe IVestimators of the CRR and COR for a
3-level categorical instrument Z coded 0, 1, 2, denoting
common homozygote, heterozygote, and rare homozygote
genotypes, respectively; continuous phenotype X; and
binary outcome Y. We denote log population CRR by h
and log population COR by w. We will make clear when
methods estimate a corresponding local causal parameter.
Estimates based on associations in the data will be described
as ‘‘associational,’’ to distinguish them from estimates of
causal parameters.

The Wald/ratio estimator

The ‘‘Wald’’ (19) or ‘‘ratio’’ estimator of the ACE for a
1-unit difference in X is defined as b̂YZ=b̂XZ , where b̂YZ and
b̂XZ are the coefficients from linear regressions of Y on Z
and X on Z, respectively. The estimator is consistent for
the population ACE (that is, informally, the estimate will
be close to the true value of its target parameter if the sample
size is large) if the structural model for Y is linear in X and
U and if U is not an effect modifier for the effect of X on Y.
Under weaker assumptions (the additive structural mean
model), this is consistent for a local ACE (9).

Several authors have suggested following the same prin-
ciple to estimate the CRR (8) and the COR (20). Denoting
the associational risk ratio (RR) and odds ratio (OR) between
Y and Z by RRYZ and ORYZ, respectively, the estimators are

ĥ ¼ logðRRYZÞ
b̂XZ

ð5Þ

and

ŵ ¼ logðORYZÞ
b̂XZ

: ð6Þ

Equation 5 is consistent for the population CRR if the
structural model for Y is log-linear in X and U and if,

additionally, X follows a linear model in Z and U and if
U is not an effect modifier in any of these models (8, 13).
Equation 6 is not consistent for the COR under any reason-
able model, but it will approximate the CRR when the
outcome is rare (13). The standard error of these estimators
can be derived using Fieller’s Theorem (20, 21) or a Taylor
series expansion (22).

The 2-stage estimator

The first stage of the ‘‘2-stage least squares’’ estimator
(23, 24) is a linear regression of X on Z, which generates
predicted values X̂. The second stage is a linear regression
of Y on X̂. This allows consistent estimation of the popula-
tion ACE, assuming that, as with the ratio estimator, the
structural model for Y is linear in X with no effect modifi-
cation by U (13). For a single IV, the 2-stage least squares
and ratio estimators are equivalent (17, 25).

For a binary outcome and a continuous phenotype, a
2-stage estimator of the population COR can be defined as

Stage 1: obtain X̂i fromXi ¼ a0 þ a1Zi þ ei; ei ~ N
�
0;r2Þ:

ð7Þ

Stage 2: estimatew from logitðpiÞ ¼ b0 þ wX̂i; Yi ~ BernðpiÞ:
ð8Þ

The estimator ŵ is the same as the ratio estimator from
equation 6 and hence is also not generally consistent for
the COR, but the bias may be reasonably small when the
outcome is rare or when X is normally distributed and w
is close to the null (13, 26–28). The 2-stage estimator ĥ of
the CRR is defined using a log-linear model at stage 2 and is
the same as the ratio estimator of the population CRR from
equation 5. Standard errors from the second-stage regres-
sion should be corrected to account for uncertainty in X̂
(29)—for example, using the sandwich estimator available
in standard statistical software (30).

The control function estimator

The ‘‘control function’’ estimator follows the same prin-
ciple as the 2-stage estimator but additionally includes
the estimated residuals from the first-stage regression in
the second-stage regression (31–35). The rationale is that the
first-stage residuals may be correlated with U, in which case
they will help to control for the effect of U on Y. Therefore,
the control function estimator targets a local causal effect
conditional on U (the causal effect of X on Y within levels
of U). The control function estimator of this local COR is
defined as

Stage 1: additionally estimate êi¼ Xi � X̂i: ð9Þ

Stage 2: logitðpiÞ ¼ b0 þ wXi þ b2êi: ð10Þ

An equivalent estimate is obtained with
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Stage 2 : logitðpiÞ ¼ b0 þ wX̂i þ b#2êi;where b#2 ¼ wþ b2:

ð11Þ

For a linear model at stage 2, the control function estimator
is equivalent to the 2-stage least squares estimator (25, 36,
37). The control function estimator of the CRR is obtained
using a log-linear model in stage 2, which given a linear
model at stage 1 is also the same as the ratio and 2-stage
estimators of the population CRR. Because of the noncol-
lapsibility of the odds ratio, this is not the case when a lo-
gistic regression is used at the second stage. In this latter
case, when U is normally distributed and is not an effect
modifier for the relation between X and Y, the control func-
tion estimator of the local COR is attenuated by the variance
in U that is not explained by the first-stage residuals (28).
The same holds on the probit scale if probit regression
is used at the second stage (25, 38–40). As for the 2-stage
estimator, standard errors from the second stage should be
corrected to account for uncertainty in X̂ (41).

Structural mean models

Structural mean models (SMMs) exploit IVs via G-
estimation (42, 43). This involves finding the value of the
causal parameter that fulfills the conditional mean indepen-
dence assumption (9). In contrast to the estimators already
described, G-estimation does not require specific distribu-
tional assumptions for the phenotype given Z and U. Under
the conditional mean independence assumption, SMMs tar-
get a local causal effect of exposure on the exposed. In our
case, this corresponds to the effect of setting X to a reference
value, x0, in all individuals. Under the stronger assumptions
of no effect modification by U, which justifies the consis-
tency of the ratio and 2-stage estimators, SMMs are also
consistent for population causal effects.

Using an SMM with an identity link (sometimes referred
to as the additive SMM) gives us the same estimator as the
ratio and 2-stage estimators (9, 17, 44). We discuss the
multiplicative structural mean model (MSMM) (9) and
the logistic structural mean model (LSMM) (10, 11) below.

Multiplicative SMM. The MSMM assumes a log-linear
structural model for the effect of X on Y with no effect
modification by Z (9). The MSMM allows estimation of
the local or population CRR by solving the estimating equa-
tion with respect to h,

X

i

Yi expð � hXiÞðZi � �ZÞ ¼ 0: ð12Þ

Details of the relation between the MSMM and the multipli-
cative generalized method of moments estimator (discussed
below) are provided in Appendix 1.

Logistic SMM. Estimation of the COR using SMMs
is more complex than estimation of the CRR (7), because
G-estimation cannot be done within a single estimating
equation (10, 45, 46). To overcome this problem, Vanstee-
landt and Goetghebeur (11) proposed an algorithm that fits
an association model for the outcome, followed by the
causal model.

The association model generates predicted probabilities
p̂ from a logistic regression of Y on X and Z, which are then
used in an estimating equation for the target causal param-
eter. For the LSMM estimator to be consistent for the local
COR, minimum requirements are that the association model
contains an intercept, the unrestricted main effect of Z,
and is estimated via maximum likelihood (11). As an exam-
ple of such an algorithm, fit an association model to obtain
estimated probabilities p̂i:

logitðpiÞ ¼ b0 þ b1Xi þ b2Z1i þ b3Z2i; ð13Þ

where, because of the second requirement, we replaced Z
by 2 indicator variables Z1i and Z2i for the heterozygote and
rare homozygote genotypes. The estimate of the COR is
then obtained by solving the following estimating equation:

X

i

expitðlogitðp̂iÞ � wXiÞðZi � �ZÞ: ð14Þ

The LSMM has been discussed in further detail by other
authors (47–49).

In equations 12 and 14 and with SMMs in general, it is
possible to use any function of the instrument to improve
efficiency (11).

Generalized method of moments

The estimating equations for the MSMM and LSMM are
‘‘moment conditions,’’ since they set the sample version of
an expectation to zero. Solution of these equations is feasi-
ble when the number of equations is equal to the number of
parameters. Generalized method of moments (GMM) esti-
mation allows for a greater number of equations (moment
conditions) than parameters, known as overidentification
(50). This occurs when multiple instruments are included
in an analysis with a single phenotype. Here, we focus on
the GMM estimator of the population CRR, using a multi-
plicative model (8).

The multiplicative GMM (MGMM) estimator assumes that
the structural model for Y is log-linear in X and U (where U
is not an effect modifier), which leads to the following esti-
mating equations for the intercept a and the log CRR h (8):

X

i

ðexpð�a� hXiÞYi � 1Þ ¼ 0 ð15Þ

and

X

i

ðexpð�a� hXiÞYi � 1ÞZi ¼ 0: ð16Þ

There are 2 equations because Z is accompanied by a vector
of 1’s to allow estimation of the intercept a. MGMM as-
sumes that for any individual, a 1-unit change in X will have
the same effect on the log risk of Y. MGMM is discussed
in more detail elsewhere (26, 48, 51–54). Despite the differ-
ent assumptions and target parameters of the MSMM and
MGMM, the estimators are equal for a binary outcome (see
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Appendix 1 and Clarke and Windmeijer (49)). The MGMM
estimator is implemented in Stata (Stata Corporation,
College Station, Texas) with the command ivpois (55). We
summarize the different IV estimators and the assumptions
required for their consistency in Table 1.

EXAMPLE: MENDELIAN RANDOMIZATION ANALYSIS
OF THE CAUSAL EFFECT OF BMI ON ASTHMA RISK IN
CHILDREN

We applied the estimators described above to a Mendelian
randomization analysis using data from the Avon Longitudinal
Study of Parents and Children (56) (www.bristol.ac.uk/
alspac). In this population-based birth cohort study, investiga-
tors recruited 14,541 pregnant women with expected delivery
dates between April 1991 and December 1992. A total of
13,988 infants survived to at least 1 year of age.

We targeted the causal effect of BMI, assessed at age 7
years, on the risk of physician diagnosis of asthma. A pop-
ulation effect considers the effect on asthma of setting BMI
to x, compared with xþ 1, for all children in the population.
A local effect considers the effect, for a given child, of
changing BMI from its observed level to the reference level
(here we use the sample mean BMI of 16.1). Genotypes of
the rs9939609 polymorphism in the FTO gene were used
as an IV; this polymorphism is robustly associated with
childhood and adult BMI and obesity (57). The 2 alleles
of this FTO polymorphism are denoted A and T, where A
is the risk allele associated with greater BMI, fat mass, and
increased obesity. We assumed an additive genetic model
for FTO genotypes. All analyses were carried out in 4,647
children with complete data on asthma, BMI, and FTO, of
whom 649 (14%) had asthma. Analyses were performed
using Stata, version 11.0 (58). The IV model is shown in
the directed acyclic graph in Figure 3.

Assessment of IV assumptions

We investigated the extent to which FTO genotype was
associated with BMI (IV assumption 1) using the first stage
of the 2-stage estimator (equation 7). The mean increase
in BMI per risk allele was 0.15 (95% confidence interval:
0.07, 0.23); this effect was small in relation to the standard
deviation of BMI of 1.95. The R2 and F statistics from
this regression were 0.003 and 12.7, respectively. Although
the F statistic was greater than the commonly used weak
instrument threshold of 10 (59), the R2 showed that FTO
explained only 0.3% of the variation in BMI.

It is not strictly possible to test assumptions 2 and 3,
as they involve unobservable variables (7, 9). We can find

Table 1. Different Instrumental Variable Estimators and the

Assumptions Required for Consistency

Estimator
(Equation No.)

Target
Parameter

Assumptions
Required for
Consistency

Ratio estimator (5) Population
CRR

Model for Y given
do(X) and U is
log-linear in X and U,
without interaction;
model for X given Z
and U is linear
without interaction,
and X is approximately
normally distributed
(see reference 13).

Ratio estimator (6) Population
COR

Not generally
consistent;
approximately
consistent for rare
diseases under same
assumptions as
ratio estimator of the
population CRR.

2-stage, logistic
second
stage (7, 8)

Population
COR

Same as ratio estimator
of population COR.

2-stage, log-linear
second stage

Population
CRR

Same as ratio estimator
of population CRR.

Control function,
logistic second
stage (9, 10)

COR
conditional
on U

Generally not consistent,
but converges to
LSMM when X is
normally distributed
(see reference 47).

Control function,
log-linear
second stage

Population
CRR

Same as 2-stage
estimator with
log-linear second stage.

MSMM (12) CRR effect
on exposed

Log-linear model for
Y given do(X),
X and Z, no effect
modification by Z.

MSMM (12) Population
CRR

Log-linear model for
Y given do(X) and
U, no effect
modification by U.

LSMM (13, 14) COR effect
on exposed

Logistic model for Y
given do(X), X and
Z, no effect
modification
by Z; association
model for Y given
X and Z has intercept,
unrestricted main
effect of Z and
fitted by maximum
likelihood.

MGMM (15, 16) Population
CRR

Same as MSMM
estimator of the
population CRR.

Abbreviations: COR, causal odds ratio; CRR, causal risk ratio; LSMM,

logistic structural mean model; MGMM, multiplicative generalized

method of moments; MSMM, multiplicative structural mean model.

FTO do(BMI) Asthma

Confounders

FTO BMI Asthma

Confounders

Figure 3. Directed acyclic graph (DAG) for Mendelian randomiza-
tion analysis of fat mass and obesity-associated (FTO) genotype,
body mass index (BMI; weight (kg)/height (m)2), and asthma risk
among children aged 7 years (left) and modified DAG under interven-
tion in BMI, do(BMI) (right), Avon Longitudinal Study of Parents and
Children, 1991–1992.

1396 Palmer et al.

Am J Epidemiol. 2011;173(12):1392–1403

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/173/12/1392/205870 by guest on 20 August 2022

www.bristol.ac.uk/alspac
www.bristol.ac.uk/alspac


support for assumption 2 by investigating whether FTO
genotype is independent of measured covariates that might
confound the association between BMI and asthma. Results
from these analyses provided little evidence for such associ-
ations (Table 2). The plausibility of assumption 3 would ide-

ally be justified by biologic knowledge of the functionality of
the FTO gene, but research on this topic is not yet completed
(60). Finally, there was some evidence that the association of
BMI with asthma was stronger in girls than in boys (P¼ 0.044
for interaction in a logistic regression), which would violate
the assumption of no effect modification underlying all esti-
mators; from similar checks, we found little evidence of effect
modification by other measured covariates.

IV estimates of the causal effect of BMI on asthma risk

The associational estimates of the COR obtained from
standard logistic regression models corresponded to 6%
and 8% increases in the odds of asthma per 1-unit increase
in BMI in analyses unadjusted and adjusted for possible
confounders, respectively (Table 3). These estimates had
narrow confidence intervals in comparison with the wide
confidence intervals about all IV estimates, the latter being
due to the small proportion of the variation in BMI ex-
plained by FTO.

Under IV assumptions, a test of the instrument-outcome
association is a test for the presence of a causal effect of the
phenotype on the outcome. The FTO-asthma odds ratio was
1.06 (P ¼ 0.372), so there was no strong evidence against
the null hypothesis of no causal effect of BMI on asthma.
The ratio estimate of the COR was 1.45, identical to the 2-
stage estimate as expected. The control function estimate of
the COR was 1.44. These estimates had comparably wide
confidence intervals. The ratio estimate of the CRR was
1.37, identical to the 2-stage and control function estimates
and also with wide confidence intervals. The LSMM esti-
mate of the COR was 1.64 with a very wide confidence
interval.

The MSMM and MGMM estimates of the CRR were
equal, as we expected and as we show in Appendix 1, but
were in the opposite direction (CRR ¼ 0.81) to the other IV
estimates. The bootstrapped confidence intervals of these
estimates spanned the null and overlapped considerably
with those of the other estimates. We also estimated the
MGMM confidence interval using a robust asymptotic stan-
dard error, which was slightly narrower (95% confidence
interval: 0.63, 1.05).

Table 2. Distribution of Asthma and Possible Confounders by Fat Mass and Obesity-Associated (FTO) Genotype (rs9939609) in Children Aged

7 Years, Avon Longitudinal Study of Parents and Children, 1991–1992

Total No.
TT AT AA P Value

From x2 TestNo. % No. % No. %

No. and % of participants 4,647 1,699 37 2,220 48 728 16 0.95a

Asthma (yes) 4,647 234 13.8 302 13.6 113 15.5 0.41

Female sex 4,647 832 49 1,070 48 386 53 0.08

Low birth weight 4,594 75 4 80 4 36 5 0.21

Parental education (less than university degree) 4,593 893 54 1,214 56 390 55 0.44

Prenatal smoking 4,579 404 24 562 26 167 23 0.30

Postnatal smoking 4,407 270 17 390 19 115 17 0.23

Low parental social class 3,974 211 15 295 15 82 13 0.41

a Test for Hardy-Weinberg equilibrium.

Table 3. Instrumental Variable Estimates of the Causal Odds Ratio

and Causal Risk Ratio for the Effect of Body Mass Index on Asthma

Risk, Avon Longitudinal Study of Parents and Children, 1991–1992

COR or
CRR

95% CI

Standard logistic regression analysis

Unadjusted odds ratio 1.06 1.02, 1.10

Adjusteda odds ratio 1.08 1.03, 1.13

Wald/ratio estimatorb

CRR 1.37 0.64, 2.96

COR 1.45 0.65, 3.43

2-stage estimatorc

CRR 1.37 0.68, 2.78

COR 1.45 0.64, 3.29

Control functionc

CRR 1.37 0.68, 2.76

COR 1.44 0.63, 3.28

Logistic structural mean modeld

COR 1.64 0.29, 9.31

Multiplicative structural mean modeld

CRR 0.81 0.44, 1.48

Multiplicative generalized
method of momentsd

CRR 0.81 0.44, 1.48

Abbreviations: CI, confidence interval; COR, causal odds ratio;

CRR, causal risk ratio.
a Adjusted for sex, birth weight, prenatal maternal smoking, post-

natal maternal smoking, maternal education, and head-of-household

social class.
b The 95% CI was based on the delta method standard error of the

ratio of 2 means.
c The 95% CIs were based on robust standard errors.
d The 95% CIs were based on bootstrapped standard errors.
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The different direction of effect of the MSMM/MGMM
estimates

For the ratio estimator, the FTO-BMI association (the
denominator in equations 5 and 6) is estimated in the whole
sample and is positive. Similarly, the 2-stage and control
function estimators base the predictions of BMI from
genotype on the whole sample (equation 7). In contrast,
the MSMM/MGMM estimator is based on a single model
for the joint relation between genotype, BMI, and asthma.
Nonasthmatics (those for whom y ¼ 0) only contribute to
the mean genotype �Z in the MGMM/MSMM estimating
equations (equations 12, 15, and 16).

Therefore, we examined the associational relation between
BMI, FTO genotype, and asthma status (Figure 4). Mean
BMI increased from the TT genotype to the AA genotype
in nonasthmatics but decreased in asthmatics, indicating an
interaction between the associations of FTO and BMI with
asthma status. We also fitted the logistic regression of asthma
status on BMI, FTO, and their interaction, which gave some
evidence of an associational interaction (P¼ 0.038). None of
the structural assumptions of any IV estimators considered
here imply the absence of such an associational interaction,
which therefore does not imply that any of the IV assump-
tions is violated. This associational interaction could result
from an interaction between FTO and unobserved con-
founders (as modeled in our simulation study described be-
low) or could be a chance finding in this particular data set.

To investigate this issue further, we performed simula-
tions in which we compared the MGMM and 2-stage esti-

mators of the CRR, in data that were generated with and
without an interaction between the causal effects of FTO
and an unmeasured confounder U on BMI. This induces an
associational interaction between FTO and BMI with
asthma. Simulations were performed both under the null
and with a small positive causal effect of BMI on asthma.
Full details are given in Appendix 2. In scenarios 1 and 2,
with the interaction, we found a negative correlation be-
tween the MGMM and 2-stage estimates (Table 4). In sce-
narios 3 and 4, without the interaction, there was a positive
correlation between the estimates. In the scenarios with the
interaction, a greater proportion of the MGMM and 2-stage
estimates were on opposite sides of the true causal effect
than in scenarios without the interaction. In scenario 2, with
the causal effect and interaction, the 2-stage estimator is not
consistent because the assumption of no interaction between
the effects of the instrument and unmeasured confounders is
violated. Corresponding confidence intervals from the 2-
stage estimator had low coverage (67%), whereas the
MGMM-based confidence interval had approximately cor-
rect coverage (92%). Both approaches had approximately
correct coverage in the other scenarios.

DISCUSSION

IV methods applied in the context of Mendelian random-
ization can be used to estimate CRRs or CORs while avoid-
ing bias due to uncontrolled confounding and/or reverse
causality. We have described theoretical properties and

15.8

16.0

16.2

16.4

16.6

B
od

y 
M

as
s 

In
de

x

TT AT AA

FTO Genotype

A)

15.8

16.0

16.2

16.4

16.6

B
od

y 
M

as
s 

In
de

x

TT AT AA

FTO Genotype

B)

Figure 4. Mean body mass index (weight (kg)/height (m)2), denoted by diamonds, according to fat mass and obesity-associated (FTO) genotype
(rs9939609) for A) asthmatic and B) nonasthmatic children aged 7 years, Avon Longitudinal Study of Parents and Children, 1991–1992. Bars, 95%
confidence interval.
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assumptions of various such estimators. We found that
there are essentially 2 classes of estimators: those that make
distributional assumptions about the exposure/phenotype
(ratio, 2-stage, control function) and those that avoid such
assumptions (SMMs).

We demonstrated the equivalence of the MSMM and
MGMM estimators of the CRR, which has been noted
previously (48, 49). Additional IVestimators exist: for exam-
ple, Robins and Rotnitzky (46) proposed an alternative esti-
mator of the COR based on an SMM. Estimators using a probit
link have convenient mathematical properties but do not eas-
ily lead to an estimate of the CRR or COR (39). GMM esti-
mators of the CRR and COR using an additive moment
condition exist, but the underlying models seem less plausible
than those of the MGMM estimator (12, 48, 51, 61, 62).

We compared the IV estimators in an example data set
and found that the MSMM and MGMM estimates of the
CRR were below 1, whereas the other estimates of the
CRR and COR were above 1. We explained this through
an associational interaction between FTO and BMI with
asthma in our data. This interaction may have arisen by
chance, or it could have been induced by an interaction
between the effects of FTO genotype and an unmeasured
confounding variable on BMI. In simulations including such
an interaction, we found a negative correlation between
the MGMM and 2-stage estimates. Since an associational
interaction is not excluded by the IV assumptions, it is not
the case, as some authors have suggested (12), that different
IV estimators will always estimate the same direction of
effect. Despite the striking differences in both the magnitude
and direction of the different IV estimates, their confidence
intervals overlapped considerably.

Although we focused on methods that can handle contin-
uous exposures/phenotypes, epidemiologists are often inter-
ested in using IV methods for binary exposure variables. A
particular example is when the instrument is randomization
to one of 2 treatments, and a binary X represents the treat-
ment that is actually received (17). In this situation, the
ratio, 2-stage, and control function estimators are not con-
sistent for any causal risk ratio or odds ratio and thus should
not be used (13). The MSMM/MGMM estimators do not
make distributional assumptions about X and can be used
to estimate causal effects such as the effect of treatment on
the treated or exposure on the exposed. An alternative ap-
proach targets causal effects of X on Y within the latent
(unobservable) class of compliers. Consistent estimation
of complier causal effects on the risk difference or risk ratio
scale is straightforward under the ‘‘monotonicity’’ assump-
tion that there are no defiers (persons who only take treat-
ment when randomized to the control group) (9, 26, 27);
estimation of complier causal effects on the odds ratio scale
is more problematic (49). The standard intention-to-treat es-
timate of the risk difference or risk ratio will point in the
same direction as the effect of treatment on the compliers,
providing that there are no defiers.

All IV estimators presented here rely on a version of a
structural ‘‘no effect modification’’ assumption involving
the unobserved confounders, rather than the ‘‘no defiers’’
assumption used to justify estimation of complier causal
effects. Both sets of assumptions are impossible to test from

Table 4. Results of Simulations Comparing the Multiplicative

Generalized Method of Moments and 2-Stage Estimators of the

Causal Risk Ratio

2-Stage Estimate
for Log CRR (MCE)

MGMM Estimate
for Log CRR (MCE)

Scenario 1:
no causal
effect with
interaction

Mean bias �0.007 (0.0046) 0.009 (0.0094)

MSE 0.021 (0.0010) 0.088 (0.0042)

Coverage 0.952 (0.0068) 0.964 (0.0059)

Correlation
between
estimates

�0.23

% of estimates
on opposite
sides of the
CRR of 1

64.1

Scenario 2:
causal
effect with
interaction

Mean bias �0.206 (0.0042) �0.146 (0.0100)

MSE 0.060 (0.0019) 0.120 (0.0055)

Coverage 0.674 (0.0148) 0.919 (0.0086)

Correlation
between
estimates

�0.12

% of estimates
on opposite
sides of the
CRR of 1.2

35.9

Scenario 3:
no causal
effect with no
interaction

Mean bias �0.005 (0.0049) �0.001 (0.0053)

MSE 0.024 (0.0010) 0.029 (0.0018)

Coverage 0.942 (0.0074) 0.964 (0.0059)

Correlation
between
estimates

0.88

% of estimates
on opposite
sides of the
CRR of 1

7.3

Scenario 4:
causal effect
with no
interaction

Mean bias 0.003 (0.0043) 0.003 (0.0049)

MSE 0.018 (0.0009) 0.024 (0.0014)

Coverage 0.954 (0.0066) 0.964 (0.0059)

Correlation
between
estimates

0.82

% of estimates
on opposite
sides of the
CRR of 1.2

15

Abbreviations: CRR, causal risk ratio; MCE, Monte Carlo error;

MGMM, multiplicative generalized method of moments; MSE, mean

squared error.
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observable data and are therefore problematic to justify in
practice. For continuous X, one might formulate a monoto-
nicity assumption for the effect of genotype on phenotype—
for example, that increasing a person’s number of FTO risk
alleles would not decrease his or her BMI. However, to our
knowledge, the monotonicity assumption does not allow us
to construct estimators of CRRs or CORs when the pheno-
type is continuous.

A limitation of our analysis is that we focused on the con-
sistency of the various IV estimators. In practice, efficiency
and finite sample-size coverage probabilities of confidence
intervals are of major importance and deserve further inves-
tigation. In this context, it seems promising to consider the use
of covariates to increase the efficiency of IV estimators (11).
When covariates are included in IV analyses, the IV assump-
tions must hold, conditional on the covariates. Adjustment for
covariates in IVanalyses is common in econometrics (41) and
might be relevant to Mendelian randomization analyses when
a covariate is both a confounder and suspected of modifying
the effect of phenotype on outcome.

In summary, investigators using IV methods to estimate
causal risk ratios or odds ratios should be clear about the
assumptions they are prepared to make. We identified situ-
ations in which different IV estimators are negatively corre-
lated despite the validity of the IV assumptions; it follows
that point estimates from different IVestimators can differ in
practical applications. Based on the theoretical properties of
the estimators, SMMs make weaker assumptions than ratio,
2-stage, and control function estimators and can therefore
be expected to be consistent in a wider range of situations.
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APPENDIX 1

We aim to show that the sample moment conditions of
the multiplicative structural mean model (MSMM) and
multiplicative generalized method of moments (MGMM)
estimators are equivalent for a binary outcome. Firstly,
we examine the sample moment condition of the MGMM
estimator,

X

i

ðexpð�a� hXiÞYi � 1ÞZi ¼ 0:

Since yi is either 0 or 1, this becomes

X

i:y¼1

ðexpð�aÞexpð�hXiÞZiÞ � n �Z ¼ 0

5
X

i:y¼1

expð�hXiÞZi ¼ n �ZexpðaÞ: ðA1Þ

Secondly, we examine the sample moment condition for
the MSMM estimator with a standardized instrument,

X

i

Yi expð�hXiÞðZi � �ZÞ ¼ 0:

Again, using the fact that yi is either 0 or 1, we have

X

i:y¼1

expð�hXiÞðZi � �ZÞ ¼ 0

5
X

i:y¼1

expð�hXiÞZi ¼ �Z
X

i:y¼1

expð�hXiÞ: ðA2Þ

We then note that the left-hand sides of expressions
A1 and A2 are equal. Hence, to complete the proof, we need
to show that the right-hand sides of these expressions are
also equal. We continue by equating the right-hand side of
these expressions,

n �Z expðaÞ ¼ �Z
X

i:y¼1

expð�hXiÞ

5 expðaÞ ¼ 1

n

X

i:y¼1

expð�hXiÞ: ðA3Þ

In order for the proof to be complete, we need to show
that expression A3 is true. We argue that this is the case,
because we can derive this expression for exp(a) using the
MGMM moment condition alone. We show this by noting
that for the MGMM estimator, the instrument is actually
a vector with the first term a constant 1 to allow estimation
of the intercept a. Hence, for zi ¼ 1, the MGMM moment
condition becomes

X

i:y¼1

ðexpð�a� hXiÞ � 1Þ ¼ 0

5 expð�aÞ
X

i:y¼1

expð�hXiÞ � n ¼ 0

5 expð�aÞ ¼ 1

n

X

i:y¼1

expð�hXiÞ: ðA4Þ

Expressions A3 and A4 are identical, which completes the
proof. Hence, we conclude that for a binary outcome, the
MSMM and MGMM moment conditions are equivalent,
and therefore these estimators give the same estimates of
the causal risk ratio.

APPENDIX 2

The following details the simulations used to compare the
2-stage and multiplicative generalized method of moments
(MGMM) estimators of the causal risk ratio. In the fol-
lowing, the 3-category instrument, continuous phenotype,
binary outcome, and continuous unmeasured confounder
are denoted Z, X, Y, and U, respectively. We performed
simulations for 4 scenarios. In scenarios 1 and 2, we simu-
lated a structural interaction between the effects of fat mass
and obesity-associated (FTO) genotype and the unmeasured
confounder U on body mass index, which induces an as-
sociational interaction between the effects of FTO and
body mass index on asthma. Scenarios 3 and 4 were simu-
lated without the interaction. Scenarios 1 and 3 were
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generated with no causal effect, and scenarios 2 and 4 were
simulated with a causal risk ratio of 1.2.

Following the frequencies in the data, Z was simulated
with 3 categories, 0, 1, and 2, with frequencies 37%, 47%,
and 16%, respectively. Where the subscript i denotes an
observation, the other variables were simulated as follows:

ui ~ Uniform(�1,1).

Scenarios 1 and 2: xi ~ Normal(15.5 þ 0.4ui þ 0.25z1i þ
0.4z2i � 0.9ui.z1 � 1.5ui.z2, 1.92).

Scenarios 3 and 4: xi ~ Normal(15.5 þ 0.4ui þ 0.25z1i þ
0.4z2i, 1.92).

X was then standardized using si ¼ (xi – 15.5)/1.9.

Scenarios 1 and 3: pi ¼ exp(�2.5 þ ui).

Scenarios 2 and 4: pi ¼ exp(�2.5 þ ui þ 0.35si).

yi ~ Bernoulli(pi).

For each scenario, we simulated data sets with
20,000 observations and fitted the 2-stage and MGMM
estimators of the causal risk ratio to each data set. The
simulations were repeated for 1,000 replications. In
scenarios 1 and 2, the ratio of odds ratios for the
interaction between the associations of X and Z with Y
was 0.93, as compared with 1.00 (no interaction) in
scenarios 3 and 4.
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