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ABSTRACT

The average effect of intervention or treatment is a parameter
of interest in both epidemiology and econcmetrics. A key
difference between applications in the two fields is that
epidemiologic research is more likely to involve qualitative
outcomes and nonlinear models. An example is the recent use of the
Vietnam era draft lottery to construct estimates of the effect of
Vietnam era military service on civilian mortality. 1In this paper.
I present necessary and sufficient conditions for linear
instrumental variables techniques to consistently estimate average
treatment effects in qualitative or other nonlinear models. Most
latent index models commonly applied to qualitative outcomes in
econcmetrics fail to satisfy these conditions, and monte carlo
evidence on the bias of instrumental estimates of the average
treatment effect in a bivariate probit model is presented. The
evidence suggests that linear instrumental variables estimators
perform nearly as well as the correctly specified maximum
likelihood estimator, especially in large samples. Linear
instrumental variables and the normal maximum likelihood estimator

are also remarkably robust to non-normality.
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The difference in ci{vilian mortality experience between World War Two
veterans and nonveterans ie a classic example of the confounding impact of
;election on estimates of treatment effects., The fact that World War Two
veterans have lower mortality than nonveterans the same age 15 usually
attributed to the military screening process (Seltzer and Jablon 1974) and
not to any beneficial effects of wartime service. Recently, Alan Krueger
and I (Angrist and Krueger 1989) have shown that the higher earnings
enjoyed by veterans from World War Two cohorts are also an artifact of
selection bias. Using the fact that some World War Two veterans were
drafted according to a sequence determined by day of birth, we construct
Instrumental Variables (IV) estimates of the effects of World War Two
veteran status on earnings that e&re free of selection bias. These
estimates show that World War Two veterans probably earn less than they
would have if they had not served in the military.

Whenever some covariates related to both an outcome of Iinterest and
the probability of treatment are unobserved or umaccounted for, the
likelihood of selection bias renders inferences based on simple comparisons
invalid. In such cases, IV estimation provides a powerful and flexible
method of correcting for omitted variables bias. IV estimates are
constructed by comparing the outcomes of groups with different values of an
{instrumental) variable that is related to the outcome of interest solely
by virtue of correlation with the probability of treatment. An important
recent example of this approach in epidemiology is the work by Hearst,
Newman, and Hulley (1986) on the effects of Vietnam Era military service on
civilian mortality. Although Vietnam era veteran status is a consequence
of both self-selection and military screening, Hearst, Rewman and Hulley

use the draft lottery to construct IV estimates of the effects of Vietnam




era service that are free of selection blas. Similarly, I have used the
Vietnam era draft lottery (Angrist 1990) to estimate the effects of Vietnam
era service on civilian earnings.

In econometrics, most applicatiens of IV estimateors invelve linear
models with continuous outcome variasbles. Applications in epldemiology,
such as the smoking study by Permutt and Hebel 1989), can also involve
linear models. But applications such as the Vietnam mortality example and
Hearst, Buehler, Newman, and Rutherford's (1990) recent study of
intravencus drug use among veterans involve limited dependent variables
that are usually fitted using nonlinear models., This paper discusses the
use of linear IV techniques to estimate average treatment effects in such
nonlinear models,

Linear IV techniques are attractive for several reasons. First, the
source of ldentifying information is transparent to the consumer of applied
research: the instruments generate a natural experiment that assigns
treatment Iin a manner independent of unobserved covariates. Second, the
linear IV estimator does not require observations on individuals; sample
covarliances are sufficlent statistics for estimates of regression
parameters. In some applications, (e.g., Angrist and Krueger 1990a, and
below), these sample moments are actually taken from different data sets.
Third, consistency of IV estimates does not require consistent estimation
of the reduced form for endogenous regressors (Kelejilan 1971). This is
particularly important in an evaluation context, where the reduced form for
an endogenous dummy variable is also likely to be nonlinear.

The paper 1s organized as follows. To further motivate the use of IV
in nonlinear qualitative response models, Section 1 presents an

illustration using the Hearst, Newman, and Hulley data on Vietnam era




military service and mortality. Section 2 defines the average treatment
effect for a class of nonlinear models. Section 3 presents necessary and
sufficient conditions for linear IV moment conditions to identify average
treatment effects. Section 4 discusses the asymptotic bias of IV estimates
of average treatment effects when the identification conditions fail to
hold.

In an influential paper in econometrics, Heckman (1978) used a latent
index/s{multaneous equations model with normally distributed errors to
develop estimation strategies for treatment effects in nonlinear limited
dependent variable models. A commonly encountered model of this type is
bivariate probit (e.g., Ashford and Snowden 1970, Amemiya 1978) which, like
most latent variable models, does not satisfy the identification conditions
required for linmear IV techmiques to consistently estimate average
treatment effects. Section 5 of the paper contains a detailled study of
average treatment‘effects in bivariate probit. Included in this section
are the results of a Monte Carlo sampling experiment that compares the
finite sample performance of Maximum Likelihood (ML) and IV estimates of
average treatment effects in correctly specified and misspecified models.

The paper concludes in Section 6.

1. The Effect of Vietnam Veteran Status on Mortality

In addition to combat-related Injuries, military service during the
Vietnam war may also affect civilian mortality because of wartime access to
narcotics, exposure to toxins like Agent Orange, and causes related to
Post-Traumatic Stress Syndrome such as sulcide, Hearst, Newman and Hulley
(1986) showed that men with sequence numbers that put them at high risk of
being drafted in the Vietnam Era draft lotteries had elevated mortality

risk after their discharge from the military. They attribute this elevated




risk to a higher probability of military service because between 1970 and
1973, the risk of being drafted was randomly assigned in a series of
lotteries based on dates of birth. Each date of birth in the cohorts at
risk of being drafted was assigned a Random Sequence Number (RSN) from 1-
365. The Selective Service called men for induction by RSN up to a ceiling
determined by the Department of Defense. Men born in 1950 were called up
to RSN 195, men born in RSN 1951 were called up to RSN 125, and men born in
1952 were called up to RSN 95,

In their paper, Hearst, Newman and Hulley focus on comparisons of
mortalicty risk by draft-eligibility status. For example, they compare the
number of deaths of men born in 1950 with RSN below 195 to the number of
deaths of men borm in 1950 with RSN above 195, This procedure can be used
to provide a valid estimate of the effects of military service on mortality
1f draft-eligibility is correlated with civilian mortality solely by virtue
of its correlation with veteran status. Although not explicitly ;tated,
the assumptions and estimation techniques used by Hearst, Newman, and
Hulley can be interpreted as an application of IV estimation to the linear
model

(1.1) Yy =ea, t ﬂsi + XY

vhere ¥i is a binary indicator of death in the study interval, 5y indicates

veteran status, f Is the treatment effect of Interest, @ is a cohort-

specific Intercept, and %, is an unobserved confounding variable.l

i
The key identifying assumption justifying IV estimation in this case
s that E[x,| draft-eligibility status] = 0. Given this assumption, a

consistent estimate of A can be obtained by applying the simplest IV

1
Similarly, an estimator proposed by Robins (1989) 1is an application
of instrumental variables techniques to a linear model for survival analysis.
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estimator -- Wald'a (1940) method of fitting straight lines -- to data for
a single cohort and race.2 To see this, note that because draft-
eligibility is uncorrelated with X;. @ consistent Wald estimate can be
computed by dividing the data by draft-eligibility status:

n

(1.2) B- % - yMH6° - M,

where y is the probability of death, § is the probability of veteran
status, and superscript e and superscript n dencte the draft-eligible
and draft-ineligible samples. The instrument here is an indicator of
draft-eligibility status. VUsing data in the Appendix Table for white men
born in 1950, we have

B = (.0204 - ,0195)/(.3527 - .1923) -~ 00564,

so that being a veteran ralises mortality risk for this group by half a
percentage point -- a 25% increase in risk.3

An efficient linear combination of alternative Wald estimates of the
same parameter can be computed by Generalized Least Squares (GLS)

estimation of the equation

2'I'he observation that Wald's estimator is also an instrumental
variables estimator is usually attributed to Durbin (1954). The results in
Hearst, Newman and Hulley (1986) are actually for relative risk, in
contrast to estimates of the "risk-difference" generated by Wald's method.
It can be shown, however, that the Hearst, Newman, and Hulley relative risk
estimates are a simple transformation of Wald risk-difference estimates.
3A standard error for the Wald estimate is calculated easily under the
null hypothesis that § = 0. All moments in this example are independent,
so0 the liﬁiting distribution of (y -y )/(p - p ) is
1/(p =P times the limiting distribution of the numerator. The
denominators in y and yn are N° = 127,500 and R - 111,200. The sampling
variance of the Wald estimate is therefore

a8 all

[L/(p -p )] { [Y a-y%m® + (yra-yhHimt
The estimated standard error is 0.00368
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(1.3) Yerj = % * PoRery * Boryfy + Eorye

where the subscripts ¢, r and j index birth cohort, race and draft-
eligibility status, and the data are grouped into averages for cells
defined by these three varlables. Since there are 3 birth cohorts, 2
races, and 2 eligibility groups, equation (1.3) is fit to 12 observations.
angrist (1991) shows that GLS estimates of grouped equations such as (1.3)
are the same as Two-Stage Least Squares (TSLS) estimates that efficiently
combine all possible IV estimates. In this case, the TSLS instrument set
contains dummy variables for the full set of cohort, race and draft-
eligibility interactions. Because the estimating equation Includes main
effects for cohort and race, the effect of veteran status is identified by
the exclusion of draft-eligibility status for each race and cohort from the
estimating equation.

Flgure 1 presents a graphical version of equation (1.3) for suicide,
the major cause of death assoclated with veteran status in these data. The
figure graphs residuals from a regression of suicide probabilities on race
and cohort dummies, against the corresponding residuals for veteran status
probabilities. Thus, the slope of the line in the figure {s an estimate of
ﬂl -- In this case, equal to 0.258 percentage points, with a standard error
of 0.06

Although Figure 1 clearly shows a strong linear relationship, for a
variety of reasons most textbook discussions of limited dependent variable
models (e.g., Maddala 1283) argue that the linear model used in this
{llustration is inappropriate for binary outcomes., Problems include the
fact that fitted values in the linear model are not bounded between zero

and one, Also, least squares estimation of & linear model does not reflect

the fact that & probability distribution is being parameterized, as would,




say, ML estimation of a logit model. Note, however, that linear IV
estimation breaks down in logistic or other nonlinear regression models
secause the IV moment condition fails to hold: the conditional expectation
of nonlinear transformations of a, + ﬂsi + x11 is not equal to the
conditional expectation of the.outcﬁne variable, even when conditional
variables are mean-independent of unobservables. Such problems
notwithstanding, part of the éurpose of this paper 1is to offer formal

arguments that help rationalize linear IV estimation i{n nonlinear models.

2. Nonlinear Models with Omitted Covarjiates
The general model of interest relates n observations on an outcome

variable, yi. to a treatment indicator, si, in the following manner:

(2.1) Ely,| s;, Uy, Z,) = F[s;, U £)

(2-2) E[Sil Ui' zi.] - G[zin ui; 1']'

vhere u, 1z an rxl vector of covariates unobserved by the econoﬁettician.
Zi is a qxl vector of potential instrumental variables, F and G are
functions, and # and -y are parameter vectors, Observed covariates are held
constant by estimating in subpopulations (i.e., raclal groups). A
nonlinear example of (1.1) iz given in Rosenbaum and Rubin's (1983) study
of the effect of an unobserved bin;fy covariate on estimated average
treatment effects in a model for binary outcomes,

The n observations are assumed to be independent and identically
distributed. The development that follows can be applied to

heterogeneously distributed samples with few modifications. The vector ZI

includes a constant and satisfies rank and independence conditions:




Assupption 1: (i) E[Zi'(si 1)] = st' where the rank of ¢zs > 2,

(i1) Ui and Z, are independent.

i
Assumption 1(i) is the standard requirement that potentlal instruments be
correlated with regressors., The Zi are potential instruments because
equation (2.1) implies

(2.3) E(y; - Fls;, V5 A1l 2) -0

by the law of iterated expactations, and because Zi is independent of
uncbservables by A2(11).

In many econometric applications, attention 1s focused on
identification strategies for theoretical parameters in the outcome
equation (B’'s) such as marginal rates of substitution. But in evaluation
studles, the substantive question motivating applied research concerns the
effect of treatment on an outcome, as opposed to the magnitude of
structural parameters that arise in economic theory. 1 therefore focus on
the identification of average treatment effects. For model (2.1) the

average treatment effect is defined as follows:

(2.4) *y = EC F(1, U5 8] - F[O, U5 8] ).

The average treatment effect in this model is primarily of interest
because of its relatienship to the Holland-Rubin (Holland 1986, Rubin 1974)
definition of an average causal effect. The Holland-Rubin definition of
causality is based on the notion that for each individual we can concelve
of outcomes that would occur with and without treatment. The average

causal effect is the expectation of an outcome variable when all




individuals in & glven population receive treatment minus the expectation
of an outcome variable when no individuals receive treatment. The
fﬁndamental problem of causal inference 1s that in practice, we pever
observe outcomes for any single individual both with and without treatment
(Holland 1986). Nevertheless, we can sometimes estimate average causal

effects. The parameter =« is an average causal effect as long as the

1
average of Y, glven 5 and u, 1s an unblased estimate of the average of ¥y
if all members of the population with a given value of U, had the same

value of By- Rosenbaum and Rubin (1983) call this property strong

ignorability of 5 glven ui. For exeample, sy is strongly ignorable given

Ui if it is randomly assigned conditional on U

i

1

3.1 Identification Conditions

The identification conditions for IV estimation of x, involve the

1
additive geparability of F and G, defined as follows:

Assumption 2: (1) F[si, Ui; 8] ~ fl(si; 8+ f2(Ui; B,

(ii) G[Zi'.uj_; 7] - gl(zi: T) + gz(Ui: 1')-

where fl' f2, g, and g, are functions.a Assumption 2 characterizes the
class of models for which average treatment effects can be estimated using
linear IV techniques. This result Is formalized in the following

proposition:

Proposition 1: Let x be the average treatment effect defined in (2.4).

&4
Because s, Is binary, we could replace fl(si' £) with flO + fllsi'

where flO and fl1 are constants.




Then for some constant = and for all Yy U, and Z, satisfying (2.1),

0 i i

(2.2), and Assumption 1(ii):

Ely;| z,) = =y + ﬂlE[sil zZ,)
if and only if either or both Assumption 2(i) and Assumption 2(ii) holds.

Proof. Sufficiency of 2(1) is immediate because of the independence of Ui

and 21. To establish sufficiency of 2(ii), write (1.3) as

(3.1) E[y1! Z,] = El F[sy, U 81| Z, ) = kg + E[risil z,)
where

kg = ECFIO, Ug: 81 2, ) =, = F[1, U;; 8] - FIO, U,; B
Note that

E[xisil z,] - E( «1E[sil z,, U] | z, )
- ECng (820 1)+ By(Ugs M) | Zy)
- 8)(Z;i MEIn | 2] + E[nggy (U M 2,).

But independence of U, and Z, implies that E[ﬂigz(Ui; | 21] is a

i i

constant, say, x Also, E[xil 21] - n,, the average treatment effect, and

1 L
B1(2gi M = Elsg| 2,1 - Elgy(Us M| Z;1 = Elsy] 2] - =y,

Therefore,
E[xisil 21] - (E[sil 21] - N2)ﬂ1 oKy,

so that sufficiency holds for =« + K

0" % T 1T 2"
Necessity is established by showing that the proposition cennot hold

for some Z1 satisfying (2.1), (2.2) and Condition 1 when neither 2(i) or

2(ii) hold. Suppose that 2(i) does not hold, that Z, - [1 zi]', where zy

is a single dummy variable, and that 2(ii) does not hold because

G[Zi- Ui; '7] - gl(zi.- 7) + 32(U1; T) + 2153(U1; T)t

where By is a function of U Then,

g
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(3.2) Ely,| 2,) ==y + = E[s ] Z,] + 2 E[m g, (U0 M),
and E{wiga(Ui; )] 1is a constant that is not gemerally equal to zero. This

conpletes the proof.

In practice, the plausibiliry of eirher Assumption 2(i) or Assumption
2(11) has to be considered on a case by case basis. For example, latent
index models other than the uniform-linear probability model are unlikely
to be additively separable. On the other hand, over a limited range that
is generally around the median, many cumulative distribution functions are
approximately linear. If the variation in the outcome equation or in the
expectation of the endogenous regressor is close to this range, linear IV
estimation may give & good epproximation to the true average treatment
effect in models with dummy endogenous variables.

The usefulness of Proposition 1 for econometricians should also be
evaluated in light of the fact that economic theory usually provides little
guidance as to appropriate parametric distributional assumptions. In some
circumstances, restrictions on functional form might be easier to
rationalize and test than a distributional assumption. For example,
standard instrument-error orthogonality test statistics (e.g., Newey 1985h)
may have the power to detect failure of the functional form assumptions
required to identify average treatment effects. Moreover, if the
underlying distributions or functional forms are misspecified, it becomes
an empirical question whether linear IV estimators do a worse job than ML
estimators. This is among the questions investigated in Section 5.

It should also be noted that many of the existing non-parametric
procedures developed by econometricians for the estimation of latent

variable models cannot be used to estimate average treatment effects. For
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example, Stoker's (1986) average derivative estimator cannot be used to
estimate the effect of discrete explanatory variables. Newey's (1985a)
application of Manski’s (1%75) maximum score estimator to binary response
models with endogenous regressors consistently estimates the coefficients
on discrete endogenous regressors up to scale. Similarly, Newey's (1986)
non-parametric estimator for limited dependent variable models with
endogenous regressors cohsistently estimates ratlos of index coefficlents.
But neither of the Newey procedures recovers enough information to estimate
the average effect of treatment on outcomes. Heckman’'s (1990) results on
the nonparametric ldentifiability of treatment effects may also be of
limited practical use because these results require continuously

distributed regressors.

4.1 The Large Sample Bias of IV Estimates

Equation (3.1) can be used to make some general statements about the
asymptotic blas of IV estimates of the average treatment effect in models
where neither F or G are additively separable. Here it 1s useful to note
that, as a consequence of (3.1), the model can be written using a random
coefficients notation:5
(4.1) IR PN Y

where «, = F[0, U,; f] and E[:i| Z;1 = 0. Therefore,

5Heckman and Robb (1985) also discuss instrumental variables
estimation of a random treatment effect. In their discussion of random
coefflclents models for treatment effects, Heckman and Robb suggest that
conslstent estimates be obtalned through by applying a combination of
bLehavioral (latent index) and distributional assumptions that can be used
to compute the theoretical conditional expectation of treatment given
instruments and covariates.
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(4.2 Yy = kgt ™8y ey ¥ (kg - kg) +om(wy -l

Since o and (ni - xo) are uncorrelated with Zi. TSLS estimates of L3

converge to
4.3 +plim [ (28,5 Vs 5.8 ¢
{4.3) r, + plim [ 84 B8 (my - ﬂl) ]

n-—+ =

where &, = 21(2'2)-12'5 - 8, and 8 is the sample mean of s

i
The TSLS estimate of o 1s consistent under A2(i) because L7 is
identically equal to LW The TSLS estimate of o is consistent under

A2(i1) because plim = §isi(n—1 - nl) ] 1s zero in this case, even though

n—+ o

n is not equal to =, for all 1. To see this, let & be the vector of

i 1

population regression coefficients for a regression of s, on Zi, and let ii
equal Zi minus its mean. We have

plim = [si(wi - xl)éi]/n ~ E{E[s (n - x1)| zi]iiis.

n-—+a«

by the weak law of large numbers. But E[si(vri - xl)] 21] is constant under

A2(11) and E(Ei) - 0.

To evaluate expression (4.3) for the general case, note that

plim = §12/n - §'E(z

n-—+ o

=
158
and
plim = [si(!ri - wl)silfn - E[G(Zi, Ui; 1)(1r1 - Wl)zi]&
n—+ =
The asymptotic bias of a linear IV estimate of the average treatment effect

is therefore

(4.4) [5-5(21'21)51'15[0(21, LIFRE TC xl)ii]s.
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The bias formula can be simplified further 1if G(Zi, U1: ¥) 18 linear
and Ei is a scalar:

(4.5) G(Zy, Ugs ¥) = vg + 72, *+ Y0, + ¥auZ,,

where ﬁi is U1 minus its mean. Expression (3.4) can now be written,

(("‘-6) [73/11]“61('1 = “1)]-

because § = " in this case. This version of the bias formula is useful

because it highlights the role of both the interaction between U, and 2i in

i
G, and the covariance of the treatment effect with unobserved
characteristics, in determining the asymptotic blas of IV estimates. The
interaction term 13 1s a measure of the non-separability of G, while
E[Gi(wi - «1)] is a measure of the non-separability of F. The bias

asymptotic is also inversely proportional to a measure of the gquality of

the instruments, -

4.2 Optimal Weighting and Cholce of Instruments
Properties of the conditional variance of residuals determine the
appropriate Generalized Least Squares (GLS) weighting macrix for IV

estimators. Write

vi = [ci + (ni - no) + si(xi - xlﬂ,

for the compound error term in equation (4.2). If the outcome varlable is

contlnuous and estimation is based on Assumption 2(i) so that Vi =gy
then it may be reasonable to assume that vy is homoscedastic. 1In this
case, conventional TSLS is the most efficient way to use the elements of 2y

14




as instruments, and T5LS covariance formulas will give asymptotically
correct standard errors for estimates of average treatment effects, But if
estimation is justified by A2(ii), the presence of the terms (xi - no) and

will be heteroscedastic even if ¢, is

(ﬂi - ﬂl)si in &, suggests that Vi i

i

homoscedastic.
Chamberlain’s (1987) results on efficient estimation under conditional
moment restrictions imply that the optimal instruments are a function of

both Z, and the conditional variance of residuals given Z For estimation

i

of the coefficient on a dummy variable with independent observations, the

T
optimal instruments are (Newey 1989):

-1 ,
(4.8) D[z,] = (207" * [1 EGs| 23",

where ¢(Zi) - E[v12| z Estimates computed using D[Zi] as Instruments

1]'
asymptotically attain the variance bound for conditional moments
estimation. As a practical matter, however, it often infeasible to use the
optimal instruments because both E[sil Zi] and ¢(Zi) are unknown. An

important exception to this is when Z, is discrete with finite support.

i
With discrete Zi, the optimal IV estimator is a feasible weighted least
squarés estimator. This estimator can be computed by using a full set of

dummy variables to indicate each value of Zi as Iinstruments in White (1982)

TSLS estimation.6

6Suppose that Z, can take on j =1, . . ., J wvalues and let R
denote & matrix of J dummy variables that indicate each value of Z. That
is, Ri - 1(2i = ]). Using R as the matrix of instruments, White's TSLS
estimaior can be interpreted as instrumental variables estimation with

instruments equal to R[Z RiRi'ﬁizfn]-l[R'X/n], where X = (¢ s]. This

2

simplifies to R * (X /3?] where [ij/aj] 15 a matrix with J rows each

*y
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5.1 Average Treatment Effectz in Bivariate Probit

An important special case of the problem considered in this paper is
the estimation of treatment effects in models with qualitative or binary
dependent variables. Qualitative response models with endogenous
regressors have generated a large theoretical and applied literature.
Ashford and Smowden (1970) are usually credited with introducing a
bivariate probit model in biometrics and Amemiya {1974) developed a minimum
chi-square estimator for this model. Bivariate probit is also among the
latent index/simultaneous equations models outlined by Heckman {(1978). A
varlety of econometric aspects of the model are considered by Amemiya
(1978) and Newey (1987), and some applications are described in Maddala
(1983). The latent index approach to qualitative response analysis is
popular in econometrics because the indices correspond to unocbserved
utilitles in the theory of discrete choice.

Bivariate probit with endogenous dummy regressors can be motivatgd by

the following latent index model:

*
{5.1) ¥y - 1 if Yy - BD + ﬁlsi - [nli - uiA] >0
-0 otherwise
*
{5.2) sy = 1 if Sy =7t 12y - [n21 - ui] >0
-0 otherwise,

where and u, are independent, normally distributed random

"11 . ﬂ21,

containing the average of X given Z = j, divided by the variance of X glven
Z = 3. For continuous Z, in a homoscedastic model, Newey (1989) proposes a
nugber of asymptotic approximations to the optimal instruments,

le




variables., The treatment indicator, Se) is endogenous because the compound

error terms,

* A d *
Mg ® Mg T YA 809 My W My - Y

are correlated, HNote that this formulation preserves the definition of
endogeneity implicit in the previous sections: if all relevant covariates
were observed, then the effect of treatment on ¥y could be estimated using
single equation techniques.
The compound error terms In (5.1) and (5.2) are also normally

distributed, with covariance matrix:

02 + azAz c

1 u
azl 4
u

and u,. If 02 -

2 2 2
where o1 95 and o, are the variances of UTURITE N 1

og - 03, then the correlation between ﬂ:i and ﬂ:i is parameterized by X
as
2
(5.3) p = (1442) * [A//(1 + 29)].
The averapge effect of treatment on Yy in (5.1) is
(5.4) Ef Q[(ﬁo + ﬁl + uiA)/al] - &[(ﬁo + uiA)/al] 1,

where @[+] 1s the standard normal cumulative distribution function. This
expression simplifies further because the assumption of bivariate normality
leads to a closed form for the expectation. Using the convolution
properfies of the normal distribution (see, e.g., HcFadden and Reid

[1975]), expression (5.4) can be written
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(5.0 mj = ol (B + BN} + oD 1 - el pyicad v SBaD ),

Note that ML estimation identifies the standardized coefficlents, ﬂD/J(ai
*
+ aﬁAz) and ﬂI/J(ai + aixz). Therefore, ML estimates of ¥, can be

computed by evaluating (5.5) at the coefficient estimates.

5.2 Finite Sample Behavior

This section compares ML and IV estimates of xI in a small sampling
experiment designed to mimic situations encountered in econometric
applications. In each experimental design, the true treatment effect is
set at 10 percent,'uhich 1s in the range of the estimated effects of
manpower tralning on employment rates in four social experiments (Ham and
Lalonde 1990). The instruments are drawm from a discrete uniform
distribution with 8 points of support in increments of 1. Angrist (1990)
uses a discrete uniformly distributed instrument to estimated the effects
of military service, and Angrist and Krueger (1991) use a discrete
uniformly distributed instrument to estimate the monetary returns to
education. The number of replications for each experiment is 500, and
Tesults are presented for samples of 400 and 800 observations.7 These
sanple sizes are in a range commonly encountered in econometric evaluation
research (e.g., Lalonde 1986). The resulting bias calculations should
provide an upper bound for applications like the mortality example in
Section 1, where the treatment effects are so small thgt the outcome
equations are approximately linear.

The base design sets ﬂo equal to zero, and ﬂl te ¢-1(.6) = (.25,

7The computations were made using LIMDEP on wicrocomputers. Maximum
Likelihood estimates were computed using the DFP algorithm from starting
values of zero in each replication,
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so that the treatment effect consists of a movement from 0.5 to 0.6 . 1In
equation (4.2), Yo is set to zero, .21 to 0.25, and the lnstrument ranges
from -3.5 to 3.5 . The resulting first-stage equation generates variation
in E[sil Zi] from ¢(.875) = .8l to ¢(-.875) = .19 . The errors are all
normally distributed. The variances ai, a%. and ai equal 1/2, and
is equal to 1, so that the compound error terms have unit variance and a
correlation coefficient of 1/2. This base design represents a promising
scenario for IV estimation: variation in both F and G is close to the
median, so that F and G should approximately satisfy Assumptions 2(1) and
2(11). Moreover, the Instrument is highly correlated with the endogenous
regressor, tracing out 60 percent of the distributjon of ”;1‘

Table 1 presents experimental results for the base design. Columns 1-
7 report the mean, standard deviation (SD), root mean squared error (RMSE),
mean absolute error (MAE), lower quartile (LQ), median (MD), and upper
quartlle (UQ) of the estimates from 500 replications. Rows of the table
report statistics for maximum likelihood estimates (MLE), just-identified

IV estimates using only 2, and a constant as Instruments, TSLS estimates

i
using 8 dummies to indicate each value of Z, as instrume:ts (Dummy IV),
TSLS estimates using 8 dummies Iin White's (1982) efficlent estimator
(Efficient IV), and Ordinary least Squares (0OLS) estimates of a linear
probability model. The MLE's are consistent and efficjent for the
bivariate probit model. The IV estimator is consistent under Assumptions
A2(1) or A2(i1); Dummy IV is consistent and asymptotically efficient under

A2(1) 1f v, 1s homoscedastic; Efficilent IV is consistent and

i
asymptotically efficlent under A2(1) or A2(11).8 The OLS estimates are

BOnly one set of just-identified IV estimates are presented because
Instrumental varlables estimates in just-identified models are unaffected
by the choice of weipghting matrix.

19




identical to estimates of the average treatment effect that would arise
from single equation probit estimation using $; 4as a regressor.

The means of the IV and ML estimates are within sampling variance of
each other in both the 400 and 800 observation samples. The Dummy IV and
Efficient 1V estimates are blased towards the OLS estimate, which is nearly
4 times larger than the true treatment effect.9 The bias of the Dummy and
Efficient IV estimates is considerably worse in the smaller sample. The
contrast between the just-identified IV estimates and the Dummy or
Efficient IV estimates illustrates the trade-off between increasing bilas
and increasing efficiency as the number of instruments increase. In both
samples, the MLE's have the lowest RMSE. Other than the OLS estimates, the
MLE's are also most efficient, although the various 1V estimators have only
modestly larger sampling variance. The Efficient IV estimates are always
slightly more variable than the asymptotically less efficient Dummy IV
estimates. The quartiles do not indicate a significantly larger number of
extreme values for the IV estimates than for the MLE's.

The discussion in Section 4.1 suggests that IV estimators should
perform more poorly when the treatment effect shifts the distribution of
the latent index at a point farther from the median, and when the
instruments shift the distribution of the first-stage latent index at a
point farther from the median. Table 2 reports results from a design the
same as the base design, except that the treatment effect consists of a
movement from 0.85 to 0.95 . This constitutes a larger deviation from
A2(1) than in the base design, although A2(ii) is still approximately

satisfied. All the estimates in Table 2 tend to be somewhat lower than the

9In a bivariate example, Nelson and Startz {(1990) show analytically
that the finite-sample central tendency of consistent instrumental
variables estimates 1s blased towards the probability limit of COLS estimates.
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true effect, whereas in the base design they "are higher. As expected, the
IV estimates are farther from the true effect than the MLE's, but the Dummy
and Efficlent IV estimates are closer. This may be because a positive
small sample -bilas in these estimates offsets negative asymptotic bias.

Table 3 reports results from a design the same as the base design,
except that the eight values taken by the instrument shift E[Si[ Zi} in the
lower tail of the latent index distribution, from 0.05 to Q.35 .10 This
constitutes a stronger violation of AZ(ii). leaving A2(1) approximately
satisfled. All the estimates are now more variable, and the Dummy and
Efficlent IV estimates are substantially upwards biased in the 400
observation sample. But in the larger sample, in splte of a larger bias,
the Dummy and Efficient IV estimates have lower RMSE than the ML estimate.
Overall, the evidence from Tables 1, 2 and 3 suggests that IV estimators do
not perform appreclably worse than the correctly specified ML estimator,
especially in large samples.

Table &4 reports results from a design that combines the upper tail
treatment effect of Table 2 with the lower tail first stage of Tahle 3.
The combined violation of assumptions 2{1) and 2{ii) leads to a
conslderable deterioration in the finite sample performance of all the IV
estimators. In fact, OLS now has lower RMSE than any of the IV estimates,
However, the MLE performs equally badly, with a mean that tends to be half
the size of the true treatment effect. Moreover, roughly half of the MLE
replications failed to converge from starting values of zero. MLE's for
the convergent subsample {in parentheses) also have a larger MAE than the
‘IV estimates.

Tables 5 and 6 report the results of sampling experiments in which

10The instruments range from -3.5 to 3.5, To -1.02, and n- 0.181
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bivariate probit and IV techniques are used to estimate average treatment
effects in models where the underlying error distributions are non-normal.
Table 5 presents results from the base design where the underlying error
distributions are x2<1) instead of N{0,/.5). The compound error in this
case is distributed as X2(2). because it is the sum of two xz(l) random
variables. Table 6 presents results from a modified base design where the
treatment effect consists of & movement from 0.4 to 0.5, and the underlying
error distributions are uniform on [0,1], so that the compound error terms
are triangular on [0,2] with a mode of one.11 The design used to produce
Table 6 comes close to satisfying both A2(i) and A2(ii), The additive
separability assumptions are not satisfied exactly in spite of the uniform

distribution of 74 and Moy because the indices, ﬂo + ﬂl - u,A and Tt

i
1121 - u;, are not guaranteed to be between zero and one.

Results from the models with chi-square error distributions show the
IV and MLE estimators with almost identical means. The MLE still has lower
sampling variance, however, and lower mean squared error. Results from the
models with uniform error distributions show the IV estimator closer to the
true effect of 10 percent than the MLE. In the uniform designs, the median
of the IV sampling distributicn is also closer to the true effect than th;
median of the MLE sampling distribution. Apain, however, larger sampling
variance raises the mean squared error of the IV estimator above that of
the MLE.

In both Tables 5 and 6, there is upward bias in the Dummy and

Efficient IV estimates, although the bias of the Dummy and IV estimates

1As in Table 5, for the design reported in Table 6 the compound error
terms are the sum of u, and the n,'s. For Table 5, design parameters are:
ﬂo - 1.3871, ﬂl - 1.8331. Ty = 0, vy, = 3/8; for Table & design parameters
are: ﬂo - /.8, ﬂl -1-. /.8 e 0.5, - 0.1 .
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falls with increasing sample size, while the bias of the MLE does not. 1In
smaller samples, the simple IV estimator has lower bilas than the MLE buct is
less efficlent. The contrast between the results in Table 4 and the
results in Tables 5 and 6 suggests that approximate additive separability
is more important than distributional assumptions for the small sample
performance of both ML and IV estimates. The MLE is remarkably robust teo
non-normality in both examples considered here, and remains efficient
relative to sll the IV estimators.12 However, in some applications, (e.g.,
Angrist 1990, Angrist and Krueger 1990a, and the example in this paper) the
required micro data are not available and the MLE cannot be computed. In
such cases an IV estimator that can be computed from second moments offers

an attractive and feasible altermative.

6. Summary and Conclusions

Even with valid exclusion restrictions such as generated by the draft
lottery, the ability to answer evaluation questions in any field turns on
functional form restrictions or distributional assumptions. This paper
outlines functional form restrictions necessary and sufficient for linear
IV techniques to provide consistent estimates of average treatment effects.
The additive separability restrictions required for linear IV estimates to
be consistent are unlikely to hold exactly, even for models with continuous
outcome variables. But in many circumstances, the restrictions may hold
approximately. This point is illustrated here using a Monte Carlo study of

a bivariate probit model. 1In & number of examples, IV estimates of the

12The robustness of ML may be related to Ruud's (1986) result showing
that for a large class of regressors, maximum likelihood with a
misspecified distribution consistently estimates univarlate index
coefficlents up to scale.
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average treatment effect do not perform appreclably worse than estimates
computed using the correct likelihcod function,

These results suggest that linear IV estimation of average treatment
effects iIn nonlinear models can often be justified. Of course, in some
applications a varlety of estimation strategles are avallable and all
estimation strategles that derive from the same exclusion restrictions
should probably be considered. Perhaps the most important reason for
presenting IV estimates, however, even when more sophisticated techniques
can be used, 1s that IV techniques are the observational investigator’s
version of classical experimentation., Instead of an experimenter randomly
assigning treatment, the lnstrumental variables naturally assign treatment
in a manner independent of other characteristics related to outcomes. 1
believe this source of identifying information is easily understood and
communicated to non-speclalists, and that findings from simple and
comprehensible empirical strategies are most likely to affect public health

and social policy.
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Table 1:

Base Design

Sample Estimator Mean 5D RMSE MAE 9 MD uqQ
(1) (2) (N (4 (5) (63 (7
400 MLE 11.36 10,92 11.00 8.75 3.63 11.12 18.53
v 12.06 11.55 11.73 9.33 4,21 11.75 19.65
pummy IV 14.13 11.15 11.89 9.40 7.12 13.80 21.70
Efficient IV 14,54 11.45 12.32 9.77 7.22 14.35 22.30
oLs 38.04 4.69 28.43 28,04 34.73 38.19 41.35
BOO MLE 9.59 7.71 7.72 6.15 4,20 9.75 14.70
v 10.38 8.35 B.36 6.68 .66 11.20 15.80
Dummy IV 11.66 8.08 8.25 6.66 6.28 12.10 16.70
Efficient IV 11,84 8.21 B.4l 6.80 6.32 12.40 17.10
OLS 37.58 3.05 27.80 27.60 35.50 37.60 39,80
NOTES : The treatment effect consists of a movement from 0.5 to 0.6 . The

instrument (Z ) 1s discrete, uniformly distributed with 8 points of
support in thé range [-3.5, 3.5]. The first stage coefficients, 19 and
vy, were chosen to generate variation in E(sl|zi) from 0.2 to 0.8 |

MLE estimates are maximum likelihood estimates for bivariate probit. IV
estimates use Z, and a constant as instruments. Dummy IV estimates use a
full set of dummies for each value of Z, as instruments. Efficient IV
estimates uses a full set of dummies in the optimally welpghted two-stage
least squares estimator. The OLS estimate is the Ordinary Least Squares
coefficient from a regression of y on 5., and is the same as the single-
equation probit estimate of the average treatment effect.
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Table 2: Upper Tail Treatment Effect

Sample Estiwmator Mean sh RMSE MAE 19 MD uQ
(1) (2) (3) (4) (3) (6) (M
400 MLE 8.96 6.58 8.64 6.56 4.42 9.37 la.7
(9.12) (8.75) (8.79) (6.66) (4.26) (9.89) (la.m
v 8.88 8.16 8.24 6.47 3.38 9.07 14.1
Dummy IV 9.89 7.84 7.84 6.17 4.62 10.30 14.8
Efficient IV 9.81 8.41 8.41 6.70 4,24 10.20 15.4
OLS 21.3 3.25 11.80 11.30 19.10 21.20 23.%
800 MLE 9.71 5.26 5.27 4.02 6.86 10.20 13.1
v £8.94 5.30 5.40 4.23 5.61 9.10 12.6
Dummy IV 9.49 5.22 5.24 4.12 6.26 9.49 13.0
Efficient IV 9.70 5.45 S5.46 4.29 6.38 9.80 13.4
QLS 21.3 2.31 11.50 11.30 19.60 21.40 22.8
NOTES; The treatment effect consists of a movement from 0.85 to 0.95. Other

design features are as described in Table 1.

In the sample of 400 observatlons, 23 out of 500 maximum likelihood
replications failed to converge. Reported statistics are evaluated for
all observations, Including the last completed iteration for non-
convergent estimates. Results for the convergent subsample are reported
in parentheses.
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Table 3:

Lower Teil First Stage

Sample Estimator Mean sD RMSE MAE 19 MD g

(1) (2) (3 (4) (3 {6) (7
400 MLE 11.76 21.50 21.6 17.7 -3.50 10.6 27.2
(11.76) (21.60) (21.7) (17.7) (-3.50) (10.6) (27.2)
v 9.50 26.60 26.6 20.1 -6.14 10.8 24.5
Dummy IV 15.1% 22_50 21.1 17.8 2.00 15.5 29.4
Efficient IV  15.42 22.90 23.5 18.1 1.98 15.9 29.2
OLS 40.82 5.18 1.3 30.8 37.40 40.9 44,6
800 MLE 10.40 17.40 17.4 14,2 -1.25 11.7 22.5
v 9.48 18.10 18.1 144 -1.97 10.5 21.0
Dummy IV 12.70 16.80 17.0 13.6 1.60 13.3 21.5
Efficlent IV 12,80 V 16.50 17.1 13.7 1.60 13.6 23.9
OoLs 40,60 3.64 30.8 30.6 38.00 40.8 43.4

NOTES : The treatment effect consists of a movement from 0.5 to 0.6 . The

Instrument (Z,) is discrete, uniformly distribuced with 8 points of
support in thé range [-3.5, 3.5]., The first stage coefficlents, vy, and
¥,, were chosen to generate variation in E(silzi) from 0.05 to 0.39.
OEher features of the deslgn are as {n Table'l.

In the sample of 400 observations, one out of 500 maximuwe likelihood
replications failed to converge. Reported statistics are evaluated for
all observations, including the last completed iteration for non-
convergent estimates. Results for the convergent subsample are reported
in parentheses,

27




Table 4: Upper Tail Treatment Effect and Lower Tail First Stage

Sample Estimator Maan 5D BRMSE MAE g MD uq
L (2) (3 (4) (5) (6) (N
400 MLE 4.87 13.7 14.6 9.39 3.90 4.66 9.15
(5.42) (20.9) (21.4) (14 . 4) (2.69) (132.6) (19.4)
Iv 1.43 19.2 21.0 16.3 -10.5 2.01 13.7
Dummy IV 4,72 l6.8 17.6 13.6 -5.00 5.52 15.7
Efficlent IV 4.31 17.3 18.2 14.3 -6.88 5.26 16.2
0Ls 17.0 ' 2.30 7.34 6.98 15.4 16.9 18.7
800 MLE 3.97 13.8 15.1 9.60 3.9 4.62 12.1
(3.55) (18.9) (20.0) (12.2)  (0.33) (10.93) (16.4)
Iv .67 13.5 14.9 11.7 -4.51 l.62 12.0
Dummy IV 5.38 12.3 13.1 10.4 -2.54 5.15 131
Efficient IV 4.76 12.8 13.8 10.9 -3.01 4.73 13.3
oLS 17.0 1.53 7.17 6.97 15.9 17.0 18.1
NOTES: The treatment effect consists of a movement from 0.85 to 0.95 . The

instrument (Z,) is discrete, uniformly distributed with 8 points of
support in the& range [-3.5, 3.5). The first stage coefficlents, vy, and
7., Were chogen to generate variation in E(s |Z } from 0.05 to 0_39,
Tﬁis design combines features of the designs in Tables 2 and 3.

In the samples with 400 observations, only 216 out of 500 maximum
likelihood replications converged. 1In the sample with 800 observations,
only 266 out of 500 maximum likelihood replications comverged. Reported
statistics are evaluated for all observations, including the last
completed {teration for non-convergent estimates. Results for the
convergent subsample are reported in parentheses.
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Table 5: Chi-8quare Error Distributions
Sample Estimator Hean SD RMSE MAE 19 HD ug
(1) (2) (3 (4) (3 {6) N
400 MLE 12.8 11.5 11.8 9.44 4.62 12.5 20.1
v 12.7 12.4 12.7 10.3 4,43 13.1 20.8
Dummy IV 15.0 11.8 12.8 10.4 6.43 14.9 23.5
Efficient IV 15.6 12.3 13.5 10,9 6.71 15.5 24.2
OLS 39.3 4.82  29.7 29.3  36.1 39.5 42.5
800 MLE 12.6 7.99 B.41 6.62 7.42 12.2 17.6
v 12.9 8.60 9.08 7.21 7.28 12.9 18.6
Dummy IV 14,1 8.33 9.28 7.46 8.35 14.3 19.6
Efficient IV 14.4 8.47 9.54 7.65 8.55 14.5 20.1
oLs 39.4 3.22 29.6 29.4 37.0 39.40 41.5
NOTES: The treatment effect consists of a movement from 0.5 to 0.6. The

instrument (Z ) is discrete, uniformly distributed with 8 pgints of
support in the range [l. 8). 411 error,distributions are x (1), so that
the compound errors, "4 and Myys Are X {2). The first stage
coafficients, To and 7] genera&a variation in E[silzi] from 0.17 to 0.78.
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Table 6: Uniform/Trisngular Error Distributions

Sample Estimator Mean 5D RMSE MAE 19 MD uQ
(1) (2) (3 () (» (6) (7
400 MLE 8.97 11.4 11.4 9.32 4,59 7.96 16 .4
v 9.55 12.4 12.4 10.1 5.60 9.14 18.0
Dummy IV 12.2 11.5 11.7 9.47 4.39 12.6 20,0
Efficient IV 12.6 11.9 12.2 9.80 4.26 12.8 20.4
OLS 8.4 4,37 28.7 28.4 35.2 38.6 41.5
800 MLE 8.91 8.18 8.25 6.64 3.07 8.69 14.3
v 9.88 8.99 8.99 7.18 3.85 10.2 15.6
Dummy IV 11.3 8.78 8.88 7.09 5.56 11.3 17.0
Efficient IV 11.5 8.91 9.04 7.22 5.54 11.5 17.1
oLS 38.9 3.17 29.1 28.9 36.8 38.9 40.9
NOTES : The treatment effect consists of a movement from 0.4 to 0.5, The

Instrument (Z,) is discrete, uniformly distributed with 8 points of
511 error distributions are UN[0,1l] so that

&,

support in the range (1, 8].
the cowmpound errors, n
1. The first stage coe

and n
lificien

E{51[21] from 0.18 to 0.76.

are Triangular on [0,2], with a mode of

7o and T generate variation in
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Appendix

Mortality and Veteran Status by Race, Year of Birth, and Draft-Eligibilicy

Draft- Number of Probability Probability of
Race Year Eligibility® Deaths ©of Death _ Militar
(Sulcides) {Sulcide) Service
(1) (2) 3
White 1950 yes 2601 (436) .0204 (.0034) .3527
no 2169 (352) .0195 (.0032) .1933
1951 yes 1494 (279) .0170 (.0032) .2831
no 2823 (480) .0168 (.0029) .1468
1952 yes 1079 (207} .0154 (.0029) .2310
no 2978 (514) L0149 (.0026) .1257
Hon-White 1950 yes 536 (60) .0346 (.0039) .1957
no 493 (46) L0365 (.0034) .1354
1951 yes 350 (33) .0376 (.0035) 2014
no 612 (63) .0344 (.0035) 1514
1952 yes 235 (26) L0309 (.0034) .1449
no 663 (66) .0309 (.0031) .1287

% petermined by lottery number (RSN} cutoff: RSN 195 for men borm in 1950, RSN
125 for men born in 1951, RSN 95 for men born in 1952.

b From California and Pennsylvania administrative records, all deaths 1974-1983,
Data sources and methods documented in Hearst, Newman and Hulley (1986).

NOTE: Sample sizes differ from Hearst, et al., because non-US-born are included.

¢ Equal to number of deaths divided by Population At Risk (PAR) estimated from

the 1970 census, 1% public use sample State files. PAR i{s the number of men in each
birth cohort and race group. Estimates of PAR by draft-eligibility are computed
assuming a uniform distribution of lottery numbers.

d Relative frequencies estimated from the Survey of Income and Program
Participation. Data sources and methods are documented in Angrist (1990).

€ Suicide 1s ICD 950-959.9. Total sulcides - 2268 whites, 294 non-whites.
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